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Abstract

Retrieval-augmented generation (RAG) systems are increasingly deployed in high-
stakes domains where users expect outputs to be consistent across semantically
equivalent queries. However, existing RAG systems often exhibit significant in-
consistencies due to variability in both the retriever and the generator (LLM),
undermining trust and reliability. In this work, we focus on information consis-
tency—the requirement that outputs convey the same core content and information
across semantically equivalent inputs. We introduce a principled evaluation frame-
work that decomposes RAG consistency into retriever-level, generator-level, and
end-to-end components, enabling systematic diagnosis of inconsistency sources.
To improve consistency, we propose Information Consistent RAG (Con-RAG), an
RL approach that leverages Group Relative Policy Optimization (GRPO) multiple
rollouts per query to compute paraphrase group similarity rewards, training the
generator to produce consistent outputs across paraphrased queries and remain ro-
bust to retrieval-induced variability. We also introduce a scalable approximation to
reduce the cost of reward computation, making Con-RAG practical for large-scale
training. Empirical evaluations across five QA benchmarks including short-form,
multi-hop, and long-form tasks, demonstrate that Con-RAG significantly improves
both consistency and accuracy over strong baselines, even in the absence of explicit
ground truth supervision. Our work provides practical solutions for evaluating and
building reliable RAG systems for safety-critical deployments.

1 Introduction

Large language models (LLMs) are increasingly used in open-domain and task-specific applica-
tions where users expect them to behave predictably producing consistent outputs for semantically
equivalent or paraphrased inputs. However, LLMs frequently generate divergent responses to such
variations, raising concerns about their reliability [Novikova et al.| 2025| |[Elazar et al., 2021, |Raj et al.,
2025]. RAG systems are particularly prone to such inconsistencies. RAG architectures combine a
retriever and a generator: the retriever selects top-k documents from a large corpus based on the query,
and the generator synthesizes a response conditioned on those documents [Gao et al.|[2023]]. While
RAG improves factual accuracy by grounding answers in external evidence, it also introduces a new
source of variation: semantically similar queries can retrieve different document sets or rank them
differently, leading to divergent outputs. Furthermore, even with identical evidence, the generator
may produce inconsistent responses due to phrasing sensitivity.

This inconsistency is particularly problematic in high-stakes domains such as healthcare, finance, or
legal settings, where RAG systems are commonly deployed [Kim et al.,[2025]. Inconsistent outputs
can erode trust, introduce liability risks, or even mislead users [Kim et al., 2025| Novikova et al.|
2025]]. For instance, a customer service RAG assistant may offer different instructions for “How do I
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Query 1

@ [ Why do we need to drink water every day? ]

Query 2

®[ Why do humans consume water daily? ]

RAG Output 1 RAG Output 2

9 Humans consume water every day
'E' mainly to help the kidneys flush out
toxins from the bloodstream.

Q Your body loses water through sweat,
urine, and breathing, and it must be
replaced to maintain bodily functions.

X Inconsistent: One answer emphasizes general fluid loss, the other focuses on detoxification.

@ Model: Llama-3.1-8B. Corps: Wikipedia Data source

Figure 1: Motivational Example. Two semantically equivalent queries lead to different outputs from a RAG
system, despite both responses being factually correct. Such variation may be acceptable in many applications,
but in certain high-stakes domains (e.g., healthcare, finance, legal) information consistency across semantically
equivalent inputs may be required to ensure reliability, user trust, and compliance.

close my savings account?” and “What steps should I take to shut down my savings account?” despite
these queries being semantically equivalent.

In this work, we focus on information consistency—the requirement that outputs convey the same core
content and information across paraphrased inputs (see motivational Figure[T). This contrasts with
lexical consistency, which emphasizes word-level or structural similarity. While lexical consistency
is easier to measure, it can penalize legitimate variation (e.g., use of synonyms or stylistic changes)
and is insufficient in evaluating factual agreement. Crucially, the relationship between consistency
and accuracy varies across QA tasks. In short-form QA, where answers are typically concise and
factual, improving consistency often correlates with higher accuracy, models that are more consistent
tend to be more correct. In contrast, for long-form QA tasks, where multiple valid answers may exist,
consistency and accuracy become orthogonal dimensions: a model can be accurate yet inconsistent, or
vice versa. Hence, in open-ended tasks, enforcing information consistency becomes a key desideratum
alongside answer quality.

