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Abstract

Retrieval-augmented generation (RAG) systems are increasingly deployed in high-1

stakes domains where users expect outputs to be consistent across semantically2

equivalent queries. However, existing RAG systems often exhibit significant in-3

consistencies due to variability in both the retriever and the generator (LLM),4

undermining trust and reliability. In this work, we focus on information consis-5

tency—the requirement that outputs convey the same core content and information6

across semantically equivalent inputs. We introduce a principled evaluation frame-7

work that decomposes RAG consistency into retriever-level, generator-level, and8

end-to-end components, enabling systematic diagnosis of inconsistency sources.9

To improve consistency, we propose Information Consistent RAG (Con-RAG), an10

RL approach that leverages Group Relative Policy Optimization (GRPO) multiple11

rollouts per query to compute paraphrase group similarity rewards, training the12

generator to produce consistent outputs across paraphrased queries and remain ro-13

bust to retrieval-induced variability. We also introduce a scalable approximation to14

reduce the cost of reward computation, making Con-RAG practical for large-scale15

training. Empirical evaluations across five QA benchmarks including short-form,16

multi-hop, and long-form tasks, demonstrate that Con-RAG significantly improves17

both consistency and accuracy over strong baselines, even in the absence of explicit18

ground truth supervision. Our work provides practical solutions for evaluating and19

building reliable RAG systems for safety-critical deployments.20

1 Introduction21

Large language models (LLMs) are increasingly used in open-domain and task-specific applica-22

tions where users expect them to behave predictably producing consistent outputs for semantically23

equivalent or paraphrased inputs. However, LLMs frequently generate divergent responses to such24

variations, raising concerns about their reliability [Novikova et al., 2025, Elazar et al., 2021, Raj et al.,25

2025]. RAG systems are particularly prone to such inconsistencies. RAG architectures combine a26

retriever and a generator: the retriever selects top-k documents from a large corpus based on the query,27

and the generator synthesizes a response conditioned on those documents [Gao et al., 2023]. While28

RAG improves factual accuracy by grounding answers in external evidence, it also introduces a new29

source of variation: semantically similar queries can retrieve different document sets or rank them30

differently, leading to divergent outputs. Furthermore, even with identical evidence, the generator31

may produce inconsistent responses due to phrasing sensitivity.32

This inconsistency is particularly problematic in high-stakes domains such as healthcare, finance, or33

legal settings, where RAG systems are commonly deployed [Kim et al., 2025]. Inconsistent outputs34

can erode trust, introduce liability risks, or even mislead users [Kim et al., 2025, Novikova et al.,35

2025]. For instance, a customer service RAG assistant may offer different instructions for “How do I36
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Why do we need to drink water every day?

Query 1

Why do humans consume water daily?

Query 2

Your body loses water through sweat, 
urine, and breathing, and it must be 

replaced to maintain bodily functions.

Humans consume water every day 
mainly to help the kidneys flush out 

toxins from the bloodstream.

Model: Llama-3.1-8B. Corps: Wikipedia Data source

❌ Inconsistent: One answer emphasizes general fluid loss, the other focuses on detoxification. 

RAG Output 1 RAG Output 2

Figure 1: Motivational Example. Two semantically equivalent queries lead to different outputs from a RAG
system, despite both responses being factually correct. Such variation may be acceptable in many applications,
but in certain high-stakes domains (e.g., healthcare, finance, legal) information consistency across semantically
equivalent inputs may be required to ensure reliability, user trust, and compliance.

close my savings account?” and “What steps should I take to shut down my savings account?” despite37

these queries being semantically equivalent.38

In this work, we focus on information consistency—the requirement that outputs convey the same core39

content and information across paraphrased inputs (see motivational Figure 1). This contrasts with40

lexical consistency, which emphasizes word-level or structural similarity. While lexical consistency41

is easier to measure, it can penalize legitimate variation (e.g., use of synonyms or stylistic changes)42

and is insufficient in evaluating factual agreement. Crucially, the relationship between consistency43

and accuracy varies across QA tasks. In short-form QA, where answers are typically concise and44

factual, improving consistency often correlates with higher accuracy, models that are more consistent45

