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ABSTRACT

Domain shift remains a persistent challenge in deep-learning-based computer vi-
sion, often requiring extensive model modifications or large labeled datasets to
address. Inspired by human visual perception, which adjusts input quality through
corrective lenses rather than over-training the brain, we propose Lens, a novel
camera sensor control method that enhances model performance by capturing
high-quality images from the model’s perspective, rather than relying on traditional
human-centric sensor control. Lens is lightweight and adapts sensor parameters
to specific models and scenes in real-time. At its core, Lens utilizes VisiT , a
training-free, model-specific quality indicator that evaluates individual unlabeled
samples at test time using confidence scores, without additional adaptation costs.
To validate Lens, we introduce ImageNet-ES Diverse, a new benchmark dataset
capturing natural perturbations from varying sensor and lighting conditions. Exten-
sive experiments on both ImageNet-ES and our new ImageNet-ES Diverse show
that Lens significantly improves model accuracy across various baseline schemes
for sensor control and model modification, while maintaining low latency in image
captures. Lens effectively compensates for large model size differences and inte-
grates synergistically with model improvement techniques. Our code and dataset
are available at github.com/Edw2n/Lens.git.

1 INTRODUCTION

Domain shift, the distribution gap between training and test data, is a well-known challenge that
degrades the performance of deep-learning-based computer vision models. Existing solutions mainly
focus on either model generalization (Hendrycks et al., 2021; 2019; Sohn et al., 2020; Zhou et al.,
2023; Ganin et al., 2016; Cherti et al., 2023; Liu et al., 2021b; 2022; Oquab et al., 2023) or model
adaptation (French et al., 2017; Sun & Saenko, 2016; Gong et al., 2024; Yuan et al., 2023; Wang
et al., 2022b; Youn et al., 2022), which require modifying the model itself. However, they typically
necessitate significant changes to the model and access to large, labeled target datasets, making them
costly, time-consuming, and impractical for real-time applications on resource-constrained devices.

In contrast, human visual perception operates through a fine-tuned interplay between the eyes
(sensors) and the brain (model). The eyes function as precise sensors, capturing visual data, while the
brain processes and interprets it. When visual input is compromised, whether by blurriness or glare,
the typical response is to improve the quality of the input through corrective lenses, sunglasses, or
magnifying lenses, rather than retraining the brain to interpret flawed images better. This analogy
highlights that the model is not all you need; acquiring high-quality images through camera sensors
is essential to mitigate covariate shifts and improve visual perception.

* edw2n.github.io.
† Corresponding authors.
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Figure 1: The concept of Lens: Lens mimics the human vision system, where eyesight quality can be
improved through visual sensor control, such as glasses. It leverages sensor parameter adjustments to
acquire higher-quality images, thereby enhancing model accuracy.

Despite existing sensor controls like auto-exposure, which are optimized for human perception,
we argue that camera sensor control designed for high-quality image acquisition to improve model
perception requires a fundamentally different approach. Furthermore, in dynamic environments and
on resource-constrained devices, sensor control mechanisms must be able to quickly adapt to varying
scenes. To address these issues, we introduce Lens (Figure 1), a novel adaptive sensor control system
that captures high-quality images robust to real-world perturbations. The core idea of Lens is to
identify optimal sensor parameters that allow the target neural network to better discriminate between
objects, akin to adjusting a pair of glasses for clear vision. Lens achieves this by leveraging VisiT
(Vision Test for neural networks), a training-free, model-specific quality indicator that operates on
individual unlabeled samples at test time without additional adaptation costs. VisiT assesses data
quality based on confidence scores tailored to the target model, ensuring high-quality data without
the need for extensive retraining or data collection. By acquiring the most discriminative images for
the target model, Lens significantly boosts model accuracy without requiring model modification.

To demonstrate the effectiveness of Lens in realistic sensor control environments, we construct a
testbed ES-Studio Diverse, where images are captured using a physical camera with varying sensor
parameters and light conditions. Using this setup, we create a new dataset called ImageNet-ES
Diverse, including 192,000 images that capture diverse natural covariate shifts via variations in sensor
and light settings, based on 1,000 samples from TinyImageNet (Le & Yang, 2015).

As the first in-depth study on model-centric sensor control, we thoroughly evaluate Lens across two
benchmarks – ImageNet-ES (Baek et al., 2024) and our newly created ImageNet-ES Diverse – using
multiple model architectures. We compare Lens against various baselines, including human-targeted
or random sensor control methods, domain generalization techniques, and lightweight test-time
adaptation (TTA) methods. Our results show that Lens with VisiT significantly outperforms these
methods, improving accuracy by up to 47.58% while effectively reducing image capture time to
only 0.16 seconds, making it fast enough for real-time operation. The effect of sensor control even
compensates for a model size difference of up to 50×. Additionally, an ablation study on the quality
estimator shows that VisiT outperforms state-of-the-art out-of-distribution (OOD) scoring methods,
validating confidence scores as an effective quality proxy. Our qualitative analysis further supports
these findings with visual insights.

Our key contributions are as follows:

• Lens: We introduce Lens, a simple yet effective adaptive sensor control method that evaluates
image quality from the model’s perspective and optimizes camera parameters to improve accuracy.

• ViSiT (Vision Test for neural networks): Lens adopts VisiT , a training-free, model-aware quality
indicator that operates on individual unlabeled samples at test time. As the first attempt of its kind,
VisiT estimates data quality based on confidence scores for generalizablility and simplicty.

• CSAs (Candidate Selection Algorithms): We propose CSAs to balance real-time adaptation and
accuracy improvements, enabling Lens’s efficient operation under practical constraints.

• ImageNet-ES Diverse: We release ImageNet-ES Diverse, a new benchmark dataset containing
192,000 images that capture natural covariate shifts through varying sensor and lighting conditions.

• Insights and Findings: Our extensive experiments not only highlight the superiority of Lens
but also reveal valuable insights for future research: (1) Sensor control significantly improves
accuracy without model modification. (2) Sensor control synergistically integrates with model
improvement techniques. (3) Sensor control must be tailored in a model- and scene-specific manner.
(4) High-quality images for model perception differ from those optimized for human vision.
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Figure 2: Workflow of Lens. Lens is a post-hoc, adaptive, and camera-agnostic sensor control system
that dynamically responds to scene characteristics while accounting for model- and scene-specific
manners based on VisiT scores to provide optimal image quality for neural networks.

2 RELATED WORK

2.1 MODEL IMPROVEMENT: HANDLING DOMAIN-SHIFTED INPUT DATA

Frequent domain shifts pose a significant challenge when deploying neural networks in dynamic real-
world environments. Although traditional studies have aimed to improve a model’s generalizability
or adaptability, these methods place a computational burden, particularly for resource-constrained
devices operating in real-time applications. Domain generalization techniques (Hendrycks et al.,
2021; 2019; Sohn et al., 2020; Zhou et al., 2023; Cherti et al., 2023; Liu et al., 2021b; 2022;
Oquab et al., 2023) aim to train models to handle diverse data distributions, but typically results in
significantly larger and more complex models. Domain adaptation approaches (Ganin et al., 2016;
French et al., 2017; Sun & Saenko, 2016) adapt models to a specific target domain, which necessitates
frequent retraining and the collection of substantial amounts of labeled target data.

To address the need for lightweight, real-time adaptation without the cost of labeling, test-time
adaptation (TTA) (Nado et al., 2020; Schneider et al., 2020; Wang et al., 2021) methods have been
developed, allowing models to adjust to new domains using a small amount of unlabeled target data
with unsupervised objectives. However, these lightweight TTA methods can lead to model collapse
when faced with rapidly changing environments.

Lastly, a fundamental limitation of these model-centric techniques is their inability to address the data
acquisition process itself. They struggle to cope with severe domain shifts that stem from low-quality
data, such as images captured in over-exposed or low-light conditions (Baek et al., 2024).

2.2 INPUT DATA IMPROVEMENT: MITIGATING DOMAIN SHIFTS

To address domain shifts through improved data quality, camera sensor control has recently gained
attention. Unlike traditional camera auto-exposure methods designed for human perception (Kuno
et al., 1998; Liang et al., 2007), this new research focuses on optimizing sensor inputs specifically for
deep-learning models. However, the absence of suitable benchmark datasets led early work to rely on
camera sensor simulation (Paul et al., 2023), which falls short in generalizing to real-world domain
shifts. Although some research has explored the control of physical camera sensors (Odinaev et al.,
2023; Onzon et al., 2021), these efforts have been limited to highly-constrained environments with
only a narrow range of exposure options.

