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Abstract

In this paper, we analyze the sample and communication complexity of the feder-
ated linear stochastic approximation (FedLSA) algorithm. We explicitly quantify
the effects of local training with agent heterogeneity. We show that the communi-
cation complexity of FedLSA scales polynomially with the inverse of the desired
accuracy ϵ. To overcome this, we propose SCAFFLSA, a new variant of FedLSA
that uses control variates to correct for client drift, and establish its sample and
communication complexities. We show that for statistically heterogeneous agents,
its communication complexity scales logarithmically with the desired accuracy,
similar to Scaffnew [37]. An important finding is that, compared to the existing
results for Scaffnew, the sample complexity scales with the inverse of the number
of agents, a property referred to as linear speed-up. Achieving this linear speed-up
requires completely new theoretical arguments. We apply the proposed method
to federated temporal difference learning with linear function approximation and
analyze the corresponding complexity improvements.

1 Introduction

Heterogeneity has a major impact on communication complexity in federated learning (FL) [28, 36].
In FL, multiple agents use different local oracles to update a global model together. A central server
then performs a consensus step to incrementally update the global model. Since communication with
the server is costly, reducing the frequency of the consensus steps is a central challenge. At the same
time, limiting communications induces client drift when agents are heterogeneous, biasing them
towards their local solutions. This issue has mostly been discussed for FL with stochastic gradient
methods [23, 51]. In this paper, we investigate the impact of heterogeneity in the field of federated
linear stochastic approximation (federated LSA). The goal is to solve a system of linear equations
where (i) the system matrix and the corresponding objective are only accessible via stochastic oracles,
and (ii) these oracles are distributed over an ensemble of heterogeneous agents. This problem can be
solved with the FedLSA method, which performs LSA locally with periodic consensus steps. This
approach suffers from two major drawbacks: heterogeneity bias, and high variance of local oracles.

A popular means of overcoming heterogeneity problems is the method of control variables, which
goes back to the line of research initiated by [23]. However, existing results on the complexity of
these methods tend to neglect the linear decrease of the mean squared error (MSE) of the algorithm
with the number of agents N [37], or they require a lot of communication [23]. In this paper, we
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Table 1: Communication and sample complexity for finding a solution with MSE lower than ϵ2 for
FedLSA, Scaffnew, and SCAFFLSA with i.i.d. samples (see Cor. 4.3 for results with Markovian
samples). Our analysis is the first to show that FedLSA exhibits linear speed-up, as well as its variant
that reduces bias using control variates.

Algorithm Communication T Local updates H Sample complexity TH

FedLSA [12] O
(

N2

a2ϵ2 log
1
ϵ

)
1 O

(
N2

a2ϵ2 log
1
ϵ

)
FedLSA (Cor. 4.3) O

(
1

a2ϵ log
1
ϵ

)
O
(

1
Nϵ

)
O
(

1
Na2ϵ2 log

1
ϵ

)
Scaffnew (Cor. F.3) O

(
1
aϵ log

1
ϵ

)
O
(

1
aϵ

)
O
(

1
a2ϵ2 log

1
ϵ

)
SCAFFLSA (Cor. 5.2) O

(
1
a2 log

1
ϵ

)
O
(

1
Nϵ2

)
O
(

1
Na2ϵ2 log

1
ϵ

)
show that it is possible to reduce communication complexity using control variates while preserving
the linear speed-up in terms of sample complexity. Our contributions are the following:

• We provide the sample and communication complexity of the FedLSA algorithm, inspired
by the work of [51]. Our analysis highlights the relationship between the MSE of the
FedLSA method and three key factors: the number of local updates, the step size, and the
number of agents. We provide an exact analytical formulation of the algorithm’s bias, which
is confirmed in our numerical study. We also give results under Markovian noise sampling.

• We propose SCAFFLSA, a method that provably reduces communication while maintaining
linear speed-up in the number of agents. This method uses control variates to allow for
extended local training. We establish finite sample and communication complexity for
SCAFFLSA. Our study is based on a new analysis technique, that carefully tracks the
fluctuations of the parameters and ccommunicationsontrol variates. This allows to prove
that SCAFFLSA simultanously maintains linear speedup and reduced communication.
To our knowledge, this is the first time that these two phenomenons are proven to occur
simultaneously in FL.

• We apply both these methods to TD learning with linear function approximation, where
heterogeneous agents collaboratively estimate the value function of a common policy.

We provide a synthetic overview of this paper’s theoretical results in Table 1 in the general federated
LSA setting, and we instantiate these results for federated TD learning in Table 2 (Appendix E). We
start by discussing related work in Section 2. We then introduce federated LSA in Section 3, and
analyze it in Section 4. In Section 5 we introduce SCAFFLSA, a novel strategy to mitigate the bias.
Finally, we illustrate our results numerically in Section 6. Since an important application of LSA
is TD learning [47] with linear function approximation, we instantiate the results of Section 3-5 for
federated TD learning.

Notations. For matrix A we denote by ∥A∥ its operator norm. Setting N for the number of agents,
we use the notation Ec[ac] = N−1

∑N
c=1 ac for the average over different clients. For the matrix

A = A⊤ ⪰ 0, A ∈ Rd×d and x ∈ Rd we define the corresponding norm ∥x∥A =
√
x⊤Ax. For

sequences an and bn, we write an ≲ bn if there exists a constant c > 0 such that an ≤ cbn for n ≥ 0.

2 Related Work

Federated Learning. With few exceptions (see e.g. [12]), most of the FL literature is devoted
to federated stochastic gradient (SG) methods. A strong focus has been placed on the Federated
Averaging (FedAvg) algorithm [36], which aims to reduce communication through local training,
resulting in local drift when agents are heterogeneous [53]. Sample and communication complexity
of FedAvg were investigated under a variety of conditions covering both homogeneous [31, 20] and
heterogeneous agents [25, 27]. Different ways of measuring heterogeneity for FedAvg have then
been proposed [51, 41]. In [44] it was also shown that FedAvg yields linear speedup in the number
of agents when gradients are stochastic, a phenomenon that we prove is still present in FedLSA.

In order to correct the client drift of FedAvg, [23] proposed Scaffold, a method that tames hetero-
geneity using control variates. [17, 38] prove that Scaffold retrieves the rate of convergence of the
gradient descent independently of heterogeneity, although without benefit from local training. It has
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Algorithm 1 FedLSA
Input: η > 0, θ0 ∈ Rd, T,N,H > 0
for t = 0 to T − 1 do

Initialize θt,0 = θt
for c = 1 to N do

for h = 1 to H do
Receive Zc

t,h and perform local update: θt,h = θct,h−1 − η(Ac(Zc
t,h)θ

c
t,h−1 − bc(Zc

t,h))

Aggregate local updates θt+1 = 1
N

∑N
c=1 θ

c
t,H (1)

been shown in [37] (with the analysis of ProxSkip, which generalizes Scaffold) that such methods
accelerate training. However, unlike Scaffold, the analysis of [37] loses the linear speedup in the
number of agents. Several other methods with accelerated rates have been proposed [35, 5, 6, 18, 21],
albeit all of them lose the linear speedup. Contrary to these papers, we show that our approach to
FedLSA with control variates preserves both the acceleration and the linear speedup.

Federated TD learning. Temporal difference (TD) learning has a long history in policy evaluation
[47, 9], with the asymptotic analysis under linear function approximation (LFA) setting performed in
[49, 48]. Several non-asymptotic MSE analyses have been carried out in [4, 8, 42, 32, 45]. Much
attention has been paid to federated reinforcement learning [33, 43, 52] and federated TD learning
with LFA. [26, 7, 34] provides an analysis under the strong homogeneity assumption. Federated TD
was also investigated with heterogeneous agents, first without local training [12], then with local
training but without linear acceleration [11, 22]. Recently, [50] proposed an analysis of federated TD
with heterogeneous agents, local training, and linear speed-up in number of agents. However, [50]
do not mitigate the local drift effects, and their conclusions are valid only in the low-heterogeneity
setting. In high heterogeneity settings, their analysis exhibits a large bias. Additionally, their analysis
requires the server to project aggregated iterates to a ball of unknown radius. In contrast, our analysis
shows that FedLSA converges to the true solution without bias even without such projection.

3 Federated Linear Stochastic Approximation and TD learning

3.1 Federated Linear Stochastic Approximation

In federated linear stochastic approximation, N agents collaboratively solve a system linear equation
system with the following finite sum structure

Āθ⋆ = b̄ , where Ā = 1
N

∑N
c=1 Ā

c , b̄ = 1
N

∑N
c=1 b̄

c ,

where for c ∈ [N ], Āc ∈ Rd×d, b̄c ∈ Rd. We assume the solution θ⋆ to be unique, and that each
local system Ācθc⋆ = b̄c also has a unique solution θc⋆. The values of Āc’s and b̄c’s can be different,
representing the different realities of the agents. In federated LSA, neither matrices Āc nor vectors b̄c

are observed directly. Instead, each agent c ∈ [N ] has access to its own observation sequence (Zc
k)k∈N,

that are independent from one agent to another. Agent c obtains estimates {(Ac(Zc
k),b

c(Zc
k))}k∈N

of Āc and b̄c, where Ac : Z → Rd×d and bc : Z → Rd are two measurable functions. Naturally,
we define the error of estimation of Āc and b̄c as b̃c(z) = bc(z)− b̄c, Ãc(z) = Ac(z)− Āc. This
allows to measure the noise at local and global solutions as

εc(z) = Ãc(z)θc⋆ − b̃c(z) , and ωc(z) = Ãc(z)θ⋆ − b̃c(z) , (2)

together with the associated covariances,

Σc
Ã
=

∫
Z

Ãc(z)Ãc(z)⊤dπc(z) , Σ
c
ε=

∫
Z

εc(z)εc(z)⊤dπc(z) , Σ
c
ω=

∫
Z

ωc(z)ωc(z)⊤dπc(z) , (3)

that are finite whenever one of the following assumptions on the {Zc
t,h}t,h≥0 hold.

A1. For each agent c, (Zc
k)k∈N are i.i.d. random variables with values in (Z,Z) and distribution πc

satisfying Eπc
[Ac(Zc

k)] = Āc and Eπc
[b(Zc

k)] = b̄c, and we define CA = supc ∥Āc∥.
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A2. For each c ∈ [N ], (Zc
k)k∈N is a Markov chain with values in (Z,Z), with Markov kernel Pc.

The kernel Pc admits a unique invariant distribution πc, Zc
0 ∼ πc, and Pc is uniformly geometrically

ergodic, that is, there exist τmix(c) ∈ N, such that for any k ∈ N,

sup
z,z′∈Z

(1/2)∥Pk
c (·|z)− Pk

c (·|z′)∥TV ≤ (1/4)⌊k/τmix(c)⌋ ,

and for c ∈ [N ], we have Eπc [A
c(Zc

1)] = Āc and Eπc [b(Z
c
1)] = b̄c, and we define

∥ε∥∞ = max
c∈[N ]

sup
z∈Z

∥εc(z)∥ <∞ , CA = max
c∈[N ]

sup
z∈Z

∥Ac(z)∥ <∞ .

Moreover, each of the matrices −Āc is Hurwitz.

In A2, random matrices Ac(z) and noise variables εc(z) are almost surely bounded. This is necessary
for working with the uniformly geometrically ergodic Markov kernels Pc. For simplicity, we state
most of our results using A1, which is classical in finite-time studies of LSA [46, 14]. Nonetheless,
we show that our analysis of FedLSA can be extended to the Markovian setting under A2.

In a federated environment, agents can only communicate via a central server, which is generally
costly. Hence, in FedLSA, agents’ local updates are only aggregated after a given time. During the
round t ≥ 0, the agents start with a shared value θt and perform H > 0 local updates, for h = 1 to
H , given by the recurrence

θct,h = θct,h−1 − η(Ac(Zc
t,h)θ

c
t,h−1 − bc(Zc

t,h)) , (4)

with θct,0 = θt, and where we use the alias Zc
t,h = ZHt+h to simplify notations. Agents then send

θt,H to the server, that aggregates them as θt = N−1
∑N

c=1 θ
c
t−1,H and sends it back to all agents.

We summarize this procedure in Algorithm 1. Our next assumption, which holds whenever Āc is
Hurwitz [19, 39, 15], ensures the stability of the local updates.

A3. There exist a > 0, η∞ > 0, such that η∞a ≤ 1/2, and for η ∈ (0; η∞), c ∈ [N ], u ∈ Rd, it
holds for Zc

0 ∼ πc, that E1/2
[
∥(I− ηAc(Zc

0))u∥2
]
≤ (1− ηa)∥u∥.

3.2 Federated Temporal Difference Learning

A major application of FedLSA is federated TD learning with linear function approximation.
Consider N Markov Decision Processes {(S,A,Pc

MDP, r
c, γ)}c∈[N ] with shared state space S , action

space A, and discounting factor γ ∈ (0, 1). Each agent c ∈ [N ] has its own transition kernel
Pc

MDP, where Pc
MDP(·|s, a) specifies the transition probability from state s upon taking action a for

this specific agent, as well as its own reward function rc : S × A → [0, 1], that we assume to be
deterministic for simplicity. Agents’ heterogeneity lies in the different transition kernels and reward
functions, that are specific to each agent.

In federated TD learning, all agents use the same shared policy π, and aim to construct a single shared
function, that simultaneously approximates all value functions, defined as, for s ∈ S and c ∈ [N ],

V c,π(s) = E
[∑∞

k=0
γkrc(Sc

k, A
c
k)
]
, with Sc

0 = s,Ac
k ∼ π(·|Sc

k), and Sc
k+1 ∼ Pc

MDP(·|Sc
k, A

c
k) .

In the following, we aim to approximate V c,π(s) as a linear combination of features built using
a mapping φ : S → Rd. Formally, we look for θ ∈ Rd such that the function Vθ(s) = φ⊤(s)θ
properly estimate the true value. For c ∈ [N ], we denote µc the invariant distribution over S induced
by the policy π and transition kernel Pc

MDP of agent c. Our goal is to find a parameter θc⋆ which is
defined as a unique solution to the projected Bellman equation, see [49], which defines the best linear
approximation of V c,π. This problem can be cast as a federated LSA problem [42, 50] by viewing
the local optimum parameter θc⋆ as the solution of the system Ācθc⋆ = b̄c , where

Āc = Es∼µc,s′∼Pπ,c(·|s)[ϕ(s){ϕ(s)−γϕ(s′)}⊤] , and b̄c = Es∼µc,a∼π(·|s)[ϕ(s)r
c(s, a)] . (5)

The global optimal parameter is then defined as the solution θ⋆ of the averaged system
( 1
N

∑N
c=1 Ā

c)θ⋆ = 1
N

∑N
c=1 b̄

c. As it is the case for federated LSA, this parameter may give
a better overall estimation of the value function. Indeed, the distribution µc of some agents may be
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strongly biased towards some states, whereas obtaining an estimation that is more balanced across all
states may be more relevant.

In practice, when computing value functions, the tuples {(Sc
k, A

c
k, S

c
k+1)}k∈N are sampled along one

of the two following rules.
TD 1. (Sc

k, A
c
k, S

c
k+1) are generated i.i.d.with Sc

k ∼ µc, Ac
k ∼ π(·|Sc

k), S
c
k+1 ∼ Pc

MDP(·|Sc
k, A

c
k) .

TD 2. (Sc
k, A

c
k, S

c
k+1) are generated sequentially with Ac

k ∼ π(·|Sc
k), S

c
k+1 ∼ Pc

MDP(·|Sc
k, A

c
k) .

The generative model assumption TD 1 is common in TD learning [8, 30, 42, 45]. It is possible to
generalize all our results to the more general Assumption TD 2, sampling over a single trajectory and
leveraging the Markovian noise dynamics. This would have a similar impact on our results on TD(0)
as it has on the ones we will present for general FedLSA in Section 4. In our analysis, we require
the following assumption on the feature design matrix Σc

φ = Eµc [φ(Sc
0)φ(S

c
0)

⊤] ∈ Rd×d.
TD 3. Matrices Σc

φ are non-degenerate with the minimal eigenvalue ν = minc∈[N ] λmin(Σ
c
φ) > 0.

Moreover, the feature mapping φ(·) satisfies sups∈S ∥φ(s)∥ ≤ 1.

This assumption ensures the uniqueness of the optimal parameter θc⋆. Under TD 1 and TD 3 we check
the LSA assumptions A1 and A3, and the following holds.
Claim 3.1. Assume TD 1 and TD 3. Then the sequence of TD(0) updates satisfies A1 and A3 with

CA = 1 + γ , ∥Σc
Ã
∥ ≤ 2(1 + γ)2 , Tr(Σc

ε) ≤ 2(1 + γ)2
(
∥θc⋆∥2 + 1

)
,

a = (1−γ)ν
2 , η∞ = (1−γ)

4 .

We prove this claim in Appendix E.1, and refer to [45, 42] for more details on the link between TD
and linear stochastic approximation.

4 Refined Analysis of the FedLSA Algorithm

4.1 Stochastic expansion for FedLSA

We use the error expansion framework [1, 14] for LSA to analyze the MSE of the es-
timates θt generated by Algorithm 1. For this purpose, we rewrite local update (4) as
θct,h − θc⋆ = (I− ηA(Zc

t,h))(θ
c
t,h−1 − θc⋆)− ηεc(Zc

t,h), where εc(z) is defined in (2). Running this
recursion until the start of local training, we obtain

θct,H − θc⋆ = Γ
(c,η)
t,1:H{θct,0 − θc⋆} − η

∑H
h=1 Γ

(c,η)
t,h+1:Hε

c(Zc
t,h) ,

where εc(z) is as in (3), and we recall that θct,0 = θt−1, ∀c ∈ [N ]. We also introduced the notation

Γ
(c,η)
t,m:n =

∏n
h=m(I− ηA(Zc

t,h)) , 1 ≤ m ≤ n ≤ H ,

with the convention Γ
(c,η)
t,m:n = I for m > n. Note that by A3, Γ(c,η)

t,m:n is exponentially stable. That
is, for any h ∈ N, we have E1/2

[
∥Γ(c,η)

t,m:m+hu∥2
]
≤ (1− ηa)h∥u∥. Using the fact θct,0 = θt−1, and

employing (1), we obtain that

θt − θ⋆ = Γ̄
(η)
t,H{θt−1 − θ⋆}+ ρ̄H + τ̄t,H − ηφ̄t,H , with Γ̄

(η)
t,H = N−1

∑N
c=1Γ

(c,η)
t,1:H , (6)

where τ̄t,H = 1
N

∑N
c=1{(I − ηĀc)H − Γ

(c,η)
t,1:H}{θc⋆ − θ⋆}, φ̄t,H = 1

N

∑N
c=1

∑H
h=1Γ

(c,η)
t,h+1:Hε

c(Zc
t,h)

are zero-mean fluctuation terms, and

ρ̄H = 1
N

∑N
c=1(I− (I− ηĀc)H){θc⋆ − θ⋆}

is the deterministic heterogeneity bias accumulated in one round of local training. Note that ρ̄H
vanishes when either (i) agents are homogeneous, or (ii) number of local updates is H = 1. To
analyze FedLSA, we run the recurrence (6) to obtain the decomposition

θt − θ⋆ = θ̃
(tr)
t + θ̃

(bi,bi)
t + θ̃

(fl)
t . (7)

Here θ̃(tr)t =
∏t

s=1 Γ̄
(η)
s,H{θ0 − θ⋆} is a transient term that vanishes geometrically, θ̃(fl)t is a zero-mean

fluctuation term, with detailed expression provided in Appendix A, and the term θ̃
(bi,bi)
t is

θ̃
(bi,bi)
t =

∑t
s=1(Γ̄

(η)
H )t−sρ̄H , where Γ̄

(η)
H = E[Γ̄(η)

s,H ] ,

and accounts for the bias of FedLSA due to local training, that vanishes whenever ρ̄H = 0.
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4.2 Convergence rate of FedLSA for i.i.d. observation model

First, we analyze the rate at which FedLSA converges to a biased solution θ⋆+ θ̃
(bi,bi)
t . The following

two quantities, which stem from the heterogeneity and stochasticity of the local estimators, play a
central role in this rate

σ̄ε = Ec [Tr(Σ
c
ε)] , ṽheter = Ec

[
∥Σc

Ã
∥∥θc⋆ − θ⋆∥2

]
.

