
Under review as a conference paper at ICLR 2023

LINKLESS LINK PREDICTION VIA RELATIONAL
DISTILLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) have been widely used on graph data and have
shown exceptional performance in the task of link prediction. Despite their effec-
tiveness, GNNs often suffer from high latency due to non-trivial neighborhood
data dependency in practical deployments. To address this issue, researchers have
proposed methods based on knowledge distillation (KD) to transfer the knowl-
edge from teacher GNNs to student MLPs, which are known to be efficient even
with industrial scale data, and have shown promising results on node classification.
Nonetheless, using KD to accelerate link prediction is still unexplored. In this work,
we start with exploring two direct analogs of traditional KD for link prediction,
i.e., predicted logit-based matching and node representation-based matching. Upon
observing direct KD analogs do not perform well for link prediction, we propose
a relational KD framework, Linkless Link Prediction (LLP). Unlike simple KD
methods that match independent link logits or node representations, LLP distills
relational knowledge that is centered around each (anchor) node to the student
MLP. Specifically, we propose two matching strategies that complement each other:
rank-based matching and distribution-based matching. Extensive experiments
demonstrate that LLP boosts the link prediction performance of MLPs with signifi-
cant margins, and even outperforms the teacher GNNs on 6 out of 9 benchmarks.
LLP also achieves a 776.37× speedup in link prediction inference compared to
GNNs on the large scale OGB-Citation2 dataset.

1 INTRODUCTION

Graph neural networks (GNNs) have been widely used for machine learning on graph-structured
data (Kipf & Welling, 2016a; Hamilton et al., 2017). They have shown significant performance in
various applications, such as node classification (Veličković et al., 2017; Chen et al., 2020), graph
classification (Zhang et al., 2018; Ying et al., 2018b), graph generation (You et al., 2018; Shiao &
Papalexakis, 2021), and link prediction (Zhang & Chen, 2018).

Of these, link prediction is a notably critical problem in the graph machine learning community, which
aims to predict the likelihood of any two nodes forming a link. It has broad practical applications
such as knowledge graph completion (Schlichtkrull et al., 2018; Nathani et al., 2019; Vashishth
et al., 2020), friend recommendation on social platforms (Sankar et al., 2021; Tang et al., 2022; Fan
et al., 2022) and item recommendation for users on service and commerce platforms (Koren et al.,
2009; Ying et al., 2018a; He et al., 2020). With the rising popularity of GNNs, state-of-the-art link
prediction methods adopt encoder-decoder style models, where encoders are GNNs, and decoders
are applied directly on pairs of node representations learned by the GNNs (Kipf & Welling, 2016b;
Zhang & Chen, 2018; Cai & Ji, 2020; Zhao et al., 2022).

The success of GNNs is typically attributed to the explicit use of contextual information from
nodes’ surrounding neighborhoods (Zhang et al., 2020e). However, this induces a heavy reliance on
neighborhood fetching and aggregation schemes, which can lead to high time cost in training and
inference compared to tabular models, such as multi-layer perceptrons (MLPs), especially owing
to neighbor explosion (Zhang et al., 2020b; Jia et al., 2020; Zhang et al., 2021b; Zeng et al., 2019).
Compared to GNNs, MLPs do not require any graph topology information, making them more
suitable for new or isolated nodes (e.g., for cold-start settings), but usually resulting in worse general
task performance as encoders, which we also empirically validate Section 4. Nonetheless, having

1

Under review as a conference paper at ICLR 2023

no graph dependency makes the training and inference time for MLPs negligible when comparing
with those of GNNs. Thus, in industrial-scale applications where fast real-time inference is required,
MLPs are still a leading option (Zhang et al., 2021b; Covington et al., 2016; Gholami et al., 2021).

Given these speed-performance tradeoffs, several recent works propose to transfer the learned
knowledge from GNNs to MLP using knowledge distillation (KD) techniques (Hinton et al., 2015;
Zhang et al., 2021b; Zheng et al., 2021; Hu et al., 2021), to take advantage of both GNN’s performance
benefits and MLP’s speed benefits. Specifically, in this way, the student MLP can potentially obtain
the graph-context knowledge transferred from the GNN teacher via KD to not only perform better
in practice, but also enjoy model latency benefits compared to GNNs, e.g. in production inference
settings. However, these works focus on node- or graph-level tasks. Given that KD on link prediction
tasks have not been explored, and the massive scope of recommendation systems contexts that are
posed as link prediction problems, our work aims to bridge a critical gap. Specifically, we ask:

Can we effectively distill link prediction-relevant knowledge from GNNs to MLPs?

In this work, we focus on exploring, building upon, and proposing cross-model (GNN to MLP) distilla-
tion techniques for link prediction settings. We start with exploring two direct KD methods of aligning
student and teacher: (i) logit-based matching of predicted link existence probabilities (Hinton et al.,
2015), and (ii) representation-based matching of the generated latent node representations (Gou et al.,
2021). However, empirically we observe that neither the logit-based matching nor the representation-
based matching are powerful enough to distill sufficient knowledge for the student model to perform
well on link prediction tasks. We hypothesize that the reason of these two KD approaches not
performing well is that link prediction, unlike node classification, heavily relies on relational graph
topological information (Martínez et al., 2016; Zhang & Chen, 2018; Yun et al., 2021; Zhao et al.,
2022), which is not well-captured by direct methods.

To address this issue, we propose a relational KD framework, namely LLP: our key intuition is that
instead of focusing on matching individual node pairs or node representations, we focus on matching
the relationships between each (anchor) node with respect to other (context) nodes in the graph. Given
the relational knowledge centered at the anchor node, i.e., the teacher model’s predicted link existence
probabilities between the anchor node and each context node, LLP distills it to the student model
via two matching methods: (i) rank-based matching, and (ii) distribution-based matching. More
specifically, rank-based matching equips the student model with a ranking loss over the relative ranks
of all context nodes w.r.t the anchor node, preserving crucial ranking information that are directly
relevant to downstream link prediction use-cases, e.g. user-contextual friend recommendation (Sankar
et al., 2021; Tang et al., 2022) or item recommendation (Ying et al., 2018a; He et al., 2020). On the
other hand, distribution-based matching equips the student model with the link probability distribution
over context nodes, conditioned on the anchor node. Importantly, distribution-based matching is
complementary to rank-based matching, as it provides auxiliary information about the relative values
of the probabilities and magnitudes of differences.

To comprehensively evaluate the effectiveness of our proposed LLP, we conduct experiments on 9
public benchmarks. In addition to the standard transductive setting for graph tasks, we also design
a more realistic setting that mimics realistic (on-line) use-cases for link prediction, which we call
the production setting. LLP consistently outperforms stand-alone MLPs by 17.13 points on average
under the transductive setting and 12.01 points under the production setting on all the datasets, and
matches or outperforms teacher GNNs on 6/9 datasets under the transductive setting. Promisingly, for
cold-start nodes, LLP outperforms teacher GNNs and stand-alone MLPs by 25.29 and 9.42 Hits@20
on average, respectively. Finally, LLP infers drastically faster than GNNs, e.g. 776.37× faster on the
large-scale OGB-Citation2 dataset.

2 RELATED WORK AND PRELIMINARIES

We briefly discuss related work and preliminaries relevant to contextualizing our methods and
contributions. Due to space limit, we defer more related work to Appendix A.

Notation. Let G = (V, E) denote an undirected graph, where V denotes the set of N nodes and
E ⊆ V × V denotes the set of observed links. A ∈ {0, 1}N×N denotes the adjacency matrix, where
Ai,j = 1 if exists an edge ei,j in E and 0 otherwise. Let the matrix of node features be denoted by
X ∈ RN×F , where each row xi is the F -dim raw feature vector of node i. Given both E and A have

2

Under review as a conference paper at ICLR 2023

the validation and test links masked off for link prediction, we use ai,j (different from Ai,j) to denote
the true label of link existence of nodes i and j, which may or may not be visible during training
depending on the setting. We use E− = (V × V) \ E to denote the no-edge node pairs that are used
as negative samples during model training. We denote node representations by H ∈ RN×D, where D
is the hidden dimension. In KD context with multiple models, we use hi and ĥi to denote node i’s
representations learned by the teacher and student models, respectively. Similarly, we use yi,j and
ŷi,j to denote the predictions for ai,j by the teacher and the student models, respectively.

Link Prediction with GNNs. In this work, we take the commonly used encoder-decoder framework
for the link prediction task (Kipf & Welling, 2016b; Berg et al., 2017; Schlichtkrull et al., 2018; Ying
et al., 2018a; Davidson et al., 2018; Zhu et al., 2021; Yun et al., 2021; Zhao et al., 2022), where the
GNN-based encoder learns node representations and the decoder predicts link existence probabilities.
Most GNNs operate under the message-passing framework, where the model iteratively updates each
node i’s representation hi by fetching its neighbors’ information. That is, the node’s representation
in the l-th layer is learned with an aggregation operation and an update operation:

hl
i = UPDATEl

(
hl−1
i , AGGREGATEl({hl−1

j |ei,j ∈ E})
)
, (1)

where AGGREGATE combines or pools local neighbor features, UPDATE is a learnable transformation,
and h0

i = xi. The link prediction decoder takes the node representations from the last layer, i.e., hi

for i ∈ V , to predict the probability of a link between a node pair i and j:

yi,j = σ(DECODER(hi,hj)), (2)

where σ denotes a Sigmoid operation. In this work, following most state-of-the-art link prediction
literature (Zhang et al., 2021a; Tsitsulin et al., 2018; Zhao et al., 2022; Wang et al., 2021), we take
the Hadamard product followed by a MLP as the link prediction DECODER for all methods.

Knowledge Distillation for GNNs. Knowledge distillation (KD) (Hinton et al., 2015) aims to
transfer the knowledge from a high-capacity and highly accurate teacher model to a light-weight
student model, and is typically employed in resource-constrained settings. KD methods have shown
great promise in significantly reducing model complexity, while sometimes barely (or not) sacrificing
task performance (Furlanello et al., 2018; Park et al., 2019). As GNNs are known to be slow due to
neighbor aggregation induced by data dependency, graph-based KD methods (Zhang et al., 2021b;
Zheng et al., 2021) usually distill GNNs onto MLPs, which are commonly used in large-scale
industrial applications due to their significantly improved efficiency and scalability. For example,
Zheng et al. (2021) proposed a KD-based framework to rediscover the missing graph structure
information for MLPs, which improves the models’ generalization of node classification task on
cold-start nodes. Existing KD methods on graph data mainly focus on node-level (Zheng et al., 2021;
Zhang et al., 2021b; Tian et al., 2022) and graph-level tasks (Ma & Mei, 2019; Zhang et al., 2020c;
Deng & Zhang, 2021; Joshi et al., 2021), leaving KD for link prediction yet unexplored. Our work
focuses on distilling link prediction-relevant information from the GNN teacher to an MLP student,
and investigates various KD strategies to align student and teacher predictions. Specifically, denoting
the node representations for nodes i and j learned by the student MLP as ĥi and ĥj , the link existence
prediction by the student model can then be written as ŷi,j = σ(DECODER(ĥi, ĥj)).