To overcome these shortcomings, the ImageNet-ES dataset (Baek et al., 2024) was introduced,
capturing domain shifts in real-world conditions by employing a physical camera with varying sensor
parameters, such as ISO, shutter speed, and aperture. While the ImageNet-ES dataset demonstrates the
potential of sensor control in addressing covariate shifts, identifying the optimal sensor parameters for
specific models remains an open challenge. Furthermore, additional benchmark datasets are needed
to enhance the generalizability of emerging control mechanisms. To the best of our knowledge, this
work offers the first comprehensive exploration on camera sensor control using realistic benchmarks,
including ImageNet-ES and our newly introduced ImageNet-ES Diverse dataset.
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3 Lens: ADAPTIVE GLASSES FOR VISION MODELS

We introduce Lens, a post-hoc, adaptive, and camera-agnostic sensor control system for neural
networks, designed to adaptively respond to dynamic scene characteristics. The key idea behind Lens
is to identify the optimal sensor control parameters that capture images in a way that enhances the
target model’s ability to discriminate features–both in a model-specific and scene-specific manner–
akin to adjusting a pair of prescription glasses to provide clear vision tailored to an individual’s
needs and environment. By focusing solely on sensor parameter adjustments and avoiding any
modifications to the model itself, Lens prevents model collapse and catastrophic forgetting, ensuring
reliable performance across varying domains. Moreover, it is lightweight and efficient in terms of
both computation and memory. To achieve this, we propose VisiT (Vision Test for Neural Networks),
a lightweight vision tester integrated into Lens that evaluates whether the images captured by the
camera sensor are optimally suited for the target model and scene. VisiT operates during test time on
individual unlabeled samples without modifying the target model.

3.1 OVERALL FRAMEWORK

Figure 2a illustrates the overall framework of Lens, which operates with a target neural network
M that supports batch inference and a camera sensor equipped with a set of N available parameter
options, P = {p1, p2, . . . , pN}. Let xs,p represent the image captured by the camera from a target
scene s using a sensor parameter option p. The goal of Lens is to select the optimal sensor parameter
p̂ such that the captured image xs,p̂ maximizes the accuracy of the target model’s interpretation of
the scene s. Let Q(xs,p;M) denote the quality estimate for image xs,p in the context of model M .
The optimal parameter option p̂, as selected by Lens, can be represented as:

p̂ = argmax
p∈P

Q(xs,p;M)

Model- and Scene-Specific Sensor Control. Lens adaptively selects the optimal sensor parameter p̂
for each model and scene in real-time, rather than relying on a globally fixed parameter determined
through offline training for all models and/or scenes. The key insight is that different models have
distinct ways of extracting and prioritizing features for scene interpretation. As shown in Figure 2c,
two different models can perceive the same captured image differently (left side of the figure), leading
to different optimal parameters for each model, even for the same scene (right side of the figure).
Similarly, even with a fixed model, each scene contains unique features that are crucial for accurate
prediction (further discussed in Appendix D). As a result, the optimal sensor parameter is likely to
vary for each specific combination of model and scene (Baek et al. (2024)).

VisiT (Lightweight Vision Test for neural networks). Lens incorporates VisiT (Figure 2b) to esti-
mate Q(xs,p;M), which represents the quality of an unlabeled captured image xs,p when interpreted
by the target model M . VisiT is designed for real-time applications, operating as a lightweight and
training-free module at test time, providing model-specific quality estimates for unlabeled images.
To achieve the design goal, it is essential to determine an appropriate metric as a proxy for image
quality. Specifically, we utilize the model’s confidence score for its prediction on the image xs,p as a
simple yet effective proxy for image quality, which will be further discussed in Section 3.2.

CSA (Candidate Selection Algorithm). The latency of Lens in selecting the optimal parameter
highly depends on the camera sensor’s latency to capture multiple images for different candidate
parameter options. While capturing and evaluating images for all N available parameter options
would provide the highest accuracy, it introduces significant latency for a single scene prediction,
which is undesirable for real-time operation. To address the issue, Lens uses CSA to select a subset
of the full parameter set P, denoted as P′ = {p′1, . . . , p′K}, as the candidate options. The number
of candidate options, K(≤ N), can be determined based on the system’s need to balance temporal
overhead with accuracy. Note that, since Lens operates with batch inference, capturing multiple
images doesn’t incur additional inference costs.

A crucial aspect of CSA is minimizing capture latency without sacrificing accuracy when selecting K
candidate options. For example, sensor parameters like shutter speed significantly impact the capture
time. Therefore, within the same time budget, it may (or may not) be more beneficial to prioritize
multiple high-shutter-speed options over a single low-shutter-speed option, depending on the specific
target scene and model. We explore this trade-off by implementing and evaluating several simple
CSAs their performance in Section 5 and discuss their camera-agnostic properties in Appendix A.1.
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(a) Confidence based. (b) OOD (Out-of-Distribution) score based.
Figure 3: Quality indicators as proxies for image quality assessment: Each score is normalized
between 0 to 1.

3.2 VisiT : LIGHTWEIGHT VISION TEST FOR NEURAL NETWORKS

In this subsection, we provide a detailed description of VisiT , the real-time image quality estimator for
unlabeled test-time data. The key requirements for VisiT design are: (1) Alignment with correctness:
The quality estimator must reliably indicate whether the model can accurately predict the sample. (2)
Label-free operation: It must function with unlabeled data provided during test time (3) Single-sample
assessment: The estimator should be capable of evaluating each image sample independently and
immediately. (4) Lightweight operation: It should involve minimal computational overhead, ensuring
seamless integration into sensor control pipeline.

Confidence as a Proxy for Image Quality Assessment. We propose using the confidence score as a
simple yet effective proxy. For a sample image x and target model M , it is defined as:

Confidence(x;M) = max
c∈C

Softmax(fM (x))c

where C is the set of all possible classes, and fM (x) represents the output logits of the model M
before applying the softmax function. The confidence score reflects how certain a model is about its
predictions and has been widely used in tasks such as pseudo-labeling, consistency regularization,
and high-quality image selection in semi- and self-supervised learning (Oliver et al., 2018; Sajjadi
et al., 2016; Sohn et al., 2020; Lee et al., 2013; Cui et al., 2022; Chen et al., 2020; Xie et al., 2020). It
is particularly well-suited for real-time applications, as it requires only inference on a sample without
incurring additional computational overhead, such as training.

Correlation between Proxies and Image Quality. We conducted an experiment to evaluate the
correlation between various proxies and image quality under real-world covariate shifts, using the
ImageNet-ES validation dataset (Baek et al., 2024) (details in Appendix E.2). We compared our
confidence score with out-of-distribution (OOD) scores, commonly used to identify OOD samples,
across three models: EfficientNet (Tan & Le, 2019b), Swin-T (Liu et al., 2021b), and ResNet18 (He
et al., 2016). The OOD scores were sourced from four state-of-the-art methods: ViM (Wang et al.,
2022a), ASH (Djurisic et al., 2023), ReAct (Sun et al., 2021), and KNN (Sun et al., 2022)).

As shown in Figure 3, OOD scores tend to overlap between correct and incorrect samples across all
OOD techniques and models, suggesting that OOD scores are not always reliable indicators of image
quality. This discrepancy arises because OOD scores are primarily designed to detect semantic shifts
(high-level features), but are less effective in identifying covariate shifts, which reflect variations in
low-level features. In contrast, samples with higher confidence scores have a greater likelihood of
being correct, while those with lower confidence scores are more likely to be incorrect. These results
underscore the effectiveness of confidence scores as a reliable proxy for image quality.

4 ImageNet-ES Diverse: A NEW REAL-WORLD BENCHMARK

Lens improves image quality by dynamically controlling camera sensor settings, such as ISO, shutter
speed, and aperture, to optimize environmental light for each scene. The quality of an image is
significantly influenced by the amount and distribution of light within a scene, which depends on both
the characteristics of the objects and the surrounding environment. Therefore, it is essential to evaluate
the robustness of Lens across various scene characteristics. While the recent ImageNet-ES (Baek
et al., 2024) dataset captures real-world scenes with varying sensor parameters, it is limited to only
two lighting conditions. Furthermore, as it features images displayed on a screen – representing
light-emitting objects (e.g., traffic lights) – the impact of ambient light conditions can be restricted.
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(b) Specifics of data collection scheme.
Considerations Descriptions

Dataset Test
Original samples 1,000 (5 samples / class)

Light 6 options, L1-L7 (w/o L5)

Camera sensor Auto Exposure Manual
Num. shots 5 27

ISO Auto 250 / 2000 / 16000
Shutter speed Auto (1/4′′) / (1/60′′) / (1/1000′′)

Aperture Auto f5.0 / f9.0 / f16

Captured images 30,000 162,000

Other collection settings are the same as in the testset of
ImageNet-ES Baek et al. (2024), except for the lighting settings.

(c) Light options.
Light Left RightOptions

L1 ∗ 255 255
L2 127 127
L3 255 0
L4 0 255
L6 127 0
L7 0 127

L5 ∗
0 0(excluded)

*: Included in ImageNet-ES
(Baek et al., 2024).

Figure 4: Environment and sensor specifics of ImageNet-ES Diverse.

Figure 5: Representative examples of our ImageNet-ES Diverse dataset.