Given the practical importance of consistent outputs, we aim to address the following question: How
can we measure & improve the information consistency of RAG system outputs across semantically
equivalent inputs, without compromising factual accuracy? To tackle this, we introduce a new evalu-
ation framework that decomposes consistency into retriever-level and generator-level components,
and propose a reinforcement learning approach to optimize for consistency using group similarity
rewards. Our contributions can be summarized as follows:

* A Framework for Measuring Consistency in RAG Systems. We present a principled framework
to evaluate consistency in RAG systems by disentangling three components: retriever consistency
(Jaccard overlap of documents), generator consistency (LLM outputs given fixed context), and
end-to-end consistency. We instantiate this using lexical and LLM-Judge based similarity metrics,
offering insights into where and how inconsistencies emerge (see Section [2.1)).

* Improving Consistency using RL Group Similarity Reward. We propose Information
Consistenct RAG (Con-RAG), an RL method that improves consistency across semantically
equivalent inputs. Our approach leverages GRPOs multiple rollouts per query to compute group
similarity reward across paraphrased outputs (approach summarized in Figure[2). Due to complex-
ity of computing the rewards, we introduce a relaxed approximation by subsampling paraphrases
and rollouts, reducing the number of comparisons from quadratic to linear in the number of para-
phrases. This allows us to train Con-RAG efficiently on large datasets while preserving reward
fidelity (see Section[2.2).

¢ Empirical Evaluation. We conduct an extensive evaluation of Con-RAG across five QA bench-
marks: short-form QA (TriviaQA, HotpotQA), multi-hop QA (2WikiMultiHopQA, MuSiQue),
and long-form QA (ELI5) (see Section[3). Our results show that Con-RAG significantly improves
both end-to-end and generator consistency over a wide range of baselines, without degrading
accuracy. In long-form QA tasks, Con-RAG improves both consistency and LLM-judged factual
accuracy despite being trained in the absence of explicit ground-truth supervision.
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1.1 Related Work.

Consistency in Language Models. Consistency has emerged as a key concern for safety and
reliability in high-stakes LLM deployment [Kim et al.|[2025| [Novikova et al.,[2025]]. Prior work has
introduced various notions of consistency. Logical consistency refers to the ability of the model to
make decisions without logical contradiction [Jang et al., 2022} [Li et al., 2019} |Asai and Hajishirzi,
2020l Mitchell et al.l [2022]]. Factual consistency, often discussed as faithfulness or hallucination,
considers whether model outputs contradict the source content [Jang et al., 2022, Wang et al.|
2020l [Maynez et al., 2020, [Tam et al., 2022]. Self-consistency evaluates whether similar inputs
yield stable explanations [[Parcalabescu and Frank| 2023]]. Nonlogical forms of consistency, such
as moral consistency, assess coherence of values across contexts [Bonagiri et al., 2024} |Arvanitis
and Kalliris, 2020]. Closest to our work is semantic consistency, which measures output stability
under semantically equivalent inputs like paraphrases. This has been evaluated using datasets like
ParaRel [Elazar et al.| |2021]] and metrics such as BERTScore, entailment scores, and LLM judges [Raj
et al., 2022, |[Rabinovich et al.,|[2023} |[Kuhn et al.| 2023]]. Approaches to improve semantic consistenc
include custom losses [Elazar et al.| 2021]], knowledge distillation from consistent teachers [Raj et al.|
2025|], and synthetic data supervision [Zhao et al.,|2024b]]. We refer to a recent survey exploring
current landscape, challenges, and future directions in consistency in LLMs [Novikova et al., 2025].