3 CROSS-MODEL KNOWLEDGE DISTILLATION FOR LINK PREDICTION

In this section, we propose and discuss several approaches to distill knowledge from a teacher GNN
to a student MLP in a cross-model fashion, for the purpose of link prediction. In all cases, we aim to
supervise the student MLP with artifacts produced by the GNN teacher, in addition to any available
training labels (ai,j w.l.o.g.) about link existence. We start by adapting two direct knowledge
distillation (KD) methods: logit-matching and representation-matching, on link prediction tasks; we
call these methods direct because they involve directly matching sample-wise predictions between
teacher and student. Next, we motivate and introduce our proposed relational KD framework, LLP,
with two matching strategies to distill additional topology-related structural information to the student.
We call these methods relational because they call for preservation of relationships across samples
between teacher and student (Park et al., 2019). We next discuss our proposals in more detail, which
are also summarized in Figure 1.

3

Under review as a conference paper at ICLR 2023

2
5

1

43

6 Teacher GNN

Val. Accuracy

…

…

Student MLP Dec.

Dec. 1 2?

3 6?

…

1 2?

3 6?

…

ℒ!" ℒ#"Direct
KD

Sample
For

21 5
4

6
ℒ##$_! ℒ##$_&

Relational
KD:
LLP

Rank Distribution

Rank Distribution

Graph Structure

Node Attr. !

4

2

1
56

3 6

? ?
??

?
?

?
?
4

2

1
56

Figure 1: We explore KD methods for link prediction, which distill knowledge from a Teacher GNN
to a Student MLP encoder, each with their own decoder. We start by exploring direct KD methods:
representation-matching and logit-matching. Upon observing their drawbacks of not being able to
distill relational information, we further propose a relational KD framework: LLP, which equips the
student model with knowledge of each (anchor) node’s relationships with other (context) nodes, via
our proposed rank-based matching and distribution-based matching objectives.

3.1 DIRECT METHODS

Logit-matching is one straightforward strategy to distill knowledge from the teacher to the student,
where it directly aims to teach the student to generalize as the teacher does on the downstream
task. It (Hinton et al., 2015) was originally proposed some time ago, but it is still one of the most
widely used KD methods in various tasks (Furlanello et al., 2018; Yang et al., 2020b; Yan et al.,
2020). Several works (Phuong & Lampert; Ji & Zhu, 2020) theoretically analyzed its effectiveness.
Moreover, it had also been proved to be effective for knowledge transfer on graph data (Yan et al.,
2020; Yang et al., 2021; Zhang et al., 2021b) in recent years. For example, Zhang et al. (2021b) the
soft logits generated by the teacher GNNs to help supervise the student MLP and achieved strong
performance on node classification tasks. In a similar vein, we generate the soft score yi,j for the
node pair or candidate edge (i, j) with the teacher GNN model, and train the student to match its
prediction ŷi,j on this target:

LLM =
∑

(i,j)∈E∪E−

λLsup(ŷi,j , ai,j) + (1− λ)Lmatch(ŷi,j , yi,j), (3)

where Lsup is the supervised link prediction loss (e.g., binary cross entropy) that directly trains the
student model, Lmatch is the loss for matching the student’s prediction with the teacher’s prediction,
and λ is a hyper-parameter that mediates the importance of the ground-truth labels and logit-matching
signals. Note that multiple implementation choices exist for Lmatch. For example, mean-squared
error (MSE), Kullback-Leibler (KL) divergence, or cosine similarity. In the experiments, we opt for
the empirical best choice for fair comparison across methods.

Representation-matching is another direct distillation method in which we aim to align the student’s
learned latent node embedding space with the teacher’s. As this KD training signal only optimizes
the encoder part of the student model, it must be used in conjunction with Lsup so that the student
decoder receives a gradient and can also be optimized:

LRM =
∑

(i,j)∈E∪E−

λLsup(ŷi,j , ai,j) + (1− λ)
∑
i∈V

Lmatch(ĥi,hi). (4)

Unlike logit-matching, representation-matching involves directly aligning node-level artifacts, which
is similar to object representation matching in computer vision (Romero et al., 2014; Kim et al., 2018;
Wang et al., 2020b; Chen et al., 2021a).

3.2 LINK PREDICTION WITH RELATIONAL DISTILLATION

Motivation. The above direct methods ask the student model to directly match node-level or link-
level artifacts. However, one might ask: are matching these sufficient for link prediction tasks?
This is especially relevant considering that most link prediction applications involve tasks where

4

Under review as a conference paper at ICLR 2023

ranking target nodes with respect to a source, or anchor node, is the task of interest, i.e. ranking
relevant candidate users or items with respect to a seed user (Huang et al., 2005; Trouillon et al.,
2016). In other words, these contexts involve reasoning over multiple relations or link-level samples
simultaneously, suggesting that matching across these relations could be more aligned with the target
link prediction task, compared to the direct node-level or link-level methods.

Furthermore, several works (Zhang & Chen, 2018; Yun et al., 2021) suggest that graph structure
information is critically important for link prediction tasks. For example, heuristic link prediction
methods commonly show competitive performance compared to GNNs (Zhang & Chen, 2018) and
have long-served as a cornerstone for accurate link prediction even prior to neural graph methods
(Martínez et al., 2016). Most heuristic methods measure the score of the target node pairs only
based on the graph structure information (Barabási & Albert, 1999; Brin & Page, 2012), such as
common neighbors and shortest path. In addition, several recent works (Zhang & Chen, 2017;
2018; Li et al., 2020; Zhao et al., 2022) also show that enclosing topology information such as local
subgraph, distances with anchor nodes, or augmented links can largely improve GNNs’ performance
on link-level tasks. Observing that most successful methods in link prediction involve using relational
information other than just the two nodes in question, we also adopt this intuition in the distillation
context, and propose our relational KD for link prediction. We elaborate next.

3.3 PROPOSED FRAMEWORK: LINKLESS LINK PREDICTION

In accordance with our intuition regarding preservation of relational knowledge, we propose a novel
relational distillation framework, called Linkless Link Prediction, or LLP. Instead of focusing on
matching individual node pair scores or node representations, LLP focuses on distilling knowledge
about the relationships of each node to other nodes in the graph; we call the former node an anchor
node, and the latter nodes context nodes. For each node in the graph, when it serves as the anchor
node, we aim to equip the student MLP model with knowledge of its relationships with a set of
context nodes. In practice, each node can serve as both an anchor node, as well as a context node (for
other anchor nodes).

Let v denote the anchor node and Cv denote the corresponding set of context nodes of v. We denote
the teacher model’s predicted probabilities of v and each node in Cv as Yv = {yv,i|i ∈ Cv}. Similarly,
we denote the student model’s predictions on those as Ŷv = {ŷv,i|i ∈ Cv}. To effectively distill the
relational knowledge from Yv to Ŷv, we proposed two relational matching objectives to train LLP:
rank-based matching and distribution-based matching, which we introduce next.

Rank-based Matching. As aforementioned in Section 3.2, link prediction is often considered a
ranking task, requiring the model to rank relevant candidates w.r.t. a seed node, e.g. in a user-item
graph setting, the predictor must rank over a set of candidate items from the perspective of a user.
Thus, we reason that unlike matching individual and independent logits, matching the ranking induced
by the teacher can more straightforwardly teach the student relational knowledge about context nodes
w.r.t. the anchor node, e.g. for a specific user, item A should be ranked higher than item C, which
should be ranked higher than item B. To adopt this rank-based intuition into a training objective, we
adopt a modified margin-based ranking loss that trains the student with the rank of the logits from the
teacher GNN. Specifically, we enumerate all pairs of predicted probabilities in Ŷv and supervise it
with the corresponding pairs in Yv . That is,

LLLP_R =
∑
v∈V

∑
{ŷv,i,ŷv,j}∈Ŷv

max(0,−r · (ŷv,i − ŷv,j) + δ), (5)

where r =


1, if yv,i − yv,j > δ;

−1, if yv,i − yv,j < −δ;

0, otherwise,
where δ is the margin hyper-parameter, which is usually a very small value (e.g. 0.05). Note that the
above loss differs from the conventional margin-based ranking loss, because it has a condition for
r = 0 (inducing constant loss) on the logits pairs that the teacher GNN gives similar probabilities,
i.e., |yv,i − yv,j | < δ. This design effectively prevents the student model from trying to differentiate
minuscule differences in probabilities which the teacher may produce owing to noise; without this
condition, the loss would pass binary information regardless of how small the difference is. We also
empirically show the necessity of this design in Table 9 in Appendix D.

5

Under review as a conference paper at ICLR 2023

Distribution-based Matching. While the rank-based matching can effectively teach the student
model relational rank information, we observe that it does not fully make use of the value information
from Yv, e.g. for a specific user, item A should be ranked much higher than item C, which should
only be ranked marginally higher than item B. Although the logit-matching introduced in Section 3.1
might seem suitable here, we observe that its link-level matching strategy only facilitates matching
information on scattered node pairs, rather than focusing on the relationships conditioned on an
anchor node – empirically, we also find that it has limited effectiveness. Therefore, to enable relational
value-based matching centered on the anchor nodes, we further propose a distribution-based matching
scheme which utilizes the KL divergence between the teacher predictions Yv and student predictions
Ŷv , centered on each anchor node v. Specifically, we define it as

LLLP_D =
∑
v∈V

∑
i∈Cv

exp(yv,i/τ)∑
j∈Cv

exp(yv,j/τ)
log

(
exp(ŷv,i/τ)∑

j∈Cv
exp(ŷv,j/τ)

)
, (6)

where τ is a temperature hyper-parameter which controls the softness of the softmaxed distribution.
By also asking the student to match relative values within the probability distribution over context
nodes conditioned on each anchor node, the distribution-based matching scheme complements
rank-based matching by providing auxiliary information about the magnitudes of differences.

Practical Implementation of LLP. In practical implementation, given the large number of nodes in
the graph, it is infeasible for LLP to use all other nodes as the set of context nodes, especially for the
rank-based matching which enumerates pairs of probabilities in Ŷv . Hence, we opt for simplicity and
adopt two straightforward sampling strategies for the constructing Cv for each anchor node v to limit
its size. First, to preserve the local structure around v, we sample p nearby nodes via fixed-length
random walks, denoted as CN

v . On the other hand, we also randomly sample q nodes from G (which
are likely to be far-away from v) to form CR

v , which additionally preserves the global structure w.r.t.
v in the graph. p and q are hyper-parameters. Finally, we make Cv as the union of the nearby samples
and random samples, i.e., Cv = CN

v ∪ CR
v . We note that LLP can easily adopt more sophisticated

sampling strategies for further improvements; we leave this to future exploration.