tend to be more correct. In contrast, for long-form QA tasks, where multiple valid answers may exist,46

consistency and accuracy become orthogonal dimensions: a model can be accurate yet inconsistent, or47

vice versa. Hence, in open-ended tasks, enforcing information consistency becomes a key desideratum48

alongside answer quality.49

Given the practical importance of consistent outputs, we aim to address the following question: How50

can we measure & improve the information consistency of RAG system outputs across semantically51

equivalent inputs, without compromising factual accuracy? To tackle this, we introduce a new evalu-52

ation framework that decomposes consistency into retriever-level and generator-level components,53

and propose a reinforcement learning approach to optimize for consistency using group similarity54

rewards. Our contributions can be summarized as follows:55

• A Framework for Measuring Consistency in RAG Systems. We present a principled framework56

to evaluate consistency in RAG systems by disentangling three components: retriever consistency57

(Jaccard overlap of documents), generator consistency (LLM outputs given fixed context), and58

end-to-end consistency. We instantiate this using lexical and LLM-Judge based similarity metrics,59

offering insights into where and how inconsistencies emerge (see Section 2.1).60

• Improving Consistency using RL Group Similarity Reward. We propose Information61

Consistenct RAG (Con-RAG), an RL method that improves consistency across semantically62

equivalent inputs. Our approach leverages GRPOs multiple rollouts per query to compute group63

similarity reward across paraphrased outputs (approach summarized in Figure 2). Due to complex-64

ity of computing the rewards, we introduce a relaxed approximation by subsampling paraphrases65

and rollouts, reducing the number of comparisons from quadratic to linear in the number of para-66

phrases. This allows us to train Con-RAG efficiently on large datasets while preserving reward67

fidelity (see Section 2.2).68

• Empirical Evaluation. We conduct an extensive evaluation of Con-RAG across five QA bench-69

marks: short-form QA (TriviaQA, HotpotQA), multi-hop QA (2WikiMultiHopQA, MuSiQue),70

and long-form QA (ELI5) (see Section 3). Our results show that Con-RAG significantly improves71

both end-to-end and generator consistency over a wide range of baselines, without degrading72

accuracy. In long-form QA tasks, Con-RAG improves both consistency and LLM-judged factual73

accuracy despite being trained in the absence of explicit ground-truth supervision.74
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1.1 Related Work.75

Consistency in Language Models. Consistency has emerged as a key concern for safety and76

reliability in high-stakes LLM deployment [Kim et al., 2025, Novikova et al., 2025]. Prior work has77

introduced various notions of consistency. Logical consistency refers to the ability of the model to78

make decisions without logical contradiction [Jang et al., 2022, Li et al., 2019, Asai and Hajishirzi,79

2020, Mitchell et al., 2022]. Factual consistency, often discussed as faithfulness or hallucination,80

considers whether model outputs contradict the source content [Jang et al., 2022, Wang et al.,81

2020, Maynez et al., 2020, Tam et al., 2022]. Self-consistency evaluates whether similar inputs82

yield stable explanations [Parcalabescu and Frank, 2023]. Nonlogical forms of consistency, such83

as moral consistency, assess coherence of values across contexts [Bonagiri et al., 2024, Arvanitis84

and Kalliris, 2020]. Closest to our work is semantic consistency, which measures output stability85

under semantically equivalent inputs like paraphrases. This has been evaluated using datasets like86

ParaRel [Elazar et al., 2021] and metrics such as BERTScore, entailment scores, and LLM judges [Raj87

et al., 2022, Rabinovich et al., 2023, Kuhn et al., 2023]. Approaches to improve semantic consistenc88

include custom losses [Elazar et al., 2021], knowledge distillation from consistent teachers [Raj et al.,89

2025], and synthetic data supervision [Zhao et al., 2024b]. We refer to a recent survey exploring90

current landscape, challenges, and future directions in consistency in LLMs [Novikova et al., 2025].91