Here σ̄ε and ṽheter correspond to the different sources of noise in the error decomposition (7). The
term σ̄ε is related to the variance of the local LSA iterate on each of the agents, while ṽheter controls
the bias fluctuation term. In the centralized setting (i.e. if N = 1), the ṽheter term disappears, but not
the σ̄ε term. We now proceed to analyze the MSE of the iterates of FedLSA :
Theorem 4.1. Assume A1 and A3. Then for any step size η ∈ (0, η∞) it holds that

E1/2
[
∥θt − θ̃

(bi,bi)
t − θ⋆∥2

]
≲
√

ηṽheter
aN +

√
ησ̄ε

aN +

√
Ec[∥Σc

Ã
∥]

HN
∥ρ̄H∥

a + (1− ηa)tH∥θ0 − θ⋆∥ ,

where the bias θ̃(bi,bi)t converges in expectation to θ̃(bi,bi)∞ = (I− Γ̄
(η)
H )−1ρ̄H at a geometric rate, and

is uniformly bounded by E1/2[∥θ̃(bi,bi)t ∥2] ≲ ηHEc[∥θc
⋆−θ⋆∥]

a .

The proof of Theorem 4.1 relies on bounding each term from (7). We provide a proof with explicit
constants in Appendix A. Importantly, the fluctuation terms scale linearly with N . Moreover, in
the centralized setting (that is, N = 1), the bias terms ρ̄H , θ̃(bi,bi)t and ṽheter vanish in Theorem 4.1,
yielding the last-iterate bound

E1/2
[
∥θt − θ⋆∥2

]
≲
√

ησ̄ε

a + (1− ηa)tH∥θ0 − θ⋆∥ ,
which is known to be sharp in its dependence on η for single-agent LSA (see Theorem 5 in [15]).
Based on Claim 3.1, Theorem 4.1 translates for federated TD(0) as follows.
Corollary 4.2. Assume TD 1 and TD 3. Then for any step size η ∈ (0, 1−γ

4 ), the iterates of federated
TD(0) satisfy, with χ(θ⋆, θ1⋆, . . . , θ

N
⋆ ) = Ec[∥θc⋆ − θ⋆∥2] ∨ (1 + Ec[∥θc⋆∥2]),

E1/2
[
∥θt−θ̃(bi,bi)t −θ⋆∥2

]
≲
√

ηχ(θ⋆,θ1
⋆,...,θ

N
⋆ )

(1−γ)νN +
√

1
HN

∥ρ̄H∥
(1−γ)ν + (1− η(1−γ)ν

2 )tH∥θ0 − θ⋆∥ .

The right-hand side of Corollary 4.2 scales linearly with N , allowing for linear speed-up. This is in
line with recent results on federated TD(0), which shows linear speed-up either without local training
[7] or up to a possibly large bias term [50] (see analysis of their Theorem 2). While Corollary 4.2
shows the algorithm’s convergence to some fixed, biased value, one can set the parameters of FedLSA
such that this bias is small. This allows to rewrite the result of Theorem 4.1 in order to get a sample
complexity bound in the following form.

Corollary 4.3. Assume A1 and A3. Let H > 1, and 0 < ϵ <
(
√
ṽheter∨σ̄εEc[∥θc

⋆−θ⋆∥])
2/5

a ∨ Ec[∥θc
⋆−θ⋆∥]

aCA
.

Set the step size η = O
(

aNϵ2

ṽheter∨σ̄ε
∧η∞

)
and the number of local steps H = O

(
ṽheter∨σ̄ε

Ec[∥θc
⋆−θ⋆∥]

1
Nϵ

)
. Then,

to achieve E
[
∥θT − θ⋆∥2

]
< ϵ2 the required number of communications for federated LSA is

T = O
((

1
aη∞

∨ Ec[∥θc
⋆−θ⋆∥]
a2ϵ

)
log ∥θ0−θ⋆∥

ϵ

)
.

In Corollary 4.3, the number of oracle calls scales as TH = O
(
ṽheter∨σ̄ε

Na2ϵ2 log ∥θ0−θ⋆∥
ϵ

)
, which shows

that FedLSA has linear speed-up. Importantly, the number of communications T required to achieve
precision ϵ2 scales as ϵ−1. In the next section, we will show how this dependence on ϵ−1 can be
reduced from polynomial to logarithmic. Now we state the communication bound of federated TD(0).
Corollary 4.4. Assume TD 1 and TD 3. Then for any 0 < ϵ <

g1(θ
c
⋆,θ⋆)

(1−γ)ν with
g1 = O((1 + ∥θ⋆∥)Ec[∥θc⋆ − θ⋆∥]). Set η = O

(
(1−γ)νNϵ2

Ec[∥θc
⋆∥2]+1

)
and H = O

(
Ec[∥θc

⋆∥
2+1]

NϵEc[∥θc
⋆−θ⋆∥2]

)
. Then,

to achieve E
[
∥θT − θ⋆∥2

]
< ϵ2, the required number of communications for federated TD(0) is

T = O
((

1
(1−γ)2ν ∨ Ec[∥θc

⋆−θ⋆∥]
(1−γ)2ν2ϵ

)
log ∥θ0−θ⋆∥

ϵ

)
.

Corollary 4.4 is the first result to show that, even with local training and heterogeneous agents,
federated TD(0) can converge to θ⋆ with arbitrary precision. Importantly, this result preserves the
linear speed-up effect, showing that federated learning indeed accelerates the training.
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4.3 Convergence of FedLSA under Markovian observations model

The analysis of FedLSA can be generalized to the setting where observations {Zc
k}k∈N form a

Markov chain with kernel Pc. To handle the Markovian nature of observations, we propose a
variant of FedLSA that skips some observations (see the full procedure in Appendix B). This
follows classical schemes for Markovian data in optimization [40], as adjusting the number of
skipped observations (keeping about 1 observation out of τmix(c)) allows to control the correlation
of successive observations. We may now state the counterpart of Corollary 4.3 for the Markovian
setting.
Corollary 4.5 (Corollary 4.3 adjusted to the Markov samples). Assume A2 and A3 and let 0 <

ϵ <
(
√
ṽheter∨σ̄εEc[∥θc

⋆−θ⋆∥])
2/5

a ∨ Ec[∥θc
⋆−θ⋆∥]

aCA
. Set the step size η = O

(
aNϵ2

ṽheter∨σ̄ε
∧ η∞ ∧ η(M)

∞
)
, where

we give the expression of η(M)
∞ is (37). Then, for the iterates of Algorithm 3, in order to achieve

E
[
∥θT − θ⋆∥2

]
≤ ϵ2, the required number of communication is

T = O
((

1
aη∞

∨ Ec[∥θc
⋆−θ⋆∥]
a2ϵ

)
log ∥θ0−θ⋆∥

ϵ

)
,

where the number of local updates H satisfies

H
logH = O

(
ṽheter∨σ̄ε

Ec[∥θc
⋆−θ⋆∥]

maxc τmix(c) log (NT 3(∥θ0−θ⋆∥+2Ec[∥θc
⋆−θ⋆∥]+η∥ε∥∞)/ϵ2)

Nϵ

)
.

The proof of Corollary 4.3 follows the idea outlined in [40], using Berbee’s lemma [10]. We give
all the details in Appendix B. This result is very similar to Corollary 4.3. Most crucially, it shows
that the communication complexity is the same, regardless of the type of noise. The differences
with Corollary 4.3 lie in (i) the number local updates H , that is scaled by τmix (up to logarithmic
factors), and (ii) the additional condition η ≤ η

(M)
∞ , that allows verifying the stability of random

matrix products with Markovian dependence (see Lemma B.2 in the appendix).
Remark 4.6. Although, for clarity of exposition, we only state the counterpart of Corollary 4.3 in the
Markovian result, all of our results can be extended to Markovian observations using the same ideas.

5 SCAFFLSA: Federated LSA with Bias Correction

5.1 Stochastic Controlled Averaging for Federated LSA

We now introduce the Stochastic Controlled Averaging for Federated LSA algorithm (SCAFFLSA),
an improved version of FedLSA that mitigates client drift using control variates. This method is
inspired by Scaffnew (see 37). In SCAFFLSA, each agent c ∈ [N ] keeps a local variable ξct , that
remains constant during each communication round t. Agents perform local updates on the current
estimates of the parameters θ̂ct,0 = θt for c ∈ [N ], and for h ∈ [H],

θ̂ct,h = θ̂ct,h−1 − η(Ac(Zc
t,h)θ̂

c
t,h−1 − bc(Zc

t,h)− ξct ) ,

At the end of the round, (i) the agents communicate the current estimate to the central server, (ii)
the central server averages local iterates, and (iii) agents update their local control variates; see
Algorithm 2. By defining the ideal control variates at the global solution, given by ξc⋆ = Ācθ⋆− b̄c =
Āc(θ⋆ − θc⋆), we can rewrite the local update as

θ̂ct,h − θ⋆ = (I− ηAc(Zc
t,h))(θ̂

c
t,h−1 − θ⋆) + η(ξct − ξc⋆)− ηωc(Zc

t,h) , (8)

where ωc(z) is defined in (2). Under A1, it has finite covariance Σc
ω =

∫
Z
ωc(z)ωc(z)⊤dπc(z).

Similarly to the analysis of FedLSA, we use (8) to describe the sequence of aggregated iterates and
control variates as, for t ≥ 0 and c ∈ [N ],

θt+1 − θ⋆ = Γ̄
(η)
t,H(θt − θ⋆) +

η
N

∑N
c=1C

c
t+1(ξ

c
t−ξc⋆)− ηω̄t+1 ,

ξct+1 − ξc⋆ = ξct − ξc⋆ +
1

ηH (θt+1 − θt,H) ,
(9)

where Cc
t+1 =

∑H
h=1Γ

(c,η)
t,h+1:H and ω̄t+1 = 1

N

∑N
c=1

∑H
h=1Γ

(c,η)
t,h+1:Hω

c(Zc
t,h). We now state the

convergence rate, as well as sample and communication complexity of Algorithm 2.
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Algorithm 2 SCAFFLSA: Stochastic Controlled FedLSA with deterministic communication
Input: η > 0, θ0, ξc0 ∈ Rd, T,N,H
for t = 1 to T do

for c = 1 to N do
Set θ̂ct,0 = θt
for h = 1 to H do

Receive Zc
t,h and perform local update θ̂ct,h = θ̂ct,h−1−η(Ac(Zc

t,h)θ̂
c
t,h−1−bc(Zc

t,h)−ξct )
Aggregate local iterates: θt+1 = 1

N

∑N
c=1 θ̂

c
t,H

Update local control variates: ξct+1 = ξct +
1

ηH (θt+1 − θ̂ct,H)

Theorem 5.1. Assume A1, A3. Let η,H > 0 such that η ≤ η∞, and H ≤ a/240η
{
C2

A +∥Σc
Ã
∥
}

. Set
ξc0 = 0 for all c ∈ [N ]. Then we have

E[∥θT − θ⋆∥2] ≲ η
Na∥Σω∥ +

(
1− ηaH

2

)T{∥θ0 − θ⋆∥2 + η2H2Ec[∥Āc(θc⋆ − θ⋆)∥2]
}
.

Corollary 5.2. Let ϵ > 0. Set the step size η = O(min(η∞,Naϵ2

/σ̄
ω
)) and the number local updates

to H = O
(
max

(
a

η
∞

(C
2

A

+∥Σ̃
A

∥) ,
∥Σ

ω

∥
Nϵ2(C

2

A

+∥Σ̃
A

∥)
))

. Then, to achieve E[∥θT − θ⋆∥2] ≤ ϵ2, the required
number of communication for SCAFFLSA is

T = O
(

C
2

A

+∥Σ̃
A

∥
a2

log
(

∥θ
0

−θ
⋆

∥2+E
c

[∥Āc(θ c

⋆

−θ
⋆

)∥2]a2/C
2

A

ϵ2

))
.

We provide detailed proof of these statements in Appendix C. They are based on a novel analysis,
where we study virtual parameters θ̌ct,h, that follow the same update as (8), without the last term
ηωc(Zc

t,h). After each round, virtual parameters are aggregated, and virtual control variate updated as

θ̌t+1 − θ⋆ = 1
N

∑N
c=1θ̌

c
t,H , and ξ̌ct+1 − ξc⋆ = ξ̌ct − ξc⋆ +

1
ηH (θ̌t+1 − θ̌t,H) .

This allows to decompose

θt − θ⋆ = θ̌t − θ⋆ + θ̃t , and ξct − ξc⋆ = ξ̌ct − ξc⋆ + ξ̃ct ,

where θ̌t − θ⋆ and ξ̌ct − ξc⋆ are transient terms, and θ̃t = θt − θ̌t and ξ̃ct = ξct − ξ̌ct capture the
fluctuations of the parameters and control variates.

We stress that our analysis shows that, in comparison with FedLSA, the SCAFFLSA algorithm
reduces communication complexity while preserving the linear speed-up in the number of agents.
This is in stark contrast with existing analyses of control-variate methods in heterogeneous federated
learning, that either have large communication cost, or lose the linear speed-up [24, 37, 21]. To obtain
this result, we conduct a very careful analysis of the propagation of variances and covariances of θ̃t
and ξ̃ct between successive communication rounds. We describe this in full detail in Appendix C.2.

In Corollary 5.2, we show that the total number of communications depends only logarithmically on
the precision ϵ. This is in stark contrast with Algorithm 1, where the necessity of controlling the bias’
magnitude prevents from scaling H with 1/ϵ2. Additionally, this shows that the number of required
local updates reduces as the number of agents grows. Thus, in the high precision regime (i.e.small ϵ
and η), using control variates reduces communication complexity compared to FedLSA.

5.2 Application to Federated TD(0)

Applying SCAFFLSA to TD learning, we obtain SCAFFTD(0) (see Algorithm 5 in Appendix E).
The analysis of SCAFFLSA directly translates to SCAFFTD(0), resulting in the following commu-
nication complexity bound.
Corollary 5.3. Assume TD 1 and TD 3 and let 0 < ϵ ≤

√
8Ec[1 + ∥θc⋆∥2]/((1− γ)ν). Set the

step size η = O( (1−γ)νNϵ2

∥θ
⋆

∥2+1 ) and the number local updates to H = O
(∥θ

⋆

∥2+1
Nϵ2

)
. Then, to achieve

E[∥θT − θ⋆∥2] ≤ ϵ2, the required number of communication for SCAFFTD(0) is

T = O
(

1
(1−γ)2ν 2

log
(

∥θ
0

−θ
⋆

∥2+(1−γ)2ν 2E
c

[∥θ c

⋆

−θ
⋆

∥2]
ϵ2

))
.

8



0 10 20 30 40 50

Communications (×1000)

10−3

10−1

101

(a) Heterogeneous,
N = 10, H = 10

0 10 20 30 40 50

Communications (×10)

10−3

10−1

101

(b) Heterogeneous,
N = 10, H = 1000

0 10 20 30 40 50

Communications (×1000)

10−3

10−1

101

(c) Heterogeneous,
N = 100, H = 10

0 10 20 30 40 50

Communications (×10)

10−3

10−1

101

FedLSA

SCAFFLSA

FedLSA’s bias

(d) Heterogeneous,
N = 100, H = 1000

0 10 20 30 40 50

Communications (×1000)

10−3

10−1

101

(e) Homogeneous,
N = 10, H = 10

0 10 20 30 40 50

Communications (×10)

10−3

10−1

101

(f) Homogeneous,
N = 10, H = 1000

0 10 20 30 40 50

Communications (×1000)

10−3

10−1

101

(g) Homogeneous,
N = 100, H = 10

0 10 20 30 40 50

Communications (×10)

10−3

10−1

101

FedLSA

SCAFFLSA

FedLSA’s bias

(h) Homogeneous,
N = 100, H = 1000

Figure 1: MSE as a function of the number of communication rounds for FedLSA and SCAFFLSA
applied to federated TD(0) in homogeneous and heterogeneous settings, for different number of
agents and number of local steps. Green dashed line is FedLSA’s bias, as predicted by Theorem 4.1.
For each algorithm, we report the average MSE and variance over 5 runs.

Corollary 5.3 confirms that, when applied to TD(0), SCAFFLSA’s communication complexity
depends only logarithmically on heterogeneity and on the desired precision. In contrast with existing
methods for federated TD(0) [11, 22, 50], it converges even with many local steps, whose number
diminishes linearly with the number of agents N , producing the linear speed-up effect.
Remark 5.4. In Appendix F, we extend the analysis of Scaffnew [37] to the LSA setting. Their
analysis does not exploit the fact that agents’ estimators are not correlated, and thus lose the linear
speed-up. In contrast, our novel analysis technique carefully tracks correlations between parameters
and control variates throughout the run of the algorithm.

6 Numerical Experiments

In this section, we demonstrate the performance of FedLSA and SCAFFLSA under varying levels
of heterogeneity. We consider the Garnet problem [2, 16], with n = 30 states embedded in d = 8
dimensions, a = 2 actions, and each state is linked to b = 2 others in the transition kernel. We aim to
estimate the value function of the policy which chooses actions uniformly at random, in homogeneous
and heterogeneous setups. In all experiments, we initialize the algorithms in a neighborhood of the
solution, allowing to observe both transient and stationary regimes. We provide all details regarding
the experimental setup in Appendix G. Our code is available either as supplementary material or
online on GitHub: https://github.com/pmangold/scafflsa.

SCAFFLSA properly handles heterogeneity. This heterogeneous scenario is composed of two
different Garnet environments, that are each held by half of the agents, with small perturbations. Such
a setting may arise in cases where each agent’s environment reflects only a part of the world. For
instance, if half of the individuals live in the city, while the other half live in the countryside: both have
different observations, but learning a shared value function gives a better representation of the overall
reality. In Figures 1(a) to 1(d), we plot the MSE with N ∈ {10, 100}, H ∈ {10, 1000} and η = 0.1,
with the same total number of updates TH = 500, 000. As predicted by our theory, FedLSA stalls
when the number of local updates increases, and its bias (green dashed line in Figures 1(a) to 1(d)) is
in line with the value predicted by our theory (see Theorem 4.1). For completeness, we plot the error
of FedLSA in estimating θ⋆ + θ̃

(bi,bi)
∞ in Appendix G. On the opposite, SCAFFLSA’s bias-correction

mechanism allows to eliminate all bias, improving the MSE until noise dominates.
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Figure 2: MSE, averaged over 10 runs, for last iterates of FedLSA (dashed lines) and SCAFFLSA
(solid lines) in the stationary regime, as a function of the number of agents, in different federated
TD(0) problems. The black dotted line decreases in 1/N , serving as a visual guide for linear speed-up.