While training LLP, we jointly optimize both the rank-based and distribution-based matching losses
in addition to the ground-truth label loss. Therefore, the overall training loss which LLP adopts for
the student is

L = α · Lsup + β · LLLP_R + γ · LLLP_D (7)

where α, β, and γ are hyper-parameters which mediate the strengths of each loss term.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We conduct the experiments using 9 benchmark datasets, including 7 commonly used
link prediction benchmarks (Cora, Citeseer, Pubmed, Computers, Photos, CS, and Physics)
and 2 larger-scale link prediction benchmarks from OGB (Hu et al., 2020) (OGB-Collab and
OGB-Citation2). Further details and statistics of the datasets are summarized in Appendix B.

Evaluation Settings and Metrics. To comprehensively evaluate our proposed LLP and baseline
methods on the link prediction tasks, we conduct experiments on both transductive and production
settings. For the transductive setting, all the nodes in the graph can be observed for train/validation/test
sets. Following previous works (Zhang & Chen, 2018; Chami et al., 2019; Cai et al., 2021) we
randomly sample 5%/15% of the links with the same number of no-edge node pairs from the graph
as the validation/test sets on the non-OGB datasets. And the validation/test links are masked off from
the training graph. For the OGB datasets, we follow their official train/validation/test splits (Wang
et al., 2020a; Mikolov et al., 2013). In addition to transductive setting, we also design a more realistic
setting that mimics practical link prediction use-cases, which we call the production setting. In the
production setting, new nodes would appear in the test set, while training and validation sets only
observe previously existing nodes. Thus, this setting entails three categories of node pairs (edges or
no-edges) in the test set: existing – existing, existing – new, and new – new, where the first category
is similar to the test edges in the transductive setting, and the latter two categories together are similar
to the inductive setting used in a few recent works (Bojchevski & Günnemann, 2017; Hao et al., 2020;

6

Under review as a conference paper at ICLR 2023

Table 1: Link prediction performance under transductive setting. For OGB-Collab and
OGB-Citation2, we report Hits@50 and MRR respectively. For other datasets, we report Hits@20.
Best and second best performances are marked with bold and underline, respectively. ∆DirectKD,
∆MLP , and ∆GNN represent differences between LLP and these methods.

GNN MLP LLM LRM LLP ∆DirectKD ∆MLP ∆GNN

Cora 74.38±1.54 78.06±1.50 74.72±4.27 75.75±1.51 78.82±1.74 3.07 0.76 4.44
Citeseer 73.89±0.95 71.21±3.22 72.44±1.52 65.19±5.54 77.32±2.42 4.88 6.11 3.43
Pubmed 51.98±5.25 42.89±1.67 42.78±3.15 44.44±2.40 57.33±2.42 12.89 14.44 5.35
CS 59.51±7.34 34.01±9.37 40.69±5.12 61.10±2.83 68.62±1.46 7.52 34.61 9.11
Physics 66.74±1.53 31.26±9.12 52.11±2.44 52.34±3.78 72.01±1.89 19.67 40.75 5.27
Computers 31.66±3.08 20.19±1.58 12.81±1.80 21.75±1.96 35.32±2.28 13.57 15.31 3.66
Photos 51.50±4.48 27.83±4.90 24.24±2.79 38.47±2.76 49.32±2.64 10.85 21.49 -2.18
OGB-Collab 48.69±0.87 36.95±1.37 35.97±0.96 36.86±0.45 45.27±0.79 8.41 8.32 -3.42
OGB-Citation2 82.56±0.04 40.63±0.00 38.42±0.01 42.50±0.01 53.20±1.20 10.70 12.57 -29.36

Chen et al., 2021b). Nonetheless, all three types of these edges appear with varying proportions in
practical use-cases, e.g. growth of a social network or online platform, hence we evaluate on all three
types. Note that we only conduct production setting experiments on non-OGB datasets, because
the two OGB datasets are already temporally split in their public releases. We further elaborate the
details of the production setting as well as the statistics in Appendix C.

For OGB datasets, we use their official metric (Hits@50 for OGB-Collab and Mean reciprocal
Rank (MRR) for OGB-Citation2) following the public leaderboard1. For other datasets, following
previous works (Yun et al., 2021; Zhang et al., 2021a; Zhao et al., 2022), we use Hits@20 as the main
metric, which is also one of the main metrics on OGB datasets. We also report AUC performance in
Appendix D. For all experiments, we report the averaged test performance (with early-stopping on
validation) along with its standard deviation over 10 runs with different random initializations.

Methods. In the remainder of this section: “GNN” indicates the teacher GNN that was trained with
Lsup; “MLP” refers to the stand-alone MLP that was trained with Lsup; “LLM” refers to MLP trained
with logit matching (Equation (3)); “LRM” refers to MLP trained with node representation matching
(Equation (4)); “LLP” refers to MLP trained with our proposed relational KD (Equation (7)). For the
main experiments, we opt for simplicity and use SAGE (Hamilton et al., 2017) as the teacher GNN in
all settings. We also include further experiments of different teacher GNN models in Figure 5 (in
Appendix D.3).

4.2 LINK PREDICTION RESULTS

Transductive Setting. Table 1 shows the link prediction performance of the proposed LLP with
GNN, MLP, and the direct KD methods (as introduced in Section 3.1) in the transductive setting. We
observe that LLP consistently outperforms MLP and direct KD methods across all datasets with large
margins. Specifically, LLP achieves 17.13 points and 10.17 points improvements over MLP and direct
KD methods averaged on datasets, respectively. On the Physics dataset, LLP achieves 40.75 points
and 19.67 points absolute improvements over MLP and direct KD, respectively. Moreover, LLP
achieves better performance than the teacher GNN model on 6 out of 9 datasets, demonstrating that
our proposed rank-based and distribution-based matching are able to effectively distill the relational
knowledge for link prediction.

Production Setting. Table 2 shows the link prediction performance of the proposed LLP with GNN,
MLP, and the direct KD methods in the production setting. For ease of comparison, we also stratify
each method’s performance on the three different categories of the test edges. We observe that LLP
is still able to consistently outperform MLP and direct KD methods by large margins for all test
categories. Specifically, LLP achieves 12.01 and 6.67 on Hits@20 improvements over MLP and
direct KD methods averaged over datasets, respectively. Moreover, LLP is at or above par with the
teacher GNN on 3 out of the 6 datasets. From the more stratified test performances, we observe that
LLP can generally achieve similar performance with GNN on the existing–existing category, but
much worse on the other two categories that involve newly appeared nodes. We hypothesize that
this is because GNN neighbor aggregation improves generalization for low-degree nodes. We also

1https://ogb.stanford.edu/docs/leader_linkprop/

7

https://ogb.stanford.edu/docs/leader_linkprop/

Under review as a conference paper at ICLR 2023

Table 2: The performance measured by Hits@20 of production setting. Best and second best
performances are marked with bold and underline, respectively.

GNN MLP LLM LRM LLP ∆DirectKD ∆MLP ∆GNN

Overall

Cora 27.80±2.11 22.90±2.22 22.65±2.51 22.24±0.55 27.87±1.24 5.22 4.97 0.07
Citeseer 38.78±2.59 31.21±3.75 29.35±2.55 26.23±1.08 34.75±2.45 5.40 3.54 -4.03
Pubmed 52.71±1.81 38.01±1.67 39.03±4.21 43.27±3.12 53.48±1.52 10.21 15.47 0.77
CS 60.69±3.17 38.15±10.78 48.07±2.39 58.90±1.32 60.74±1.41 1.84 22.59 0.05
Physics 55.82±2.43 29.99±1.96 22.74±1.03 36.32±2.29 52.83±1.50 16.51 22.84 -2.99
Computers 34.38±1.41 19.43±0.82 12.79±1.43 20.28±1.01 24.58±3.33 4.30 5.15 -9.80
Photos 51.03±6.05 34.29±2.49 24.63±2.20 40.58±1.63 43.79±1.27 3.21 9.50 -7.24

Existing – Existing

Cora 28.81±2.01 28.00±2.70 27.66±3.01 27.03±0.65 33.31±1.29 5.65 5.31 4.5
Citeseer 38.10±2.70 33.88±3.50 32.24±2.89 27.52±0.94 37.50±2.43 5.26 3.62 -0.60
Pubmed 52.67±1.78 41.58±1.61 42.57±4.32 46.32±3.08 57.16±1.34 10.84 15.58 4.49
CS 61.52±3.10 40.27±11.69 50.78±2.50 62.17±1.45 63.99±1.36 1.82 23.72 2.47
Physics 56.56±2.42 32.32±2.32 23.88±1.14 38.74±2.50 56.04±1.47 17.30 23.72 -0.52
Computers 35.13±1.48 21.46±1.08 13.81±1.56 22.78±1.17 26.89±3.60 4.11 5.43 -8.24
Photos 51.90±6.24 37.47±2.73 26.54±2.55 44.51±2.10 48.38±1.30 3.87 10.91 -3.52

Existing – New

Cora 25.78±2.33 19.47±2.09 19.11±2.03 18.58±1.28 23.08±1.51 3.97 3.61 -2.7
Citeseer 38.73±2.37 30.77±4.07 28.77±2.70 26.65±1.52 34.30±2.40 5.53 3.53 -4.43
Pubmed 53.98±2.29 23.70±2.09 24.91±4.00 32.21±3.38 38.94±2.44 6.73 15.24 -15.04
CS 56.78±3.57 29.25±7.05 36.60±2.17 45.28±0.93 47.05±1.72 1.77 17.80 -9.73
Physics 52.90±2.44 20.61±1.01 18.23±0.74 26.57±1.81 39.73±1.75 13.16 19.12 -13.17
Computers 31.07±1.17 11.00±1.37 8.53±1.16 9.85±0.54 14.88±2.58 5.03 3.88 -16.19
Photos 47.42±5.18 21.00±1.65 16.75±0.92 24.10±1.38 24.27±2.07 0.17 3.27 -23.15

New – New

Cora 31.97±6.65 11.69±2.19 12.54±2.83 13.80±1.37 16.90±5.50 3.10 5.21 -15.07
Citeseer 42.74±4.49 18.71±4.54 16.29±3.80 17.26±3.54 21.94±4.39 4.68 3.23 -20.8
Pubmed 33.18±1.24 5.45±1.24 4.55±4.55 11.36±4.82 15.00±6.35 3.64 9.55 -18.18
CS 64.10±3.55 26.27±8.79 33.73±3.81 38.07±2.90 42.89±1.83 4.82 16.62 -21.21
Physics 48.96±3.53 13.20±1.62 12.56±1.85 18.88±2.22 32.80±1.55 13.92 19.6 -16.16
Computers 32.61±1.89 5.55±1.56 6.72±0.66 3.87±1.24 10.25±1.41 3.53 4.7 -22.36
Photos 43.54±6.6 10.09±3.99 8.14±1.15 12.21±1.31 14.87±3.09 2.66 4.78 -28.67

134.3 128.3 128.7

28.6

1.9

2243.7 2206.4 2209.1

146.0

2.9

1

10

100

1000

10000

SAGE QSAGE PSAGE Neighor
Sample

LLP

In
fe

re
nc

e
Ti

m
e

(m
s)

OGB-collab OGB-citation2

Figure 2: Inference time comparison of LLP with GNN
inference acceleration methods in log scale.