Consistency in RAG Systems. RAG improves factual accuracy by conditioning outputs on retrieved92

evidence [Guu et al., 2020, Karpukhin et al., 2020, Lewis et al., 2020]. However, it introduces new93

sources of inconsistency due to retriever sensitivity and generator (LLM) variability. Despite growing94

use in high-stakes applications, information consistency in RAG remains underexplored, with the95

exception a few notable studies addressing robustness in retrieval or prompt-level variation [Hsia96

et al., Zhang et al., 2025, Hu et al., 2024, Perçin et al., 2025]. Our work aims to evaluate and97

improve information consistency in RAG, leveraging an RL-based optimization with paraphase98

group similarity rewards. Our approach builds on recent advances in RL for LLMs [Kaufmann et al.,99

2024], particularly Group Relative Policy Optimization (GRPO) [Shao et al., 2024], which trains100

on verifiable reward assignment across outputs. Our framework improves information consistency101

across semantically equivalent inputs without relying on strong supervision or ground-truth labels,102

unlike prior methods.103

2 Main Contributions104

In this section, we first define a framework to measure consistency in RAG systems by isolating105

retriever, generator, and end-to-end contributions (see Section 2.1), then introduce our Con-RAG106

method to improve consistency via group similarity rewards and its relaxation (see Section 2.2).107

2.1 Measuring Consistency in RAG Systems108

We consider a RAG system composed of a retriever R and a generator (LLM). Given a user query109

q, the system first retrieves a set of top-k documents from a corpus D, and then generates an110

output y = LLM(q,R(q)) conditioned on these documents:R(q) = {d1, . . . , dk} ⊂ D. Let q0 be a111

canonical input query, and let P(q0) = {p1, p2, . . . , pn} denote a set of paraphrased or semantically112

equivalent inputs. Our goal is to assess the output consistency of the RAG system across this113

paraphrase set.114

Retriever Consistency. Let R(pi) denote the set of documents retrieved for paraphrase pi. We115

define retriever-level consistency as the average similarity between the document sets retrieved for all116

pairs of paraphrases. We use Jaccard similarity [Gower and Legendre, 1986], which measures the117

ratio of the intersection to the union of two sets. This metric directly captures the overlap between118

retrieved evidence sets while normalizing for their total size, making it well-suited for our setting119

where the retriever always returns a fixed number of documents. High Jaccard similarity indicates120

that paraphrases lead to highly overlapping evidence, reflecting stable retrieval. The overall retriever121

consistency is then the average across all unique paraphrase pairs:122

Cret(q0) =
2

n(n− 1)

∑
i,j

|R(pi) ∩R(pj)|
|R(pi) ∪R(pj)|

. (1)
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Figure 2: Overview of Information Consistent RAG (Con-RAG) framework. A canonical query q is expanded
into a set of paraphrases {p1, . . . , pn}, each of which is passed through the policy LLM to generate g sampled
rollouts. For every rollout oij , we compute a paraphrase group similarity reward rij by averaging its similarity
with outputs from other paraphrases of the same query (this produces an n × g reward matrix). Normalized
advantages are then computed within each paraphrase set, and the policy is updated using GRPO.

End-to-End RAG Consistency. Let yi = LLM(pi, R(pi)) denote the output of the RAG system123

for paraphrase pi. End-to-end consistency measures alignment across outputs when the entire pipeline124

is allowed to vary, each paraphrase pi is passed to the retriever, which may return a different document125

set R(pi), and the generator then conditions on this evidence to produce yi. Formally, we compute126

pairwise similarity across all outputs:127

Cgen(q0) =
1

n(n− 1)

∑
i ̸=j

sim(yi, yj). (2)

This captures the overall stability of the RAG system under paraphrased inputs, reflecting the128

combined variability introduced by both retrieval and generation. The similarity function sim(·, ·) can129

be instantiated using various metrics, including lexical similarity (e.g., BLEU, ROUGE), embedding-130

based similarity (e.g., BERTScore), entailment-based scores from NLI models, or LLM-based131

judgments using a strong language model to assess consistency or contradiction between yi and yj .132

Generator (LLM) Consistency. To isolate the generator’s contribution, we can fix the re-133

trieved documents across all paraphrases and measure similarity among the outputs, i.e., yfixed
i =134