Both algorithms behave alike in homogeneous settings. In the homogeneous setting, we create
one instance of a Garnet environment. Then, each agent receives a slightly perturbed variant of this
environment. This illustrates a situation where all agents solve the same exact problem, but may
have small divergences in their measures of states and rewards. We plot the MSE in Figures 1(e)
to 1(h) with N ∈ {10, 100} agents, η = 0.1, and H ∈ {10, 1000}, with the same total number of
updates TH = 500, 000. In this case, as predicted in Corollary 4.3, the number of local steps H has
little influence on the final MSE. Since agents are homogeneous, control variates have virtually no
effect, and SCAFFLSA is on par with FedLSA. The MSE is dominated by the noise term, which
diminishes with the step size (see additional experiments in Appendix G with smaller η = 0.01).

Both algorithms enjoy linear speed-up! In Figure 2, we plot the MSE obtained once algorithms
reach the stationary regime, as a function of the number of agents N = 1 to 1000, for step sizes
η ∈ {0.001, 0.01, 0.1, 1} and H ∈ {1, 100}, in both homogeneous and heterogeneous settings.
Whenever (i) agents are homogeneous, or (ii) the number of local steps is small, both FedLSA and
SCAFFLSA can achieve similar precision with a step size that increases with the number of agents.
This allows to use larger step sizes, so as to reach a given precision level faster, resulting in the
so-called linear speed-up. However, when agents are heterogeneous and the number of local updates
increases, FedLSA loses the speed-up due to large bias. Remarkably, and as explained by our theory
(see Corollary 5.2), SCAFFLSA maintains this speed-up even in heterogeneous settings.

7 Conclusion

In this paper, we studied the role of heterogeneity in federated linear stochastic approximation. We
proposed a new analysis of FedLSA, where we formally characterize FedLSA’s bias. This allows to
show that, with proper hyperparameter setting, FedLSA (i) can converge to arbitrary precision even
with local training, and (ii) enjoys linear speed-up in the number of agents. We then proposed a novel
algorithm, SCAFFLSA, that uses control variates to allow for extended local training. We analyzed
this method using on a novel analysis technique, and formally proved that control variates reduce
communication complexity of the algorithm. Importantly, our analysis shows that SCAFFLSA
preserves the linear speed-up, which is the first time that a federated algorithm provably accelerates
while preserving this linear speed-up. Finally, we instantiated our results for federated TD learning,
and conducted an empirical study that demonstrates the soundness of our theory in this setting.
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A Analysis of Federated Linear Stochastic Approximation

For the analysis we need to define two filtration: F+
s,h := σ(Zc

t,k, t ≥ s, k ≥ h, 1 ≤ c ≤ N),
corresponding to the future events, and F−

s,h := σ(Zc
t,k, t ≤ s, k ≤ h, 1 ≤ c ≤ N), corresponding to

the preceding events. Recall that the local LSA updates are written as

θct,h − θc⋆ = (I− ηA(Zc
t,h))(θ

c
t,h−1 − θc⋆)− ηεc(Zc

t,h) .

Performing H local steps and taking average, we end up with the decomposition

θt − θ⋆ = Γ̄
(η)
t,H{θt−1 − θ⋆}+ ρ̄H + τ̄t,H + ηφ̄t,H , (10)

where we have defined

Γ̄
(η)
t,H =

1

N

∑N

c=1
Γ
(c,η)
t,1:H , (11)

ρ̄H =
1

N

∑N

c=1
(I− (I− ηĀc)H){θc⋆ − θ⋆} ,

τ̄t,H =
1

N

∑N

c=1
{(I− ηĀc)H − Γ

(c,η)
t,1:H}{θc⋆ − θ⋆} ,

φ̄t,H = − 1

N

∑N

c=1

∑H

h=1
Γ
(c,η)
t,h+1:Hε

c(Zc
t,h) .

The transient term Γ̄
(η)
t,H(θt−1 − θ⋆), responsible for the rate of forgetting the previous iteration error

θt−1 − θ⋆, and the fluctuation term ηφ̄t,H , reflecting the oscillations of the iterates around θ⋆, are
similar to the ones from the standard LSA error decomposition [14]. The two additional terms in
(10) reflect the heterogeneity bias. This bias is composed of two parts: the true bias ρ̄H , which is
non-random, and its fluctuations τ̄t,H . To analyze the complexity and communication complexity of
FedLSA, we run the recurrence (6) to obtain

θt − θ⋆ = θ̃
(tr)
t + θ̃

(bi,bi)
t + θ̃

(fl,bi)
t + θ̃

(fl)
t , (12)

where we have defined

θ̃
(tr)
t =

t∏
s=1

Γ̄
(η)
s,H{θ0 − θ⋆} , (13)

θ̃
(bi,bi)
t =

t∑
s=1

(
Γ̄
(η)
H

)t−s
ρ̄H ,

θ̃
(fl,bi)
t =

t∑
s=1

t∏
i=s+1

Γ̄
(η)
i,H τ̄s,H +∆

(η)
H,s,tρ̄H ,

θ̃
(fl)
t = η

t∑
s=1

t∏
i=s+1

Γ̄
(η)
i,H φ̄s,H ,

with the notations Γ̄
(η)
H = E[Γ̄(η)

s,H ] = 1
N

∑N
c=1(I − ηĀc)H and ∆

(η)
H,s,t =

{∏t
i=s+1 Γ̄

(η)
i,H

}
−

(Γ̄
(η)
H )t−s. The first term, θ̃(tr)t gives the rate at which the initial error is forgotten. The terms θ̃(bi,bi)t

and θ̃(fl,bi)t represent the bias and fluctuation due to statistical heterogeneity across agents. Note that
in the special case where agents are homogeneous (i.e. Āc = Ā for all c ∈ [N ]), these two terms
vanish. Finally, the term θ̃

(fl)
t depicts the fluctuations of θt around the solution θ⋆. Now we need to

upper bound each of the terms in decomposition (12). This is done in a sequence of lemmas below:
θ̃
(fl)
t is bounded in Lemma A.1, θ̃(fl,bi)t in Lemma A.2, θ̃(tr)t in Lemma A.4, and θ̃(bi,bi)t in Lemma A.5.

Then we combine the bounds in order to state a version of Theorem 4.1 with explicit constants in
Theorem A.6.
Lemma A.1. Assume A1 and A3. Then, for any step size η ∈ (0, η∞) it holds

E
[
∥θ̃(fl)t ∥2

]
≤ ησ̄ε
aN(1− e−2)

.
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Proof. We start from the decomposition (13). With the definition of θ̃
(fl)
t and

EF +

s+1,1

[{∏t
i=s+1 Γ̄

(η)
i,H

}
φ̄s,H

]
= 0, we obtain that

E
[
∥θ̃(fl)t ∥2

]
= η2

t∑
s=1

E
[
∥
{ t∏
i=s+1

Γ̄
(η)
i,H

}
φ̄s,H∥2

]
.

Now, using the assumption A3 and Minkowski’s inequality, we obtain that

E1/2
[
∥
{ t∏
i=s+1

Γ̄
(η)
i,H

}
φ̄s,H∥2

]
≤ 1

N

N∑
c=1

E1/2∥
[
Γ̄
(c,η)
t,H

{ t−1∏
i=s+1

Γ̄
(η)
i,H

}
φ̄s,H∥2

]
(a)

≤ (1− ηa)HE1/2
[
∥
{ t−1∏
i=s+1

Γ̄
(η)
i,H

}
φ̄s,H∥2

]
.

(14)

In (a) applied A3 conditionally on F−
t−1,H . Hence, by induction we get from the previous formulas

that

E
[
∥θ̃(fl)t ∥2

]
≤ η2

t∑
s=1

(1− ηa)HE[∥φ̄s,H∥2] . (15)

Now we proceed with bounding E
[
∥φ̄s,H∥2

]
. Indeed, since the clients are independent, we get using

(11) that

E
[
∥φ̄s,H∥2

]
=

1

N2

∑N

c=1
E
[
∥
∑H

h=1
Γ
(c,η)
s,h+1:Hε

c(Zc
s,h)∥2

]
=

1

N2

∑N

c=1

[∑H

h=1
E
[
∥Γ(c,η)

s,h+1:Hε
c(Zc

s,h)∥2
]]

≤ 1

N2

∑N

c=1

∑H

h=1
(1− ηa)2(H−h)E

[
∥εc(Zc

s,h)∥2
]
.

Therefore, using (3) and the following inequality,
H−1∑
h=0

(1− ηa)2h ≤ H ∧ 1

ηa
, for all η ≥ 0, such that ηa ≤ 1,

we get

E
[
∥φ̄s,H∥2

]
≤ 1

N

(
H ∧ 1

ηa

)
σ̄ε .

Plugging this inequality in (15), we get

E
[
∥θ̃(fl)t ∥2

]
≤ Ec[Tr(Σ

c
ε)]

N

(
η2H ∧ η

a

) t∑
s=1

[
(1− ηa)2H(t−s)

]
≤ σ̄ε
N

(
η2H ∧ η

a

) 1

1− (1− ηa)2H

≤ ησ̄ε
aN

(ηaH ∧ 1)
1

1− e−2ηaH
,

where we used additionally
e−2x ≤ 1− x ≤ e−x , (16)

which is valid for x ∈ [0; 1/2]. Now it remains to notice that

x ∧ 1

1− e−2x
≤ 1

1− e−2

for any x > 0.

We proceed with analyzing the fluctuation of the true bias component of the error θt defined in (13).
The first step towards this is to obtain the respective bound for τ̄s,H , s ∈ {1, . . . , T}, where τ̄s,H is
defined in (11). Now we provide an upper bound for θ̃(fl,bi)t :
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Lemma A.2. Assume A1 and A3. Then, for any step size η ∈ (0, η∞) it holds

E1/2
[
∥θ̃(fl,bi)t ∥2

]
≤
√

2ηṽheter

Na
+

2
√
Ec∥Σc

Ã
∥∥ρ̄H∥

aH1/2N1/2
.

Proof. Recall that θ̃(fl,bi)t is given (see (13)) by

θ̃
(fl,bi)
t =

t∑
s=1

t∏
i=s+1

Γ̄
(η)
i,H τ̄s,H︸ ︷︷ ︸

T
1

+

(
t∑

s=1

{ t∏
i=s+1

Γ̄
(η)
i,H

}
− (Γ̄

(η)
H )t−s

)
ρ̄H︸ ︷︷ ︸

T
2

, (17)

where τ̄s,H and ρ̄H are defined in (11). We begin with bounding T1. In order to do it we first need to
bound τ̄s,H . Since the different agents are independent, we have

E[∥τ̄s,H∥2] = 1

N2

N∑
c=1

E[∥((I− ηĀc)H − Γ
(c,η)
s,1:H){θc⋆ − θ⋆}∥2] . (18)

Applying Lemma D.1 and the fact that
{
(I − ηĀc)h−1Ãc(Zc

s,h)Γ
(c,η)
s,(h+1):H(θc⋆ − θ⋆)

}H
h=1

is a
martingale-difference w.r.t. F−

s,h, we get that

E[∥((I− ηĀc)H − Γ
(c,η)
s,1:H){θc⋆ − θ⋆}∥2]

= η2E[∥
H∑

h=1

(I− ηĀc)h−1Ãc(Zc
s,h)Γ

(c,η)
s,(h+1):H{θc⋆ − θ⋆}∥2]

= η2
H∑

h=1

E[∥(I− ηĀc)h−1Ãc(Zc
s,h)Γ

(c,η)
s,(h+1):H{θc⋆ − θ⋆}∥2]

≤ η2
H∑

h=1

(1−ηa)2(h−1){θc⋆−θ⋆}⊤E[(Γ(c,η)
s,(h+1):H)⊤(Ãc(Zc

s,h))
⊤Ãc(Zc

s,h)Γ
(c,η)
s,(h+1):H ]{θc⋆ − θ⋆} .

Using the tower property conditionally on F+
s,h+1, we get

E[(Γ(c,η)
s,(h+1):H)⊤(Ãc(Zc

s,h))
⊤Ãc(Zc

s,h)Γ
(c,η)
s,(h+1):H ] = E[(Γ(c,η)

s,(h+1):H)⊤Σc
Ã
Γ
(c,η)
s,(h+1):H ] ,

where Σc
Ã

is the noise covariance matrix defined in (3). Since for any vector u ∈ Rd we have

∥u∥Σc

Ã

≤ ∥Σc
Ã
∥1/2∥u∥, we get

E[∥((I− ηĀc)H − Γ
(c,η)
s,1:H){θc⋆ − θ⋆}∥2] ≤ η2

H∑
h=1

(1− ηa)2(h−1)E
[
∥Γ(c,η)

s,(h+1):H{θc⋆ − θ⋆}∥2Σc

Ã

]
≤ η2∥Σc

Ã
∥

H∑
h=1

(1− ηa)2(h−1)E
[
∥Γ(c,η)

s,(h+1):H{θc⋆ − θ⋆}∥2
]

(19)

≤ Hη2(1− ηa)2(H−1)∥Σc
Ã
∥∥θc⋆ − θ⋆∥2 .

Combining the above bounds in (18) yields that

E
[
∥τ̄s,H∥2

]
≤
Hη2(1− ηa)2(H−1)

∑N
c=1 ∥Σc

Ã
∥∥θc⋆ − θ⋆∥2

N2
. (20)
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Thus, proceeding as in (14) together with (20), we get

E[∥T1∥2] =
∑t

s=1
E[∥

∏t

i=s+1
Γ̄
(η)
i,H τ̄s,H∥2]

≤
∑t

s=1

Hη2(1− ηa)2(H−1)
∑N

c=1 ∥Σc
Ã
∥∥θc⋆ − θ⋆∥2

N2
(1− ηa)2H(t−s)

≤ Hη2(1− ηa)2(H−1)

(1− (1− ηa)2H)N
Ec[∥Σc

Ã
∥∥θc⋆ − θ⋆∥2]

≤ η

aN(1− ηa)2
Haηe−2Haη

1− e−2Haη
Ec[∥Σc

Ã
∥∥θc⋆ − θ⋆∥2]

≤ 2η

Na
Ec[∥Σc

Ã
∥∥θc⋆ − θ⋆∥2] .

In the bound above we used (16) together with the bound

xe−2x

1− e−2x
≤ 1

2
, x ≥ 0 .

Now we bound the second part of θ̃(fl,bi)t in (17), that is, T2. To begin with, we start with applying
Lemma D.1 and we get for any s ∈ {1, . . . , t} and i ∈ {s+ 1, . . . , t}, that{ t∏

i=s+1

Γ̄
(η)
i,H

}
− (Γ̄

(η)
H )t−s)ρ̄H =

t∑
i=s+1

{ t∏
r=i+1

Γ̄
(η)
r,H

}
(Γ̄

(η)
i,H − Γ̄

(η)
H )(Γ̄

(η)
H )i−s−1ρ̄H .

Note that,

EF +

i+1,1 [
{ t∏
r=i+1

Γ̄
(η)
r,H

}
(Γ̄

(η)
i,H − Γ̄

(η)
H )(Γ̄

(η)
H )i−s−1ρ̄H ] = 0 (21)

Proceeding as in (19), we get using independence between agents for any u ∈ Rd,

E[∥(Γ̄(η)
i,H − Γ̄

(η)
H )u∥2] = 1

N2
E[∥

N∑
c=1

(Γ
(c,η)
s,1:H − (I− ηĀc)H)u∥2]

=
1

N2

N∑
c=1

E[∥(Γ(c,η)
s,1:H − (I− ηĀc)H)u∥2]

≤ Hη2(1− ηa)2(H−1)

N

(
1

N

N∑
c=1

∥Σc
Ã
∥
)
∥u∥2 .

Hence, using (21), we get

E[∥
({ t∏

i=s+1

Γ̄
(η)
i,H

}
− (Γ̄

(η)
H )t−s

)
ρ̄H∥2] =

Hη2(1− ηa)2H(t−s)−2Ec∥Σc
Ã
∥

N
∥ρ̄H∥2 .

Combining the above estimates in (17), and using Minkowski’s inequality, we get

E1/2[∥T2∥2] ≤
H1/2η

(1− ηa)N1/2

√
Ec∥Σc

Ã
∥∥ρ̄H∥

t−1∑
s=1

(1− ηa)H(t−s)

≤ 2

aH1/2N1/2

Haηe−Haη

1− e−Haη

√
Ec∥Σc

Ã
∥∥ρ̄H∥

≤ 2

aH1/2N1/2

√
Ec∥Σc

Ã
∥∥ρ̄H∥ ,

where we used that ηa ≤ 1/2 and

xe−x

1− e−x
≤ 1 , x ≥ 0 .

and the statement follows.
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Lemma A.3. Recall that ρ̄H = 1
N

∑N
c=1(I− (I− ηĀc)H){θc⋆ − θ⋆}, it satisfies

∥ρ̄H∥ ≤ η2H2

N

N∑
c=1

exp(ηH∥Āc∥)∥θc⋆ − θ⋆∥ (22)

Proof. Using the identity,

1− (1− u)H = Hu− u2
H−2∑
k=0

(−1)k
(

H

k + 2

)
uk (23)

and the inequality
(

H
k+2

)
≤
(
H−2
k

)
H2, we get that∣∣∣∣∣

H−2∑
k=0

(−1)k
(

H

k + 2

)
uk

∣∣∣∣∣ ≤ H2

2

H−2∑
k=0

(
H − 2

k

)
|u|k ≤ H2

2
exp((H − 2)|u|) (24)

Using (23) with u = ηĀc for all c, we get

ρ̄H =
1

N

N∑
c=1

HηĀc − η2(Āc)2
H−2∑
k=0

(−1)k
(

H

k + 2

)
(ηĀc)k ,

by definition of θc⋆ and θ⋆, we have that
∑N

c=1 Ā
c(θc⋆ − θ⋆) =

∑N
c=1 Ā

cθc⋆ − (
∑N

c=1 Ā
c)θ⋆ =∑N

c=1 b̄
c −∑N

c=1 b̄
c = 0. Using this and (24), we finally get (22).

Lemma A.4. Assume A1 and A3. Then for any step size η ∈ (0, η∞) we have

E1/2[∥θ̃(tr)t ∥2] ≤ (1− ηa)tH∥θ0 − θ⋆∥

Proof. Proceeding as in (14) for any u ∈ Rd we have

E1/2[∥
t∏

s=1

Γ̄
(η)
s,Hu∥2] ≤ (1− ηa)tH∥u∥

Using this result for u = θ0 − θ⋆ we get the statement.

Lemma A.5. Assume A1 and A3. Then for any η ∈ (0, η∞) we have

∥θ̃(bi,bi)t − (I− Γ̄
(η)
H )−1ρ̄H∥ ≤ (1− ηa)tH∥(I− Γ̄

(η)
H )−1∥∥ρ̄H∥

Proof. Using A3 and Minkowski’s inequalitty, we get

∥θ̃(bi,bi)t − (I− Γ̄
(η)
H )−1ρ̄H∥ = ∥(I− Γ̄

(η)
H )−1(Γ̄

(η)
H )tρ̄H∥

≤ ∥(I− Γ̄
(η)
H )−1∥∥(Γ̄(η)

H )tρ̄H∥

≤ ∥(I− Γ̄
(η)
H )−1∥ 1

N

N∑
c=1

∥(I− ηĀc)H(Γ̄
(η)
H )t−1ρ̄H∥

≤ (1− ηa)H∥(I− Γ̄
(η)
H )−1∥∥(Γ̄(η)

H )t−1ρ̄H∥
and the statement follows.