N/A

Figure 3: Link prediction performance
measured by Hits@20 of LLP on Pubmed
with different number of samples for the
context nodes.

observe that the performance gaps between the teacher GNN and stand-alone MLP on new–new
and existing–new are much larger than that of the existing–existing category, which also evidences
that GNNs have better inductive bias than MLPs on graph data. Nonetheless, we note that such a
significant and consistent performance improvements of LLP over MLP is valuable for large-scale
industrial applications, given their popularity in practice.

4.3 INFERENCE ACCELERATION COMPARISON

We evaluate LLP in comparison to other common GNN inference acceleration methods, which mainly
focus on the hardware and algorithm to reduce the computation consuming, such as pruning (Zhou
et al., 2021) and quantization (Zhao et al., 2020; Tailor et al., 2020). Following the experimental

8

Under review as a conference paper at ICLR 2023

settings in Zhang et al. (2021b), we measure the inductive inference time on 10 randomly chosen
nodes in the graph. We evaluate against 4 common GNN inference acceleration methods: (i)
SAGE (Hamilton et al., 2017), (ii) Quantized SAGE (QSAGE) (Zhao et al., 2020; Tailor et al., 2020)
from float32 to int8, (iii) SAGE with 50% weights pruned (PSAGE) (Zhou et al., 2021; Chen
et al., 2021c), and (iv) SAGE with Neighbor Sampling with fan-out 15. Figure 2 shows the results on
the large-scale OGB datasets. We can observe that LLP can obtain 71.04× and 776.37× speedup
comparing with on SAGE on OGB-Collab and OGB-Citation2 datasets, respectively. Comparing
with the best acceleration method Neighbor Sampling (which reduces graph dependency, but does
not eliminate it like LLP), LLP still achieves 15.12× and 50.51× speedup on the two datasets,
respectively. This is because all these inference acceleration methods still rely on the graph structure.

4.4 LINK PREDICTION RESULTS ON COLD START NODES

Table 3: Link pred. Hits@20 on cold-start nodes.
GNN MLP Ours ∆MLP ∆GNN

Cora 6.39 17.92 22.01 4.09 15.62
Citeseer 11.04 29.33 32.09 2.76 21.05
Pubmed 4.63 22.74 37.68 14.94 33.05
CS 9.46 29.09 46.83 17.74 37.37
Physics 5.46 20.22 39.37 19.15 33.91
Computers 1.53 10.72 14.64 3.92 13.11
Photos 0.87 20.44 23.79 3.35 22.92

Dealing with cold start nodes (newly appeared
nodes without edges) is a common challenge in
recommendation and information retrieval appli-
cations (Li et al., 2019; Zheng et al., 2021; Ding
et al., 2021). Without these edges, GNNs cannot
perform well as they rely heavily on neighbor
information. On the other hand, MLPs, which do
not make use of any graph topology information,
are arguably more suitable. Here, we simulate
the cold-start setting by removing all the new edges during testing stage of the production setting, i.e.
all the new nodes are isolated (see Appendix C for more details). Table 3 shows the performances
of LLP, the stand-alone MLP, and the teacher GNN on the cold-start nodes. We observe that LLP
consistently outperforms GNN and MLP by average of 25.29 and 9.42 on Hits@20, respectively.

4.5 ABLATION STUDY

Table 4: Results measured by Hits@20 on differ-
ent components of LLP.

Setting Transductive Production
Dataset Pubmed CS Pubmed CS

GNN 51.98 59.51 52.71 60.69
MLP 42.89 40.69 38.01 38.15

LLP 57.33 68.62 53.48 60.74
w/o LLLP_R 55.35 66.61 53.40 60.53
w/o LLLP_D 54.97 65.17 48.58 60.13
w/o LLLP_R, Lsup 54.86 68.39 39.35 57.35
w/o LLLP_D, Lsup 53.30 68.30 41.43 55.63

Effectiveness of LLLP_R and LLLP_D. As our
proposed LLP contains two matching strategies,
rank-based and distribution-based matching, we
evaluate their effectiveness by removing them
from LLP. Moreover, we further evaluate by also
removing Lsup, i.e., using only one of the match-
ing losses as the overall loss for LLP. Table 4
shows the results of these settings compared with
the performances of full LLP, stand-alone MLP,
and the teacher GNN on Pubmed and CS datasets
under both settings. We observe that both rank-
based and distribution-based matching contribute significantly for the overall performance. In the
transductive setting, both loss terms by themselves (the bottom two rows) can already outperform
the teacher GNN. In the production setting, the matching losses alone outperform MLP and can
achieve comparable performances with GNN after Lsup is added. In conclusion, both rank-based and
distribution-based matching can effectively distill the relational knowledge, and they achieve the best
performance by complementing each other.

Context Sampling Sensitivity to p and q. Figure 3 shows the link prediction performance of LLP
on Pubmed under the transductive setting with different numbers of context node samples (p local
samples, and q random samples). For the ease of hyper-parameter tuning, we make q a multiple of p,
as shown in the x-axis of Figure 3. We observe that low number of random samples show poor link
prediction performances, suggesting that preserving global relations are necessary for the proposed
relation KD. Generally, the heatmap shows a clear trend, making the optimal values easy to locate.

5 CONCLUSION

Our work tackled problems related to applying GNNs for link prediction at scale. We note these
models have high latency at inference time owing to non-trivial data dependency. In response, we
explored applying cross-model distillation methods from teacher GNN to student MLP models, which
are advantaged in inference time. We first adopt two direct logit matching and representation matching
KD methods to the link prediction context and observe their unsuitability. In response, we introduced

9

Under review as a conference paper at ICLR 2023

a relational KD framework, LLP, which proposed rank-based matching and distribution-based match-
ing objectives which complement each other to force the student to preserve key information about
contextual relationships across anchor nodes. Our experiments demonstrated that LLP achieved MLP-
level speedups (up to 776.37× over GNNs), while also improving link prediction performance over
MLPs by 17.13 and 12.01 points in transductive and production settings, matching or outperforming
the teacher GNN in 6/9 datasets in transductive setting and 3/9 datasets in production setting, and
with notable 25.29 on Hits@20 improvements on cold-start nodes.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our experiments, we provide the source code for LLP in the sup-
plementary materials. Moreover, we will publically open-source our code later after we clean up
our code package and add proper documentation for it. The hyper-parameters that are required to
reproduce our experiments are provided in Appendix E.

ACKNOWLEDGEMENT

We appreciate Xiaotian Han from Texas A&M University, Wei Jin from Michigan State University,
and Yiwei Wang from National University of Singapore for valuable discussions and suggestions.

REFERENCES

Lada A Adamic and Eytan Adar. Friends and neighbors on the web. Social networks, 2003.

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
arXiv preprint arXiv:2006.05205, 2020.

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science, 1999.

Rianne van den Berg, Thomas N Kipf, and Max Welling. Graph convolutional matrix completion.
arXiv preprint arXiv:1706.02263, 2017.

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath
Balamurugan, Michael M Bronstein, and Haggai Maron. Equivariant subgraph aggregation
networks. arXiv preprint arXiv:2110.02910, 2021.

Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsupervised
inductive learning via ranking. arXiv preprint arXiv:1707.03815, 2017.

Sergey Brin and Lawrence Page. Reprint of: The anatomy of a large-scale hypertextual web search
engine. Computer networks, 2012.

Lei Cai and Shuiwang Ji. A multi-scale approach for graph link prediction. In Proceedings of the
AAAI conference on artificial intelligence, 2020.

Lei Cai, Jundong Li, Jie Wang, and Shuiwang Ji. Line graph neural networks for link prediction.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. Hyperbolic graph convolutional neural
networks. Advances in neural information processing systems, 2019.

Defang Chen, Jian-Ping Mei, Yuan Zhang, Can Wang, Zhe Wang, Yan Feng, and Chun Chen. Cross-
layer distillation with semantic calibration. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2021a.

Jiajun Chen, Huarui He, Feng Wu, and Jie Wang. Topology-aware correlations between relations
for inductive link prediction in knowledge graphs. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2021b.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International Conference on Machine Learning, 2020.

10

Under review as a conference paper at ICLR 2023

Tianlong Chen, Yongduo Sui, Xuxi Chen, Aston Zhang, and Zhangyang Wang. A unified lottery
ticket hypothesis for graph neural networks. In International Conference on Machine Learning, pp.
1695–1706. PMLR, 2021c.

Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recommendations.
In Proceedings of the 10th ACM conference on recommender systems, pp. 191–198, 2016.

Tim R Davidson, Luca Falorsi, Nicola De Cao, Thomas Kipf, and Jakub M Tomczak. Hyperspherical
variational auto-encoders. arXiv preprint arXiv:1804.00891, 2018.

Xiang Deng and Zhongfei Zhang. Graph-free knowledge distillation for graph neural networks. arXiv
preprint arXiv:2105.07519, 2021.

Hao Ding, Yifei Ma, Anoop Deoras, Yuyang Wang, and Hao Wang. Zero-shot recommender systems.
arXiv preprint arXiv:2105.08318, 2021.

Wenqi Fan, Xiaorui Liu, Wei Jin, Xiangyu Zhao, Jiliang Tang, and Qing Li. Graph trend filtering
networks for recommendation. In Proceedings of the 45th International ACM SIGIR Conference
on Research and Development in Information Retrieval, pp. 112–121, 2022.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. arXiv
preprint arXiv:1903.02428, 2019.

Matthias Fey, Jan E Lenssen, Frank Weichert, and Jure Leskovec. Gnnautoscale: Scalable and
expressive graph neural networks via historical embeddings. In International Conference on
Machine Learning, pp. 3294–3304. PMLR, 2021.

Tommaso Furlanello, Zachary Lipton, Michael Tschannen, Laurent Itti, and Anima Anandkumar.
Born again neural networks. In International Conference on Machine Learning, pp. 1607–1616.
PMLR, 2018.