Consistency in RAG Systems. RAG improves factual accuracy by conditioning outputs on retrieved
evidence [Guu et al., 2020, [Karpukhin et al., 2020, |[Lewis et al.,[2020]. However, it introduces new
sources of inconsistency due to retriever sensitivity and generator (LLM) variability. Despite growing
use in high-stakes applications, information consistency in RAG remains underexplored, with the
exception a few notable studies addressing robustness in retrieval or prompt-level variation [Hsia
et al.l Zhang et al., [2025| [Hu et al.l 2024} |Per¢in et al., 2025[]. Our work aims to evaluate and
improve information consistency in RAG, leveraging an RL-based optimization with paraphase
group similarity rewards. Our approach builds on recent advances in RL for LLMs [Kaufmann et al.|
2024]), particularly Group Relative Policy Optimization (GRPO) [Shao et al., [2024]], which trains
on verifiable reward assignment across outputs. Our framework improves information consistency
across semantically equivalent inputs without relying on strong supervision or ground-truth labels,
unlike prior methods.

2 Main Contributions

In this section, we first define a framework to measure consistency in RAG systems by isolating
retriever, generator, and end-to-end contributions (see Section[2.1)), then introduce our Con-RAG
method to improve consistency via group similarity rewards and its relaxation (see Section [2.2).

2.1 Measuring Consistency in RAG Systems

We consider a RAG system composed of a retriever R and a generator (LLM). Given a user query
q, the system first retrieves a set of top-k documents from a corpus D, and then generates an
output y = LLM(q, R(q)) conditioned on these documents: R(q) = {d;,...,dr} C D.Let go be a
canonical input query, and let P(qo) = {p1,p2,...,pn} denote a set of paraphrased or semantically
equivalent inputs. Our goal is to assess the output consistency of the RAG system across this
paraphrase set.

Retriever Consistency. Let R(p;) denote the set of documents retrieved for paraphrase p;. We
define retriever-level consistency as the average similarity between the document sets retrieved for all
pairs of paraphrases. We use Jaccard similarity [Gower and Legendre| [1986], which measures the
ratio of the intersection to the union of two sets. This metric directly captures the overlap between
retrieved evidence sets while normalizing for their total size, making it well-suited for our setting
where the retriever always returns a fixed number of documents. High Jaccard similarity indicates
that paraphrases lead to highly overlapping evidence, reflecting stable retrieval. The overall retriever
consistency is then the average across all unique paraphrase pairs:

2 |R(pi) N R(p;)|
n(n —1) 7 |R(pi) U R(pj)|

Cret(q0) = ey
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Figure 2: Overview of Information Consistent RAG (Con-RAG) framework. A canonical query q is expanded
into a set of paraphrases {p1, ..., pn }, each of which is passed through the policy LLM to generate g sampled
rollouts. For every rollout o;;, we compute a paraphrase group similarity reward r;; by averaging its similarity
with outputs from other paraphrases of the same query (this produces an n X g reward matrix). Normalized
advantages are then computed within each paraphrase set, and the policy is updated using GRPO.

End-to-End RAG Consistency. Lety; = LLM(p;, R(p;)) denote the output of the RAG system
for paraphrase p;. End-to-end consistency measures alignment across outputs when the entire pipeline
is allowed to vary, each paraphrase p; is passed to the retriever, which may return a different document
set R(p;), and the generator then conditions on this evidence to produce y;. Formally, we compute
pairwise similarity across all outputs:

1 .
Cgen(qo) = m ; Slm(yiy y]) @

This captures the overall stability of the RAG system under paraphrased inputs, reflecting the
combined variability introduced by both retrieval and generation. The similarity function sim(+, -) can
be instantiated using various metrics, including lexical similarity (e.g., BLEU, ROUGE), embedding-
based similarity (e.g., BERTScore), entailment-based scores from NLI models, or LLM-based
judgments using a strong language model to assess consistency or contradiction between y; and y;.