LLM(pi, R(q0)), and compute consistency over {yfixed
1 , . . . , yfixed

n } using the same similarity metrics135

according to Eq. (2). This captures how consistently the LLM alone responds to semantically equiva-136

lent inputs when conditioned on identical evidence. Conceptually, this is closely related to prior work137

on consistency in standalone LLMs, where the focus is on ensuring paraphrase-invariant outputs138

under identical or similar prompts [Elazar et al., 2021, Raj et al., 2025, Novikova et al., 2025].139

2.2 Improving Consistency with Group Similarity Reward140

Given a RAG system comprise a retriever R and generator (LLM). A canonical query q0 with141

paraphrases P(q0) = {p1, . . . , pn}, our goal is to maximize output consistency without degrading142

factual accuracy. We propose a reinforcement learning approach that leverages GRPO algorithm [Shao143

et al., 2024]. Our approach leverages a unique property of the algorithm which generates extensive144

rollouts per query. Our objective is to directly optimize the generator (LLM) so that outputs across145

semantically equivalent inputs are consistent.146

Group Relative Policy Optimization. GRPO is RL optimization algorithm that estimates advan-147

tage through group-normalized rewards rather than using a critic model [Shao et al., 2024]. For a given148

query q, GRPO samples a group of g rollouts {o1, . . . , on} from the current policy oi ∼ πθ(· | q),149

assigns each a verifiable scalar reward ri = Reward(oi|q), and computes group-normalized advan-150

tages Âi = (ri − µq)/σq, where µq and σq are the mean and standard deviation of rewards within151
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the g rollouts. Let yi,1:|oi| denote tokens of response oi and ρi,t=
πθ(yi,t|p,yi,<t)
πθold (yi,t|p,yi,<t)

. The policy is then152

optimized by maximizing the objective using these group-relative advantages, with an optional KL153

penalty to penalize deviation from the reference policy:154

LGRPO(θ) =
1

g

g∑
i=1

|oi|∑
t=1

min
(
ρi,tÂi, clip(ρi,t, 1− ϵ, 1+ ϵ)Âi

)
− β DKL

(
πθ(· | q)

∥∥πref(· | q)
)

(3)

Paraphrase Group Similarity Reward. Our approach leverages the unique property of GRPO155

training proceeds with extensive rollouts per query. We aggregate all rollouts from all paraphrases156

into a single group and compute similarity-based rewards across the paraphrase dimension, so each157

output is rewarded according to its similarity with outputs generated for the other paraphrases of158

the same canonical query. For each canonical query q0 with paraphrases P(q0) = {p1, . . . , pn}, the159

policy LLM πθ generates g rollouts per paraphrase:160

oij ∼ πθ(· | pi, R(pi)), i ∈ {1, . . . , n}, j ∈ {1, . . . , g}. (4)

Collect these into an n×g matrix {oij} (total n×g rollouts). We assign each rollout oij a paraphrase161

group similarity reward by averaging its similarity to all rollouts generated for the other paraphrases162

(also see Figure 2 for illustration):163

rij =
1

(n− 1)g

n∑
u=1
u ̸=i

g∑
m=1

sim
(
oij , oum

)
, (5)

where sim(·, ·) is the same agreement function used in Eq. (2). Group-normalized advantages are then164

computed across each paraphrased rollout:Âij = (rij − µi)/σi, with µi, σi the mean and standard165

deviation of rewards for rollouts for pi. The policy is optimized with the standard GRPO clipped166

objective using Âij and (optionally) a KL penalty to a reference policy with weight β. If ground-truth167

answers are available (e.g., in short-form QA tasks), we extend the reward to improve consistency168

and accuracy. Specifically, for each rollout we define a combined weighted reward:169

rfinal
ij = α rcons

ij + γ Acc(oij , y⋆), (6)

where rcons
ij is the group similarity reward, y⋆ is the ground-truth answer, and Acc(·, ·) is measured170

using token F1 score. Importantly, our method does not require ground truths to improve consistency:171

the accuracy reward term can be omitted, as demonstrated in our long-form QA experiments (see172

Section 3), where questions are open-ended and no single ground-truth answer exists.173