Floris Geerts and Juan L Reutter. Expressiveness and approximation properties of graph neural
networks. arXiv preprint arXiv:2204.04661, 2022.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer.
A survey of quantization methods for efficient neural network inference. arXiv preprint
arXiv:2103.13630, 2021.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
survey. International Journal of Computer Vision, 2021.

Zhichun Guo, Chuxu Zhang, Wenhao Yu, John Herr, Olaf Wiest, Meng Jiang, and Nitesh V Chawla.
Few-shot graph learning for molecular property prediction. In WWW, 2021.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 2017.

Yu Hao, Xin Cao, Yixiang Fang, Xike Xie, and Sibo Wang. Inductive link prediction for nodes
having only attribute information. arXiv preprint arXiv:2007.08053, 2020.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In Proceedings of the
43rd International ACM SIGIR conference on research and development in Information Retrieval,
pp. 639–648, 2020.

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 2020.

11

Under review as a conference paper at ICLR 2023

Yang Hu, Haoxuan You, Zhecan Wang, Zhicheng Wang, Erjin Zhou, and Yue Gao. Graph-mlp: node
classification without message passing in graph. arXiv preprint arXiv:2106.04051, 2021.

Zan Huang, Xin Li, and Hsinchun Chen. Link prediction approach to collaborative filtering. In
Proceedings of the 5th ACM/IEEE-CS joint conference on Digital libraries, pp. 141–142, 2005.

Glen Jeh and Jennifer Widom. Simrank: a measure of structural-context similarity. In Proceedings
of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining,
2002.

Guangda Ji and Zhanxing Zhu. Knowledge distillation in wide neural networks: Risk bound, data
efficiency and imperfect teacher. Advances in Neural Information Processing Systems, 2020.

Zhihao Jia, Sina Lin, Rex Ying, Jiaxuan You, Jure Leskovec, and Alex Aiken. Redundancy-free
computation for graph neural networks. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2020.

Chaitanya K Joshi, Fayao Liu, Xu Xun, Jie Lin, and Chuan-Sheng Foo. On representation knowledge
distillation for graph neural networks. arXiv preprint arXiv:2111.04964, 2021.

Jangho Kim, SeongUk Park, and Nojun Kwak. Paraphrasing complex network: Network compression
via factor transfer. Advances in neural information processing systems, 2018.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016a.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308,
2016b.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender
systems. Computer, 2009.

Jure Leskovec and Christos Faloutsos. Sampling from large graphs. In Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data mining, 2006.

Jingjing Li, Mengmeng Jing, Ke Lu, Lei Zhu, Yang Yang, and Zi Huang. From zero-shot learning to
cold-start recommendation. In Proceedings of the AAAI conference on artificial intelligence, 2019.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design provably
more powerful neural networks for graph representation learning. Advances in Neural Information
Processing Systems, 33:4465–4478, 2020.

Gang Liu, Tong Zhao, Jiaxin Xu, Tengfei Luo, and Meng Jiang. Graph rationalization with
environment-based augmentations. In Proceedings of the 28th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2022.

Xiaorui Liu, Wei Jin, Yao Ma, Yaxin Li, Hua Liu, Yiqi Wang, Ming Yan, and Jiliang Tang. Elastic
graph neural networks. In International Conference on Machine Learning, pp. 6837–6849. PMLR,
2021.

Jiaqi Ma and Qiaozhu Mei. Graph representation learning via multi-task knowledge distillation.
arXiv preprint arXiv:1911.05700, 2019.

Yao Ma, Xiaorui Liu, Tong Zhao, Yozen Liu, Jiliang Tang, and Neil Shah. A unified view on
graph neural networks as graph signal denoising. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, 2021.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. Advances in neural information processing systems, 32, 2019.

Víctor Martínez, Fernando Berzal, and Juan-Carlos Cubero. A survey of link prediction in complex
networks. ACM computing surveys (CSUR), 49(4):1–33, 2016.

12

Under review as a conference paper at ICLR 2023

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based
recommendations on styles and substitutes. In Proceedings of the 38th international ACM SIGIR
conference on research and development in information retrieval, 2015.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations
of words and phrases and their compositionality. Advances in neural information processing
systems, 2013.

Deepak Nathani, Jatin Chauhan, Charu Sharma, and Manohar Kaul. Learning attention-based
embeddings for relation prediction in knowledge graphs. arXiv preprint arXiv:1906.01195, 2019.

Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Relational knowledge distillation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019.

S Yu Philip, Jiawei Han, and Christos Faloutsos. Link mining: Models, algorithms, and applications.
2010.

Mary Phuong and Christoph Lampert. Towards understanding knowledge distillation. In International
Conference on Machine Learning. PMLR.

Sashank Reddi, Rama Kumar Pasumarthi, Aditya Menon, Ankit Singh Rawat, Felix Yu, Seungyeon
Kim, Andreas Veit, and Sanjiv Kumar. Rankdistil: Knowledge distillation for ranking. In
International Conference on Artificial Intelligence and Statistics. PMLR, 2021.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550, 2014.

Aravind Sankar, Yozen Liu, Jun Yu, and Neil Shah. Graph neural networks for friend ranking in
large-scale social platforms. In Proceedings of the Web Conference, pp. 2535–2546, 2021.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In European semantic web
conference, pp. 593–607. Springer, 2018.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

William Shiao and Evangelos E Papalexakis. Adversarially generating rank-constrained graphs. In
2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA). IEEE,
2021.

Shyam A Tailor, Javier Fernandez-Marques, and Nicholas D Lane. Degree-quant: Quantization-aware
training for graph neural networks. arXiv preprint arXiv:2008.05000, 2020.

Xianfeng Tang, Yozen Liu, Xinran He, Suhang Wang, and Neil Shah. Friend story ranking with
edge-contextual local graph convolutions. In Proceedings of the Fifteenth ACM International
Conference on Web Search and Data Mining, pp. 1007–1015, 2022.

Yijun Tian, Chuxu Zhang, Zhichun Guo, Xiangliang Zhang, and Nitesh V Chawla. Nosmog: Learning
noise-robust and structure-aware mlps on graphs. arXiv preprint arXiv:2208.10010, 2022.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Complex
embeddings for simple link prediction. In International conference on machine learning, pp.
2071–2080. PMLR, 2016.

Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel Müller. Verse: Versatile graph
embeddings from similarity measures. In Proceedings of the 2018 world wide web conference, pp.
539–548, 2018.

Frederick Tung and Greg Mori. Similarity-preserving knowledge distillation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2019.

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. Composition-based multi-
relational graph convolutional networks. 2020.

13

Under review as a conference paper at ICLR 2023

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong, and Anshul Kanakia.
Microsoft academic graph: When experts are not enough. Quantitative Science Studies, 2020a.

Xiaobo Wang, Tianyu Fu, Shengcai Liao, Shuo Wang, Zhen Lei, and Tao Mei. Exclusivity-consistency
regularized knowledge distillation for face recognition. In European Conference on Computer
Vision, 2020b.

Zhitao Wang, Yong Zhou, Litao Hong, Yuanhang Zou, and Hanjing Su. Pairwise learning for neural
link prediction. arXiv preprint arXiv:2112.02936, 2021.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
conference on machine learning, pp. 5453–5462. PMLR, 2018.

Bencheng Yan, Chaokun Wang, Gaoyang Guo, and Yunkai Lou. Tinygnn: Learning efficient graph
neural networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2020.

Cheng Yang, Jiawei Liu, and Chuan Shi. Extract the knowledge of graph neural networks and go
beyond it: An effective knowledge distillation framework. In Proceedings of the Web Conference
2021, 2021.

Yiding Yang, Jiayan Qiu, Mingli Song, Dacheng Tao, and Xinchao Wang. Distilling knowledge from
graph convolutional networks. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2020a.

Ze Yang, Linjun Shou, Ming Gong, Wutao Lin, and Daxin Jiang. Model compression with two-stage
multi-teacher knowledge distillation for web question answering system. In Proceedings of the
13th International Conference on Web Search and Data Mining, 2020b.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, 2016.

Haoteng Yin, Muhan Zhang, Yanbang Wang, Jianguo Wang, and Pan Li. Algorithm and system co-
design for efficient subgraph-based graph representation learning. arXiv preprint arXiv:2202.13538,
2022.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 974–983,
2018a.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hier-
archical graph representation learning with differentiable pooling. Advances in neural information
processing systems, 2018b.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generating
realistic graphs with deep auto-regressive models. In International conference on machine learning.
PMLR, 2018.

Seongjun Yun, Seoyoon Kim, Junhyun Lee, Jaewoo Kang, and Hyunwoo J Kim. Neo-gnns: Neigh-
borhood overlap-aware graph neural networks for link prediction. Advances in Neural Information
Processing Systems, 2021.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931, 2019.

Chuxu Zhang, Huaxiu Yao, Chao Huang, Meng Jiang, Zhenhui Li, and Nitesh V Chawla. Few-shot
knowledge graph completion. In Proceedings of the AAAI Conference on Artificial Intelligence,
2020a.

14

Under review as a conference paper at ICLR 2023

Dalong Zhang, Xin Huang, Ziqi Liu, Zhiyang Hu, Xianzheng Song, Zhibang Ge, Zhiqiang Zhang,
Lin Wang, Jun Zhou, Yang Shuang, et al. Agl: a scalable system for industrial-purpose graph
machine learning. arXiv preprint arXiv:2003.02454, 2020b.

Hanlin Zhang, Shuai Lin, Weiyang Liu, Pan Zhou, Jian Tang, Xiaodan Liang, and Eric P Xing.
Iterative graph self-distillation. arXiv preprint arXiv:2010.12609, 2020c.

Muhan Zhang and Yixin Chen. Weisfeiler-lehman neural machine for link prediction. In Proceedings
of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, pp.
575–583, 2017.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in neural
information processing systems, 2018.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In Proceedings of the AAAI conference on artificial intelligence,
2018.

Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A theory of using
graph neural networks for multi-node representation learning. Advances in Neural Information
Processing Systems, 34:9061–9073, 2021a.

Shichang Zhang, Yozen Liu, Yizhou Sun, and Neil Shah. Graph-less neural networks: Teaching old
mlps new tricks via distillation. arXiv preprint arXiv:2110.08727, 2021b.

Wentao Zhang, Xupeng Miao, Yingxia Shao, Jiawei Jiang, Lei Chen, Olivier Ruas, and Bin Cui.
Reliable data distillation on graph convolutional network. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, 2020d.

Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning on graphs: A survey. IEEE Transactions on
Knowledge and Data Engineering, 2020e.

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any gnn
with local structure awareness. arXiv preprint arXiv:2110.03753, 2021a.

Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, and Neil Shah. Data
augmentation for graph neural networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 11015–11023, 2021b.

Tong Zhao, Gang Liu, Daheng Wang, Wenhao Yu, and Meng Jiang. Learning from counterfactual
links for link prediction. In International Conference on Machine Learning, pp. 26911–26926.
PMLR, 2022.