Theorem A.6. Assume A1 and A3. Then for any step size η ∈ (0, η∞) it holds that

E1/2
[
∥θt − θ̃

(bi,bi)
t − θ⋆∥2

]
≤
√

ησ̄ε
aN(1− e−2)

+

√
2ηṽheter

Na

+
2
√

Ec∥Σc
Ã
∥∥ρ̄H∥

aH1/2N1/2
+ (1− ηa)tH∥θ0 − θ⋆∥ , (25)

where the bias θ̃(bi,bi)t converges to (I− Γ̄
(η)
H )−1ρ̄H at a rate

∥θ̃(bi,bi)t − (I− Γ̄
(η)
H )−1ρ̄H∥ ≤ (1− ηa)tH∥(I− Γ̄

(η)
H )−1∥∥ρ̄H∥ .
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Proof. Proof follows by combining the results Lemma A.1-Lemma A.5 above.

In the lemma below we provide a simplified sample complexity bound of Corollary 4.3 corresponding
to the synchronous setting, that is, with number of local training steps H = 1. There, the bias term
disappears, and above results directly give a simplified sample complexity bound.

Corollary A.7. Assume A 1 and A 3. Let H = 1, then for any 0 < ϵ < 1, in order to achieve
E
[
∥θT − θ⋆∥2

]
≤ ϵ2 the required number of communications is

T = O
(
ṽheter ∨ σ̄ε
Na2ϵ2

log
∥θ0 − θ⋆∥

ϵ

)
number of communications, setting the step size

η0 =
aNϵ2

ṽheter ∨ σ̄ε
. (26)

Proof. Bounding the first two terms in decomposition (25) we get that the step size should satisfy

η ≤ aNϵ2

ṽheter ∨ σ̄ε
.

From the last term we have

t ≥ 1

aη
log

∥θ0 − θ⋆∥
ϵ

≥ ṽheter ∨ σ̄ε
Na2ϵ2

log
∥θ0 − θ⋆∥

ϵ

Corollary A.8. Assume A1 and A3. For any

0 ≤ ϵ ≤ C−1
A Ec∥θc⋆ − θ⋆∥

a
∨
(√

ṽheter ∨ σ̄εEc∥θc⋆ − θ⋆∥
a

)2/5

in order to achieve E
[
∥θT − θ⋆∥2

]
< ϵ2 the required number of communications is

T = O
(
Ec∥θc⋆ − θ⋆∥

a2ϵ
log

∥θ0 − θ⋆∥
ϵ

)
, (27)

setting the step size

η = O
(

aNϵ2

ṽheter ∨ σ̄ε

)
and number of local iterations

H = O
(

ṽheter ∨ σ̄ε
NϵEc∥θc⋆ − θ⋆∥

)
Proof. We aim to bound separately all the terms in the r.h.s. of Theorem 4.1. Note that it requires to
set η ∈ (0; η0) with η0 given in (26) in order to fulfill the bounds√

ηṽheter

aN
≲ ε ,

√
ησ̄ε
aN

≲ ε .

Now, we should bound the bias term

E1/2[∥θ̃(bi,bi)t ∥2] ≤ (1 + (1− ηa)tH)∥(I− Γ̄
(η)
H )−1ρ̄H∥ ≤ 2∥(I− Γ̄

(η)
H )−1ρ̄H∥ .

Thus, using the Neuman series, we can bound the norm of the term above as

∥(I− Γ̄
(η)
H )−1ρ̄H∥ = ∥

∞∑
k=0

(Γ̄
(η)
H )kρ̄H∥ ≤

∞∑
k=0

(1− ηa)Hk∥ρ̄H∥ ≤ ∥ρ̄H∥
1− (1− ηa)H

.
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Hence, using the bound of Lemma A.3, we get

E1/2[∥θ̃(bi,bi)t ∥2] ≤ 2∥ρ̄H∥
1− (1− ηa)H

≤ ηaH

1− (1− ηa)H
ηHEc[exp(ηH∥Āc∥)∥θc⋆ − θ⋆∥]

a

≤ 2ηHEc[exp(ηH∥Āc∥)∥θc⋆ − θ⋆∥]
a

≲
ηHEc[∥θc⋆ − θ⋆∥]

a
,

where we used the fact that the step size η is chosen in order to satisfy ηH CA ≤ 1. Thus in order to
fulfill E1/2[∥θ̃(bi,bi)t ∥2] ≲ ε we need to choose η and H such that

ηHEc[∥θc⋆ − θ⋆∥] ≤ εa .

It remains to bound the term
√

E
c

∥Σc

Ã

∥∥ρ̄
H

∥
aH 1/2N 1/2

. Using the bound of Lemma A.3, we get√
Ec∥Σc

Ã
∥∥ρ̄H∥

aH1/2N1/2
≤
√

η

N
×

√
Ec∥Σc

Ã
∥(ηH)3/2

a
≲ ε5/2

√
1

ṽheter ∨ σ̄ε
a

Ec[∥θc⋆ − θ⋆∥]
.

Hence, it remains to combine the bounds above in order to get the sample complexity result (27).

Corollary A.9. Assume TD 1 and TD 3. Then for any

0 ≤ ϵ ≤ 2
(√

2(1+γ)
√

E
c

∥θ c

⋆

−θ
⋆

∥2∨(1+E
c

[∥θ
⋆

∥2])E
c

[∥θ c

⋆

−θ
⋆

∥]
)2/5

(1−γ)ν ∨ 2E
c

[∥θ c

⋆

−θ
⋆

∥]
(1−γ)ν(1+γ) ,

in order to achieve E
[
∥θT − θ⋆∥2

]
< ϵ2 the required number of communications for federated TD(0)

algorithm is
T = O

((
1

(1−γ)2ν ∨ E
c

[∥θ c

⋆

−θ
⋆

∥]
(1−γ)2ν 2ϵ

)
log ∥θ

0

−θ
⋆

∥
ϵ

)
.

B Markovian sampling schemes for FedLSA

Note that under A2 each of the matrices Āc, c ∈ [N ] is Hurwitz. This guarantees the existence and
uniqueness of a positive definite matrix Qc which is a solution of the Lyapunov equation

{Āc}⊤Qc +QcĀ
c = I .

We further introduce the associated quantities, that will be used throughout the proof.

ac = ∥Qc∥−1/2 , η̃∞,c = (1/2)∥Āc∥−2
Q

c

∥Qc∥−1 ∧ ∥Qc∥ , ã = min
c∈[N ]

ac , η̃∞ = min
c∈[N ]

η̃∞,c ,

κQ,c = λmax(Qc)/λmin(Qc) , bQ,c = 2
√
κQ,c CA , κQ = max

c∈[N ]
κQ,c , bQ = max

c∈[N ]
bQ,c .

In our statement of A2 we also required that each of the chains (Zc
k)k∈N starts from its invariant

distribution πc. This requirement can be removed, and extension to the setting of arbitrary initial
distribution can be done based on the maximal exact coupling argument [13, Lemma 19.3.6 and
Theorem 19 3.9]. However, to better highlight the main ingredients of the proof, we prefer to keep
stationary assumption.

Proof of Corollary 4.5. Assume that the total number of local iterations, that is, TH , satisfies

TH = 2qm+ k , 0 ≤ k < 2q , (29)

where q ∈ N is a parameter that will be determined later. With Lemma B.4 we construct for each
c ∈ [N ] a sequence of random variables {Z̃⋆,c

2jq}j=1,...,m, which are i.i.d. with the same distribution
πc. Moreover, Lemma B.4 together with union bound imply

P(∃j ∈ [m], c ∈ [N ] : Z̃⋆,c
2jq ̸= Zc

2jq) ≤ mN(1/4)⌊q/τmix

⌋ .

The bound (29) implies that m ≤ TH/(2q). Thus, for any δ ∈ (0, 1), in order to guarantee that

P(∃j ∈ [m], c ∈ [N ] : Z̃⋆,c
2jq ̸= Zc

2jq) ≤ δ
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Algorithm 3 FedLSA with Markovian data
Input: η > 0, θ0 ∈ Rd, T,N,H > 0, time window q ∈ N.
for t = 0 to T − 1 do

Initialize θt,0 = θt
for c = 1 to N do

for h = 1 to H do
Receive Zc

t,h, then check the condition:
if h = qj, j ∈ N then

Compute local update

θct,j = θct,j−1 − η(Ac(Zc
t,qj)− bc(Zc

t,qj))

else
Skip current update

Average: θt+1 = 1
N

∑N
c=1 θ

c
t,H (28)

it is enough to ensure that

mN(1/4)⌊q/τmix

⌋ ≤ 2NHT (1/4)q/τmix

q
≤ δ . (30)

Inequality (30) holds for fixed δ ∈ (0, 1), if we choose

q =

⌈
τmix log (2NHT/δ)

log 4

⌉
. (31)

Thus, setting the block size q as in (31), we get that for total number iterations TH satisfying (29),
with probability at least 1− δ the results of Algorithm 3 are indistinguishable from the result of its
counterpart Algorithm 1 applied with number of local steps H/q. We will denote the iterates of the
latter algorithm applied with number of local steps h ∈ N as θ(ind),h

T in order to make explicit the
dependence of global parameter upon the number of local iterates. We further denote the event, where
θ
(ind),H/q
T = θT , by Aδ . Thus, setting

H

q
= O

(
ṽheter ∨ σ̄ε

Ec[∥θc⋆ − θ⋆∥]
1

Nϵ

)
, (32)

similarly to the way the number of local updates is set in Corollary 4.3, we obtain that

E[∥θT − θ⋆∥2] = E[∥θT − θ⋆∥21A
δ

] + E[∥θT − θ⋆∥21A
δ

] (33)

= E[∥θ(ind),H/q
T − θ⋆∥21A

δ

] + E[∥θT − θ⋆∥21A
δ

]

≤ ϵ2 +
√
δE1/2[∥θT − θ⋆∥4] ,

where in the last inequality we relied on the special choice of H/q from (32) together with Holder’s
inequality. Now it remains to bound E[∥θT − θ⋆∥4] and tune the parameter δ appropriately. Note that
within this bound we can not rely on the estimates based on independent observations {Z̃⋆,c

2jq}j=1,...,m.
At the same time, note that the skeleton Zc

2jq, j ≥ 0 for any c ∈ [N ] is a Markov chain with the
Markov kernel Pq

c and mixing time τmix = 1. This allows us to write a simple upper bound on
E[∥θT − θ⋆∥4] based on the stability result for product of random matrices provided in [14]. Indeed,
applying the result of Lemma B.1, we get

E1/2[∥θT − θ⋆∥4] ≤
(
∥θ0 − θ⋆∥ +

2T

N

N∑
c=1

∥θc⋆ − θ⋆∥ + ηTH∥ε∥∞
)2

,

and the corresponding bound (33) can be rewritten as

E[∥θT − θ⋆∥2] ≤ ϵ2 +
√
δ

(
∥θ0 − θ⋆∥ +

2T

N

N∑
c=1

∥θ0 − θ⋆∥ + ηTH∥ε∥∞
)2

.
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Thus, setting

δ =
ϵ4

H4T 4
(
∥θ0 − θ⋆∥ + 2

N

∑N
c=1 ∥θc⋆ − θ⋆∥ + η∥ε∥∞

)2 ,
we obtain that the corresponding bound for block size q scales as

q =

⌈
τmix log (2NHT/δ)

log 4

⌉
≲
⌈
τmix logH log

(
NT 5∆corr/ϵ

2
)⌉

,

where we write ≲ for inequality up to an absolute constant and set

∆corr =

(
∥θ0 − θ⋆∥ +

2

N

N∑
c=1

∥θc⋆ − θ⋆∥ + η∥ε∥∞
)2

.

Combination of the above bounds yields that
E[∥θT − θ⋆∥2] ≤ 2ϵ2 ,

and the proof is completed.

Lemma B.1. Assume A2 and A3. Then, for the iterates θt of Algorithm 3 run with parameters η,H, q
satisfying the relation

ηH

q
≥ 12

ã

(
2 +

log d

2
+

log κQ
2

)
, (34)

it holds for any probability distribution ξ on (Z,Z) and any t ∈ N, that

E1/4
ξ [∥θt − θ⋆∥4] ≤ ∥θ0 − θ⋆∥ +

2t

N

N∑
c=1

∥θc⋆ − θ⋆∥ + ηtH∥ε∥∞ .

Proof. First we write a counterpart of the error decomposition (12) - (13) for the LSA error of the
subsampled iterates of Algorithm 3. Namely, we write that

θt − θ⋆ = Γ̄
(η,q)
t,H {θt−1 − θ⋆}+ κt,H + ηφ̄t,H , (35)

where we have defined

Γ
(c,η,q)
t,m:n =

n∏
h=m

(I− ηA(Zc
t,qh)) , 1 ≤ m ≤ n ≤ H , (36)

Γ̄
(η,q)
t,H = 1

N

∑N
c=1 Γ

(c,η,q)
t,1:H ,

κt,H = 1
N

∑N
c=1(I− Γ

(c,η,q)
t,1:H ){θc⋆ − θ⋆} ,

φ̄t,H = − 1
N

∑N
c=1

∑H
h=1 Γ

(c,η,q)
t,h+1:Hε

c(Zc
t,qh) .

For notation simplicity we have removed the dependence of κt,H on the subsampling parameter q ∈ N.
Thus, applying the result of [14, Proposition 7] (see also Lemma B.2) together with Minkowski’s
inequality, we obtain from the previous bound that for any distribution ξ on (Z,Z),

E1/4
ξ [∥Γ(c,η,q)

t,1:H ∥4] ≤ √
κQ,ce

2d1/2e−ηãH/(12q) ≤ 1 ,

provided that the ratio ηH/q satisfies the relation (34). This bound yields that

E1/4
ξ [∥Γ̄(η,q)

t,H ∥4] ≤ 1 ,

E1/4
ξ [∥κt,H∥4] ≤ 2

N

N∑
c=1

∥θc⋆ − θ⋆∥ ,

E1/4
ξ [∥φ̄t,H∥4] ≤ H∥ε∥∞ .

Hence, we obtain by running the recurrence (35), that

E1/4
ξ [∥θt − θ⋆∥4] ≤ ∥θ0 − θ⋆∥ +

2t

N

N∑
c=1

∥θc⋆ − θ⋆∥ + ηtH∥ε∥∞ ,

and the statement follows.
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Stability results on product of random matrices. The results of this paragraph provides the
stability bound for the product of random matrices Γ(c,η,q)

t,m:n defined in (36). Define the quantities

η(M)
∞ =

[
η̃∞ ∧ κ−1/2

Q C−1
A ∧ ã/(6eκQ CA)

]
× ⌈8κ1/2Q CA /ã⌉

−1
∧ c

(M)
A /2 , (37)

CΓ = 4(κ
1/2
Q CA +ã/6)2 × ⌈8κ1/2Q CA /ã⌉ , c

(M)
A = ã/{12CΓ} .

Then the following result holds:

Lemma B.2 (Proposition 7 from [14], simplified). Assume A2 and A3. Then, for any c ∈ [N ], t ∈ N,

step size η ∈
(
0, η

(M)
∞

]
, any n ∈ N, q ≥ τmix, and probability distribution ξ on (Z,Z), it holds

E1/4
ξ

[
∥Γ(c,η,q)

t,m:n ∥4
]
≤ √

κQ,ce
2d1/2e−ãη(n−m)/12 .

Proof. It is enough to note that, since q ≥ τmix, and we consider q-skeleton of each Markov kernels
Pc, each of the subsampled kernels Pq

c will have a mixing time 1.

Berbee’s lemma construction. We outline some preliminaries associated with the Berbee’s cou-
pling lemma [3] construction. We recall first a definition of the β-mixing coefficient. Consider a
probability space (Ω,F ,P) equipped with σ-fields F and G such that F ⊆ F ,G ⊆ F . Then the
β-mixing coefficient of F and G is defined as

β(F,G) = (1/2) sup
∑
i∈I

∑
j∈J

|P(Ai ∩ Bj)− P(Ai)P(Bj)| ,

and the supremum is taken over all pairs of partitions {Ai}i∈I ∈ FI and {Bj}j∈J ∈ GJ of Z̃N with
finite I and J.

Now let (Z, dZ) be a Polish space endowed with its Borel σ-field, denoted by Z , and let (ZN,Z⊗N)
be the corresponding canonical space. Consider a Markov kernel P on Z×Z and denote by Pξ and
Eξ the corresponding probability distribution and expectation with initial distribution ξ. Without
loss of generality, we assume that (Zk)k∈N is the associated canonical process. By construction, for
any A ∈ Z , Pξ (Zk ∈ A |Zk−1) = P(Zk−1,A), Pξ-a.s. In the case ξ = δz , z ∈ Z, Pξ and Eξ are
denoted by Pz and Ez , respectively. We now make an assumption about the mixing properties of P:
UGE 1. The Markov kernel P admits π as an invariant distribution and is uniformly geometrically
ergodic, that is, there exists τmix ∈ N such that for all k ∈ N,

∆(Pk) = sup
z,z ′∈Z

(1/2)∥Pk(z, ·)− Pk(z′, ·)∥TV ≤ (1/4)⌊k/τmix

⌋ .

For q ∈ N, k ∈ N, and the Markov chain {Zn}n∈N satisfying the uniform geometric ergodicity
constraint UGE 1, we define the σ-algebras Fk = σ(Zℓ, ℓ ≤ k) and F+

k+q = σ(Zℓ, ℓ ≥ k + q). In
such a scenario, using [13, Theorem 3.3], the respective β-mixing coefficient of Fk and F+

k+q is
bounded by

β(q) ≡ β(Fk,F+
k+q) ≤ ∆(Pk) = (1/4)⌊q/τmix

⌋ .

We rely on the following useful version of Berbee’s coupling lemma [3], which is due to [10,
Lemma 4.1]:

Theorem B.3 (Lemma 4.1 in [10]). Let X and Y be two random variables taking their values in
Borel spaces X and Y , respectively, and let U be a random variable with uniform distribution on
[0; 1] that is independent of (X,Y ). There exists a random variable Y ⋆ = f(X,Y, U) where f is a
measurable function from X × Y × [0, 1] to Y , such that:

1. Y ⋆ is independent of X and has the same distribution as Y ;

2. P(Y ⋆ ̸= Y ) = β(σ(X), σ(Y )).
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Let us now consider the extended measurable space Z̃N = ZN × [0, 1], equipped with the σ-field
Z̃N = Z⊗N ⊗ B([0, 1]). For each probability measure ξ on (Z,Z), we consider the probability
measure P̃ξ = Pξ ⊗Unif([0, 1]) and denote by Ẽξ the corresponding expected value. Finally, we
denote by (Z̃k)k∈N the canonical process Z̃k : ((zi)i∈N, u) ∈ Z̃N 7→ zk and U : ((zi)i∈N, u) ∈ Z̃N 7→
u. Under P̃ξ, {Z̃k}k∈N is by construction a Markov chain with initial distribution ξ and Markov
kernel P independent of U . Moreover, the distribution of U under P̃ξ is uniform over [0, 1]. Using
the above construction, we obtain a useful blocking lemma, which is also stated in [10].
Lemma B.4. Assume UGE 1, let q ∈ N and ξ be a probability measure on (Z,Z). Then, there exists
a random process (Z̃⋆

k)k∈N defined on (Z̃N, Z̃N, P̃ξ) such that for any k ∈ N, it holds:

1. For any i, vector V ⋆
i = (Z̃⋆

iq+1, . . . , Z̃
⋆
iq+q) has the same distribution as Vi =

(Ziq+1, . . . , Ziq+q) under P̃ξ;

2. The sequences (V ⋆
2i)i≥0 and (V ⋆

2i+1)i≥0 are i.i.d. ;

3. For any i, P̃ξ(Vi ̸= V ⋆
i ) ≤ β(q);

Proof. The proof follows from Theorem B.3 and the relations between UGE 1 and β-mixing coeffi-
cient, see e.g. [13, Theorem 3.3].