To rigorously evaluate Lens, a new benchmark dataset is necessary to complement ImageNet-ES and
effectively capture the impact of diverse environmental perturbations. To this end, we developed
ImageNet-ES Diverse, a more versatile dataset with 192,000 samples of non-illuminous objects taken
with a physical camera on a customized testbed called ES-Studio Diverse (Figure 4a). This dataset
includes various sensor parameter settings (Figure 4b) and a broader range of lighting conditions
(Figure 4c). As illustrated in Figure 5, ImageNet-ES Diverse unveils how sensor control interacts
with diverse scene characteristics, valuable not only for Lens evaluation but also for future research
exploring the effects of sensor settings and light conditions. Further details are in Appendix C.

5 EXPERIMENTS

We design experiments to evaluate the impact of Lens, which is the first approach to introduce model-
and scene-specific sensor control, in comparison to traditional model-adjustment solutions that
completely overlook image capture pipelines and focus solely on over-training for optimizing predic-
tion accuracy under real-world perturbations. Our experiments are conducted across various model
architectures, including widely used methods for domain generalization and test-time adaptation.

Datasets. We utilize the test sets of ImageNet-ES (Baek et al., 2024) and our new ImageNet-ES
Diverse, both derived from Tiny ImageNet (Le & Yang, 2015) (TIN). These datasets encompass
extensive natural perturbations in both environmental and sensor domains including 27 manual
controls and 5 auto-exposure shots. ImageNet-ES focuses on Luminous objects, while ImageNet-ES
Diverse features non-luminous objects, allowing them to complement each other effectively. This
diversity allows us to validate our approach across a wide range of real-world covariate shifts. More
details about each dataset are in Appendix E.1.

Baselines and Oracles in the Image Acquisition Pipeline. For performance comparison, we
consider two baselines and two oracles within the data acquisition pipeline. The first baseline,
Auto-Exposure (AE), is a commonly used sensor control designed to optimize images for human
perception, though not necessarily for computer vision models. The second baseline, called Random,
randomly selects parameter settings, and we calculate its performance as the average over all available
options. To explore the potential of model- and scene-specific parameter control, we introduce two
oracles: Oracle-Specific (Oracle-S) and Oracle-Fixed (Oracle-F). Oracle-S ideally selects the best
sensor parameter for each sample and model, representing the upper bound for Lens. Oracle-F, on the
other hand, serves as the upper bound for fixed parameter settings, without considering model-scene
interactions. The best global parameter option for Oracle-F is selected based on the average accuracy
across all models in Table 1 and all scenes in both datasets.
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Table 1: Accuracy comparison among the baselines and Lens with various models.

Model Num. Pretraining DG method IN
ImageNet-ES (Baek et al., 2024) ImageNet-ES Diverse (new)

Params Dataset Oracle Naive control Lens Oracle Naive control Lens
S F AE Random (Ours) S F AE Random (Ours)

ResNet-50 26M
IN-1K - 86.0 92.4 49.5 32.1 50.4 78.6 63.1 38.2 17.6 12.0 43.3

(He et al., 2016) IN-21K DeepAugment∗ 87.0 93.0 66.9 53.2 61.4 83.1 80.2 64.1 36.2 23.6 65.1+AugMix†
ResNet-152 60M IN-1K - 87.8 93.6 58.2 41.1 54.3 81.1 69.2 43.4 21.9 14.2 48.8(He et al., 2016)

EfficientNet-B0 5M IN-1K - 88.2 94.1 68.2 51.8 58.3 81.2 66.9 42.2 21.8 14.0 45.9(Tan & Le, 2019b)
EfficientNet-B3 12M IN-1K - 88.1 94.8 73.9 62.0 66.3 83.5 75.8 57.2 33.6 21.4 55.7(Tan & Le, 2019b)

SwinV2-T 28M IN-1K - 90.6 95.1 70.4 54.1 63.1 82.6 71.5 50.8 26.5 16.9 50.3(Liu et al., 2022)
SwinV2-S 50M IN-1K - 91.7 95.4 74.4 59.9 65.5 84.5 75.3 53.9 30.8 18.9 55.6(Liu et al., 2022)
SwinV2-B 88M IN-1K - 91.9 95.3 75.3 60.0 65.5 85.3 74.6 53.6 30.8 18.5 55.3(Liu et al., 2022)

OpenCLIP-b 87M LAION-2B Text-guided 94.3 97.4 81.4 66.1 71.3 90.9 82.7 66.4 38.8 24.5 67.6(Cherti et al., 2023)
pretrainOpenCLIP-h 632M LAION-2B 94.9 98.5 87.1 79.0 77.6 93.0 87.9 74.6 45.5 29.3 74.4(Cherti et al., 2023)

DINOv2-b 90M LVD-142M Dataset 93.6 97.6 85.1 74.5 73.9 90.6 87.5 72.6 44.5 28.3 72.9(Oquab et al., 2023)
curationDINOv2-g 1.1B LVD-142M 94.7 98.0 90.7 84.3 79.8 93.1 92.8 82.5 62.8 35.3 82.9(Oquab et al., 2023)

All models 90.7 95.4 73.4 59.8 65.6 85.6 77.3 58.3 34.2 21.4 59.8
*: (Hendrycks et al., 2021), †: (Hendrycks et al., 2019), IN: ImageNet (Le & Yang, 2015), S: Specific, F: Fixed, AE: Auto exposure, Random: Random selection

5.1 GENERALIZABILITY OF Lens

We investigate the effectiveness of Lens across various models, including representative (He et al.,
2016; Liu et al., 2022), lightweight (Tan & Le, 2019b), and foundation (Cherti et al., 2023; Oquab
et al., 2023) models. Furthermore, we examine whether Lens can be constructively integrated with
domain generalization (DG) techniques. Detailed model setups are in Appendix E.3.1.

Table 1 summarizes the results. While Oracle-F selects the best fixed parameter to maximize average
accuracy, it still suffers performance drops in many cases, revealing the limitations of using fixed
parameters – no single parameter optimally supports all scenarios. In contrast, Oracle-S consistently
outperforms Oracle-F by large margins and even matches or exceeds performance on ImageNet (IN),
the training domain. This highlights the potential of scene- and model-specific sensor control. More
importantly, Lens consistently boosts model performance compared to AE and Random across both
benchmarks and all models, by large margins ranging from 8.71% to 47.58%. Lens also delivers
significantly better worst-case performance than Oracle-F, with gains of 29.1% in ImageNet-ES and
5.43% in ImageNet-ES Diverse, demonstrating the robustness of adaptive sensor control. These
results show the importance of targeting sensor control to the model, rather than human perception,
and demonstrate that Lens effectively unlocks the potential of model-specific adaptive sensor control.

Moreover, Lens, without additional pretraining or extra data collection, outperforms the baseline
methods even when they are combined with complex DG techniques like DeepAugment (Hendrycks
et al., 2021) and AugMix (Hendrycks et al., 2019)), and applied to significantly larger models. For
instance, Lens on ResNet-50 (He et al., 2016) outperforms baseline controls on DG-applied ResNet-50,
and even those on the larger ResNet-152 (He et al., 2016), with gains ranging from 7.09% to 37.48%.
Furthermore, Lens on EfficientNet-B3 (Tan & Le, 2019b), with only 12M parameters, surpasses the
DG-enhanced OpenCLIP-h (Cherti et al., 2023), a model with 632M parameters, delivering 7.34%
higher accuracy; Lens can compensate for a 50× model size difference through real-time sensor
control. Lastly, when combined with DG techniques and larger models, Lens’s performance improves
further, highlighting its synergistic nature. These findings emphasize the importance of optimizing
data acquisition process, rather than focusing solely on model improvements.

5.2 REAL-TIME ADAPTATION PERFORMANCE

To assess the real-time adaptability of Lens, we compare its performance with lightweight Test-Time
Adaptation (TTA) methods, which are designed for real-time model adaptation. Additionally, we
analyze the adaptation cost of Lens, focusing on the image capturing overhead associated with
selected sensor parameter candidates, demonstrating its efficiency in real-time scenarios.
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Table 2: Real-time adaptation performance analysis of Lens against TTA methods.