Yiren Zhao, Duo Wang, Daniel Bates, Robert Mullins, Mateja Jamnik, and Pietro Lio. Learned low
precision graph neural networks. arXiv preprint arXiv:2009.09232, 2020.

Wenqing Zheng, Edward W Huang, Nikhil Rao, Sumeet Katariya, Zhangyang Wang, and Karthik Sub-
bian. Cold brew: Distilling graph node representations with incomplete or missing neighborhoods.
arXiv preprint arXiv:2111.04840, 2021.

Hongkuan Zhou, Ajitesh Srivastava, Hanqing Zeng, Rajgopal Kannan, and Viktor Prasanna. Acceler-
ating large scale real-time gnn inference using channel pruning. arXiv preprint arXiv:2105.04528,
2021.

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford
networks: A general graph neural network framework for link prediction. Advances in Neural
Information Processing Systems, 2021.

15

Under review as a conference paper at ICLR 2023

A FURTHER RELATED WORK

In this section, we discuss other work related to LLP.

Graph Neural Networks (GNNs). Many GNN architectures have been proposed in recent years to
model attributed graph data; most architectures follow the message passing (Gilmer et al., 2017; Guo
et al., 2021; Ma et al., 2021; Liu et al., 2021; 2022) paradigm. Different GNN customizations include
degree normalization (Kipf & Welling, 2016a), neighbor sampling and neighbor separation (Hamilton
et al., 2017; Zhao et al., 2021b), self-attention (Veličković et al., 2017), residual connections (Xu et al.,
2018), and more. Alon & Yahav (2020) proposed to use a fully-adjacent layer at the end of GNN to
deal with the bottleneck problem of GNNs. Moreover, researchers also proposed subgraph-based
methods (Bevilacqua et al., 2021; Zhao et al., 2021a), and tensor-based methods (Maron et al., 2019;
Geerts & Reutter, 2022) for more expressive GNNs.

Link Prediction. Link prediction has achieved great attention from the research community, con-
sidering its wide applications. Heuristic methods (Philip et al., 2010) were proposed to make the
link prediction by measuring the link scores based on the structure information, such as the common
neighbors and the shortest path. 2-order (Adamic & Adar, 2003) and high-order (Brin & Page, 2012;
Jeh & Widom, 2002) heuristic methods were proposed to further improve the effectiveness. Link
prediction with GNN is another important direction for link prediction (Yun et al., 2021), which is
based on the learned embeddings. One line of work is the strategy we discussed in Section 2, where
the GNN-based encoder learns node representations and the decoder predicts whether the link exists.
It is worth mentioning that knowledge graph completion follows this strategy to predict not only the
link existence but also the type of the link (Schlichtkrull et al., 2018; Nathani et al., 2019; Vashishth
et al., 2020; Zhang et al., 2020a). These methods mainly use heterogeneous graph neural networks
sensitive to different edge types. Another line of work casts link prediction tasks as classification
problems on the enclosing subgraphs around each link (Zhang & Chen, 2018; Cai & Ji, 2020; Cai
et al., 2021). Although these methods can improve task performance, they are usually extremely
computationally expensive and cannot scale well in practical use-cases (Yin et al., 2022). Similarly,
Zhu et al. (2021) proposed a GNN link prediction paradigm by encoding information of all paths
between two nodes, which is also very expensive. Our work focuses on accelerating the more general
and faster methods discussed in Section 2.

GNN Inference Acceleration. Pruning (Zhou et al., 2021; Chen et al., 2021c) and quantization (Zhao
et al., 2020; Tailor et al., 2020) strategies were proposed for accelerating GNN inference. These
methods do accelerate GNNs, but they rely on graph data for message passing and thus leave much
room for speed improvement. We note that these approaches are complementary to cross-model
distillation, and can be employed together with KD for additional inference time improvements.
Other than the above acceleration methods, Hu et al. (2021) and Zhang et al. (2021b) accelerated
GNNs by distilling them to MLP. These works focus on KD for node classification tasks, whereas we
focus on link prediction tasks. GNNAutoScale (Fey et al., 2021) proposed an effective method to
accelerate the training process of GNNs. It also reduces the inference to a constant factor by directly
using historical embeddings stored offline. However, in this case, all the methods in Figure 2 can
share the same inference time benefits. Moreover, GNNAutoScale is not suitable for the production
setting, where new nodes (without historical embeddings) appear frequently after the training process.
So we did not include it as a baseline in this work.

Knowledge Distillation (KD). Logit-based (Hinton et al., 2015; Furlanello et al., 2018; Zhang et al.,
2021b) and representation-based (Romero et al., 2014; Gou et al., 2021) matching are two common
KD methods, which match final-layer and intermediate-layer predicted logits between the teacher
and the student, respectively. Our work is the first to adapt and evaluate these approaches in the link
prediction setting, to the best of our knowledge.

For representation based KD, several work (Park et al., 2019; Tung & Mori, 2019; Joshi et al., 2021)
proposed relational KD, which corresponds to instance-to-instance KD while preserving metrics
among representations of similar instances. For GNNs, Yang et al. (2020a) used knowledge of the
neighboring nodes to teach the student to better classify the center node. In contrast, our KD strategies
focus on transferring relational knowledge between each pair of nodes from teacher to student. Both
the rank-matching and distribution-matching strategies help the student to better capture the relational
graph topology information and make better link prediction.

16

Under review as a conference paper at ICLR 2023

Table 5: Statistics of all datasets used in the experiments.

Dataset # Nodes # Edges # Features

Cora 2,708 5.278 1,433
Citeseer 3,327 4,552 3,703
Pubmed 19,717 44,324 500
CS 18,333 163,788 6,805
Physics 34,493 495,924 8,415
Computers 13,752 491,722 767
Photos 7,650 238,162 745
OGB-Collab 235,868 1,285,465 128
OGB-Citation2 2,927,963 30,561,187 128

Table 6: Detailed statistics of data splits under production setting.

Nodes Testing Edges
Existing # New # Existing – Existing # Existing – New # New – New

Cora 1,896 812 765 675 142
Citeseer 2,329 998 673 568 124
Pubmed 15,774 3,943 5,648 2,858 358
CS 14,666 3,667 10,482 5,221 675
Physics 27,594 6,899 31,399 16,126 2,067
Computers 11,002 2,750 31,095 16,033 2,043
Photos 6,120 1,530 15,248 7,618 950

RankDistill (Reddi et al., 2021) is designed to transfer ranking knowledge from the teacher to the
student. Different from our work which distill the relational information in a graph context, it distills
ranking in a non-graph context between teacher and student. We adopt different sampling and
matching methods based on our different motivations. Further analysis is shown in Appendix D.9.

KD on GNNs. Existing GNN-based KD work are mostly based on the logit-based KD (Hinton
et al., 2015) to obtain light-weight models (Zhang et al., 2020d; Zheng et al., 2021; Yang et al.,
2021). Yan et al. (2020) proposed to train a student GNN with fewer parameters using KD. Yang et al.
(2021) improved the designed student model, which consists of label propagation and feature-based
prior knowledge, using the pre-trained teacher GNN. Different from the above work, LSP (Yang
et al., 2020a) and G-CRD (Joshi et al., 2021) proposed structure-preserving KD methods, which are
specifically designed for GNN. Both of these work follow the original relational KD to preserve the
metrics among node representations and are applied on node classification tasks.

B ADDITIONAL DATASETS DETAILS

Here we present the details of the datasets used in the experiments. Cora, Citeseer, Pubmed (Yang
et al., 2016) and OGB-Citation2 (Wang et al., 2020a; Mikolov et al., 2013) are all representative
citation network datasets, where the nodes and edges represent papers and citations, respectively.
CS, Physics (Shchur et al., 2018) and OGB-Collab (Wang et al., 2020a) are all collaboration
networks based on MAG, where the nodes represent authors and the edges indicate the collaboration
for the paper. Computers and Photos (Shchur et al., 2018) are two well-known co-purchased
graphs (McAuley et al., 2015), where the nodes represent goods and the edges indicate two items
were bought together. The detailed statistics of these datasets are shown in Table 5.

17

Under review as a conference paper at ICLR 2023

C ADDITIONAL EVALUATION SETTING DETAILS

C.1 TRANSDUCTIVE SETTING

The transductive setting is a standard setting for link prediction (Kipf & Welling, 2016b; Zhang &
Chen, 2017; 2018; Yun et al., 2021; Zhao et al., 2022), where the nodes in training/validation/testing
are all visible in the training graph, but subsets of positive links are masked out for validation and test
sets.

C.2 PRODUCTION SETTING

In this work, we design a new production setting to resemble the real-world link prediction scenario.
This setting mimics pratical link prediction use-cases. For example, user friend recommendation
on social platforms where new users (nodes) and friendships (links) appear frequently. Under the
production setting, the newly occurred nodes and edges that can not be seen during the training stage
would appear in the graph at inference time.

Specifically, following are the detailed procedures of splitting the datasets into the production setting:

• Split all nodes: Given the graph G = (V, E), we randomly sample 10% of nodes from V
as the new nodes VN and remove them from the training graph. We denote the remaining
nodes by VE , where superscripts E stands for Existing and N stands for New. Note that for
Cora and Citeseer, we sample 30% nodes as new nodes because these two datasets are
too small.

• Split all edges: We then split the edges E according to the node splits into three sets:
EE−E , EE−N , and EN−N , denoting the links between existing–existing, existing–new, and
new–new node pairs, respectively.

• Split edges in EE−E: For the existing–existing node pairs, we split it into three sets
following an 80/10/10 splitting ratio: 80% as training edges, 10% as new visible edges for
message passing, and 10% as testing edges. Note that validation set contains only existing
nodes VE as the new nodes are not visible during training.

• Split edges in EE−N and EN−N : We follow the same ratio and split these two sets
following with 90/10 splitting ratio: 90% as newly visible edges (used only for message
passing during testing inference), and 10% as testing edges.

• Message passing edges during training: During training, the GNN model can only utilize
the 80% exising-existing training edges for message passing.

• Message passing edges for inferencing: During inference, the GNN model can conduct
message passing on all exist except the testing ones. Specifically, the training and testing
(total of 90%) sets of EE−E , and the 90% of newly visible message passing edges in EE−N

and EN−N .
• Testing edges: We test all methods on the above-mentioned three separate testing edge sets

(10% of each) sampled from EE−E , EE−N , and EN−N , respectively.

Table 6 shows the detailed statistic of different datasets under this setting.