Efficient Computation of Group Similarity Rewards for Scalable Training. Computing para-174

phrase group similarity rewards can be expensive, especially in a training environment where rewards175

must be computed at every gradient step. This overhead can significantly slow down training. For176

each rollout oij , computing its reward requires comparing against all (n − 1)g rollouts from the177

other paraphrases. At the query level, with n paraphrases and g rollouts each, the naive total cost178

is ng × (n − 1)g = n(n − 1)g2 similarity computations. For example, with n = 5 and g = 6179

amounts to 720 similarity comparisons for a single query. Exploiting symmetry (a similarity between180

oij and oum need not be recomputed twice) reduces this to 1
2 n(n − 1)g2, but the cost still scales181

quadratically with n and g. To make training feasible, we introduce a relaxed group similarity182

reward. Instead of averaging over all cross-paraphrase comparisons, for each rollout oij we sub-183

sample κ paraphrases K⊂{1, . . . , n} \ {i} and s rollouts per chosen paraphrase, and approximate:184

r̃ij = 1
κs

∑
u∈K

∑
m∈Sk

sim(oij , oum), which is an unbiased estimator under uniform sampling.185

This reduces the per-query cost from O(n(n − 1)g2) to O(ngκs), if κ ≪ n−1 and s ≪ g. In186

practice, this approximation preserves the training signal for cross-paraphrase consistency while187

keeping the reward computation tractable.188

3 Experimental Setup189

In this section, we describe our experimental setup to evaluate the effectiveness of Con-RAG across190

diverse QA tasks, outlining our datasets, paraphrase generation, consistency metrics, training details,191

and comparisons with competitive baselines.192
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Datasets. We evaluate our approach across three types of question answering (QA) tasks: Short-193

form QA tasks: TriviaQA [Joshi et al., 2017] and HotpotQA [Yang et al., 2018], both requir-194

ing concise fact-based answers. Multi-hop QA tasks: 2WikiMultiHopQA [Ho et al., 2020] and195

MuSiQue [Trivedi et al., 2022], which involve reasoning over multiple pieces of evidence. Long-196

form QA task: ELI5 [Fan et al., 2019], where answers are open-ended and typically span multiple197

sentences. None of these datasets provide paraphrased versions of the input questions. To evaluate198

consistency, we synthetically generate paraphrases for each query.199

Generating paraphrased and semantically equivalent queries. For each query q0, we use LLaMA200

3.1 70B to generate n paraphrases P(q0) = {p1, . . . , pn}. To ensure answerability, we provide the201

ground truth answer as part of the prompt and instruct the model to generate paraphrases that preserve202

the exact meaning such that each paraphrase can be answered in the same way. This allows us to203

simulate semantically equivalent inputs without altering the expected outputs.204

Setup. Our RAG system consists of a LLaMA 3.1 8B model serving as the generator, and a dense205

retriever built on top of the intfloat/e5-base-v2 embedding model [Wang et al., 2022]. We206

use KILT Wikipedia snapshot [Petroni et al., 2020] as our document corpus, where each article is207

segmented into chunks of 512 tokens before embedding. All embeddings are indexed using FAISS for208

efficient retrieval. At inference time, the retriever selects the top-k = 5 documents per query, which209

are then appended to the prompt for generation. To isolate effects from sampling inconsistencies, we210

use deterministic decoding throughout all experiments.211

Evaluating Consistency in RAG Systems. We evaluate performance along two dimensions:212

accuracy and consistency. For short-form and multi-hop QA datasets, accuracy is measured using:213

(i) Exact Match (EM), (ii) token F1 score, and (iii) Relaxed Match (RM), which considers an214

answer correct if the ground truth answer appears anywhere in the output. For long-form QA (e.g.,215

ELI5), where answers are open-ended and may be phrased in diverse ways, EM/F1/RM are too216

restrictive. Instead, we evaluate accuracy using: (i) ROUGE, to capture content overlap with reference217

answers, and (ii) LLM-judge accuracy, where a strong model (LLaMA 3.3 70B) assesses whether218

the generated answer is factually correct.219

Consistency is evaluated at three levels (disentangling contributions from the retriever and generator):220

(i) End-to-end consistency, where each paraphrase retrieves its own documents and we compute221

agreement between outputs (via BLEU for lexical consistency and an LLM judge (LLaMA 3.3 70B)222

for information consistency); (ii) Generator consistency, where retrieval is fixed across paraphrases223

and we measure agreement across outputs to isolate the generator’s contribution; (iii) Retriever con-224

sistency, defined as the average Jaccard overlap between retrieved document sets across paraphrases225