Model TIN Environments
Oracle Naive control Test-Time Adaptation Lens (Ours)

S F AE Random BN1 BN2 TENT Full CSA1 CSA2 CSA3
(k=27) (k=6) (k=6) (k=18)

ResNet-18 80.4

ImageNet-ES 87.9 54.1 39.2 46.6 30.7 34.2 32.0 73.8 73.4 72.6 73.7

(He et al., 2016)
(Baek et al., 2024) (2.41sec) (0.53sec) (0.53sec) (0.16sec)

ImageNet-ES 52.6 32.5 13.1 9.2 15.8 20.0 16.0 34.6 26.9 27.4 25.1
Diverse (2.41sec) (0.53sec) (0.53sec) (0.16sec)

EfficientNet-B0 84.9

ImageNet-ES 92.3 61.2 42.6 51.2 31.9 41.7 42.6 77.8 76.2 77.4 78.6

(Tan & Le, 2019b)
(Baek et al., 2024) (2.41sec) (0.53sec) (0.53sec) (0.16sec)

ImageNet-ES 60.5 38.5 19.9 11.7 15.0 17.5 15.6 39.6 32.4 32.9 31.4
Diverse (2.41sec) (0.53sec) (0.53sec) (0.16sec)

TIN: Tiny-ImageNet (Le & Yang, 2015), AE: Auto Exposure, Random: Random Selection, S: Specific, F: Fixed
BN1: (Nado et al., 2020), BN2: (Schneider et al., 2020), TENT: (Wang et al., 2021)

CSA1: Random Selection, CSA2: Grid Random Selection, CSA3: Cost-Based Selection

TTA Baselines and Target Models. We establish three representative TTA baselines: BN1
(Prediction-time batch normalization, Nado et al. (2020)), BN2 (Batch Normalization Adaption,
Schneider et al. (2020)), and TENT (Wang et al., 2021). These methods are applied to the batch
normalization layer and offer minimal computational and memory overhead. We apply these TTA
baselines to two lightweight models – ResNet-18 (He et al., 2016) and EfficientNet-B0 (Tan &
Le, 2019b) – using data acquired via the traditional auto-exposure (AE) method. We then compare
their performance against the same models when used with data acquired through Lens. Detailed
explanations of each TTA method and the deployed models are provided in Appendix E.4.
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Figure 6: Cost analysis of CSAs (EfficientNet-B0) on
ImageNet-ES & ImageNet-ES Diverse.

Table 3: Ablations on the Quality Estimator

Models C1 C2 V1 V2

Tiny ImageNet 80.4 84.9 93.7 89.3

Oracle S 87.9 92.3 96.3 95.0
F 54.1 61.2 81.5 74.8

Naive control AE 39.2 51.2 70.4 62.0
ImageNet Random 46.6 42.6 71.4 66.5

ES ViM 53.4 60.6 81.3 74.8
Lens with ReAct 53.2 60.1 81.5 74.0

OOD techniques ASH 47.2 55.9 61.2 3.2
KNN 53.2 60.6 81.5 74.8

Lens with VisiT 73.8 77.8 89.7 85.6(ours)
Tiny ImageNet (Le & Yang, 2015), ImageNet-ES (Baek et al., 2024)

S: Specific, F: Fixed
AE: Auto exposure, Random: Random selection

C1: ResNet18 (He et al., 2016), C2: EfficientNet-B0 (Tan & Le, 2019b)
V1: Swin-B (Liu et al., 2021b), V2: DeiT (Touvron et al., 2022)

Candidate Selection Algorithms (CSAs) for Lens. Capturing images for all available parameter
options for a scene introduces high latency, so we develop three candidate selection algorithms
(CSAs) for Lens to enable lightweight, real-time operation. These CSA algorithms consider two key
factors: the number of image captures (K) and the overall capture time per scene.

• CSA1: A simple method that randomly selects K options from the available options.
• CSA2: A grid-based random selection leveraging spatial locality. Observing that parameter settings

closer in parameter space often yield similar image qualities, CSA2 divides the parameter space
into grids and randomly selects K options from these grids. With 27 available options in our
benchmarks (i.e., three options per each of the three parameters), the number of grids becomes 13
for K = 1–7, 23 for K = 8–26, and 33 for K = 27.

• CSA3: This method selects K options with the lowest capture costs, prioritizing settings with
shorter shutter speeds, which are the primary contributors to capture latency. If multiple options
share the same capture cost, the selection is made randomly.

Results. Table 2 shows that Lens with full options (K = 27) significantly outperforms all TTA
baselines across all models and both benchmarks, with gains from 14.6% to 45.9%. This underscores
the superiority of sensor adaptation to model adaptation. Furthermore, the three CSAs for Lens
drastically reduce capturing time by 93.4% (to only 0.16 seconds) or require as few as 6 image
captures while maintaining accuracy. Figure 6 shows detailed interactions between capture time,
K, and accuracy for EfficientNet-B0 (Tan & Le, 2019b) across both benchmarks, using five random
seeds. Note that the correlation between capture time and K is consistent across both benchmarks
(marked as “common”) because the CSAs are neither model- nor scene-specific, relying instead on
non-deterministic selection at the time of capture. While each CSA has a different trade-off between
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(a) Image quality comparisons based on human-level perception. (s15:
one of 27 sensor parameter options which can be taken by ‘Random’).

0 500 1000 1500 2000
Feature representation indices

0.0

0.5

1.0

1.5

2.0

Ac
tiv

at
io

n

Random (23.8%)
AE (36.5%)

Lens (65.5%)

(b) Feature (model-level perception) activations on ‘L2’ samples. (c) Feature embeddings.

Figure 7: Sensing for human vs. sensing for DNN (ResNet-50 (He et al., 2016) augmented with
AugMix (Hendrycks et al., 2019) and DeepAug (Hendrycks et al., 2021)) on ImageNet-ES Diverse.

K and taken time, all CSAs maintain high accuracy until taken time significantly decreases. These
results verify Lens’s ability to balance accuracy and efficiency in real-time scenarios.

5.3 ABLATION STUDY ON THE QUALITY ESTIMATOR

To investigate the effectiveness of VisiT , we replace VisiT with four state-of-the-art OOD scoring
methods, as introduced in Section 3.2. We evaluate these approaches on the ImageNet-ES dataset
across four models: ResNet-18 (He et al., 2016), EfficientNet (Tan & Le, 2019b), Swin-T (Liu et al.,
2021b), and DeiT (Touvron et al., 2022). As shown in Table 3, Lens integrated with VisiT consistently
outperforms Lens paired with all OOD scoring baselines across every model, achieving an average
gain of 20.7%. This verifies that confidence scores are more reliable than OOD scores for evaluating
the image quality from the model’s perspective in the face of real-world perturbations.

5.4 QUALITATIVE ANALYSIS

Sensing for Human Vision vs. Model Vision. Figure 7a highlights the fundamental difference in
how humans and neural networks perceive images, using examples from ImageNet-ES Diverse. While
humans may struggle to discern details in dark or bright images (those selected by Lens in L2, L4, and
L6), these images lead to better model accuracy (63.9-66.5%). In contrast, models perform poorly
(20-48.6%) on images captured using auto-exposure (AE) settings or human-centered settings (S15
in L2, L4, and L6). Figure 7b further emphasizes this perceptual mismatch by showcasing distinct
feature activation distributions for sample images under different sensor control methods. Specifically,
the images provided by AE and Random settings cause the model to heavily activate certain features
(those far from the average) that are treated as marginal for images acquired by Lens, which can
degrade prediction performance. Moreover, Figure 7c demonstrates that, although Lens-acquired
images may seem unintuitive from a human perspective, they enable the model to generate feature
embeddings—consisting of 1,000 points with 5 points per label and color-coded accordingly—that
are more clearly distinguishable between classes compared to those captured with AE and Random
settings. These findings highlight the critical need to understand perception differences between
humans and neural networks when designing effective sensor control strategies.
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(a) S1: Diverse-L1.

(b) S1: Luminous-L1.

(c) S2: Diverse-L1.

(d) S2: Luminous-L1.

(e) S3: Diverse-L1.

(f) S3: Luminous-L1.

(g) Class-wise Analysis for ResNet50-A. (Luminous) (h) Class-wise Analysis for ResNet50-A. ( Diverse)

Figure 8: Model- and scene- specific solution spaces of parameter control in real perturba-
tions. ResNet50-A: ResNet50 (He et al., 2016) + Augmix (Hendrycks et al., 2019) + DeepAug-
ment (Hendrycks et al., 2021), Swin-B (Liu et al., 2022), and DINOv2 (Oquab et al., 2023).
Solution Space Analysis. Figure 8 shows the necessity of model- and scene-specific sensor control to
handle real-world perturbations. Each grid point is one of the 27 parameter options from ImageNet-ES
and ImageNet-ES Diverse, color-coded by the VisiT score of the image captured with that option.
Each subfigure shows the results from three different models, showing that the same parameter setting
for an identical sample can yield significantly different quality scores when the model is changed. For
example, an optimal parameter for Swin-B (Liu et al., 2022)) may perform poorly for DINOv2 (Oquab
et al., 2023) or ResNet18 (He et al., 2016), verifying the need for model-specific control. The figure
pairs (8a and 8b), (8c and 8d), and (8e and 8f) represent the same class sample captured under
an identical lighting condition but with different object characteristics from “Diverse” scenes in
ImageNet-ES Diverse and “Luminous” scenes in ImageNet-ES. The column-wise differences between
the two datasets emphasize the importance of scene-specific control. With the same sample and L1
setting, fast shutter speeds yield low-quality images in “Diverse” scenes but high-quality images in
“Luminous” scenes. Finally, Figures 8g and 8h show that under the same model, lighting conditions,
and object characteristics, optimal parameters can vary across different classes. Overall, sensor
parameters must be dynamically adjusted based on both model and scene characteristics.