C Federated Linear Stochastic Approximation with Control Variates

C.1 Technical Lemmas

Lemma C.1. Assume A1 and A3. Recall C(t,c)
η,H =

∑H
h=1 Γ

(c,η)
t,h+1:H Then it holds that

E
[∥∥∥I− 1

H
C

(t,c)
η,H

∥∥∥2] ≤ η2H2

4

{
C2

A +∥Σc
Ã
∥
}
.

Proof. We rewrite I− C
(t,c)
η,H using Lemma D.1 as

I− 1

H
C

(t,c)
η,H =

1

H

H∑
h=1

{
I− Γ

(c,η)
t,h+1:H

}
=

η

H

H∑
h=1

H∑
ℓ=h+1

Ac(Zc
t,ℓ)Γ

(c,η)
t,ℓ+1:H ,

which can then be decomposed as

I− 1

H
C

(t,c)
η,H =

η

H

H∑
h=1

H∑
ℓ=h+1

ĀcΓ
(c,η)
t,ℓ+1:H +

η

H

H∑
h=1

H∑
ℓ=h+1

{
Ac(Zc

t,ℓ)− Āc
}
Γ
(c,η)
t,ℓ+1:H .

Minkowski’s inequality and A3 give E1/2
[
∥ η
H

∑H
h=1

∑H
ℓ=h+1 Ā

cΓ
(c,η)
t,ℓ+1:H∥2

]
≤ ηH

2 ∥Āc∥. The
second term has a reverse martingale structure, and we thus have

E
[∥∥∥I− 1

H
C

(t,c)
η,H

∥∥∥2] ≤ η2H2

4

{
C2

A +∥Σc
Ã
∥
}
,

which is the result of the lemma.

Lemma C.2. Assume A1 and A3. Recall C̃c
t+1 =

∑H
h=1

{
Γ
(c,η)
t,h+1:H − (I− Āc)H−h

}
. Then we

have

E
[
∥C̃c

t+1∥2
]
≤ η2H4

{
C2

A +∥Σc
Ã
∥
}
.

Proof. We start by recalling the definition of C̃c
t+1, that is

C̃c
t+1 = Cc

t+1 −
1

N

N∑
c=1

E[C c̃
t+1] =

1

N

N∑
c̃=1

H∑
h=1

{
Γ
(c,η)
t,h+1:H − (I− Āc)H−h

}
.
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Using Lemma D.1, we have

C̃c
t+1 =

η

N

N∑
c̃=1

H∑
h=1

H∑
ℓ=h

Γ
(c,η)
t,h+1:ℓ

{
Ac(Zc

t,ℓ)− Āc̃
}
(I− Āc)H−ℓ−1 .

By Minkowski’s inequality and Assumption A3, we obtain

E1/2
[
∥C̃c

t+1∥2
]
=

η

N

N∑
c̃=1

H∑
h=1

H∑
ℓ=h

E1/2
[
∥Ac(Zc

t,ℓ)− Āc̃∥2
]
.

Now, we notice that

E
[
∥Ac(Zc

t,ℓ)− Āc̃∥2
]
= E

[
∥Ac(Zc

t,ℓ)− Āc∥2
]
+ ∥Āc − Āc̃∥2 ≤ C2

A +∥Σc
Ã
∥ ,

and the result of the lemma follows.

Lemma C.3. Assume A1 and A3. Recall C(t,c)
η,H =

∑H
h=1 Γ

(c,η)
t,h+1:H then

E[∥Γ̃c
t+1∥] ≤ 2ηH

{
C2

A +∥Σc
Ã
∥
}
.

Proof. Denote Ac
h = Ac(Zc

t+1,h),

Γ̃c
t+1 = Γt+1 − Γc

t+1

=
1

N

N∑
c′=1

{
H∏

h=1

(I− ηAc′

h)−
H∏

h=1

(I− ηAc
h)

}
.

Using Lemma D.1, we can rewrite

Γ̃c
t+1 =

η

N

N∑
c′=1

H∑
k=1

{
k−1∏
h=1

(I− ηAc′

h)

}
{Ac

k −Ac′

k}
{

H∏
h=k+1

(I− ηAc
h)

}
.

Using triangle inequality and the fact that Ac
h’s are independent from each other, we have

E[∥Γ̃c
t+1∥] =

η

N

N∑
c′=1

H∑
k=1

E

[∥∥∥ k−1∏
h=1

(I− ηAc′

h)
∥∥∥]E[∥∥∥Ac

k −Ac′

k

∥∥∥]E[∥∥∥ H∏
h=k+1

(I− ηAc
h)
∥∥∥] .

By triangle inequality, and using the definition of CA and ∥Σc
Ã
∥, we have E[∥Ac

k − Ac′

k∥] ≤
E[∥Ac

k − Āc∥ + ∥Āc − Āc′∥ + ∥Ac′

k − Āc′∥] ≤ 2CA +2∥Σc
Ã
∥. Therefore, we obtain

E[∥Γ̃c
t+1∥] ≤ 2η

H∑
k=1

(1− ηa)H−1
(
CA +∥Σc

Ã
∥
)
,

and the result follows.

C.2 Proof

The linear structure of SCAFFLSA’s updates allow to decompose the updates between a transient
term, and a fluctuation term. To materialize this, we define the following virtual parameters

θ̌0 = θ0 , θ̌c0,0 = θ̌0 , and ξ̌c0 = ξc0 , for all c ∈ {1, . . . , N} .
These parameters are updated similarly to θt’s and ξct ’s, although without the last fluctuation term.
For the virtual parameter θ̌, the update is similar to (8), as follows

θ̌ct,h − θ⋆ = (I− ηAc(Zc
t,h))(θ̌

c
t,h−1 − θ⋆) + η(ξct − ξc⋆) ,

which gives, after H local updates,

θ̌ct,H − θ⋆ = Γc
t+1(θ̌

c
t − θ⋆) + ηCc

t+1(ξ
c
t − ξc⋆) ,
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where we recall Γc
t+1 =

∏H
h=1(I− ηA(Zc

t,h)) and Cc
t+1 =

∑H
h=1 Γ

(c,η)
t,h+1:H . The virtual parameters

obtained after H local updates are then aggregated as

θ̌t+1 =
1

N

N∑
c=1

θ̌ct,H .

This is then used to define the virtual control variates, similarly to (9),

ξ̌ct+1 = ξ̌ct +
1

ηH
(θ̌t+1 − θ̌ct,H) .

These updates can be summarized over one block, which gives

θ̌t+1 − θ̌⋆ = Γt+1(θ̌t − θ⋆) +
η

N

N∑
c=1

Cc
t+1(ξ̌

c
t − ξc⋆) ,

ξ̌ct+1 − ξc⋆ =
1

ηH
(Γt+1 − Γc

t+1)(θ̌t − θ⋆) +
(
I− 1

H
Cc

t+1

)
(ξ̌ct − ξc⋆) +

1

HN

N∑
c̃=1

C c̃
t+1(ξ̌

c̃
t − ξc̃⋆) .

The analysis of SCAFFLSA can then be decomposed into (i) analysis of the "transient" virtual
iterates θ̌t’s and ξ̌ct ’s, and (ii) analysis of the fluctuations θt − θ̌t and ξct − ξ̌ct .

Analysis of the Transient Term. First, we analyze the convergence of the virtual variables θ̌t and
ξ̌ct for t ≥ 0 and c ∈ {1, . . . , N}. Consider the Lyapunov function,

ψt = ∥θ̌t − θ⋆∥2 +
η2H2

N

N∑
c=1

∥ξ̌ct − ξc⋆∥2 ,

which is naturally defined as the error in θ⋆ estimation using the virtual iterates, on communication
rounds, and the average error on the virtual control variates.

Theorem C.4. Assume A1 and A3. Let η,H such that ηaH ≤ 1, and H ≤ a
2η{C2

A

+∥Σc

ε

∥} , and set
ξc0 = 0 for all c ∈ [N ]. Then, the sequence (ψt)t∈N satisfies, for all t ≥ 0,

E[ψt] ≤
(
1− ηaH

4

)t

E[ψ0] ,

where ψ0 = ∥θ0 − θ⋆∥2 + η 2H 2

N

∑N
c=1 ∥Āc(θc⋆ − θ⋆)∥2.

Proof. Expression of the Lyapunov function. Since the sum virtual control variates is
∑N

t=1 ξ̌
c
t =∑N

t=1 ξ̌⋆
c

= 0, we have θ̌t+1 = 1
N

∑N
c=1 θ̌

c
t,H = 1

N

∑N
c=1 θ̌

c
t,H − ηH(ξct − ξc⋆). Applying

Lemma D.3, we obtain

∥θ̌t+1 − θ⋆∥2 = ∥ 1

N

N∑
c=1

θ̌ct,H − θ⋆ − ηH(ξ̌ct − ξc⋆)∥2

=
1

N

N∑
c=1

∥θ̌ct,H − θ⋆ − ηH(ξ̌ct − ξc⋆)∥2 −
1

N

N∑
c=1

∥θ̌t+1 − θ̌ct,H + ηH(ξ̌ct − ξc⋆)∥2

=
1

N

N∑
c=1

∥θ̌ct,H − θ⋆ − ηH(ξ̌ct − ξc⋆)∥2 −
η2H2

N

N∑
c=1

∥ξ̌ct+1 − ξc⋆∥2 ,

since ξ̌ct+1 = ξ̌ct +
1

ηH (θ̌t+1 − θ̌ct,H). Adding η 2H 2

N

∑N
c=1 ∥ξ̌ct+1 − ξc⋆∥2 on both sides, we obtain

ψt+1 =
1

N

N∑
c=1

∥θ̌ct,H − θ⋆ − ηH(ξ̌ct − ξc⋆)∥2 , (38)
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where we defined Cc
η,H =

∑H
h=1 Γ

(c,η)
t,h+1:H . In the following, we will use the filtration of all events

up to step t, Ft := σ(Zc
s,h, 0 ≤ s ≤ t, 0 ≤ h ≤ H, 1 ≤ c ≤ N).

Using Young’s inequality, and Assumption A3, we can bound

E[∥θ̌ct,H − θ⋆ − ηH(ξ̌ct − ξc⋆)∥2] = ∥Γ(c,η)
t,1:H(θ̌t − θ⋆)− ηH(I− 1

HC
c
η,H)(ξ̌ct − ξc⋆)∥2

≤ E[(1 + α0)∥Γ(c,η)
t,1:H(θ̌t − θ⋆)∥2] + (1 + α−1

0 )η2H2E[∥(I− 1
HC

c
η,H)(ξ̌ct − ξc⋆)∥2]

≤ (1 + α0)(1− ηa)2HE[∥θ̌t − θ⋆∥2] + (1 + α−1
0 )η2H2E[∥(I− 1

HC
c
η,H)(ξ̌ct − ξc⋆)∥2] .

Using Lemma C.1, we have

E[∥(I− 1
HC

c
η,H)(ξ̌ct − ξc⋆)∥2] ≤

η2H2

4

{
C2

A +∥Σc
Ã
∥
}
E[∥ξ̌ct − ξc⋆∥2] .

We thus obtain, for H such that ηaH ≤ 1, and after setting α0 = ηaH
2 and using the facts that

(1− ηaH)(1 + α0) ≤ 1− ηaH
2 and 1 + α−1

0 ≤ 2α−1
0 ,

E[∥θ̌ct,H − θ⋆ − ηH(ξ̌ct − ξc⋆)∥2]

≤
(
1− ηaH

2

)
E[∥θ̌t − θ⋆∥2] +

1

ηaH

{
C2

A +∥Σc
Ã
∥
}
η4H4E[∥ξct − ξc⋆∥2]

=

(
1− ηaH

2

)
E[∥θ̌t − θ⋆∥2] +

ηH

a

{
C2

A +∥Σc
ε∥
}
η2H2E[∥ξct − ξc⋆∥2] .

Then, since ηH
a

{
C2

A +∥Σc
ε∥
}
≤ 1

2 , we obtain

E[∥θ̌ct,H − θ⋆ − ηH(ξ̌ct − ξc⋆)∥2] ≤
(
1− ηaH

2

)
E
[
∥θ̌t − θ⋆∥2 + η2H2∥ξct − ξc⋆∥2

]
, (39)

and the result follows by plugging (39) back in (38).

Analysis of the Fluctuations. To study the fluctuations, we define the following quantities,

θ̃t = θt − θ̌t , and ξ̃ct = ξct − ξ̌ct , for t ≥ 0 , and c ∈ {1, . . . , N} .
Our analysis is based on a careful study of the recurrence between variances and covariances of
parameters and control variates. We thus start by deriving recurrence properties on these quantities.
From the update of θt, we have,

θt+1 − θ⋆ = Γt+1(θt − θ⋆) +
η

N

N∑
c̃=1

C̃ c̃
t+1(ξ

c̃
t − ξc̃⋆)− ηε̄t+1

= θ̌t+1 − θ⋆ + Γt+1θ̃t +
η

N

N∑
c̃=1

C̃ c̃
t+1ξ̃

c̃
t − ηε̄t+1 ,

which can be rewritten as a recursive update of the fluctuations

θ̃t+1 = Γt+1θ̃t +
η

N

N∑
c̃=1

C̃ c̃
t+1ξ̃

c̃
t − ηε̄t+1 . (40)

Similarly, we have, for the fluctuations of the control variates

ξ̃ct+1 =
1

ηH
(Γt+1 − Γc

t+1)θ̃t +
(
I− 1

H
Cc

t+1

)
ξ̃ct +

1

NH

N∑
c̃=1

C̃ c̃
t+1ξ̃

c̃
t −

1

H
(ε̄t+1 − εct+1) .

Remark that, for all t ≥ 0, θ̃t and ξ̃ct ’s are sums of (random) linear operations computed on zero-mean
vectors, that are independent from these linear operations. Thus, for all t ≥ 0 and all c ∈ {1, . . . , N}
we have

E[θ̃t] = 0 , E[ξ̃ct ] = 0 . (41)
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We now aim at recursively finding a sequence of upper bounds {b(θ,θ)t , b(θ,ξ), b=, b̸=}t≥0 such that,
for all t ≥ 0, c, c′ ∈ {1, . . . , N} such that c ̸= c′,∥∥∥E [(θ̃t)(θ̃t)⊤] ∥∥∥ ≤ b

(θ,θ)
t ,∥∥∥E [(θ̃t)(ξ̃ct )⊤] ∥∥∥ ≤ b

(θ,ξ)
t and

∥∥∥E [(ξ̃ct )(θ̃t)⊤] ∥∥∥ ≤ b
(θ,ξ)
t ,∥∥∥E [(ξ̃ct )(ξ̃ct )⊤] ∥∥∥ ≤ b ̸=t ,∥∥∥E [(ξ̃ct )(ξ̃c′

t )
⊤
] ∥∥∥ ≤ b=t .

(Initialization.) For t = 0, nothing is random so the fluctuations are zero, and b(θ,θ)0 = b
(θ,ξ)
0 = b= =

b ̸= = 0. We also study the first iteration of SCAFFLSA. In the following lemma, we give upper
bounds on the variances and covariances of the parameters obtained after one iteration.

Lemma C.5. Assume A1 and A3, then the first iterate of SCAFFLSA satisfy the following inequali-
ties

b
(θ,θ)
1 =

η2H

N
∥Σω∥ , b=1 =

N − 1

NH
∥Σc

ω∥ , b
(θ,ξ)
1 =

2η

N
∥Σω∥ , b̸=1 =

3

NH
∥Σω∥ .

Proof. (Value of b(θ,θ)1 .) From the definition of θ̃1, we have θ̃1 = η
N

∑N
c=1

∑H
h=1 Γ

(c,η)
1,h+1:Hω

c(Zc
1,h).

By independence of the agents, and since E[Γ(c,η)
1,h+1:Hω(Z

c
1,h)] = 0 for all c ∈ {1, . . . , N}, and for

all h ∈ {0, . . . ,H − 1},

E[(θ̃1)(θ̃1)⊤] =
η2

N2

N∑
c=1

H∑
h=1

E
[
Γ
(c,η)
1,h+1:Hω

c(Zc
1,h)ω

c(Zc
1,h)

⊤(Γ
(c,η)
1,h+1:H)⊤

]
=

η2

N2

N∑
c=1

H∑
h=1

E
[
Γ
(c,η)
1,h+1:HΣc

ω(Γ
(c,η)
1,h+1:H)⊤

]
,

where the second equality comes from the fact that, for all h ∈ {1, . . . ,H − 1}, the matrix Γ
(c,η)
1,h+1:H

and the vector ωc(Zc
1,h) are independent. Triangle inequality, Jensen’s inequality, and definition of

the operator norm then give

∥∥∥E[(θ̃1)(θ̃1)⊤]∥∥∥ ≤ η2

N2

N∑
c=1

H∑
h=1

∥∥∥E [Γ(c,η)
1,h+1:HΣc

ω(Γ
(c,η)
1,h+1:H)⊤

] ∥∥∥
≤ η2

N2

N∑
c=1

H∑
h=1

E
[∥∥∥Γ(c,η)

1,h+1:HΣc
ω(Γ

(c,η)
1,h+1:H)⊤

∥∥∥]
≤ η2

N2

N∑
c=1

H∑
h=1

E
[∥∥∥Γ(c,η)

1,h+1:H

∥∥∥2] ∥Σc
ω∥ .

Assumption A3 ensures that E
[∥∥∥Γ(c,η)

1,h+1:H

∥∥∥2] ≤ 1, and we have

∥∥∥E[(θ̃1)(θ̃1)⊤]∥∥∥ ≤ η2H

N2

N∑
c=1

∥Σc
ω∥ ≤ η2H

N
∥Σω∥ .

(Value of b=1 .) Let c ∈ {1, . . . , N}. The definition of ξ̃c1 gives the following expression for the
fluctuation ξ̃c1 = 1

NH

∑N
c̃=1

∑H
h=1

{
Γ
(c̃,η)
1,h+1:Hω

c̃(Z c̃
1,h)
}
− 1

H

∑H
h=1 Γ

(c,η)
1,h+1:Hω

c(Zc
1,h). Therefore,
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we have

E[(ξ̃c1)(ξ̃c1)⊤] = E

[(
1

NH

N∑
c̃=1

H∑
h=1

{
Γ
(c̃,η)
1,h+1:Hω

c̃(Z c̃
1,h)
}
− 1

H

H∑
h=1

Γ
(c,η)
1,h+1:Hω

c(Zc
1,h)

)

×
(

1

NH

N∑
c̃=1

H∑
h=1

{
(ωc̃(Z c̃

1,h))
⊤(Γ

(c̃,η)
1,h+1:H)⊤

}
− 1

H

H∑
h=1

(ωc(Zc
1,h))

⊤(Γ
(c,η)
1,h+1:H)⊤

)]
.

With similar arguments as above, we have

E[(ξ̃c1)(ξ̃c1)⊤] ≤
1

N2H2

N∑
c̃=1

E
[
Γ
(c̃,η)
1,h+1:HΣc̃

ω(Γ
(c̃,η)
1,h+1:H)⊤

]
+
N − 2

NH2
E
[
Γ
(c,η)
1,h+1:HΣc

ω(Γ
(c,η)
1,h+1:H)⊤

]
.