(see Section 2.1). We use number of paraphrases n = 5 for evaluations.226

We summarize consistency results across the datasets in Table 1. We observe that the retriever227

consistency is relatively low across the datasets, indicating that paraphrases often retrieve non-228

overlapping sets of documents, a key source of downstream inconsistency. This is reflected in the229

end-to-end consistency scores, which shows that these small changes in query phrasing can result230

in different answers, due to shifts in both retrieved context and model generation. To isolate the231

generator’s contribution, we also evaluate generator consistency under fixed retrieval (i.e., same232

documents across paraphrases). While consistency scores improve, substantial variability still remain,233

showing that even with identical evidence, the generator (LLM) exhibits sensitivity to input phrasing.234

We report accuracy for original queries, paraphrased queries, and paraphrased queries with fixed235

documents in Table 2. Across these settings, accuracy remains relatively stable, with only minor236

fluctuations, suggesting that paraphrasing and retrieval shifts have limited impact on final answer237

correctness on average.238

Con-RAG Training Setup. We train Con-RAG with BLEU as similarity function for computing239

group similarity rewards. For short-form and multi-hop QA tasks, we use unigram BLEU (ngram=1)240

and bigram BLEU (ngram=2) for long-form QA tasks to account for more contextual similarity across241

longer answers. For short-form QA tasks, where ground-truth answers are available, we augment242

the similarity reward with an accuracy reward based on token F1 score, which we found to be more243

stable than other accuracy metrics. The final reward is computed using a weighted sum as defined in244

Eq. 6, with equal weights (α, γ = 1) for both consistency and accuracy. We set the KL regularization245

6



Table 1: Disentangling sources of inconsistency in RAG systems. Retriever consistency is low across
datasets, suggesting that paraphrased queries often retrieve non-overlapping documents. This introduces context
variability that is reflected in the end-to-end consistency scores. Fixing retrieval improves consistency, but
variation remains, revealing the generator’s sensitivity to input phrasing even with identical evidence.

Dataset End-to-End Consistency Generator (LLM) Consistency Retriever Consistency

Lexical LLM-Judge Lexical LLM-Judge Jaccard Overlap

TriviaQA 53.0 77.8 67.3 88.5 32.5
HotpotQA 42.5 62.5 53.7 71.9 46.0
2Wiki 38.5 65.5 48.4 76.4 52.4
MuSiQue 27.9 48.2 44.4 69.7 36.6
Eli5 8.56 62.8 15.1 74.2 27.1

Table 2: Accuracy across datasets and query variants. We report accuracy for original queries, synthetically
generated paraphrased queries, and paraphrased queries with fixed retrieval. Across all settings, accuracy remains
relatively similar, indicating that paraphrasing and retrieval shifts have limited effect on final answer correctness
on average.

Short-form & Multi-hop QA: Accuracy (%)

Dataset Original Queries Paraphrased Queries Paraphrased (Fixed Docs)

EM F1 RM EM F1 RM EM F1 RM

TriviaQA 56.0 66.1 74.0 55.0 64.4 73.3 58.7 67.3 75.0
HotpotQA 37.0 44.1 42.0 36.4 43.5 42.4 33.7 40.7 39.4
2Wiki 28.0 33.9 37.0 25.9 31.3 32.7 26.9 31.7 33.3
MuSiQue 8.0 15.3 12.0 8.3 14.1 11.0 11.0 17.5 15.0

Long-form QA: Accuracy (%)

Dataset Original Queries Paraphrased Queries Paraphrased (Fixed Docs)