6 CONCLUSION
Lens is the first method to introduce model- and scene-specific camera sensor control inspired
by human visual perception; by capturing high-quality images from the model’s perspective, Lens
improves model performance. Lens employs VisiT , a lightweight, training-free, model-specific quality
indicator based on model confidence, which operates on individual unlabeled samples at test time.
Evaluations on two benchmarks of real perturbations, including our new dataset ImageNet-ES Diverse
collected to address previously missing but notable perturbations, demonstrate that Lens with VisiT
improves accuracy by up to 47.58%, outperforming representative TTA baselines and DG techniques
based on naive control. Furthermore, Lens shows generalizability across various architectures and
can be synergistically combined with all DG methods. By ensuring efficiency in adaptation costs
while maintaining performance, Lens has the potential for real-time applications. Qualitative analysis
validates model/scene-specific sensor control’s importance, showing its significant impact over
DG/TTA, and offering a promising approach for real-world AI adaptability.

Limitations and Future Work. While Lens presents a novel paradigm of sensing for deep neural
networks with significant potential for adoption in challenging scenarios across various tasks, such as
autonomous driving, surveillance, and real-time 3D vision applications, it also opens avenues for
further exploration. In this work, model confidence serves as a simple yet effective proxy for image
quality assessment, but this can lead to overconfidence, especially in poorly calibrated models. Future
work could explore robust quality estimators, synergies with TTA, and improved Candidate Selection
Algorithms (CSAs) using model/scene factors and reinforcement learning for resource scheduling.
Further discussions are detailed in Appendix A.
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Appendix
Adaptive Camera Sensor for Vision Models

A FURTHER DISCUSSION

In this section, we discuss future directions of this work, as outlined in Section 6.

A.1 TOWARDS MORE REALISTIC SCENARIOS

In this study, we utilized ImageNet-ES and ImageNet-ES Diverse as real-world perturbations, state-
of-the-art Environmental and Sensor (ES) perturbation datasets. These datasets are pioneering in
enabling effective evaluation of the impact of sensor control on environmental changes. By leveraging
these resources, our work lays a robust foundation for addressing domain shift challenges in more
complex and realistic scenarios through sensor control.

A.1.1 POTENTIAL OF Lens FOR ADAPTATION IN VARIOUS SETTINGS

More Realistic Datasets. Extending Lens from classification tasks to advanced vision tasks such as
semantic segmentation and object detection, and further into applications like autonomous driving
or surveillance systems, presents a promising research direction. However, existing datasets lack
both sensor control information and the labeled data necessary for these tasks. While ImageNet-ES
and ImageNet-ES Diverse have facilitated the evaluation of Lens for classification, similar datasets
tailored to other vision tasks are required. Therefore, the creation and implementation of sensor-
controlled datasets for these advanced tasks are crucial for future research on Lens. Additionally, to
encompass a broader range of realistic scenarios, we intend to collect and integrate more dynamic
datasets, including multiple objects and dynamically changing scenes, as well as advanced tasks
that incorporate ES perturbations similar to those in ImageNet-ES and ImageNet-ES Diverse. This
will enable us to validate and enhance the robustness of our methodology against various domain
shifts encountered in real-world applications, thereby providing a comprehensive evaluation of our
method’s resilience and effectiveness across diverse environments.

Potential to Adaptation on Advanced Vision Tasks. To showcase Lens’s versatility in various
vision tasks and its value in collecting dataset containing sensor control factors, we performed a
qualitative analysis focusing on two key applications: Semantic Segmentation and Object Detection.
We compared Lens with AE (Auto Exposure), a baseline camera sensor control method described
in Section 5. The evaluation involved two semantic segmentation models (FCN Long et al. (2015)
and DeepLab v3 Chen et al. (2017)) and two object detection models (Faster R-CNN Ren et al.
(2016) and SSDLite300 (Liu et al., 2016; Sandler et al., 2018)), representing standard or lightweight
architectures. The analysis focused on the ‘dog’ class, a commonly used category in the training
datasets of target models and a superclass in the evaluation datasets. Since these tasks generate
multiple outputs, unlike the classification tasks for which Lens was initially designed, we adapted
Lens by modifying the VisiT score for each specific task. Detailed experimental setups including the
VisiT adaptations, are provided in Table 4. As shown in Figures 9 and 10, Lens achieves results that
closely approximate, and sometimes outperform, those of the original sample (source domain) in
most cases for both tasks and all targeted models. In contrast, AE failed to recognize the target class
(‘dog’) in corresponding results. This suggests that Lens has significant potential for adaptation to
other vision tasks using similar approaches. Furthermore, given that the large models evaluated in
Section 5.1 have been consistently improved by our system and share the backbone and datasets of
representative Vision-Language Models (VLMs) or curation-based models, we can expect that Lens
has substantial potential to enhance other VLM models’ performance through adaptation. However,
the performance of Lens varies depending on the customization of the VisiT score for each target task,
indicating that further elaboration on this aspect represents a promising avenue for future research.

Generalizability in Heterogeneous Camera Devices As outlined in the methodology section, while
performance values can vary with camera devices, Lens operates in a camera-agnostic manner,
allowing it to be applied regardless of the camera model. Lens employs a strategy that selects sensor
options to achieve the highest image quality. This strategy remains effective even when camera
equipment varies. Specifically, the main modules (VisiT and CSAs) used for assessing image quality
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Figure 9: Qualitative Analysis on both Benchmark (Semantic Segmentation)

are camera-agnostic: 1) VisiT ensures camera-agnostic functionality by assessing image quality
through the confidence scores of images selected by the Camera Selection Algorithm (CSA). and 2)
Proposed CSA algorithms in our work are inherently camera-agnostic because they select camera
parameter candidates based solely on the provided sensor parameter information, independent of
specific camera models. As long as the necessary information for each CSA algorithm is supplied,
they operate regardless of the camera type. The required information for each proposed CSA
algorithm is as follows: i) Random Selection (CSA1): Supported ranges or available sensor parameter
options from deployed camera models. ii) Grid Random Selection (CSA2): Grid information of
camera parameter ranges based on a specified value of K, derived from camera control specifications.
iii) Cost-Based Selection (CSA3): Cost associated with each parameter option across deployed camera
models. However, performance may vary depending on specific camera hardware and environmental
conditions. Additionally, while it is important to explore methods for more precisely identifying
optimal solutions within continuous parameter spaces, it is equally crucial to consider factors such
as system latency and adaptability, including training and inference times. To address this, future
research should focus on balancing these aspects to facilitate the development of practical and efficient
solutions.

A.1.2 POTENTIAL OF Lens FOR MORE CHALLENGING SCENARIOS.

Addressing Overconfidence. Although Lens has achieved already significant improvements by
utilizing confidence scores as quality estimators for sensor control compared to existing baselines,
these scores may not be optimal in all scenarios. As highlighted in Section 6, the issue of overconfi-

Table 4: Detailed Settings of Experiments on Other Vision Tasks
Tasks Semantic Segmentation Object Detection

Description Identify and highlight pixels corresponding to ‘dog’. Detect objects and draw valid bounding boxes.
(if the maximum confidence score indicates ‘dog’) (only for confidence scores >0.6)

Lens Adaptation Average of the confidence scores of the highlighted pixels. Average of the confidence scores of the valid bounding boxes.(VisiT Score)

Models (backbone) FCN Long et al. (2015) (ResNet50), Faster RCNN Ren et al. (2016) (ResNet50),
DeepLab v3 Chen et al. (2017) (MobileNet v3) SSDLite300 (MobileNet v3)

Datasets [Training] COCO v1 Lin et al. (2014) (task), ImageNet-1k Deng et al. (2009) (backbone)
[Evaluation] Luminus (ImageNet-ES Baek et al. (2024), Diverse (ImageNet-ES Diverse)

ResNet50 He et al. (2016), MobileNet v3 Howard et al. (2019), SSDLite300 (Liu et al., 2016; Sandler et al., 2018)
All models in these experiments were implemented using the pretrained models provided by the Torchvision Marcel & Rodriguez (2010) library.
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Figure 10: Qualitative Analysis on both Benchmark (Object Detection)

dence is evident in the performance gap between Oracle-S and Lens, suggesting that mitigating
overconfidence could further enhance Lens. As an initial attempt at sensor control for vision
models, Lens leverages confidence scores, building on its generalizability and simplicity. This
approach demonstrates substantial potential in two key areas for addressing domain shift problems:
real-time applications and ensuring compatibility with diverse camera devices and models. Mov-
ing forward, while maintaining the design principles of Lens, our research will focus on reducing
overconfidence by refining our methodologies and evaluating the approach’s adaptability in various
real-world environments to improve Lens’s reliability and performance. Additionally, as indicated in
the ablation study in Section 5.3, existing OOD (Out-of-Distribution) scores address overconfidence
stemming from semantic shifts but fail to handle covariate shifts caused by real perturbations (e.g.,
ImageNet-ES Luminous and Diverse). Therefore, addressing overconfidence for sensor control
requires innovative approaches beyond classical OOD studies, emphasizing the analysis of inter-
mediate model layers related to low-level features rather than solely focusing on activations in the
final layers.