Generator (LLM) Consistency. To isolate the generator’s contribution, we can fix the re-

trieved documents across all paraphrases and measure similarity among the outputs, i.e., yi**¢ =

K3
LLM(p;, R(go)), and compute consistency over {yi*d ... yixd} ysing the same similarity metrics
according to Eq. (2). This captures how consistently the LLM alone responds to semantically equiva-
lent inputs when conditioned on identical evidence. Conceptually, this is closely related to prior work
on consistency in standalone LLMs, where the focus is on ensuring paraphrase-invariant outputs

under identical or similar prompts [Elazar et al.| 2021} Raj et al., 2025| Novikova et al.,|2025].

2.2 Improving Consistency with Group Similarity Reward

Given a RAG system comprise a retriever R and generator (LLM). A canonical query ¢y with
paraphrases P(qo) = {p1, ..., Pn}, Our goal is to maximize output consistency without degrading
factual accuracy. We propose a reinforcement learning approach that leverages GRPO algorithm [Shao
et al.| 2024]. Our approach leverages a unique property of the algorithm which generates extensive
rollouts per query. Our objective is to directly optimize the generator (LLM) so that outputs across
semantically equivalent inputs are consistent.

Group Relative Policy Optimization. GRPO is RL optimization algorithm that estimates advan-
tage through group-normalized rewards rather than using a critic model [Shao et al.| [ 2024]. For a given
query ¢, GRPO samples a group of g rollouts {01, ..., 0,} from the current policy o; ~ my(- | q),
assigns each a verifiable scalar reward r; = Reward(o;|¢q), and computes group-normalized advan-

tages A; = (r; — pq)/oq, where i, and o, are the mean and standard deviation of rewards within
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Togq (Yi,t|P:yi,<t)
optimized by maximizing the objective using these group-relative advantages, with an optional KL

penalty to penalize deviation from the reference policy:

the g rollouts. Let y; 1.,,| denote tokens of response o; and p; ;= The policy is then

g ol

1
Lorro(0) = gzzmm(pm&, clip(pii, 1—€, 14+€)A ) BDkwL(mo(- | @) || meet(- [ @) 3)

=1 t=1

Paraphrase Group Similarity Reward. Our approach leverages the unique property of GRPO
training proceeds with extensive rollouts per query. We aggregate all rollouts from all paraphrases
into a single group and compute similarity-based rewards across the paraphrase dimension, so each
output is rewarded according to its similarity with outputs generated for the other paraphrases of

the same canonical query. For each canonical query ¢y with paraphrases P(qo) = {p1,...,DPn}, the
policy LLM 7y generates g rollouts per paraphrase:
0ij ~mo(- | pi, R(pi)), i€{l,....n},je{l,...,g}. 4

Collect these into an . X g matrix {o;; } (total n x g rollouts). We assign each rollout o;; a paraphrase
group similarity reward by averaging its similarity to all rollouts generated for the other paraphrases
(also see Figure 2] for illustration):

1 "
Ty = mz Z sim(0;5, Oum) 5)

where sim(+, -) is the same agreement function used in Eq. (2). Group-normalized advantages are then
computed across each paraphrased rollout:flij = (rij — ps)/oi, with p;, o; the mean and standard
deviation of rewards for rollouts for p;. The policy is optimized with the standard GRPO clipped
objective using flij and (optionally) a KL penalty to a reference policy with weight 5. If ground-truth
answers are available (e.g., in short-form QA tasks), we extend the reward to improve consistency
and accuracy. Specifically, for each rollout we define a combined weighted reward:

T?Jnal _ cons + fyAcc(O”7y )a ©

where 772" is the group similarity reward, y* is the ground-truth answer, and Acc(+, -) is measured
using token F1 score. Importantly, our method does not require ground truths to improve consistency:
the accuracy reward term can be omitted, as demonstrated in our long-form QA experiments (see
Section [3)), where questions are open-ended and no single ground-truth answer exists.