ROUGE LLM-Acc ROUGE LLM-Acc ROUGE LLM-Acc

ELI5 21.9 74.0 20.7 71.3 20.8 70.3

coefficient β = 0.0 for these tasks, following recent findings [Hu et al., 2025] suggesting that GRPO246

performs effectively without explicit KL penalties. In contrast, for long-form QA (ELI5), where247

questions are open-ended and multiple valid answers may exist, we exclude the accuracy reward and248

optimize solely for consistency using the group similarity reward. To prevent reward hacking in the249

absence of ground-truth supervision, we apply a small KL penalty with β = 0.05 to regularize the250

policy against a reference model.251

We use n = 6 paraphrases per canonical query and g = 4 rollouts per paraphrase. To make training252

scalable, we apply the relaxed approximation described in Section 2.2 to estimate group similarity253

rewards. Specifically, we subsample κ = 3 paraphrases and s = 1 rollout per selected paraphrase254

when computing similarity, which significantly reduces the number of comparisons with minimal255

impact on reward quality. We perform full model fine-tuning using the AdamW optimizer with a256

learning rate of 1e-6. All training is conducted on LLaMA 3.1 8B using precision bf16.257

Baselines. We compare Con-RAG against diverse baselines representative of current RAG systems:258

(i) RAG: A standard RAG setup where the top-k retrieved documents are appended to the prompt259

and passed directly to the generator for answer prediction. (ii) DRAG (Demonstrated RAG) [Yue260

et al., 2024]: An inference-time scaling method that leverages few-shot demonstrations to improve261

performance. (iii) CoT-RAG (Chain-of-Thought RAG) [Zhao et al., 2024a]: Extends standard262

RAG by prompting the generator to produce intermediate reasoning steps before outputting a final263

answer, improving multi-hop and compositional question answering. (iv) SFT (Supervised Fine-264

Tuning) [Chung et al., 2024]: We fine-tune the generator on paraphrased queries paired with their265

ground-truths. For long-form QA, where answers are free-form, we fine-tune on the available266

reference responses. (v) Con-RAG (ours): Our proposed method that leverages group similarity267

7



Table 3: Comparison between Con-RAG vs. Baselines (Short-form QA Tasks). Lexical consistency
measured via BLEU score while and information consistency measured using an LLM-judge. Con-RAG is
trained with a group-similarity reward plus an accuracy reward (no KL), and consistently yields higher end-to-end
and generator-only consistency while also improving accuracy over original queries.

Accuracy (%)
End-to-End

Consistency (%)
Generator (LLM)
Consistency (%)

Dataset Method EM F1 RM Lexical Inform. Lexical Inform.

TriviaQA

RAG 56.0 66.1 74.0 53.0 77.8 67.3 88.5
DRAG 54.0 63.7 72.0 56.8 78.7 68.2 88.2
CoT-RAG 45.0 57.7 72.0 44.6 79.2 57.7 85.0
SFT 24.0 27.5 29.0 51.3 58.2 77.8 81.2
Con-RAG 77.0 81.0 83.0 87.3 91.3 91.2 93.0

HotpotQA

RAG 37.0 44.1 42.0 42.5 62.5 53.7 71.9
DRAG 37.0 43.8 43.0 41.1 61.6 50.5 73.1
CoT-RAG 31.0 36.8 42.0 27.3 59.6 36.1 68.9
SFT 39.7 46.5 47.2 63.9 70.5 72.2 78.5
Con-RAG 45.0 51.9 48.0 63.9 73.6 80.9 88.2

MuSiQue

RAG 8.0 15.3 12.0 27.9 48.2 44.4 69.7
DRAG 6.0 13.1 11.0 31.0 50.7 42.9 70.0
CoT-RAG 8.0 15.2 19.0 16.1 53.7 29.2 67.7
SFT 22.0 25.5 23.0 68.1 69.3 77.8 79.8
Con-RAG 23.0 30.8 25.0 72.5 72.3 91.4 92.7

2Wiki

RAG 28.0 33.9 37.0 38.5 65.5 48.4 76.4
DRAG 20.0 26.9 34.0 36.8 65.5 49.3 76.1
CoT-RAG 20.0 25.5 41.0 22.8 59.3 29.9 67.8
SFT 33.0 34.0 33.0 69.4 66.2 84.4 83.3
Con-RAG 39.0 40.6 40.0 78.2 77.8 94.1 95.5

Table 4: Comparison between Con-RAG vs. Baselines (Long-form QA Task). Con-RAG is trained using
only the group-similarity reward with a small KL regularizer (no accuracy supervision). Despite no ground-truth,
it achieves the best end-to-end and generator consistency and also improves answer quality over baselines,
whereas SFT on reference answers underperforms in this open-ended setting.