Addressing Time-constrained Scenarios. In real-world applications such as autonomous driving and
surveillance systems, rapid environmental shifts present significant challenges, and responsiveness
is critical for delivering high-quality service. The responsiveness of Lens, which integrates our
developed CSA algorithms, depends on the rate of environmental changes. However, by implementing
Lens within a batch inference system, it can adapt to changes within 0.2 to 0.5 seconds. To achieve
more rapid responses, it is necessary to develop CSA algorithms that select a minimal number of
options (possibly one or two) with reduced capture times. This represents a promising direction for
future research on Lens. Successfully adapting sensing systems to time-constrained scenarios requires
careful consideration of several additional factors, which can provide potential avenues for future
research in this field. In these contexts, it is essential to account for limited available resources and
ensure effective scheduling within specified timeframes. This involves balancing trade-offs between
accuracy, the number of images captured, and system latency. Furthermore, the latency of each
module—such as model inference and image capture—can vary depending on the deployed system
architecture and must be meticulously managed to maintain overall system performance. Considering
these factors, optimizing CSA algorithms emerges as a promising direction for Lens.
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A.2 POTENTIAL OF Lens ON NEW FACES

Addressing Radical Distortion Problems. In our current study, we did not evaluate radial distortion
because it arises independently from light changes caused by environmental factors and sensor control.
These factors posed critical issues in real domain shifts, but existing works related to robustness
couldn’t handle them effectively, making them the primary focus of our investigation. Despite not
evaluating radial distortion directly, our methodology has the potential to address it by controlling
framing parameters such as PTZ (pan, tilt, and zoom). Given two key points, 1) Adjusting pan, tilt,
and zoom can minimize radial distortion effects. 2) Our policy algorithm selects the highest-quality
images based on camera parameters. Therefore, incorporating framing parameters as control options
is expected to effectively manage radial distortion. As a result, jointly applying sensor and framing
control could enable the handling of a broader spectrum of domain shifts more effectively. Future
research will explore integrating advanced PTZ control algorithms and real-time image quality
assessments to further enhance our methodology’s robustness against diverse domain shifts.

Lens for Representation Learning. Our method was specifically designed to capture high-quality
images in scenarios that utilize model inference results and did not initially consider the high-quality
image acquisition processes required for the training stages of representation learning, as suggested
in the review. Given that most representation learning pipelines predominantly rely on fine-tuning
pre-trained models for downstream tasks, we recognize the possibility of integrating Lens during
the training stage. This integration could generate customized high-quality images tailored for both
pre-trained models and target tasks, potentially reducing data collection costs and enhancing model
performance.

B MORE ANALYSIS

Label-wise Analysis. To validate the performance of Lens for individual labels in the source domain
(ImageNet), we assessed the label-wise accuracy of the target models in Section 5.1 (Experiment 1)
for both the representative baseline (AE: Auto Exposure setting) and Lens. As illustrated in Figure 11,
Lens consistently outperforms the baseline, regardless of the performance of individual labels in the
source domain. While there are limitations to the improvements when the accuracy in the original
sample is excessively low, in most cases, the accuracy enhancements approach those observed in the
sampled data (ImageNet Deng et al. (2009): source domain). This pattern is consistent across all
datasets and models utilized in our experiments.

Ablation Study on the Quality Estimator: Confidence (C) vs. Entropy of Logits (E). The
confidence score and the entropy of logits are interchangeable approaches, as both metrics are based
on logits. As shown in Table 5, replacing the VisiT score with the entropy of logits yields performance
comparable to that of VisiT using the confidence score; however, it does not exceed this performance.
Therefore, we opted to introduce confidence as a simpler and more representative metric for use in
VisiT for Lens.

C DETAILS ON ImageNet-ES Diverse AND ES-Studio Diverse
IMPLEMENTATIONS

This section provides details on how ES-Studio Diverse is constructed and how ImageNet-ES Diverse
is collected within the ES-Studio Diverse environment. In our previous research (Baek et al., 2024),
we developed ES-Studio, enabling individual control over environmental and sensor parameters
involved in image acquisition. Utilizing ES-Studio, we compiled ImageNet-ES, a novel dataset
comprising 202,000 samples of perturbed data from the environment and camera sensor domains
(referred to as “Luminous”).

As we mentioned in section 4, to effectively capture the impact of diverse environmental(light)
perturbations, we construct ES-Studio Diverse and testset of ImageNet-ES Diverse (referred to as
“Diverse”) based on the designs of ES-Studio and ImageNet-ES. We described the common and
different settings between Luminous and Diverse on designs for testbed construction and collection
configurations in Table 6 and 7.
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Figure 11: Generalizability of Lens Based on Label-wise Performance in the Source Domain.

The key changes in Diverse compared to Luminous are: 1) The display medium is changed from
a screen to a 1000 banners; and 2) The lighting options are expanded from two to six options.
Detailed changes are described below.
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Table 5: Ablation study on VisiT: Confidence (C) vs. Entropy (E) of Logits.

Model Num. Pretraining DG method IN
ImageNet-ES Luminous ImageNet-ES Diverse

Params Dataset Naive control Lens Naive control Lens
AE Random C E AE Random C E

ResNet-50 26M
IN-1K - 86.0 32.1 50.4 78.6 78.8 17.6 12.0 43.3 42.9

(He et al., 2016) IN-21K DeepAugment∗ 87.0 53.2 61.4 83.1 83.2 36.2 23.6 65.1 65.2+AugMix†
ResNet-152 60M IN-1K - 87.8 41.1 54.3 81.1 81.6 21.9 14.2 48.8 49.3(He et al., 2016)

EfficientNet-B0 5M IN-1K - 88.2 51.8 58.3 81.2 80.5 21.8 14.0 45.9 46.3(Tan & Le, 2019b)
EfficientNet-B3 12M IN-1K - 88.1 62.0 66.3 83.5 82.9 33.6 21.4 55.7 55.6(Tan & Le, 2019b)

SwinV2-T 28M IN-1K - 90.6 54.1 63.1 82.6 82.1 26.5 16.9 50.3 50.0(Liu et al., 2022)
SwinV2-S 50M IN-1K - 91.7 59.9 65.5 84.5 84.9 30.8 18.9 55.6 55.8(Liu et al., 2022)
SwinV2-B 88M IN-1K - 91.9 60.0 65.5 85.3 85.1 30.8 18.5 55.3 55.3(Liu et al., 2022)

OpenCLIP-b 87M LAION-2B Text-guided 94.3 66.1 71.3 90.9 90.4 38.8 24.5 67.6 67.1(Cherti et al., 2023)
pretrainOpenCLIP-h 632M LAION-2B 94.9 79.0 77.6 93.0 92.9 45.5 29.3 74.4 74.5(Cherti et al., 2023)

DINOv2-b 90M LVD-142M Dataset 93.6 74.5 73.9 90.6 91.1 44.5 28.3 72.9 73.9(Oquab et al., 2023)
curationDINOv2-g 1.1B LVD-142M 94.7 84.3 79.8 93.1 93.4 62.8 35.3 82.9 83.5(Oquab et al., 2023)

All models 90.7 59.8 65.6 85.6 85.5 34.2 21.4 59.8 59.9
Luminous: Baek et al. (2024), *:(Hendrycks et al., 2021), †: (Hendrycks et al., 2019), IN: ImageNet (Le & Yang, 2015), AE: Auto exposure

(a) External. (b) Internal.

Figure 12: Actual appearance of ES-Studio Diverse.

• Banner:
– Print & Material: As shown in Figure 13a, each sample image from the Tiny-ImageNet (Le

& Yang, 2015) subset was printed on a separate banner with A4-size (210 mm x 297 mm)
with 600 DPI, precisely centered while maintaining the original image’s aspect ratio. A total
of 1,000 banners were produced, each containing a single sample image. To prevent image
quality degradation due to the printing process and paper material properties, we carefully
tested various DPIs (72, 300, 600) and paper types. We ultimately selected 600 DPI because
it provided the best image quality and minimized distortions and noise caused by reduced
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(a) Sample banner. (b) Alignment banner.

Figure 13: Banner examples of ImageNet-ES Diverse.

Table 6: Comparison on Testbed between Luminous and Diverse

Comparison Components ES-Studio ES-Studio Diverse Specifications

Different Display for reference Screen Banner Screen: 55-inch OLED 4K UHD TV (LG OLED55B3FNA)
(Alteration) (by controller) (by humans) Banner: 1000 A4-sized PVC banners with 600 DPI (1 banner/sample)

Common

Darkroom Completely enclosed dark w/ blackout fabric 1.5 m × 1.5 m × 2 m
Environment factor Brightness controllable ceiling lamps Philips Hue White & Color Ambiance Infuse (Two lamps)

Sensor factor Sensor controllable camera ‘Canon EOS-RP’ body + ‘RF 24-105mm F4-7.1 IS STM’ lens
Control system Desktop Computer + Wifi Network Apple Mac Studio M2 Max + CCAPI∗ + Philips Hue API

*CCAPI: Canon camera control API

expressiveness during printing, among the three DPIs tested. We also chose a PVC banner, as
it is resistant to light reflection, humidity, and creasing.