C.3 COLD-START SETTING

Followed by the production setting, we remove all the new edges appearing newly in the inference
time. Then the new nodes will be the strict cold start nodes with no neighbor information for the
model to predict. The experimental results showed in Section 4.4 are conducted with this setting.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 AUC RESULTS ON TRANSDUCTIVE AND PRODUCTION SETTINGS

Here, we present AUC results on all the non-OGB datasets under the transductive setting in Table 7
and production setting in Table 8. In Table 7, we can observe that our method outperforms both MLP

18

Under review as a conference paper at ICLR 2023

Table 7: Link prediction performance measured by AUC under transductive setting.

GNN MLP LLM LRM LLP ∆DirectKD ∆MLP ∆GNN

Cora 95.03±0.37 94.80±0.44 94.67±0.58 94.05±0.17 95.23±0.49 0.56 0.43 0.20
Citeseer 95.15±0.58 93.11±1.21 94.11±0.21 92.88±0.37 95.32±0.21 1.21 2.21 0.17
Pubmed 93.84±0.31 97.89±0.07 97.82±0.06 97.96±0.02 97.90±0.09 -0.06 0.01 4.06
CS 97.43±0.23 97.61±0.52 98.05±0.14 98.33±0.05 98.06±0.04 -0.27 0.45 0.63
Physics 98.80±0.02 98.71±0.05 98.36±0.07 98.96±0.02 99.10±0.02 0.14 0.39 0.30
Computers 98.76±0.03 98.46±0.08 98.11±0.14 98.66±0.06 98.84±0.09 0.18 0.38 0.08
Photos 98.98±0.02 98.71±0.08 98.51±0.06 98.95±0.04 99.03±0.06 0.08 0.32 0.05

N/A N/A

Figure 4: Link prediction performance measured by Hits@20 of LLLP_R (left) and LLLP_D (right) on
Pubmed with different p and q.

and the teacher GNN on all the datasets under the transductive setting. For the production setting, our
method performs better than the teacher GNN on 4/7 datasets, as shown in Table 8.

D.2 SENSITIVITY ANALYSIS OF p AND q FOR LLLP_R AND LLLP_D

To analyze the influence of the context nodes on LLLP_R and LLLP_D, we plot two heat maps to
show their individual performance on Pubmed under the transductive setting, as shown in Figure 4.
These two figures show different patterns with the context nodes. LLLP_D (left figure) shows that the
performance becomes better with more nearby nodes (p) and a higher random sampled rate(q/p). And
random sampling rate can lead to a much better performance than nearby nodes. However, in LLLP_R,
we find that the results on the diagonal perform consistently better than those around, which means
the random sampling rate should match the nearby nodes to work well. Besides, we can also observe
that LLLP_R is more sensitive with a smaller number of context nodes than LLLP_D. LLLP_R matches
the performance by the relative ranking of the context nodes w.r.t. the anchor nodes. However, it
becomes difficult for LLLP_R to learn well when there are many context nodes. In contrast, LLLP_D
matches the distribution, and more context nodes provides a clearer picture about the link-related
structure around the anchor node.

D.3 RESULTS WITH DIFFERENT TEACHERS

In our experiments, we use SAGE as the teacher GNN in both transductive and production settings.
We further test LLP’s performance with other GNNs, such as GCN, GAT, and APPNP. In Figure 5,
we find that our model always outperforms MLP with different GNN teachers. However, absolute
performance is closely related to the teacher.

D.4 IMPORTANCE ANALYSIS OF LLLP_R , LLLP_D AND Lsup FOR LLP

We conduct the ablation study on all non-OGB datasets to analyze the contributions of each compo-
nent in Equation (7). In each ablation setting, we remove one component independently, as shown
in Figure 6. We can observe that the performance drops when any of the three components (i.e.,

19

Under review as a conference paper at ICLR 2023

Table 8: Link prediction performance measured by AUC under production setting.

GNN MLP LLM LRM LLP ∆DirectKD ∆MLP ∆GNN

Overall

Cora 72.59±1.63 73.41±2.04 70.67±1.62 64.62±0.51 78.22±1.14 7.55 4.81 5.63
Citeseer 69.15±1.82 77.36±3.38 75.04±3.20 67.67±0.59 80.13±0.98 5.09 2.77 10.98
Pubmed 90.45±0.45 96.07±0.13 96.13±0.26 96.74±0.05 94.30±0.34 -2.44 -1.77 3.85
CS 97.08±0.16 95.96±1.19 96.59±0.08 96.76±0.03 96.87±0.03 0.11 0.91 -0.21
Physics 98.60±0.02 97.70±0.04 97.46±0.08 98.00±0.01 98.75±0.11 0.75 1.05 0.15
Computers 98.67±0.05 97.85±0.04 97.59±0.07 97.95±0.03 97.89±0.04 -0.06 0.04 -0.78
Photos 98.78±0.14 97.97±0.08 97.85±0.06 98.18±0.04 98.05±0.03 -0.13 0.08 -0.73

Existing – Existing

Cora 70.80±2.14 74.42±2.70 70.69±2.00 64.82±0.75 78.43±1.44 7.74 4.01 7.63
Citeseer 67.34±1.81 76.83±3.41 73.79±3.12 68.00±2.03 78.36±1.41 4.57 1.53 11.02
Pubmed 90.44±0.46 96.69±0.13 96.72±0.21 97.24±0.05 95.17±0.33 -2.07 -1.52 4.73
CS 97.01±0.16 96.08±1.11 96.70±0.08 96.91±0.03 97.00±0.03 0.09 0.92 -0.01
Physics 98.60±0.02 97.96±0.05 97.65±0.09 98.20±0.02 98.76±0.16 0.56 0.80 0.16
Computers 98.70±0.05 98.27±0.05 97.95±0.09 98.41±0.03 98.51±0.04 0.10 0.24 -0.19
Photos 98.80±0.14 98.33±0.09 98.20±0.07 98.57±0.07 98.61±0.04 0.04 0.28 -0.19

Existing – New

Cora 72.61±1.50 72.06±1.55 70.18±1.41 64.07±0.58 77.65±1.12 7.47 5.59 5.04
Citeseer 69.90±1.88 77.58±3.48 76.05±3.51 67.13±1.74 81.23±0.71 5.18 3.65 11.33
Pubmed 90.82±0.38 93.67±0.23 93.82±0.54 94.83±0.14 90.97±0.74 -3.86 -2.70 0.15
CS 97.31±0.20 95.46±1.53 96.18±0.12 96.18±0.08 96.31±0.10 0.13 0.85 -1.00
Physics 98.57±0.04 96.64±0.08 96.66±0.09 97.17±0.04 95.72±0.27 -1.45 -0.92 -2.85
Computers 98.60±0.05 96.23±0.07 96.22±0.07 96.19±0.08 95.42±0.08 -0.80 -0.81 -3.18
Photos 98.69±0.14 96.53±0.03 96.45±0.09 96.60±0.08 95.76±0.16 -0.84 -0.77 -2.93

New – New

Cora 82.10±1.57 74.46±1.40 72.85±1.92 66.12±1.39 79.85±1.30 7.00 5.39 -2.25
Citeseer 75.48±1.67 79.23±3.08 77.13±3.24 68.36±2.67 84.68±0.89 7.55 5.45 9.20
Pubmed 84.30±0.90 87.97±1.02 88.72±1.19 89.95±0.50 83.54±2.57 -6.41 -4.43 -0.76
CS 97.99±0.23 95.03±1.34 95.39±0.44 95.22±0.22 95.97±0.34 0.58 0.94 -2.02
Physics 98.84±0.12 95.72±0.30 96.43±0.20 96.80±0.24 94.78±0.34 -2.02 -0.94 -4.06
Computers 98.07±0.10 93.22±0.16 93.30±0.32 92.96±0.39 92.09±0.73 -1.21 -1.13 -5.98
Photos 98.35±0.16 94.21±0.28 94.69±0.09 93.79±0.43 92.09±0.59 -2.60 -2.12 -6.26

20

Under review as a conference paper at ICLR 2023

42.9

52

54.9

47.9 46.8

52.1

56.8

47.7

44.5

35

40

45

50

55

60

MLP SAGE GCN GAT APPNP
H

its
@

20
Model Architectures

MLP GNN LLP

Figure 5: Link prediction performance measured by Hits@20 on Pubmed under the transductive
setting with different GNN teachers (SAGE, GAT, GCN, and APPNP).

55.99 56.09 57.07
59.12

40.65 41.61

37.85

42.58

35

40

45

50

55

60

65

w/o LLP_D w/o LLP_R w/o Sup LLP

H
its

@
20

Transductive Production

Figure 6: The averaged results of Hits@20 across all the datasets by dropping each component
in Equation (7).

LLLP_R, LLLP_D, and Lsup) is removed, which shows the importance of each component. It also
demonstrates that LLLP_R and LLLP_D indeed provide complementary link prediction-related infor-
mation for the student. Other than these two components, we find that the true link label information
also contributes, especially under the production setting. In the production setting, as the neighbor
information is sparse or absent, the limited true label information becomes critically important.

D.5 NECESSITY ANALYSIS OF δ IN LLLP_R

To analyze the necessity of δ in LLLP_R, we conduct the experiments on all non-OGB datasets
to compare the results using LLLP_R with and without δ. The results are shown in Table 9. We
observe that the results of LLLP_R without δ always approach to zero after several training epochs. It
demonstrates the effectiveness of δ in avoiding noise and transferring useful knowledge to the student.

D.6 COMPARISON OF TASK PERFORMANCE AND INFERENCE TIME USING DIFFERENT
INFERENCE ACCELERATION METHODS

In Table 10, we compare both the task performance and inference time using different acceleration
methods on the two large-scale OGB datasets. From this table, we can observe that LLP shares

Table 9: The performance measured by Hits@20 of LLLP_R with and without δ.

Method Cora Citeseer Pubmed CS Physics Computers Photos

LLLP_R 76.52 75.23 53.30 68.30 60.28 25.98 33.33
LLLP_R w/o δ 0.00 0.00 0.00 0.00 0.00 0.00 0.00

21

Under review as a conference paper at ICLR 2023

Table 10: Performance and inference time comparison of LLP with GNN inference acceleration
methods. The performance is the averaged test result over 10 runs.

Dataset Metric SAGE QSAGE PSAGE Neighbor
Sample MLP LLP

Hits@50 48.69 45.36 48.34 31.50 36.95 45.27OGB-Collab Time (ms) 134.3 128.3 128.7 28.6 1.9 1.9

MRR 82.56 82.53 82.04 79.82 40.63 53.20OGB-Citation2 Time (ms) 2243.7 2206.4 2209.1 146.0 2.9 2.9

the same inference time with MLP, which is 15.12× and 50.51× faster than the most efficient
acceleration method Neighbor Sample on OGB-Collab and OGB-Citation2, respectively. Our
method outperforms MLP with large margins on both datasets. Although Neighbor Sample achieved
certain speedup comparing to GNNs, and sometimes better prediction performance than LLP, it is
still less competitive than LLP in production applications given the huge speed difference, which is
critical for deployed models that require low latency.