Efficient Computation of Group Similarity Rewards for Scalable Training. Computing para-
phrase group similarity rewards can be expensive, especially in a training environment where rewards
must be computed at every gradient step. This overhead can significantly slow down training. For
each rollout o;;, computing its reward requires comparing against all (n — 1)g rollouts from the
other paraphrases. At the query level, with n paraphrases and g rollouts each, the naive total cost
isng x (n—1)g = n(n — 1)g* similarity computations. For example, with n = 5 and g = 6
amounts to 720 similarity comparisons for a single query. Exploiting symmetry (a similarity between
045 and oy, need not be recomputed twice) reduces this to % n(n — 1) 92, but the cost still scales
quadratically with n and g. To make training feasible, we introduce a relaxed group similarity
reward. Instead of averaging over all cross-paraphrase comparisons, for each rollout 0;; we sub-
sample K paraphrases K C{1,...,n}\ {i} and s rollouts per chosen paraphrase, and approximate:
Tij = 23 Zue K Qme Sk 81m(0”, Oum ), Which is an unbiased estimator under uniform sampling.
This reduces the per-query cost from O(n(n — 1)g?) to O(ngks), if K < n—1and s < g. In
practice, this approximation preserves the training signal for cross-paraphrase consistency while
keeping the reward computation tractable.

3 Experimental Setup

In this section, we describe our experimental setup to evaluate the effectiveness of Con-RAG across
diverse QA tasks, outlining our datasets, paraphrase generation, consistency metrics, training details,
and comparisons with competitive baselines.
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Datasets. We evaluate our approach across three types of question answering (QA) tasks: Short-
form QA tasks: TriviaQA [Joshi et al., 2017|] and HotpotQA [Yang et al., 2018, both requir-
ing concise fact-based answers. Multi-hop QA tasks: 2WikiMultiHopQA [Ho et al., [2020]] and
MuSiQue [Trivedi et al., [2022], which involve reasoning over multiple pieces of evidence. Long-
form QA task: ELI5 [Fan et al.,|2019], where answers are open-ended and typically span multiple
sentences. None of these datasets provide paraphrased versions of the input questions. To evaluate
consistency, we synthetically generate paraphrases for each query.

Generating paraphrased and semantically equivalent queries. For each query ¢y, we use LLaMA
3.1 70B to generate n paraphrases P(qo) = {p1, ..., n}. To ensure answerability, we provide the
ground truth answer as part of the prompt and instruct the model to generate paraphrases that preserve
the exact meaning such that each paraphrase can be answered in the same way. This allows us to
simulate semantically equivalent inputs without altering the expected outputs.

Setup. Our RAG system consists of a LLaMA 3.1 8B model serving as the generator, and a dense
retriever built on top of the intfloat/e5-base-v2 embedding model [Wang et al., 2022]. We
use KILT Wikipedia snapshot [[Petroni et al., 2020]] as our document corpus, where each article is
segmented into chunks of 512 tokens before embedding. All embeddings are indexed using FAISS for
efficient retrieval. At inference time, the retriever selects the top-k = 5 documents per query, which
are then appended to the prompt for generation. To isolate effects from sampling inconsistencies, we
use deterministic decoding throughout all experiments.

Evaluating Consistency in RAG Systems. We evaluate performance along two dimensions:
accuracy and consistency. For short-form and multi-hop QA datasets, accuracy is measured using:
(i) Exact Match (EM), (ii) token F1 score, and (iii) Relaxed Match (RM), which considers an
answer correct if the ground truth answer appears anywhere in the output. For long-form QA (e.g.,
ELIS), where answers are open-ended and may be phrased in diverse ways, EM/F1/RM are too
restrictive. Instead, we evaluate accuracy using: (i) ROUGE, to capture content overlap with reference
answers, and (ii) LLM-judge accuracy, where a strong model (LLaMA 3.3 70B) assesses whether
the generated answer is factually correct.

Consistency is evaluated at three levels (disentangling contributions from the retriever and generator):
(1) End-to-end consistency, where each paraphrase retrieves its own documents and we compute
agreement between outputs (via BLEU for lexical consistency and an LLM judge (LLaMA 3.3 70B)
for information consistency); (ii) Generator consistency, where retrieval is fixed across paraphrases
and we measure agreement across outputs to isolate the generator’s contribution; (iii) Retriever con-
sistency, defined as the average Jaccard overlap between retrieved document sets across paraphrases
(see Section [2.T)). We use number of paraphrases n = 5 for evaluations.