– Placement: In a darkroom of ES-Studio Diverse, the banner is fixed in place (Figure 12). To
prevent image distortion, the camera’s height is carefully adjusted, ensuring it’s positioned 28
cm away from the banner in a straight line. Furthermore, the banner is securely attached to a
fixed position on a magnetic blackboard using six magnets. To minimize framing-induced
distortion, we use an “Alignment banner (Figure 13b)” to adjust the camera angle, keeping the
camera grid and the banner’s support line parallel.

– Cropping Process: Aside from the cropping process, the preprocessing steps are identical
to those in Luminous preprocessing Baek et al. (2024), labeling the images using the data
collection log. The cropping process extracts the valid area from the collected images using
the ROI coordinates. Since the banner and camera framing are fixed, the ROI is identical
for captured images with the same reference banner. We developed and use an interactive
tool to obtain the ROI coordinates: 1) Zoom in on a captured image (taken with AE) for each
sample. 2) Using a drag interaction, select the valid area, ensuring it includes the sample
but has minimal surrounding area. 3) Crop the images for all settings (6 environments, 27
parameter options, and 5 AE shots) using the ROI coordinates.

• Lighting Options: As shown in Table 4c, five additional lighting options, varying in magnitude
and direction, are defined. L5 (Turn off, included in Luminous) option is excluded from Diverse
because it produces blacked-out, uninformative images in non-luminous scenes.

Except for these two aspects, all other components and configuration settings are the same as in
ImageNet-ES. Moreover, the validation process is the same as that used for ImageNet-ES, and Diverse
was validated by five individuals to assess the integrity of the collected data. Details for the common
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Table 7: Comparison on Configurations of testset collection between Luminous and Diverse

Comparison Collection Configurations ImageNet-ES ImageNet-ES Diverse

Different Light Options L1 (on) & L5 (off) L1-L7 w/o L5
Caputured images 64,000 19,2000

Common

Reference Samples
1000 samples

(Randomly selected 5 samples/class in TinyImageNet validation set)

Frame Setting
6240 × 4160 pixels, AF (Auto focus) mode

(w/ metering mode)

Sensor Options
AE: 5 Shots, M: 27 parameter options

(controlled parameters: Shutter speed, Aperture, ISO)

*AE: Auto Exposure, M: Manual Control (Details in Table 8)

Table 8: Manual camera sensor parameter setting of test set of Luminous and Diverse
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
ISO 250 2K 16K 250 2K 16K 250 2K 16K 250 2K 16K 250 2K 16K 250 2K 16K 250 2K 16K 250 2K 16K 250 2K 16K
SS 1/4′′ 1/4′′ 1/4′′ 1/60′′ 1/60′′ 1/60′′ 1/1K ′′ 1/1K ′′ 1/1K ′′ 1/4′′ 1/4′′ 1/4′′ 1/60′′ 1/60′′ 1/60′′ 1/1K ′′ 1/1K ′′ 1/1K ′′ 1/4′′ 1/4′′ 1/4′′ 1/60′′ 1/60′′ 1/60′′ 1/1K ′′ 1/1K ′′ 1/1K ′′

A f5.0 f5.0 f5.0 f5.0 f5.0 f5.0 f5.0 f5.0 f5.0 f9.0 f9.0 f9.0 f9.0 f9.0 f9.0 f9.0 f9.0 f9.0 f16 f16 f16 f16 f16 f16 f16 f16 f16

*SS: Shutter speed, A: Aperture

design aspects of both testbeds and datasets are described in the supplementary material of our
previous research (Baek et al., 2024).

D DETAILS ON SCENE SPECIFIC CAMERA CONTROL CONCEPTS

This section details the Model-Scene specific camera control concepts within our framework. As
illustrated in Figure 14, the design of VisiT is scene-specific, acknowledging that optimal parameters
can vary significantly across different scenes, even when utilizing the same underlying model. The
core principle of scene-specific sensor control is that a universally optimal, fixed parameter set
does not exist. Our solution space analysis (Figures 8g and 8h) demonstrably shows that optimal
parameters differ drastically between, for instance, the “Luminous” and “Diverse” scenes. This
highlights the necessity of dynamically adapting control strategies to the specific characteristics of
each scene.

E DETAILS ON EXPERIMENTAL SETUPS AND RESULTS

E.1 ANOTHER BENCHMARK: IMAGENET-ES

Table 9: Environment and Sensor specifics of ImageNet-ES (Baek et al., 2024).

Dataset Original samples Light Camera sensor ISO Shutter speed Aperture Captured images

Test 1,000 On/Off Auto exposure (5 shots) Auto Auto Auto 10,000
(5 samples/class) Manual (27 options) 250/2000/16000 (1/4′′)/(1/60′′)/(1/1000′′) f5.0/f9.0/f16 54,000

Validation 1,000 On/Off Auto exposure (5 shots) Auto Auto Auto 10,000
(5 samples/class) Manual (64 options) 200/800/3200/12800 (0”4)(1/20′′)/(1/160′′)/(1/1250′′) f5.0/f8.0/f13/f20 128,000

In this paper, two test datasets were used, both of which include extensive natural perturbations in
environmental and sensor domains, incorporating 27 manual controls and 5 auto-exposure shots.

For ImageNet-ES (Baek et al., 2024), a subset of Tiny-ImageNet (Le & Yang, 2015) was displayed
on a monitor and captured using a camera. During the process, lighting conditions were varied by
turning the lights on and off, and camera parameters were adjusted. Details of the environment and
sensor specifications are provided in Table 9. Five images were randomly selected from each of the
200 classes in the Tiny-ImageNet validation set (Le & Yang, 2015). To ensure visual fidelity, each
sampled image had a resolution greater than 375 × 500 pixels, avoiding distortion when displayed
on the TV screen. In total, 1,000 samples were collected for the test dataset and these samples
are used identically in constructing the test set of ImageNet-ES Diverse . For the validation set,
we employed the same process on a non-overlapping set of 10,000 samples, utilizing 64 distinct
parameter options to create the ImageNet-ES validation set. Further details can be found in our
previous research (Baek et al., 2024). As a potential future work, the ImageNet-ES Diverse validation
set could be constructed by applying the six light options of ImageNet-ES Diverse to the same 10,000
samples and 64 parameter options used in the ImageNet-ES validation set.

22



Published as a conference paper at ICLR 2025

Camera
Control

𝑝′! 𝑝′"

Camera
Control

𝑝′! 𝑝′"

𝑀 : Target Neural Network

: VisiT

K options,
= {𝑝′!", 𝑝′!!, … , 𝑝′!#}

K options,
= {𝑝′"", 𝑝′"!, … , 𝑝′"#}

𝑥!!,#$" 𝑥!!,#$#

𝑥!$,#$" 𝑥!$,#$#

𝑄!!,#$"

𝑄!#,#$"

𝑄!!,#$$

𝑄!#,#$$

GT GT

GTGT

Figure 14: Scene-specific design of VisiT.

E.2 EXPERIMENT SETUPS OF OUT-OF-DISTRIBUTION (OOD) DETECTION.

E.2.1 OOD (OUT-OF-DISTRIBUTION) DETECTION FRAMEWORK SETTINGS AND TECHNIQUES

OOD Detection Framework and Datasets. To leverage OOD detection techniques as a proxy,
we employed the Semantic-Centric framework (Yang et al., 2022), a prevalent and widely-adopted
approach in OOD research. Existing studies predominantly focus on classifying samples as either
belonging to classes encountered during training or not. Consequently, we structured the dataset
configuration for OOD detection training and validation as detailed in Table 10. For evaluating the
efficacy of OOD detection methods as proxies for validation (quality indicator) and testing (ablation
on VisiT), we partitioned the Tiny-ImageNet (Le & Yang, 2015) (ImageNet-ES reference dataset)
validation set into three distinct subsets: S1, S2, and S3. The validation and test splits of ImageNet-ES
were assigned the same images as S1 and S2, respectively. The remaining images, comprising 40
images per class, were designated as S3. Given that Tiny-ImageNet images are provided in a resized
64x64 format, corresponding images from the original ImageNet dataset were utilized to maintain
the native resolution. This partitioning strategy for Tiny-ImageNet is further described in Table 11.

OOD Detection methods. We validate OOD detection techniques on validation set of ImageNet-ES,
including ViM (Wang et al., 2022a), ReAct (Sun et al., 2021), ASH (Djurisic et al., 2023) and
MSP (Hendrycks & Gimpel, 2017). These methods demonstrate state-of-the-art performance and
serve as baselines in recent OOD research. To validate current OOD detection methods, we leverage
the results and APIs provided by OpenOOD (Yang et al., 2022). All implementations are based on
the OpenOOD package.