Assuming N ≥ 2, triangle inequality gives∥∥∥E[(ξ̃c1)(ξ̃c1)⊤]∥∥∥ ≤ 1

NH
∥Σω∥ +

N − 2

NH
∥Σω∥ =

N − 1

NH
∥Σω∥ .

(Value of b(θ,ξ)1 .) For the covariance of ξ̃c1 and θ̃1, we have

E
[
(θ̃1)(ξ̃

c
1)

⊤
]

= E

[(
η

N

N∑
c̃=1

H∑
h=1

Γ
(c̃,η)
1,h+1:Hω

c̃(Z c̃
1,h)

)

×
(

1

NH

N∑
c̃=1

H∑
h=1

(ωc̃(Z c̃
1,h))

⊤(Γ
(c̃,η)
1,h+1:H)⊤ − 1

H

H∑
h=1

(ωc(Zc
1,h))

⊤(Γ
(c,η)
1,h+1:H)⊤

)]

= E

[
η

N2H

N∑
c̃=1

H∑
h=1

Γ
(c̃,η)
1,h+1:HΣc̃

ω(Γ
(c̃,η)
1,h+1:H)⊤

]
− E

[
η

NH

H∑
h=1

Γ
(c,η)
1,h+1:HΣc

ω(Γ
(c,η)
1,h+1:H)⊤

]
.

As a result, we have ∥∥∥E [⟨θ̃1 , ξ̃c1⟩] ∥∥∥ ≤ 2η

N
∥Σω∥ .

(Value of b ̸=.) Similarly to above, for c ̸= c′, we have

E[(ξ̃c1)(ξ̃c
′

1)
⊤] = E

[(
1

NH

N∑
c̃=1

H∑
h=1

{
Γ
(c̃,η)
1,h+1:Hω

c̃(Z c̃
1,h)
}
− 1

H

H∑
h=1

Γ
(c,η)
1,h+1:Hω

c(Zc
1,h)

)

×
(

1

NH

N∑
c̃=1

H∑
h=1

{
(ωc̃(Z c̃

1,h))
⊤(Γ

(c̃,η)
1,h+1:H)⊤

}
− 1

H

H∑
h=1

(ωc′

(Zc′

1,h))
⊤(Γ

(c′,η)
1,h+1:H)⊤

)]

=
1

N2H2

N∑
c̃=1

E
[
Γ
(c̃,η)
1,h+1:HΣc̃

ω(Γ
(c̃,η)
1,h+1:H)⊤

]
− 1

NH2
E
[
Γ
(c,η)
1,h+1:HΣc

ω(Γ
(c,η)
1,h+1:H)⊤

]
− 1

NH2
E
[
Γ
(c′,η)
1,h+1:HΣc′

ω(Γ
(c′,η)
1,h+1:H)⊤

]
.

Which results in the bound ∥∥∥E[(ξ̃c1)(ξ̃c′

1)
⊤]
∥∥∥ ≤ 3

NH
∥Σω∥ .
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Lemma C.6. Let ν > 0, and assume that ηH
{
CA +∥Σc

Ã
∥1/2

}
≤ ν and η2H2

{
C2

A +∥Σc
Ã
∥
}
≤

ν. Then the following inequalities hold for any t ≥ 0,

b
(θ,θ)
t+1 ≤ (1− ηa)

2H
b
(θ,θ)
t + νηHb

(θ,ξ)
t + 2ν

ηH

N
b=t + νη2H2b̸=t +

3η2H

N
∥Σω∥ ,

ηHb
(θ,ξ)
t+1 ≤ 2νb

(θ,θ)
t + 3νηHb

(θ,ξ)
t +

2ν

N
η2H2b=t + 2νη2H2b ̸=t +

2η2H

N
∥Σω∥ ,

η2H2b=t+1 ≤ 2νb
(θ,θ)
t + 3νηHb

(θ,ξ)
t + 4νη2H2b=t + 3νη2H2b ̸=t + η2H∥Σω∥ ,

η2H2b ̸=t+1 ≤ 2νb
(θ,θ)
t + 3νηHb

(θ,ξ)
t +

3ν

N
η2H2b=t + 4νη2H2b ̸=t +

3η2H

N
∥Σω∥ ,

Proof. (Value of b(θ,θ)t+1 .) Replacing θ̃t+1 by its expression from (40), then expanding the expression,
we have

(θ̃t+1)(θ̃t+1)
⊤ =

(
Γt+1θ̃t +

η

N

N∑
c̃=1

C̃ c̃
t+1ξ̃

c̃
t − ηε̄t+1

)(
Γt+1θ̃t +

η

N

N∑
c̃=1

C̃ c̃
t+1ξ̃

c̃
t − ηε̄t+1

)⊤
= Γt+1θ̃tθ̃

⊤
t Γ

⊤
t+1 +

η

N

N∑
c̃=1

Γt+1θ̃t(ξ̃
c̃
t )

⊤(C̃ c̃
t+1)

⊤ +
η

N

N∑
c̃=1

C̃ c̃
t+1ξ̃

c̃
t (θ̃t)

⊤Γ⊤
t+1

+
η2

N2

N∑
c̃=1

N∑
c̃′=1

C̃ c̃
t+1ξ̃

c̃
t (ξ̃

c̃′

t )
⊤(C̃ c̃′

t+1)
⊤ − ηε̄t+1θ̃

⊤
t Γ

⊤
t+1 −

η

N

N∑
c̃=1

ε̄t+1(ξ̃
c̃
t )

⊤(C̃ c̃
t+1)

⊤

− ηΓt+1θ̃t(ε̄t+1)
⊤ − η

N

N∑
c̃=1

(C̃ c̃
t+1)(ξ̃

c̃
t )(ε̄t+1)

⊤ + η2(ε̄t+1)(ε̄t+1)
⊤ .

From the triangle inequality and Jensen’s inequality, we have

∥E[(θ̃t+1)(θ̃t+1)
⊤]∥ ≤ E[∥Γt+1∥2]∥E[θ̃tθ̃⊤t ]∥ +

2η

N

N∑
c̃=1

E1/2[∥C̃ c̃
t+1∥2]∥E[θ̃tξ̃c̃t ⊤]∥

+
η2

N2

N∑
c̃=1

E[∥C̃ c̃
t+1∥2]∥E[ξ̃c̃t ξ̃c̃t ⊤]∥ +

η2

N2

N∑
c̃=1

N∑
c̃′=1
c̃′ ̸=c̃

E1/2[∥C̃ c̃
t+1∥2]E1/2[∥C̃ c̃′

t+1∥2]∥E[ξ̃c̃t ξ̃c̃
′

t
⊤]∥

+ ∥E[ηΓ(fl)
t+1θ̃tε̄

⊤
t+1 + ηε̄t+1θ̃

⊤
t Γ

(fl)
t+1

⊤]∥ +
1

N

N∑
c̃=1

∥E[ηC̃ c̃
t+1ξ̃

c̃
t ε̄

⊤
t+1 + ηε̄t+1ξ̃

c̃
t
⊤C̃ c̃

t+1
⊤]∥

+ η2∥E[ε̄t+1ε̄
⊤
t+1]∥ .

Now, we have from (41) that E[θ̃t] = E[ξ̃ct ] = 0. Thus, we have, for all c ∈ {1, . . . , N},

∥E[ηΓ(fl)
t+1θ̃tε̄

⊤
t+1 + ηε̄t+1θ̃

⊤
t Γ

(fl)
t+1

⊤]∥ = ∥E[ηΓ(fl)
t+1E[θ̃t]ε̄

⊤
t+1 + ηε̄t+1E[θ̃⊤t ]Γ

(fl)
t+1

⊤]∥ = 0 ,

∥E[ηC̃ c̃
t+1ξ̃

c̃
t ε̄

⊤
t+1 + ηε̄t+1ξ̃

c̃
t
⊤C̃ c̃

t+1
⊤]∥ = ∥E[ηC̃ c̃

t+1E[ξ̃c̃t ]ε̄⊤t+1 + ηε̄t+1E[ξ̃c̃t ⊤]C̃ c̃
t+1

⊤]∥ = 0 .

Which results in the following inequality

∥E[(θ̃t+1)(θ̃t+1)
⊤]∥ ≤ E[∥Γt+1∥2]∥E[θ̃tθ̃⊤t ]∥ +

2η

N

N∑
c̃=1

E1/2[∥C̃ c̃
t+1∥2]∥E[θ̃tξ̃c̃t ⊤]∥

+
η2

N2

N∑
c̃=1

E[∥C̃ c̃
t+1∥2]∥E[ξ̃c̃t ξ̃c̃t ⊤]∥ +

η2

N2

N∑
c̃=1

N∑
c̃′=1
c̃′ ̸=c̃

E1/2[∥C̃ c̃
t+1∥2]E1/2[∥C̃ c̃′

t+1∥2]∥E[ξ̃c̃t ξ̃c̃
′

t
⊤]∥

+ 3η2∥E[ε̄t+1ε̄
⊤
t+1]∥ .
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Using Lemma C.2, we obtain

∥E[(θ̃t+1)(θ̃t+1)
⊤]∥ ≤ (1− ηa)2H∥E[θ̃tθ̃⊤t ]∥

+
η

N

N∑
c̃=1

ηH2
{
CA +∥Σc

Ã
∥1/2

}
∥E[θ̃tξ̃c̃t ⊤]∥ +

2η2

N2

N∑
c̃=1

η2H4
{
C2

A +∥Σc
Ã
∥
}
∥E[ξ̃c̃t ξ̃c̃t ⊤]∥

+
η2

N2

N∑
c̃=1

N∑
c̃′=1
c̃′ ̸=c̃

η2H4
{
C2

A +∥Σc
Ã
∥
}
∥E[ξ̃c̃t ξ̃c̃

′

t
⊤]∥ + 3η2∥E[ε̄t+1ε̄

⊤
t+1]∥ .

Assuming ηH
{
CA +∥Σc

Ã
∥1/2

}
≤ ν and η2H2

{
C2

A +∥Σc
Ã
∥
}
≤ ν, we obtain

∥E[(θ̃t+1)(θ̃t+1)
⊤]∥ ≤ (1− ηa)

2H ∥E[θ̃tθ̃⊤t ]∥+ν
ηH

N

N∑
c̃=1

∥E[θ̃tξ̃c̃t ⊤]∥+2ν
η2H2

N2

N∑
c̃=1

∥E[ξ̃c̃t ξ̃c̃t ⊤]∥

+ ν
η2H2

N2

N∑
c̃=1

N∑
c̃′=1
c̃′ ̸=c̃

∥E[ξ̃c̃t ξ̃c̃
′

t
⊤]∥ +

3η2H

N
∥Σω∥ .

This gives our first inequality that links our upper bounds,

b
(θ,θ)
t+1 ≤ (1− ηa)

2H
b
(θ,θ)
t + νηHb

(θ,ξ)
t + 2ν

ηH

N
b=t + νη2H2b ̸=t +

3η2H

N
∥Σω∥ .

(Value of b(θ,ξ)t+1 .) As for b(θ,θ)t+1 , we bound, for c ∈ {1, . . . , N},

θ̃t+1ξ̃
c
t+1

⊤

=
(
Γt+1θ̃t +

η

N

N∑
c̃=1

C̃ c̃
t+1ξ̃

c̃
t − ηε̄t+1

)
×
( 1

ηH
Γ̃c
t+1θ̃t +

(
I− 1

H
Cc

t+1

)
ξ̃ct +

1

NH

N∑
c̃=1

C̃ c̃
t+1ξ̃

c̃
t −

1

H
ε̃ct+1

)⊤
=

1

ηH
Γt+1θ̃tθ̃

⊤
t Γ̃

c
t+1

⊤ +
1

NH

N∑
c̃=1

C̃ c̃
t+1ξ̃

c̃
t θ̃

⊤
t Γ̃

c
t+1

⊤ − 1

H
ε̄t+1θ̃

⊤
t Γ̃

c
t+1

⊤

+ Γt+1θ̃tξ̃
c
t
⊤
(
I− 1

H
Cc

t+1

)⊤
+

η

N

N∑
c̃=1

C̃ c̃
t+1ξ̃

c̃
t ξ̃

c
t
⊤
(
I− 1

H
Cc

t+1

)⊤
− ηε̄t+1ξ̃

c
t
⊤
(
I− 1

H
Cc

t+1

)⊤
+

1

NH

N∑
c̃=1

Γt+1θ̃tξ̃
c̃
t
⊤C̃ c̃

t+1
⊤ +

η

N2H

N∑
c̃=1

N∑
c̃=1

C̃ c̃
t+1ξ̃

c̃
t ξ̃

c̃
t
⊤C̃ c̃

t+1
⊤ − η

NH
ε̄t+1

N∑
c̃=1

ξ̃c̃t
⊤C̃ c̃

t+1
⊤

− 1

H
Γt+1θ̃tε̃

c
t+1

⊤ − η

NH

N∑
c̃=1

C̃ c̃
t+1ξ̃

c̃
t ε̃

c
t+1

⊤ +
η

H
ε̄t+1ε̃

c
t+1

⊤ .

Now we proceed as above by taking the expectation, then the norm, and using the triangle in-

equality. Note that by (41), we have E[ε̄t+1θ̃
⊤
t Γ̃

c
t+1

⊤] = 0, E[ε̄t+1ξ̃
c
t
⊤
(
I − 1

HC
c
t+1

)⊤
] = 0,

E[ε̄t+1

∑N
c̃=1 ξ̃

c̃
t
⊤C̃ c̃

t+1
⊤] = 0, E[Γt+1θ̃tε̃

c
t+1

⊤] = 0, and E[C̃ c̃
t+1ξ̃

c̃
t ε̃

c
t+1

⊤] = 0. After using
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Jensen’s inequality, we obtain

∥E[θ̃t+1ξ̃
c
t+1

⊤]∥ ≤ 1

ηH
E1/2[∥Γ̃c

t+1∥2]∥E[θ̃tθ̃⊤t ]∥ +
1

NH

N∑
c̃=1

E1/2[∥C̃ c̃
t+1∥2]∥E[ξ̃c̃t θ̃⊤t ]∥

+ E1/2

[∥∥∥I− 1

H
Cc

t+1

∥∥∥2] ∥E[θ̃tξ̃ct ⊤]∥ +
η

N

N∑
c̃=1

E
[∥∥∥C̃ c̃

t+1

∥∥∥∥∥∥(I− 1

H
Cc

t+1

)∥∥∥] ∥E[ξ̃c̃t ξ̃ct ⊤]∥

+
1

NH

N∑
c̃=1

E1/2
[
∥C̃ c̃

t+1∥2
]
∥E[θ̃tξ̃c̃t ⊤]∥ +

η

N2H

N∑
c̃=1

N∑
c̃=1

E
[
∥C̃ c̃

t+1∥∥C̃ c̃
t+1

⊤∥
]
∥E[ξ̃c̃t ξ̃c̃t ⊤]∥

+
∥∥∥E [ η

H
ε̄t+1ε̃

c
t+1

⊤
] ∥∥∥ .

Using Lemma C.1, Lemma C.2, and Lemma C.3, we obtain

∥E[θ̃t+1ξ̃
c
t+1

⊤]∥ ≤ 2
{
CA +∥Σc

Ã
∥1/2

}
∥E[θ̃tθ̃⊤t ]∥ +

1

NH

N∑
c̃=1

ηH2
{
CA +∥Σc

Ã
∥1/2

}
∥E[ξ̃c̃t θ̃⊤t ]∥

+
ηH

2

{
CA +∥Σc

Ã
∥1/2

}
∥E[θ̃tξ̃ct ⊤]∥ +

η

N

N∑
c̃=1

ηH2
{
CA +∥Σc

Ã
∥1/2

}
∥E[ξ̃c̃t ξ̃ct ⊤]∥

+
1

NH

N∑
c̃=1

ηH2
{
CA +∥Σc

Ã
∥1/2

}
∥E[θ̃tξ̃c̃t ⊤]∥

+
η

N2H

N∑
c̃=1

N∑
c̃′=1

η2H4
{
C2

A +∥Σc
Ã
∥
}
∥E[ξ̃c̃t ξ̃c̃

′

t
⊤]∥ +

∥∥∥E [ η
H
ε̄t+1ε̃

c
t+1

⊤
] ∥∥∥ ,

where we used the two following inequalities

E
[∥∥∥C̃ c̃

t+1

∥∥∥∥∥∥(I− 1

H
Cc

t+1

)∥∥∥] ≤ E1/2

[∥∥∥C̃ c̃
t+1

∥∥∥2] ≤ ηH2
{
CA +∥Σc

Ã
∥1/2

}
,

E
[
∥C̃ c̃

t+1∥∥C̃ c̃
t+1

⊤∥
]
≤ E

[
1

2
∥C̃ c̃

t+1∥2 +
1

2
∥C̃ c̃

t+1
⊤∥2

]
≤ η2H4

{
C2

A +∥Σc
Ã
∥
}

This leads to the following inequality

ηHb
(θ,ξ)
t+1 ≤ 2ηH

{
CA +∥Σc

Ã
∥1/2

}
b
(θ,θ)
t + 3η2H2

{
CA +∥Σc

Ã
∥1/2

}
b
(θ,ξ)
t

+ η2H2
(
ηH

{
CA +∥Σc

Ã
∥1/2

}
+ η2H2

{
C2

A +∥Σc
Ã
∥
}){ 1

N
b=t +

(
1− 1

N

)
b̸=t

}
+

2η2H

N
∥Σω∥ ,

where we used
∥∥∥E [ η

H ε̄t+1ε̃
c
t+1

⊤] ∥∥∥ ≤ b
(θ,ξ)
1 = 2η

N ∥Σω∥. Assuming ηH
{
CA +∥Σc

Ã
∥1/2

}
≤ ν

and η2H2
{
C2

A +∥Σc
Ã
∥
}
≤ ν, we obtain the following bound

ηHb
(θ,ξ)
t+1 ≤ 2νb

(θ,θ)
t + 3νηHb

(θ,ξ)
t + 2νη2H2

{
1

N
b=t +

(
1− 1

N

)
b̸=t

}
+

2η2H

N
∥Σω∥ .

(Value of b=t+1 and b̸=t+1.) As above, we start by expanding the matrix product,

ξ̃ct+1ξ̃
c′

t+1
⊤ =

( 1

ηH
Γ̃c
t+1θ̃t +

(
I− 1

H
Cc

t+1

)
ξ̃ct +

1

NH

N∑
c̃=1

C̃ c̃
t+1ξ̃

c̃
t −

1

H
ε̃ct+1

)
( 1

ηH
Γ̃c′

t+1θ̃t +
(
I− 1

H
Cc′

t+1

)
ξ̃c

′

t +
1

NH

N∑
c̃′=1

C̃ c̃′

t+1ξ̃
c̃′

t − 1

H
ε̃c

′

t+1

)⊤
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=
1

η2H2
Γ̃c
t+1θ̃tθ̃

⊤
t Γ̃

c′

t+1
⊤ +

1

ηH

(
I− 1

H
Cc

t+1

)
ξ̃ct θ̃

⊤
t Γ̃

c′

t+1
⊤

+
1

ηNH2

N∑
c̃=1

C̃ c̃
t+1ξ̃

c̃
t θ̃

⊤
t Γ̃

c′

t+1
⊤ − 1

ηH2
ε̃ct+1θ̃

⊤
t Γ̃

c′

t+1
⊤

+
1

ηH
Γ̃c
t+1θ̃tξ̃

c′

t
⊤
(
I− 1

H
Cc′

t+1

)⊤
+
(
I− 1

H
Cc

t+1

)
ξ̃ct ξ̃

c′

t
⊤
(
I− 1

H
Cc′

t+1

)⊤
+

1

NH

N∑
c̃=1

C̃ c̃
t+1ξ̃

c̃
t ξ̃

c′

t
⊤
(
I− 1

H
Cc′

t+1

)⊤
− 1

H
ε̃ct+1ξ̃

c′

t
⊤
(
I− 1

H
Cc′

t+1

)⊤
+

1

ηNH2
Γ̃c
t+1θ̃tξ̃

c̃′

t
⊤

N∑
c̃′=1

C̃ c̃′

t+1
⊤ +

1

NH

(
I− 1

H
Cc

t+1

)
ξ̃ct ξ̃

c̃′

t
⊤

N∑
c̃′=1

C̃ c̃′

t+1
⊤

+
1

N2H2

N∑
c̃=1

C̃ c̃
t+1ξ̃

c̃
t ξ̃

c̃′

t
⊤

N∑
c̃′=1

C̃ c̃′

t+1
⊤ − 1

NH2
ε̃ct+1ξ̃

c̃′

t
⊤

N∑
c̃′=1

C̃ c̃′

t+1
⊤

+
1

ηH2
Γ̃c
t+1θ̃tε̃

c′

t+1
⊤ +

1

H

(
I− 1

H
Cc

t+1

)
ξ̃ct ε̃

c′

t+1
⊤

+
1

NH2

N∑
c̃=1

C̃ c̃
t+1ξ̃

c̃
t ε̃

c′

t+1
⊤ − 1

H2
ε̃ct+1ε̃

c′

t+1
⊤ .