Namely, our work considers KD strategies as a viable option to distill information from GNNs to
MLPs owing to the large practical advantages that MLPs enjoy; these advantages (namely, latency)
make them a leading choice for production systems compared to GNNs (Covington et al., 2016;
Gholami et al., 2021; Zhang et al., 2021b), because GNNs suffer neighborhood explosion and data
dependency downsides. Since violating tight latency constraints may not be feasible in production
applications (e.g. "every 100ms of latency cost ... 1% in sales" 2, or "a 100-millisecond delay
in website load time can hurt conversion rates by 7 percent" 3), we may not be able to enjoy the
strong performance of a GNN in such a setting (despite knowing it may perform better). With this
perspective (that we must deploy a fast MLP model and cannot tolerate a slow GNN model), we can
observe that our work proposes an effective KD strategy to significantly boost MLP performance
with additional knowledge distilled from GNNs, offering significant advantages. Since in practice,
it is common to operate under such constraints, the consistent improvements we show over MLP
in all datasets (Table 1 and Table 2) has strong considerations for production settings which are
MLP-constrained regardless of the performance gap with respect to GNN. That said, we hope that
future work can ideally bridge the gap between LLP and GNN results in all settings.

D.7 ANALYSIS OF THE RESULTS ON OGB-Citation2

From Table 2, we can observe that LLP perform not well on OGB-Citation2 compared with other
datasets. To understand the the reason for worse performance (size, or peculiarity of the dataset), we
reduced the size of the original dataset by sampling a smaller graph from the original graph, and
comparing the performance of the original and downsampled graphs. We conduct this experiments on
two larger-scale datasets, OGB-Collab and OGB-Citation2. Based on the conclusion of Leskovec
& Faloutsos (2006), that sampling based on random walks best-preserving certain properties of the
original graph, we adopt this strategy to generate the downsampled graphs. For OGB-Collab, we
sampled a graph with the similar size to Computers. For OGB-Citation2, we sampled a graph
with the similar size like OGB-Collab. For these 4 datasets (original and downsampled versions
of OGB-Collab and OGB-Citation2), we run GNN, MLP and LLP and report results in Table 11.
This table yields 3 observations:

• The performance gap between GNN and LLP does not change significantly from the original
graph to the downsampled graph on both datasets.

• The performance gap between GNN and LLP on OGB-Citation2 is always much larger
than on OGB-Collab: 29.36 vs. 3.42 on the original graphs, and 10.76 vs. 2.07 on the
downsampled graphs.

2https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales
3https://www.prnewswire.com/news-releases/akamai-online-retail-performance-report-milliseconds-are-

critical-300441498.html

22

Under review as a conference paper at ICLR 2023

Table 11: The statistics of the original and sampled graph of OGB-Collab and OGB-Citation2 and
the experimental results on these graphs.

OGB-Collab | OGB-Citation2

Original Sampled Original Sampled

#Nodes 235,868 23,891 2,927,963 122,440

#Edges 1,285,465 188,640 30,561,187 1,366,101

GNN 48.69 83.31 82.56 39.99

MLP 36.95 75.70 40.63 24.34

LLP 45.27 81.24 53.20 29.23

Table 12: The performance measured by Hits@20 of LLP and GNN+FA (Alon & Yahav, 2020) on
the cold-start nodes.

Method Cora Citeseer Pubmed CS Physics Computers Photos

GNN 6.39 11.04 4.63 9.46 5.46 1.53 0.87

GNN+FA 2.03 2.89 OOM OOM OOM OOM OOM

LLP 22.01 32.09 37.68 46.83 39.37 14.64 23.79

• Although the downsampled graph from OGB-Citation2 is a similar size to the OGB-Collab
original graph, the performance gap between GNN and LLP on the downsampled graph
based on OGB-Citation2 is still much larger than the gap on OGB-Collab original graph.

Summarily, point 1 demonstrates that LLP ’s performance is not significantly influenced by the size
of the datasets. Both point 2 and 3 indicate that LLP ’s worse performance on OGB-Citation2 is
due to a peculiarity of this particular dataset, rather than its size.

D.8 FURTHER COMPARISON RESULTS ON COLD START NODES.

We further compare LLP with another related work (Alon & Yahav, 2020), which does not only rely
on the connection relationship in the graph either. This paper identifies a bottleneck of graph neural
networks, and proposes to modify the last layer to be a fully-adjacent layer (FA) as a simple strategy
to circumvent the bottleneck problem. To evaluate its performance on cold-start setting, we modify
the last layer of GNNs with a fully-adjacent layer following it. The results compared with LLP are
shown in Table 12. We observe that this method is not suitable for large datasets – it results in a
dense N adjacency matrix and results in each node receiving messages from N other nodes (which
is problematic when N is large). Most datasets we utilized in our paper with a fully-adjacent layer
can not fit into an NVIDIA A100 GPU (40GB memory). The performance of GNN+FA on Cora
and Citeseer is even worse than vanilla GNNs. The potential reason is link prediction tasks do not
heavily depend on long-range information, where the best results were found using only 2-3 layers -
we observe that Alon & Yahav (2020) focuses evaluation on smaller datasets which are sensitive to
long-range dependencies, which seems to be a mismatch with our intended setting.

D.9 COMPARISON BETWEEN LLP AND RANKDISTIL (REDDI ET AL., 2021)

RankDistil (Reddi et al., 2021) is designed to transfer ranking knowledge from the teacher to student,
where the ranking is their ranking task training signal generated by the teacher. In LLP, we consider
a link prediction task on graph data, which is standardly approached as a binary classification task
(predicting link existence vs non-existence), and not a ranking one. We proposed our KD framework
to distill relational graph information from the teacher to the student. Different from RankDistil which
distills the information in a non-graph context, we distill in a graph context to keep the graph structure
information. The difference in motivation across the methods leads to different choices in sampling
and matching. For sampling method, our method samples nodes which are utilized to teach the

23

Under review as a conference paper at ICLR 2023

Table 13: The performance measured by Hits@20 of LLP and RandDistil (Reddi et al., 2021).

Cora Citeseer Pubmed CS Physics Computers Photos

RankDistil 74.29 70.44 39.28 44.55 49.11 15.64 28.75

LLP 78.82 77.32 57.33 68.62 72.01 35.32 49.32

student based on the graph structure unlike RankDistil, which is very important for the link prediction
on the graph data; RankDistil thereby struggles in effectively the student about this graph structure.
Moreover, RankDistil samples nodes used to teach students based on the teacher’s result, which
differs from our method which samples independently of the teacher. The choice made by RankDistil
here can potentially make it even harder for the student to learn graph structure in the case of teacher
mis-predictions (since this also influences the sampling). For matching method, our method matches
the order and the distribution of the sampled node pairs between teacher and student, which we show
are both useful and complementary (Table 4) in preserving structure information distillation between
the two. Different from our work, RankDistil keeps the order for “top-K” items and penalize high
scores by the student for “bottom-K” items (since there are too many candidate items). However,
compared with keeping the order, penalizing the large scores is a “weaker” alignment method, which
may be not beneficial for preserving graph structure information.

In addition to our discussion of conceptual differences and potential implications above, we also
conduct some experiments to evaluate the impact of these differences in our link prediction task, by
comparing the performance of LLP to RankDistil. We applied RankDistil on our task, where we take
all the other nodes existing in the graph as the candidate “items” for each anchor node (as they would
be considered in the RankDistil setup), and use RankDistil’s matching methods to align the ranking
results generated by teacher and student. Due to the lack of guideline for the parameter settings for
RankDistil, we conduct the hyperparameter search of the number of top items from [5, 10, 20, 50] and
the number of bottom items from [10, 50, 100, 200]. The results are shown in Table 13. We observe
that LLP consistently outperforms RankDistil on all the datasets. We believe this demonstrates that
sampling the context nodes w.r.t the anchor node based on the graph topology structure is more
effective in preserving relevant graph structure and link prediction-related knowledge than using all
the other nodes in the graph to sample from a teacher-based ranking. Moreover, different matching
methods we propose also help distill more task-relevant information than RankDistil in our setting.

E IMPLEMENTATION DETAILS

Transductive Setting. Inspired by GLNN (Zhang et al., 2021b), we enlarge the size of the student
MLP in our experiment. As suggested by GLNN, this can significantly shorten the gap between
the student MLP and the teacher GNN without greatly reducing the timing performance. We set
the hidden dimension of student MLP two times larger than the teacher for Physics, Computers,
and Photos, and set it four times larger than the teacher for OGB-Collab and OGB-Citation2. We
examine the timing performance of the enlarged students by repeating the inference task ten times.
The inference time of LLP increases from 1.9 to 7.1 seconds on OGB-Collab and from 2.9 to 15.2
seconds on OGB-Citation2, but it is still 18.9× and 147× faster than SAGE, respectively.

Model Hyper-parameters. We take 2-layer SAGE (hidden size is set to 256) as the teacher for all the
non-OGB datasets. For OGB-Collab and OGB-Citation2, we follow their official implementation
to set the layer size as 3. We take 3-layer MLP as the student on these two datasets. For LLP, we
conduct the hyperparameter search of the weights for Lsup, LLLP_R and LLLP_D from [0.001, 0.01,
0.1, 1, 10, 100, 1000], the number of the nearby nodes p from [1,2,3,4,5], the random sampling rate
q/p from [1, 3, 5, 10, 15], the learning rate from [0.001, 0.005] and the dropout rate from [0, 0.5].

Implementation and Hardware Details. Our code is implemented based on PyTorch Geometric (Fey
& Lenssen, 2019). We conduct our experiments with NVIDIA V100 GPU(16GB memory). For
OGB-Citation2, we run the experiments on NVIDIA A100 GPU with 40GB memory.

24

	Introduction
	Related Work and Preliminaries
	Cross-Model Knowledge Distillation for Link Prediction
	Direct Methods
	Link Prediction with Relational Distillation
	Proposed Framework: Linkless Link Prediction

	Experiments
	Experimental Setup
	Link Prediction Results
	Inference Acceleration Comparison
	Link Prediction Results on Cold Start Nodes
	Ablation Study

	Conclusion
	Further Related Work
	Additional Datasets Details
	Additional Evaluation Setting Details
	Transductive Setting
	Production Setting
	Cold-start Setting

	Additional Experimental Results
	AUC results on Transductive and Production Settings
	Sensitivity Analysis of p and q for LLLP _R and LLLP _D
	Results with Different Teachers
	Importance Analysis of LLLP _R, LLLP _D and Lsup for LLP
	Necessity Analysis of in LLLP _R
	Comparison of task performance and inference time using different inference acceleration methods
	Analysis of the results on OGB-Citation2
	Further comparison results on cold start nodes.
	Comparison between LLP and RankDistil reddi2021rankdistil

	Implementation Details