We summarize consistency results across the datasets in Table [l We observe that the retriever
consistency is relatively low across the datasets, indicating that paraphrases often retrieve non-
overlapping sets of documents, a key source of downstream inconsistency. This is reflected in the
end-to-end consistency scores, which shows that these small changes in query phrasing can result
in different answers, due to shifts in both retrieved context and model generation. To isolate the
generator’s contribution, we also evaluate generator consistency under fixed retrieval (i.e., same
documents across paraphrases). While consistency scores improve, substantial variability still remain,
showing that even with identical evidence, the generator (LLM) exhibits sensitivity to input phrasing.

We report accuracy for original queries, paraphrased queries, and paraphrased queries with fixed
documents in Table[2] Across these settings, accuracy remains relatively stable, with only minor
fluctuations, suggesting that paraphrasing and retrieval shifts have limited impact on final answer
correctness on average.

Con-RAG Training Setup. We train Con-RAG with BLEU as similarity function for computing
group similarity rewards. For short-form and multi-hop QA tasks, we use unigram BLEU (ngram=1)
and bigram BLEU (ngram=2) for long-form QA tasks to account for more contextual similarity across
longer answers. For short-form QA tasks, where ground-truth answers are available, we augment
the similarity reward with an accuracy reward based on token F1 score, which we found to be more
stable than other accuracy metrics. The final reward is computed using a weighted sum as defined in
Eq. @ with equal weights («,y = 1) for both consistency and accuracy. We set the KL regularization
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Table 1: Disentangling sources of inconsistency in RAG systems. Retriever consistency is low across
datasets, suggesting that paraphrased queries often retrieve non-overlapping documents. This introduces context
variability that is reflected in the end-to-end consistency scores. Fixing retrieval improves consistency, but
variation remains, revealing the generator’s sensitivity to input phrasing even with identical evidence.

\ End-to-End Consistency  Generator (LLM) Consistency Retriever Consistency

Dataset

| Lexical ~ LLM-Judge | Lexical LLM-Judge | Jaccard Overlap
TriviaQA 53.0 77.8 67.3 88.5 325
HotpotQA 42.5 62.5 53.7 71.9 46.0
2Wiki 38.5 65.5 48.4 76.4 52.4
MuSiQue 27.9 48.2 44.4 69.7 36.6
E1ib5 8.56 62.8 15.1 74.2 27.1

Table 2: Accuracy across datasets and query variants. We report accuracy for original queries, synthetically
generated paraphrased queries, and paraphrased queries with fixed retrieval. Across all settings, accuracy remains
relatively similar, indicating that paraphrasing and retrieval shifts have limited effect on final answer correctness
on average.

Short-form & Multi-hop QA: Accuracy (%)

\ Original Queries Paraphrased Queries Paraphrased (Fixed Docs)

Dataset
\ EM F1 RM \ EM F1 RM \ EM F1 RM
TriviaQA | 56.0 66.1 740 | 55.0 644 73.3 58.7 67.3 75.0
HotpotQA | 37.0 44.1 420 | 364 435 42.4 33.7  40.7 394
2Wiki 28.0 339 37.0 | 259 313 32.7 269 31.7 33.3
MuSiQue 80 153 120 | 83 14.1 11.0 11.0 175 15.0
Long-form QA: Accuracy (%)

Dataset \ Original Queries Paraphrased Queries Paraphrased (Fixed Docs)

\ ROUGE LLM-Acc \ ROUGE LLM-Acc \ ROUGE LLM-Acc
ELI5 | 219 74.0 | 207 71.3 | 20.8 70.3

coefficient S = 0.0 for these tasks, following recent findings [Hu et al.| [2025]] suggesting that GRPO
performs effectively without explicit KL penalties. In contrast, for long-form QA (ELIS), where
questions are open-ended and multiple valid answers may exist, we exclude the accuracy reward and
optimize solely for consistency using the group similarity reward. To prevent reward hacking in the
absence of ground-truth supervision, we apply a small KL penalty with 5 = 0.05 to regularize the
policy against a reference model.