Taking the expectation, then the norm, and using triangle inequality and Jensen’s inequality, we obtain

∥E[ξ̃ct+1ξ̃
c′

t+1
⊤]∥

≤ 1

η2H2
E[∥Γ̃c

t+1∥2]∥E[θ̃tθ̃⊤t ]∥ +
1

ηH
E1/2

[∥∥∥I− 1

H
Cc

t+1

∥∥∥2] ∥E[ξ̃ct θ̃⊤t ]∥
+

1

ηNH2

N∑
c̃=1

E1/2
[
∥C̃ c̃

t+1∥2
]
∥E[ξ̃c̃t θ̃⊤t ]∥

+
1

ηH
E1/2

[∥∥∥I− 1

H
Cc′

t+1

∥∥∥2] ∥E[θ̃tξ̃c′

t
⊤]∥ + E

[∥∥∥I− 1

H
Cc

t+1

∥∥∥∥∥∥I− 1

H
Cc′

t+1

∥∥∥] ∥E[ξ̃ct ξ̃c′

t
⊤]∥

+
1

NH

N∑
c̃=1

E
[
∥C̃ c̃

t+1∥
∥∥∥I− 1

H
Cc′

t+1

∥∥∥] ∥E[ξ̃c̃t ξ̃c′

t
⊤]∥

+
1

ηNH2

N∑
c̃′=1

E1/2
[
∥C̃ c̃′

t+1
⊤∥2

]
∥E[θ̃tξ̃c̃

′

t
⊤]∥

+
1

NH

N∑
c̃′=1

E
[∥∥∥I− 1

H
Cc

t+1

∥∥∥∥C̃ c̃′

t+1
⊤∥
]
∥E[ξ̃ct ξ̃c̃

′

t
⊤]∥

+
1

N2H2

N∑
c̃=1

N∑
c̃′=1

E
[
∥C̃ c̃

t+1∥∥C̃ c̃′

t+1
⊤∥
]
∥E[ξ̃c̃t ξ̃c̃

′

t
⊤]∥ + ∥E[ 1

H2
ε̃ct+1ε̃

c′

t+1
⊤]∥ .

We can now use Lemma C.1, Lemma C.2, and Lemma C.3 to obtain the following upper bound

∥E[ξ̃ct+1ξ̃
c′

t+1
⊤]∥

≤ 2
{
C2

A +∥Σc
Ã
∥
}
∥E[θ̃tθ̃⊤t ]∥ +

1

ηH

ηH

2

{
CA +∥Σc

Ã
∥1/2

}
∥E[ξ̃ct θ̃⊤t ]∥

+
1

ηNH2

N∑
c̃=1

ηH2
{
CA +∥Σc

Ã
∥1/2

}
∥E[ξ̃c̃t θ̃⊤t ]∥

+
1

ηH

ηH

2

{
CA +∥Σc

Ã
∥1/2

}
∥E[θ̃tξ̃c

′

t
⊤]∥ +

η2H2

4

{
C2

A +∥Σc
Ã
∥
}
∥E[ξ̃ct ξ̃c

′

t
⊤]∥
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+
1

NH

N∑
c̃=1

ηH2
{
CA +∥Σc

Ã
∥1/2

}
∥E[ξ̃c̃t ξ̃c

′

t
⊤]∥

+
1

ηNH2

N∑
c̃′=1

ηH2
{
CA +∥Σc

Ã
∥1/2

}
∥E[θ̃tξ̃c̃

′

t
⊤]∥

+
1

NH

N∑
c̃′=1

ηH2
{
CA +∥Σc

Ã
∥1/2

}
∥E[ξ̃ct ξ̃c̃

′

t
⊤]∥

+
1

N2H2

N∑
c̃=1

N∑
c̃′=1

η2H4
{
C2

A +∥Σc
Ã
∥
}
∥E[ξ̃c̃t ξ̃c̃

′

t
⊤]∥ +

∥∥∥ 1

H2
E[ε̃ct+1ε̃

c′

t+1
⊤]
∥∥∥ .

This bound can be simplified as

η2H2∥E[ξ̃ct+1ξ̃
c′

t+1
⊤]∥

≤ 2η2H2
{
C2

A +∥Σc
Ã
∥
}
b
(θ,θ)
t +

η2H2

2

{
CA +∥Σc

Ã
∥1/2

}
b
(θ,ξ)
t

+ η2H2
{
CA +∥Σc

Ã
∥1/2

}
b
(θ,ξ)
t

+
η2H2

2

{
CA +∥Σc

Ã
∥1/2

}
b
(θ,ξ)
t +

η4H4

4

{
C2

A +∥Σc
Ã
∥
}
∥E[ξ̃ct ξ̃c

′

t
⊤]∥

+ η3H3
{
CA +∥Σc

Ã
∥1/2

}{ 1

N
b=t +

(
1− 1

N

)
b̸=t

}
+ η2H2

{
CA +∥Σc

Ã
∥1/2

}
b
(θ,ξ)
t + η3H3

{
CA +∥Σc

Ã
∥1/2

}{ 1

N
b=t +

(
1− 1

N

)
b ̸=t

}
+ η4H4

{
C2

A +∥Σc
Ã
∥
}{ 1

N
b=t +

(
1− 1

N

)
b ̸=t

}
+
∥∥∥ 1

H2
E[ε̃ct+1ε̃

c′

t+1
⊤]
∥∥∥ ,

which can be simplified as

η2H2∥E[ξ̃ct+1ξ̃
c′

t+1
⊤]∥ ≤ 2η2H2

{
C2

A +∥Σc
Ã
∥
}
b
(θ,θ)
t + 3ηH

{
CA +∥Σc

Ã
∥1/2

}
ηHb

(θ,ξ)
t

+
(
2ηH

{
CA +∥Σc

Ã
∥1/2

}
+ η2H2

{
C2

A +∥Σc
Ã
∥
})

η2H2

{
1

N
b=t +

(
1− 1

N

)
b ̸=t

}
+
η4H4

4

{
C2

A +∥Σc
Ã
∥
}
∥E[ξ̃ct ξ̃c

′

t
⊤]∥ +

∥∥∥ 1

H2
E[ε̃ct+1ε̃

c′

t+1
⊤]
∥∥∥ .

We now distinguish two cases, when c = c′ and when c ̸= c′. First, let c = c′, we obtain

η2H2b=t+1 ≤ 2η2H2
{
C2

A +∥Σc
Ã
∥
}
b
(θ,θ)
t + 3ηH

{
CA +∥Σc

Ã
∥1/2

}
ηHb

(θ,ξ)
t

+
(
2ηH

{
CA +∥Σc

Ã
∥1/2

}
+ η2H2

{
C2

A +∥Σc
Ã
∥
})

η2H2

{
1

N
b=t +

(
1− 1

N

)
b̸=t

}
+
η2H2

4

{
C2

A +∥Σc
Ã
∥
}
η2H2b=t + η2H∥Σω∥ ,

since when c = c′, we have à∥E[ξ̃ct ξ̃c
′

t
⊤]∥ ≤ b=t and

∥∥∥ 1
H 2

E[ε̃ct+1ε̃
c′

t+1
⊤]
∥∥∥ ≤ b=1 = N−1

NH ∥Σω∥.

Assuming ηH
{
CA +∥Σc

Ã
∥1/2

}
≤ ν and η2H2

{
C2

A +∥Σc
Ã
∥
}
≤ ν, we obtain

η2H2b=t+1 ≤ 2νb
(θ,θ)
t + 3νηHb

(θ,ξ)
t + 4νη2H2b=t + 3νη2H2b ̸=t + η2H∥Σω∥ .

We proceed similarly for c ̸= c′, which gives

η2H2b ̸=t+1 ≤ 2νb
(θ,θ)
t + 3νηHb

(θ,ξ)
t +

3ν

N
η2H2b=t + 4νη2H2b ̸=t +

3η2H

N
∥Σω∥ ,

since, when c ̸= c′, we have ∥E[ξ̃ct ξ̃c
′

t
⊤]∥ ≤ b ̸=t and

∥∥∥ 1
H 2

E[ε̃ct+1ε̃
c′

t+1
⊤]
∥∥∥ ≤ b ̸=1 = 3

NH ∥Σω∥.
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Corollary C.7. Assume that ηH
{
CA +∥Σc

Ã
∥1/2

}
≤ a

240(C
A

+∥Σc

Ã

∥1/2) and η2H2
{
C2

A +∥Σc
Ã
∥
}

≤
a

240(C
A

+∥Σc

Ã

∥1/2) , set ω = min
(
1, a

12(C
A

+∥Σc

Ã

∥1/2)

)
, then it holds that

b
(θ,θ)
t+1 + ωηHb

(θ,ξ)
t+1 +

ωη2H2

N
b=t+1 + ωη2H2b ̸=t+1

≤
(
1− ηaH

2

)
b
(θ,θ)
t +

1

2
ωηHb

(θ,ξ)
t +

1

2

ωη2H2

N
b=t +

1

2
η2H2b ̸=t +

9η2H

N
∥Σω∥ .

Assuming ηaH ≤ 1
2 , we have 1− 1

2 ≤ 1− ηaH
2 . This in turn ensures that

b
(θ,θ)
t+1 + ωηHb

(θ,ξ)
t+1 +

ωη2H2

N
b=t+1 + ωη2H2b̸=t+1

≤
(
1− ηaH

2

){
b
(θ,θ)
t + ωηHb

(θ,ξ)
t +

ωη2H2

N
b=t + η2H2b̸=t

}
+

9η2H

N
∥Σω∥ ,

which gives, for any t ≥ 0,

b
(θ,θ)
t ≤ 18η

Na
∥Σω∥ .

Proof. From Lemma C.6, we have, for any 0 < ω < 1, ν > 0, and assuming that
ηH

{
CA +∥Σc

Ã
∥1/2

}
≤ ν and η2H2

{
C2

A +∥Σc
Ã
∥
}
≤ ν, and since ω ≤ 1,

b
(θ,θ)
t+1 + ωηHb

(θ,ξ)
t+1 +

ωη2H2

N
b=t+1 + ωη2H2b̸=t+1

≤
{
(1− ηa)

2H
+ 6ωηH

{
CA +∥Σc

Ã
∥1/2

}}
b
(θ,θ)
t

+ 10νηHb
(θ,ξ)
t + 10ν

η2H2

N
b=t + 10νη2H2b ̸=t +

9η2H

N
∥Σω∥ .

Now, we choose ω = min
(
1, a

12(C
A

+∥Σc

Ã

∥1/2)

)
and obtain

(1− ηa)
2H

+ 6ωηH
{
CA +∥Σc

Ã
∥1/2

}
≤ 1− ηaH + 6ωηH

{
CA +∥Σc

Ã
∥1/2

}
≤ 1− ηaH

2
.

Additionally, ω ≤ 1, thus 3 + 6ω ≤ 9 and we obtain

b
(θ,θ)
t+1 + ωηHb

(θ,ξ)
t+1 +

ωη2H2

N
b=t+1 + ωη2H2b ̸=t+1

≤
(
1− ηaH

2

)
b
(θ,θ)
t + 10νηHb

(θ,ξ)
t + 10ν

η2H2

N
b=t + 10νη2H2b ̸=t +

9η2H

N
∥Σω∥ .

Choosing ν ≤ ω
20 ≤ a

240(C
A

+∥Σc

Ã

∥1/2) gives the result.

Complete analysis of SCAFFLSA. We can now state our main theorem, which gives an upper
bound on the expected distance between the iterates of SCAFFLSA and the solution θ⋆.

Theorem C.8. Assume A1 and A3. Let η,H such that ηaH ≤ 1, and H ≤ a
240η{C2

A

+∥Σc

ε

∥} , and set
ξc0 = 0 for all c ∈ [N ]. Then, the sequence (ψt)t∈N satisfies, for all t ≥ 0,

E[∥θt − θ⋆∥2] ≤
(
1− ηaH

2

)t {
2∥θ0 − θ⋆∥2 + 2η2H2Ec[∥Āc(θc⋆ − θ⋆)∥2]

}
+

36dη

Na
∥Σω∥ .

Proof. Recall our decomposition θt − θ⋆ = θ̌t − θ⋆ + θ̃. By Young’s inequality, we have

E[∥θt − θ⋆∥2] ≤ 2E[∥θ̌t − θ⋆∥2] + 2E[∥θ̃t∥2] .
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By Theorem C.4, we have E[∥θ̌t − θ⋆∥2] ≤
(
1− ηaH

2

)t
ψ0, and by Corollary C.7, we have

E[∥θ̃t∥2] ≤ db
(θ,θ)
t ≤ 18ηd

Na ∥Σω∥. Combine the two results, we obtain

E[∥θt − θ⋆∥2] ≤
(
1− ηaH

2

)t

2ψ0 +
36dη

Na
∥Σω∥ ,

replacing ψ0 = ∥θ0 − θ⋆∥2 + η 2H 2

N

∑N
c=1 ∥Āc(θc⋆ − θ⋆)∥2 gives the result of the theorem.

Corollary C.9. Under the Assumptions of Theorem C.8, one may set the parameter of SCAFFLSA
to

η = min

(
η∞,

Naϵ2

72d∥Σε∥

)
, H =

1

240
{
C2

A +∥Σ
Ã
∥
} max

(
a

η∞
,
72d∥Σω∥
Nϵ2

)
,

which guarantees E[∥θt − θ⋆∥2] ≤ ϵ2 after a number of communication rounds

T ≥
240

{
C2

A +∥Σ
Ã
∥
}

a2
log
(4∥θ0 − θ⋆∥2 + 4η 2H 2

N

∑N
c=1 ∥Āc(θc⋆ − θ⋆)∥2

ϵ2

)
.

The overall sample complexity of the algorithm is then

TH = max

(
240

η∞a
,
72d∥Σε∥
Na2ϵ2

)
log
(4∥θ0 − θ⋆∥2 + 4η 2H 2

N

∑N
c=1 ∥Āc(θc⋆ − θ⋆)∥2

ϵ2

)
.

Proof. Let ϵ > 0. Starting from Theorem C.8’s upper bound, we have E[∥θt − θ⋆∥2] ≤ ϵ2 whenever(
1− ηaH

2

)t

2ψ0 +
36dη

Na
∥Σω∥ ≤ ϵ2 ,

where ψ0 = ∥θ0 − θ⋆∥2 + η 2H 2

N

∑N
c=1 ∥Āc(θc⋆ − θ⋆)∥2. This gives a first condition 36dη

Na ∥Σω∥ ≤ ϵ2,
which requires

η ≤ Naϵ2

72d∥Σε∥
.

This allows to take any value of H such that H ≤ a
240η{C2

A

+∥Σc

ε

∥} = 72
240Nϵ2{C2

A

+∥Σc

ε

∥} . With such
setting, it remains to set the number of communication T to

T ≥ 1

ηaH
log
(2ψ0

ϵ2
)
=

240
{
C2

A +∥Σc
ε∥
}

a2
log
(4ψ0

ϵ2
)
,

which ensures that
(
1− ηaH

2

)t
2ψ0 ≤ ϵ2

2 .

D Technical proofs

Lemma D.1. For any matrix-valued sequences (Un)n∈N, (Vn)n∈N and for any M ∈ N, it holds that:
M∏
k=1

Uk −
M∏
k=1

Vk =

M∑
k=1

{
k−1∏
j=1

Uj}(Uk − Vk){
M∏

j=k+1

Vj} .

Lemma D.2 (Stability of the deterministic product). Assume A3. Then, for any u ∈ Rd and h ∈ N,

∥(I− ηĀc)hu∥ ≤ (1− ηa)h∥u∥ .

Proof. Since (Zc
t,h)1≤h≤H are i.i.d, we get

E
[
Γ
(c,η)
t,1:hu

]
= E

[∏h
l=1(I− ηA(Zc

t,l))u
]
=
∏h

l=1 E
[
I− ηA(Zc

t,l)
]
u = (I− ηĀc)hu .

The proof then follows from the elementary inequality: for any square-integrable random vector U ,
∥E[U ]∥ ≤ (E[∥U∥2])1/2.
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Lemma D.3. Let (xi)Ni=1, and (yi)
N
i=1 be N vectors of Rd. Denote x̄N = (1/N)

∑N
i=1 xi and

ȳN = (1/N)
∑N

i=1 yi. Then,

N∥x̄N − ȳN∥2 =

N∑
i=1

∥xi − yi∥2 −
N∑
i=1

∥xi − x̄N − (yi − ȳN )∥2

Proof. Define x = [x⊤1 , . . . , x
⊤
N ]⊤ and y = [y⊤1 , . . . , y

⊤
N ]⊤ ∈ RNd. Define by P the orthogonal

projector on
E =

{
x ∈ RNd : x = [x⊤, . . . , x⊤]⊤, x ∈ Rd

}
.

We show that Px = [x̄⊤N , . . . , x̄
⊤
N ]⊤. Note indeed that for any z = [z⊤, . . . , z⊤]⊤ ∈ E , we get (with

a slight abuse of notations, ⟨· , ·⟩ denotes the scalar product in RNd and Rd)

⟨x−Px , z⟩ =
N∑
i=1

{⟨xi , z⟩ − ⟨x̄N , z⟩} = 0 .

The proof follows from Pythagoras identity which shows that

∥Px−Py ∥2 = ∥ x− y ∥2 − ∥(x−Px)− (y−Py ∥2)
.

Lemma D.4. Assume A4. Let Z be a random variable taking values in a state space (Z,Z) with
distribution πc. Set η ≥ 0, then for any vector u ∈ Rd, we have

E[∥(I− ηAc(Z))u∥2] ≤ (1− ηa)∥u∥2 − η( 1
L − η)E[∥Ac(Z)u∥2] .

Proof. First, remark that

∥(I− ηAc(Z))u∥2 = u⊤(I− ηAc(Z))⊤(I− ηAc(Z))u

= u⊤
(
I− 2η( 12 (A

c(Z) +Ac(Z)⊤)) + η2Ac(Z)⊤Ac(Z)
)
u .