Accuracy (%)
End-to-End

Consistency (%)
Generator (LLM)
Consistency (%)

Dataset Method ROUGE LLM-Acc Lexical Inform. Lexical Inform.

ELI5

RAG 21.9 74.0 8.6 62.8 15.1 74.2
DRAG 22.0 76.0 8.0 62.2 15.0 72.5
CoT-RAG 20.9 64.0 6.4 57.8 10.3 71.0
SFT 23.5 51.0 15.3 40.8 16.6 41.7
Con-RAG 24.2 78.0 14.6 72.7 21.7 80.8

rewards to improve consistency (see Section 2.2). All baselines are evaluated using the same retriever,268

generator, and document corpus to ensure fair and consistent comparison.269

Results and Analysis. We present our results across short-form and long-form QA tasks in Tables 3270

and 4 respectfully. To ensure that consistency improvements do not come at the cost of answer271

quality, we report accuracy metrics on the original queries, avoiding generic but consistent outputs.272

Our results demonstrate the following key observations:273

Con-RAG improves both consistency and accuracy in short-form QA. Across all short-form and multi-274

hop datasets, Con-RAG achieves significant gains in both end-to-end and generator-only consistency.275

For instance, on TriviaQA, end-to-end consistency (lexical/information) improves from 53.0/77.8276

(RAG) to 87.3/91.3, while generator consistency reaches 91.2/93.0. Notably, these improvements277

are not achieved at the expense of accuracy. Con-RAG also achieves the highest EM, F1, and278

RM scores across all datasets. This indicates that optimizing consistency can also enhance model279

robustness, likely due to the implicit data augmentation effect of training across paraphrase groups.280
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Other baselines DRAG and CoT-RAG provide only modest consistency improvements and fail to281

match Con-RAG across metrics.282

In Long-form QA, Con-RAG also boosts accuracy without ground-truth supervision. Results on283

ELI5 (see Table 4) are particularly interesting: even though Con-RAG is trained without any explicit284

ground truth (or accuracy signal), it improves both consistency and accuracy over all baselines.285

Compared to RAG, Con-RAG increases lexical and information consistency while also achieving286

higher ROUGE and LLM-judged accuracy. In contrast, SFT trained on reference answers performs287

poorly on ELI5, especially in terms of LLM-judge accuracy, highlighting the limitations of rigid288

supervision in open-ended QA, where many valid responses exist. This underscores the strength of289

Con-RAG in open-ended tasks, which does not rely on a single reference output.290

Discussion and Next Steps. While Con-RAG achieves strong improvements in both generator and291

end-to-end consistency, several important directions remain as next steps. (1) Beyond Lexical Rewards292

for Information Consistency: In this work, we use lexical similarity metrics (e.g., BLEU) as a proxy to293

enforce information consistency. While effective, such metrics emphasize surface-level alignment and294

penalize variations in wording, even when the underlying information remains unchanged. In practice,295

we may allow use of synonyms or outputs expressed differently, as long as they convey the same core296

content. A key next step is to search for a signal that would directly optimize for information-level297

consistency without enforcing lexical similarity between outputs. LLM as a judge seems promising,298

however, such a signal introduces a tension between weak vs. strong supervision [Burns et al.,299

2023]. Ideally, we seek lightweight, automatic signals that can still guide the model toward consistent300

output (leveraging entailment-based rewards, BERTScore, etc.). (2) Joint Retriever and Generator301

Optimization: Con-RAG substantially improves generator consistency, yet end-to-end consistency302

still lags behind, mainly due to variation in retrieved documents across paraphrased queries. This303

inconsistency in retrieval results in different contexts being provided to the generator. To address this,304

a promising next step is to jointly optimize the retriever and generator. By rewarding the retriever305

to return similar documents for semantically equivalent queries, and simultaneously training the306

generator for consistency, the system can learn to retrieve relevant evidence that best helps answer the307

question accurately, potentially further improving both consistency and accuracy [Lewis et al., 2020].308

By introducing a principled way to measure RAG consistency and a scalable method to improve it,309

we move toward more reliable, trustworthy, and user-aligned RAG systems.310
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