We use n = 6 paraphrases per canonical query and g = 4 rollouts per paraphrase. To make training
scalable, we apply the relaxed approximation described in Section [2.2]to estimate group similarity
rewards. Specifically, we subsample x = 3 paraphrases and s = 1 rollout per selected paraphrase
when computing similarity, which significantly reduces the number of comparisons with minimal
impact on reward quality. We perform full model fine-tuning using the AdamW optimizer with a
learning rate of 1e-6. All training is conducted on LLaMA 3.1 8B using precision bf16.

Baselines. We compare Con-RAG against diverse baselines representative of current RAG systems:
(i) RAG: A standard RAG setup where the top-k retrieved documents are appended to the prompt
and passed directly to the generator for answer prediction. (ii) DRAG (Demonstrated RAG) [Yue
et al.,|2024]: An inference-time scaling method that leverages few-shot demonstrations to improve
performance. (iii) CoT-RAG (Chain-of-Thought RAG) [Zhao et al. 2024a]: Extends standard
RAG by prompting the generator to produce intermediate reasoning steps before outputting a final
answer, improving multi-hop and compositional question answering. (iv) SFT (Supervised Fine-
Tuning) [Chung et al., [2024]: We fine-tune the generator on paraphrased queries paired with their
ground-truths. For long-form QA, where answers are free-form, we fine-tune on the available
reference responses. (v) Con-RAG (ours): Our proposed method that leverages group similarity
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Table 3: Comparison between Con-RAG vs. Baselines (Short-form QA Tasks). Lexical consistency
measured via BLEU score while and information consistency measured using an LLM-judge. Con-RAG is
trained with a group-similarity reward plus an accuracy reward (no KL), and consistently yields higher end-to-end
and generator-only consistency while also improving accuracy over original queries.

End-to-End Generator (LLM)
Accuracy (%) Consistency (%) Consistency (%)
Dataset Method | EM Fl1 RM | Lexical Inform. | Lexical Inform.
RAG 56.0 66.1 74.0 53.0 77.8 67.3 88.5
DRAG 540 637 720 56.8 78.7 68.2 88.2
TriviaQA CoT-RAG 450 577 720 44.6 79.2 57.7 85.0
SET 240 275 290 51.3 58.2 77.8 81.2
Con-RAG | 77.0 81.0 83.0 87.3 91.3 91.2 93.0
RAG 37.0 441 420 42.5 62.5 53.7 71.9
DRAG 37.0 43.8 430 41.1 61.6 50.5 73.1
HotpotQA CoT-RAG 31.0 36.8 420 27.3 59.6 36.1 68.9
SEFT 397 46,5 472 63.9 70.5 72.2 78.5
Con-RAG | 45.0 519 48.0 63.9 73.6 80.9 88.2
RAG 8.0 153 120 27.9 48.2 44 4 69.7
DRAG 6.0 13.1 11.0 31.0 50.7 429 70.0
MuSiQue CoT-RAG 8.0 152 19.0 16.1 53.7 29.2 67.7
SFT 22.0 255 23.0 68.1 69.3 77.8 79.8
Con-RAG | 23.0 30.8 25.0 72.5 72.3 914 92.7
RAG 2800 339 370 38.5 65.5 48.4 76.4
DRAG 20.0 269 340 36.8 65.5 49.3 76.1
2Wiki CoT-RAG 20.0 255 41.0 22.8 59.3 29.9 67.8
SFT 33.0 340 330 69.4 66.2 84.4 83.3
Con-RAG | 39.0 40.6 40.0 78.2 77.8 94.1 95.5

Table 4: Comparison between Con-RAG vs. Baselines (Long-form QA Task). Con-RAG is trained using
only the group-similarity reward with a small KL regularizer (no accuracy supervision). Despite no ground-truth,
it achieves the best end-to-end and generator consistency and also improves answer quality over baselines,
whereas SFT on reference answers underperforms in this open-ended setting.