E.2.2 MODELS

We selected four models with diverse architectures, widely adopted in OOD detection research,
as our underlying models to adapt OOD detection methods. Details of these models are provided
in Table 12. All model weights used in the OOD detection experiments were obtained from the
timm library (Wightman, 2019). As the pre-trained weights produce predictions for 1,000 classes,
we fine-tuned the classifier of each model to output 200 classes, corresponding to Tiny-ImageNet.
Non-resized images from the Tiny-ImageNet training set were used for fine-tuning, with the feature
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Table 10: Datasets Used in OOD Detection Experiments
Experiment Train Validation Test

Setting ID OOD ID OOD Quality Estimator Ablation Study for VisiT

Semantics S3 OpenImage-O S1 Textures
valImageNet−ES testImageNet−EScentric (train) (test)

Table 11: Description of partitions of Tiny-
ImageNet validation set (10K samples)

Partition
S1 S2 S3

Ref.valImageNet-ES Ref.testImageNet-ES (valTiny-ImageNet\(S1 ∪ S2))

# of samples 1,000 1,000 8,000

Table 12: Description of underlying models for OOD detection experiments. (Optimizer: SGD,
Scheduler: ReduceLROnPlateau, Batch size: 128)

Model # of params Pretrained Acc. on V alTin Training configuration

EfficientNet-B0 Tan & Le (2019a) 4.3M
ImageNet-1K

86.2% lr: 5× 10−3, epochs: 20
ResNet18 He et al. (2016) 11.3M 82.4% lr: 5× 10−2, epochs: 15
DeiT Touvron et al. (2020) 86M 91.2% lr: 5× 10−3 , epochs: 20
Swin-B Liu et al. (2021a) 86.9M 94.2% lr: 5× 10−3 , epochs: 20

extractor of each model frozen during this process. The specific training configuration and final
accuracy are also presented in Table 12.

E.2.3 FURTHER ANALYSIS

Figure 15 illustrates the correlation between proxy candidates and image quality on the light Vision
Transformer model (DeiT Touvron et al. (2020)), following the methodology outlined in Section
3.2. Consistent with the findings presented in Figure 3, a higher confidence score exhibits a strong
positive correlation with classification accuracy.

E.3 EXPERIMENT SETUPS OF GENERALIZABILITY

E.3.1 TARGET MODELS SETUP

For all generalization experiments, model weights were sourced from PyTorch. Exceptions to this
were OpenCLIP-b/h and the DG variant (DeepAugment Hendrycks et al. (2021) + Augmix Hendrycks
et al. (2019)) of ResNet-50, which were obtained from timm Wightman (2019) and Hendrycks et al.
(2019), respectively.

E.4 EXPERIMENT SETUPS OF REAL-TIME ADAPTATIONS

E.4.1 TEST-TIME ADAPTATION (TTA) TECHNIQUES

In this section, we describe details of the test-time adaptation techniques employed in the real-time
adaptation experiments in section 5.2.
Prediction-time Batch Normalization (BN1)(Nado et al., 2020): Improves model robustness to
covariate shifts by updating Batch Normalization statistics during prediction. It is computationally
efficient as it does not require backward propagation.
Batch Normalization Adaptation (BN2) (Schneider et al., 2020): Dynamically updates the running
statistics (running mean and variance) of Batch Normalization during inference. Instead of using
test batch statistics in isolation, it continuously updates the running mean and variance as test data is
encountered, making adaptation more flexible under varying test batches.
Fully Test-time Entropy Minimization (Tent) (Wang et al., 2021): Adapts to domain shifts during
test time by minimizing the output entropy of predictions. It updates not only the BN statistics
but also the entire model’s parameters, providing greater robustness across a broader range of test
samples, but increasing computational costs.

E.4.2 MODELS

Of the models used in Section 3, we selected two representative lightweight architectures, ResNet-
18 (He et al., 2016) and EfficientNet-B0 (Tan & Le, 2019b), for this experiment. These models were
chosen due to their compatibility with our three TTA methods, as they include Batch Normalization
(BN) layers required for the application of these techniques.
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(a) Confidence based. (b) OOD (Out-of-Distribution) score based.

Figure 15: Proxy for image quality assessment on DeiT: Each score is normalized between 0 to 1.

Table 13: Detailed results of real-time adaptation for ResNet18 He et al. (2016)
Env. k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Luminous
CSA1 46.8 61.8 68.7 70.2 71.9 73.4 73.3 73.1 73.2 73.6 74.1 73.6 73.8 74.0 73.9 73.9 73.2 74.2 73.9 73.9 73.9 73.8 74.1 73.7 73.9 73.8 73.8
CSA2 47.0 61.8 68.3 70.9 72.2 72.6 72.6 72.9 72.6 73.1 72.9 73.2 73.1 73.6 73.6 73.4 73.4 73.6 73.7 73.9 73.9 73.5 73.8 73.9 73.6 73.7 73.8
CSA3 42.5 60.1 67.2 69.9 71.0 71.2 72.4 72.3 72.6 73.1 73.1 73.2 73.2 73.3 73.4 73.5 73.8 73.7 73.9 73.8 73.7 73.8 73.6 73.7 73.8 73.8 73.8

Diverse
CSA1 9.3 15.3 19.7 22.7 24.9 26.9 28.1 29.8 30.0 31.0 31.2 31.6 32.4 32.5 33.2 33.1 33.2 33.3 33.7 33.7 34.0 34.4 34.0 34.5 34.3 34.4 34.6
CSA2 8.8 15.3 19.5 23.2 25.2 27.4 28.8 25.9 26.9 28.0 28.3 28.9 29.1 29.7 30.2 30.6 31.1 31.3 32.1 33.7 31.8 32.2 32.9 33.0 34.0 34.1 34.6
CSA3 0.6 1.1 1.4 1.8 1.9 2.1 2.5 2.6 2.9 8.4 12.4 16.4 17.7 20.1 22.1 23.3 24.2 25.1 27.9 29.2 30.6 31.9 33.1 33.3 34.0 34.3 34.6

E.5 DETAILED RESULTS FOR EXPERIMENTS ON REAL-TIME ADAPTATIONS.

Tables 13 and 14 detail the performance of real-time adaptation results for the Lens system as the
number of input images, k, varies across the complete range from 1 to 27.

Table 14: Detailed results of real-time adaptation for EfficientNet-B Tan & Le (2019b)
Env. k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Luminous
CSA1 49.8 68.4 73.8 77.0 76.6 76.2 77.2 78.3 77.2 77.9 78.2 77.2 78.2 77.8 78.4 77.6 77.8 77.5 78.1 78.1 77.9 77.8 77.6 77.8 77.8 77.8 77.8
CSA2 50.0 67.2 72.8 76.1 76.2 77.4 77.5 78.3 77.2 78.1 77.9 77.4 77.6 77.7 77.6 77.5 78.1 77.9 77.7 78.1 77.7 77.6 77.5 77.6 77.8 77.8 77.8
CSA3 47.3 66.1 72.7 75.9 76.4 77.0 77.5 77.5 77.6 77.8 78.6 78.4 78.6 78.4 78.8 78.6 78.6 78.6 78.4 78.3 78.5 77.9 78.1 77.9 77.8 77.8 77.8

Diverse
CSA1 11.3 19.7 24.5 28.4 30.8 32.4 33.9 34.9 36.0 36.2 36.4 37.5 37.6 38.4 38.4 38.6 38.8 39.2 39.1 39.2 39.6 39.2 39.2 39.2 39.5 39.8 39.6
CSA2 11.2 19.4 24.8 28.7 30.7 32.9 33.2 31.1 32.0 33.1 33.5 34.3 35.0 35.3 35.8 36.1 36.2 36.5 37.0 39.2 37.8 38.0 37.8 38.7 38.8 39.2 39.6
CSA3 1.1 1.6 2.2 2.8 3.3 3.6 4.0 4.5 4.9 11.7 16.7 20.7 23.5 26.0 27.6 29.2 30.3 31.4 33.7 35.6 36.5 37.1 38.1 38.8 39.0 39.4 39.6

F ADDITIONAL REPRESENTATIVE EXAMPLES FROM ImageNet-ES Diverse.

More ImageNet-ES Diverse examples are provided in Figure 16.
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Figure 16: ImageNet-ES Diverse samples (a)-(e): Each subfigure demonstrates how image characteris-
tics (e.g., brightness, color, sharpness) change based on the sensor parameter settings. Even in manual
mode, the image varies significantly depending on environmental conditions (L1-L7, excluding
L5) and parameter adjustments. Although auto exposure fails to produce high-quality images for
neural networks, it provides images of consistent quality for humans across various environments.
This indicates that sensor parameters and environmental conditions significantly influence the image
quality for both neural networks and humans.
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