End-to-End Generator (LLM)

Accuracy (%) Consistency (%) Consistency (%)

Dataset Method | ROUGE LLM-Acc | Lexical Inform. | Lexical Inform.
RAG 21.9 74.0 8.6 62.8 15.1 74.2
DRAG 22.0 76.0 8.0 62.2 15.0 72.5
ELIS CoT-RAG 20.9 64.0 6.4 57.8 10.3 71.0
SFT 23.5 51.0 15.3 40.8 16.6 41.7
Con-RAG 24.2 78.0 14.6 72.7 21.7 80.8

rewards to improve consistency (see Section[2.2). All baselines are evaluated using the same retriever,
generator, and document corpus to ensure fair and consistent comparison.

Results and Analysis. We present our results across short-form and long-form QA tasks in Tables|3]
and {4 respectfully. To ensure that consistency improvements do not come at the cost of answer
quality, we report accuracy metrics on the original queries, avoiding generic but consistent outputs.
Our results demonstrate the following key observations:

Con-RAG improves both consistency and accuracy in short-form QA. Across all short-form and multi-
hop datasets, Con-RAG achieves significant gains in both end-to-end and generator-only consistency.
For instance, on TriviaQA, end-to-end consistency (lexical/information) improves from 53.0/77.8
(RAG) to 87.3/91.3, while generator consistency reaches 91.2/93.0. Notably, these improvements
are not achieved at the expense of accuracy. Con-RAG also achieves the highest EM, F1, and
RM scores across all datasets. This indicates that optimizing consistency can also enhance model
robustness, likely due to the implicit data augmentation effect of training across paraphrase groups.
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Other baselines DRAG and CoT-RAG provide only modest consistency improvements and fail to
match Con-RAG across metrics.

In Long-form QA, Con-RAG also boosts accuracy without ground-truth supervision. Results on
ELI5 (see Table[) are particularly interesting: even though Con-RAG is trained without any explicit
ground truth (or accuracy signal), it improves both consistency and accuracy over all baselines.
Compared to RAG, Con-RAG increases lexical and information consistency while also achieving
higher ROUGE and LLM-judged accuracy. In contrast, SFT trained on reference answers performs
poorly on ELI5, especially in terms of LLM-judge accuracy, highlighting the limitations of rigid
supervision in open-ended QA, where many valid responses exist. This underscores the strength of
Con-RAG in open-ended tasks, which does not rely on a single reference output.

Discussion and Next Steps. While Con-RAG achieves strong improvements in both generator and
end-to-end consistency, several important directions remain as next steps. (1) Beyond Lexical Rewards
for Information Consistency: In this work, we use lexical similarity metrics (e.g., BLEU) as a proxy to
enforce information consistency. While effective, such metrics emphasize surface-level alignment and
penalize variations in wording, even when the underlying information remains unchanged. In practice,
we may allow use of synonyms or outputs expressed differently, as long as they convey the same core
content. A key next step is to search for a signal that would directly optimize for information-level
consistency without enforcing lexical similarity between outputs. LLM as a judge seems promising,
however, such a signal introduces a tension between weak vs. strong supervision [Burns et al.,
2023|]. Ideally, we seek lightweight, automatic signals that can still guide the model toward consistent
output (leveraging entailment-based rewards, BERTScore, etc.). (2) Joint Retriever and Generator
Optimization: Con-RAG substantially improves generator consistency, yet end-to-end consistency
still lags behind, mainly due to variation in retrieved documents across paraphrased queries. This
inconsistency in retrieval results in different contexts being provided to the generator. To address this,
a promising next step is to jointly optimize the retriever and generator. By rewarding the retriever
to return similar documents for semantically equivalent queries, and simultaneously training the
generator for consistency, the system can learn to retrieve relevant evidence that best helps answer the
question accurately, potentially further improving both consistency and accuracy [Lewis et al.,[2020].
By introducing a principled way to measure RAG consistency and a scalable method to improve it,
we move toward more reliable, trustworthy, and user-aligned RAG systems.
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