Since we have E[ 12 (A
c(Z)+Ac(Z)⊤)] ≽ aI and E[ 12 (A

c(Z)+Ac(Z)⊤)] ≽ 1
LE[A

c(Z)⊤Ac(Z)],
we obtain

E[∥(I− ηAc(Z))u∥2] = u⊤u− 2ηu⊤E[ 12 (A
c(Z) +Ac(Z)⊤)]u+ η2u⊤E[Ac(Z)⊤Ac(Z)]u

≤ ∥u∥2 − ηa∥u∥2 − η
Lu

⊤E[Ac(Z)⊤Ac(Z)]u+ η2u⊤E[Ac(Z)⊤Ac(Z)]u

= (1− ηa)∥u∥2 − η( 1
L − η)u⊤E[Ac(Z)⊤Ac(Z)]u ,

which gives the result.

E TD learning as a federated LSA problem

In this section we specify TD(0) as a particular instance of the LSA algorithm. In the setting of linear
functional approximation the problem of estimating V π(s) reduces to the problem of estimating
θ⋆ ∈ Rd, which can be done via the LSA procedure. For the agent c ∈ [N ] the k-th step randomness
is given by the tuple Zc

k = (Sc
k, A

c
k, S

c
k+1). With slight abuse of notation, we write Ac

t,h instead of
A(Zc

t,h), and bc
t,h instead of b(Zc

t,h). Then the corresponding LSA update equation with constant
step size η can be written as

θct,h = θct,h−1 − η(Ac
t,hθ

c
t,h−1 − bc

t,h) ,

where Ac
t,h and bc

t,h are given by

Ac
t,h = ϕ(Sc

t,h){ϕ(Sc
t,h)− γϕ(Sc

t,h+1)}⊤ ,

bc
t,h = ϕ(Sc

t,h)r
c(Sc

t,h, A
c
t,h) .

(42)

Respective specialisation of FedLSA and SCAFFLSA algorithms to TD learning are stated in
Algorithm 4 and Algorithm 5.
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Algorithm 4 Federated TD(0): FedLSA applied to TD(0) with linear functional approximation
Input: η > 0, θ0 ∈ Rd, T,N,H > 0
for t = 0 to T − 1 do

Initialize θt,0 = θt
for c = 1 to N do

for h = 1 to H do
Receive tuple (Sc

t,h, A
c
t,h, S

c
t,h+1) following TD 1 and perform local update:

θct,h = θct,h−1 − η(Ac
t,hθ

c
t,h−1 − bc

t,h) ,

where Ac
t,h and bc

t,h are given in (42)

Average: θt+1 = 1
N

∑N
c=1 θ

c
t,H (43)

Algorithm 5 SCAFFTD(0): SCAFFLSA applied to TD(0) with linear functional approximation
Input: η > 0, θ0 ∈ Rd, T,N,H > 0
for t = 0 to T − 1 do

Initialize θt,0 = θt
for c = 1 to N do

for h = 1 to H do
Receive tuple (Sc

t,h, A
c
t,h, S

c
t,h+1) following TD 1 and perform local update:

θct,h = θct,h−1 − η(Ac
t,hθ

c
t,h−1 − bc

t,h − ξc) ,

where Ac
t,h and bc

t,h are given in (42)
Average: θt+1 = 1

N

∑N
c=1 θ

c
t,H

Update local control variates: ξct+1 = ξct +
1

ηH (θt+1 − θ̂ct,H).

The corresponding local agent’s system writes as Ācθc⋆ = b̄c, where we have, respectively,

Āc = Es∼µc,s′∼P π(·|s)[ϕ(s){ϕ(s)− γϕ(s′)}⊤]
b̄c = Es∼µc,a∼π(·|s)[ϕ(s)r

c(s, a)] .

The authors of [50] study the corresponding virtual MDP dynamics with P̃ = N−1
∑N

c=1 Pc
MDP,

r̃ = N−1
∑N

c=1 r
c. Next, introducing the invariant distribution of the kernel µ̃ of the averaged state

kernel

P̃π(B|s) = N−1
N∑
c=1

∫
A
Pc

MDP(B|s, a)π(da|s) ,

we have θ̃ as an optimal parameter corresponding to the system Ãθ̃ = b̃. Here

Ã = Es∼µ̃,s′∼P̃
π

(·|s)[ϕ(s){ϕ(s)− γϕ(s′)}⊤]

b̃ = Es∼µ̃,a∼π(·|s)[ϕ(s)r̃(s, a)] .

E.1 Proof of Claim 3.1.

We prove the following inequalities

CA = 1 + γ , (44)

∥Σc
Ã
∥ ≤ 2(1 + γ)2 , (45)

Tr(Σc
ε) ≤ 2(1 + γ)2

(
∥θc⋆∥2 + 1

)
, (46)

a = (1−γ)ν
2 , (47)

η∞ = (1−γ)
4 . (48)
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Table 2: Communication and sample complexity for finding a solution with MSE lower than ϵ2 for
FedLSA, Scaffnew, and SCAFFLSAon the federated TD learning problem. Our analysis is the first
to show that FedLSA exhibits linear speed-up, as well as its variant that reduces bias using control
variates.

Algorithm Communication T Local updates H Sample complexity TH

FedTD [12] O
(

N 2

(1−γ)2ν 2ϵ2

log 1
ϵ

)
1 O

(
N 2

(1−γ)2ν 2ϵ2

log 1
ϵ

)
FedTD (Cor. 4.4) O

(
1

(1−γ)2ν 2ϵ log
1
ϵ

)
O
(

1
Nϵ

)
O
(

1
N(1−γ)2ν 2ϵ2

log 1
ϵ

)
SCAFFTD (Cor. 5.3) O

(
1

(1−γ)2ν 2

log 1
ϵ

)
O
(

1
Nϵ2

)
O
(

1
N(1−γ)2ν 2ϵ2

log 1
ϵ

)

The proof below closely follows [42] (Lemma 7) and [45] (Lemma 1). Everywhere in this subsection
we use a generic notation Ac

1 as an alias for the random matrix Ac
1,1. Now, using TD 3 and (5), we

get
∥Ac

1∥ ≤ (1 + γ)

almost surely, which implies ∥Āc∥ ≤ 1 + γ for any c ∈ [N ], giving (44). This implies, using the
definition of Σc

Ã
, that

∥Σc
Ã
∥ = ∥E[{Ac

1}⊤Ac
1]− {Āc}⊤Āc∥ ≤ 2(1 + γ)2 ,

and the bound (45) follows. Next we observe that

Tr(Σc
ε) = E[∥(Ac

1 − Āc)θc⋆ − (bc
1 − b̄c)∥2]

≤ 2{θc⋆}⊤E[{Ac
1}⊤Ac

1]θ
c
⋆ + 2E[(rs(Ss

0 , A
c
0))

2 Tr(φ(Sc
0)φ

⊤(Sc
0))]

≤ 2(1 + γ)2{θc⋆}⊤Σφ[c]θ
c
⋆ + 2

≤ 2(1 + γ)2
(
∥θc⋆∥2 + 1

)
,

where the latter inequality follows from TD 3, and thus (46) holds. In order to check the last
equation (47), we note first that the bound for a and η∞ readily follows from the ones presented
in [42][Lemma 5] and [42][Lemma 7]. To check assumption A4, note first that, with s ∼ µc, s′ ∼
Pπ(·|s), we have

Ac + {Ac}⊤ = φ(s){φ(s)− γφ(s′)}⊤ + {φ(s)− γφ(s′)}φ(s)⊤

= 2φ(s)φ(s)⊤ − γ{φ(s)φ(s′)⊤ + φ(s′)φ(s)⊤}
⪯ (2 + γ)φ(s)φ(s)⊤ + γφ(s′)φ(s′)⊤ ,

where we additionally used that

−(uu⊤ + vv⊤) ⪯ uv⊤ + vu⊤ ⪯ (uu⊤ + vv⊤)

for any u, v ∈ Rd. Thus, we get that

E[Ac + {Ac}⊤] ⪯ 2(1 + γ)Σc
φ .

The rest of the proof follows from the fact that

E[{Ac
1}⊤Ac

1] ⪰ {Āc}⊤Āc ⪰ (1− γ)2λminΣ
c
φ ,

which holds whenever (48) is satisfied; see e.g. in [30] (Lemma 5) or [45] (Lemma 7).

Based on these results, we instantiate the results summarized in Table 1 to Federated TD learning in
Table 2.

F Analysis of Scaffnew for Federated LSA

To mitigate the bias caused by local training, we may use control variates. We assume in this section
that at each iteration we choose, with probability p, whether agents should communicate or not.
Consider the following algorithm, where for k = 1, . . . , T/p, we compute

θ̂ck = θck−1 − η(Ac(Zc
k)θ

c
k−1 − bc(Zc

k)− ξck−1) ,
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Algorithm 6 "Scaffnew": Stochastic Controlled FedLSA with probabilistic communication
Input: η > 0, θ0, ξc0 ∈ Rd, T,N,H, p > 0
Set: K = T/p
for k = 1 to K do

for c = 1 to N do
Receive Zc

k and perform local update:

θ̂ck = θ̂ck−1 − η(Ac(Zc
k)θ̂

c
k−1 − bc(Zc

k)− ξck−1)Draw Bk ∼ Bernoulli(p)
if Bk = 1 then

Average local iterates: θck = 1
N

∑N
c=1 θ̂

c
k

Update: ξck = ξck−1 +
p
η (θ

c
k − θ̂ck)

else
Set: θck = θ̂ck, ξck = ξck−1

i.e. we update the local parameters with LSA adjusted with a control variate ξck−1. This control
variate is initialized to zero, and updated after each communication round. We draw a Bernoulli
random variable Bk with success probability p and then update the parameter as follows:

θck =

{
θ̄k = 1

N

∑N
c=1 θ̂

c
k Bk = 1 ,

θ̂ck Bk = 0 .

We then update the control variate

ξck = ξck−1 +
p

η
(θck − θ̂ck) .

where we have set ξc0 = 0. We state this algorithm in Algorithm 6.

Note that, for all k ∈ N,
∑N

c=1 ξ
c
t = 0. . We now proceed to the proof, which amounts to

constructing a common Lyapunov function for the sequences {θck}k∈N and {ξck}k∈N. Define the
Lyapunov function,

ψk =
1

N

N∑
c=1

∥θck − θ⋆∥2 +
η2

p2
1

N

N∑
c=1

∥ξck − ξc⋆∥2 ,

where θ⋆ is the solution of Āθ⋆ = b̄, and ξc⋆ = Āc(θ⋆ − θc⋆). A natural measure of heterogeneity is
then given by

∆heter =
1

N

N∑
c=1

∥ξc⋆∥2 =
1

N

N∑
c=1

∥Āc(θc⋆ − θ⋆)∥2 .

To analyze this algorithm, we’ll study the decrease of the expected value of ψk, where the expectation
is over randomness of the communication and the stochastic oracles. This requires a stronger
assumption than the Assumption A3 that we used in Section 4.
A4. There exist constants a, L > 0, such that for any η ∈ (0, 1/L), c ∈ [N ], it holds for Zc

1 ∼ πc,
that

aI ≼ E[ 12 (A
c(Zc

1) +Ac(Zc
1)

⊤)] ≼ 1
LE[A

c(Zc
1)

⊤Ac(Zc
1)] .

This assumption is slightly more restrictive than A3. Indeed, whenever A4 holds, A3 also holds with
the same constant a (see 42, 45). In the case of TD, this assumption holds with L = 1+γ

(1−γ)2ν .

Lemma F.1 (One step progress). Assume A1 and A4. Assume that η ≤ 1
2L . The iterates of the

algorithm described above satisfy

E[ψk] ≤
(
1−min

(
ηa, p2

))
E[ψk−1] +

2η2

N

N∑
c=1

Tr(Σc
ε) .

Proof. Decomposition of the update. Remark that the update can be reformulated as

θ̂ck − θ⋆ = (I− ηAc(Zc
k))(θ

c
k−1 − θ⋆) + η(ξck−1 − ξc⋆)− ηωc(Zc

k) , (49)
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where ωc(z) = Ãc(z)θ⋆ − b̃c(z). This comes from the fact that, for all z,

bc(z) + ξck−1 = b̄c + b̃c(z) + ξck−1

= Ācθc⋆ + b̃c(z) + ξck−1

= Ācθ⋆ + b̃c(z) + ξck−1 − ξc⋆

= Ac(z)θ⋆ − Ãc(z)θ⋆ + b̃c(z) + ξck−1 − ξc⋆
= Ac(z)θ⋆ − ωc(z) + ξck−1 − ξc⋆ .

Expression of communication steps. Using that
∑N

c=1 ξ
c
k−1 = 0 and

∑N
c=1 ξ

c
⋆ = 0, we get

1

N

N∑
c=1

∥θck − θ⋆∥2 = 1{1}(Bk)∥θ̄k − θ⋆∥2 + 1{0}(Bk)
1

N

N∑
c=1

∥θ̂ck − θ⋆∥2

= 1{1}(Bk)∥
1

N

N∑
c=1

(θ̂ck − η

p
ξck−1)−

1

N

N∑
c=1

(θ⋆ −
η

p
ξc⋆)∥2 + 1{0}(Bk)

1

N

N∑
c=1

∥θ̂ck − θ⋆∥2 .

The first term can be upper bounded by using Lemma D.3, which gives

1{1}(Bk)∥θ̄k − θ⋆∥2

= 1{1}(Bk)

{
1

N

N∑
c=1

∥θ̂ck − η

p
(ξck−1 − ξc⋆)− θ⋆∥2 −

1

N

N∑
c=1

∥θ̄k − (θ̂ck − η

p
ξck−1) +

η

p
ξc⋆∥2

}

= 1{1}(Bk)

{
1

N

N∑
c=1

∥θ̂ck − η

p
(ξck−1 − ξc⋆)− θ⋆∥2 −

η2

p2
1

N

N∑
c=1

∥ξck − ξc⋆∥2
}
.

We now expand the first term in the right-hand side of the previous equation. This gives

1

N

N∑
c=1

∥θ̂ck − η

p
(ξck−1 − ξc⋆)− θ⋆∥2

=
1

N

N∑
c=1

{
∥θ̂ck − θ⋆∥2 −

2η

p
⟨ξck−1 − ξc⋆ , θ̂

c
k − θ⋆⟩+

η2

p2
∥ξck−1 − ξc⋆∥2

}
,

which yields

1{1}(Bk) {ψk} = 1{1}(Bk)

{
∥θ̄k − θ⋆∥2 +

η2

p2
1

N

N∑
c=1

∥ξck − ξc⋆∥2
}

= 1{1}(Bk)

{
1

N

N∑
c=1

∥θ̂ck − θ⋆∥2 −
2η

p
⟨ξck−1 − ξc⋆ , θ̂

c
k − θ⋆⟩+

η2

p2
1

N

N∑
c=1

∥ξck−1 − ξc⋆∥2
}
. (50)

On the other hand, note that

1{0}(Bk) {ψk} = 1{0}(Bk)

{
1

N

N∑
c=1

∥θck − θ⋆∥2 +
η2

p2
1

N

N∑
c=1

∥ξck − ξc⋆∥2
}

= 1{0}(Bk)

{
1

N

N∑
c=1

∥θ̂ck − θ⋆∥2 +
η2

p2
1

N

N∑
c=1

∥ξck−1 − ξc⋆∥2
}
. (51)

By combining (51) and (50), we get

ψk =
1

N

N∑
c=1

∥θck − θ⋆∥2 +
η2

p2
1

N

N∑
c=1

∥ξck − ξc⋆∥2

=
1

N

N∑
c=1

∥θ̂ck − θ⋆∥2 − 2
η

p
1{1}(Bk)⟨ξck−1 − ξc⋆ , θ̂

c
k − θ⋆⟩+

η2

p2
1

N

N∑
c=1

∥ξck−1 − ξc⋆∥2 . (52)
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Progress in local updates. We now bound the first term of the sum in (52). For c ∈ [N ], (49) gives

∥θ̂ck − θ⋆∥2 = ∥(I− ηAc(Zc
k))(θ

c
k−1 − θ⋆) + η(ξck−1 − ξc⋆)− ηωc(Zc

k)∥2

= ∥(I− ηAc(Zc
k)){θck − θ⋆} − ηωc(Zc

k)∥2 + η2∥ξck−1 − ξc⋆∥2
+ 2η⟨ξck−1 − ξc⋆ , (I− ηAc(Zc

k)){θck − θ⋆} − ηωc(Zc
k)⟩

= ∥(I− ηAc(Zc
k)){θck − θ⋆} − ηωc(Zc

k))∥2︸ ︷︷ ︸
T

1

+2η⟨ξck−1 − ξc⋆ , θ̂
c
k − θ⋆⟩ − η2∥ξck−1 − ξc⋆∥2 .

(53)

Define the σ-algebra Gk−1 = σ(Bs, s ≤ k − 1, Zc
s , s ≤ k − 1, c ∈ [N ]). We now bound the

conditional expectation of T1
EG

k−1 [T1]

= EG
k−1

[
∥(I− ηAc(Zc

k)){θck − θ⋆}∥2 − 2η⟨(I− ηAc(Zc
k)){θck − θ⋆} , ωc(Zc

k)⟩+ η2∥ωc(Zc
k)∥2

]
= EG

k−1

[
∥(I− ηAc(Zc

k)){θck − θ⋆}∥2 + 2η2⟨Ac(Zc
k){θck − θ⋆} , ωc(Zc

k)⟩+ η2∥ωc(Zc
k)∥2

]
,

where we used the fact that ⟨I , ωc(Zc
k)⟩ = 0. Using Young’s inequality for products, and Lemma D.4

with η ≤ 1
2L and u = θck − θ⋆, we then obtain

EG
k−1 [T1]

≤ EG
k−1

[
∥(I− ηAc(Zc

k)){θck − θ⋆}∥2 + η2∥Ac(Zc
k){θck − θ⋆}∥2 + η2∥ωc(Zc

k)∥2 + η2∥ωc(Zc
k)∥2

]
≤ (1− ηa)∥θck − θ⋆∥2 − η( 1

L − 2η)EG
k−1

[
∥Ac(Zc

k){θck − θ⋆}∥2
]
+ 2η2EG

k−1

[
∥ωc(Zc

k)∥2
]
. (54)

Plugging (54) in (53) and using the assumption η ≤ 1
2L , we obtain

EG
k−1

[
∥θ̂ck − θ⋆∥2 − 2η⟨ξck−1 − ξc⋆ , θ̂

c
k − θ⋆⟩

]
≤ (1− ηa)∥θck − θ⋆∥2 − η2∥ξck−1 − ξc⋆∥2 + 2η2 Tr(Σc

ε) . (55)

Bounding the Lyapunov function. Taking the condtional expectation of (52) and using (55) for
c = 1 to N , we obtain the following bound on the Lyapunov function

EG
k−1 [ψk] =

1

N

N∑
c=1

EG
k−1

[
∥θ̂ck − θ⋆∥2 − 2η⟨ξck−1 − ξc⋆ , θ̂

c
k − θ⋆⟩

]
+
η2

p2
1

N

N∑
c=1

∥ξck−1 − ξc⋆∥2

≤ 1

N

N∑
c=1

[
(1− ηa)∥θck − θ⋆∥2 − η2∥ξck−1 − ξc⋆∥2 + 2η2 Tr(Σc

ε)
]
+
η2

p2
1

N

N∑
c=1

∥ξck−1 − ξc⋆∥2

= (1− ηa)
1

N

N∑
c=1

∥θck − θ⋆∥2 + (1− p2)
η2

p2
1

N

N∑
c=1

∥ξck−1 − ξc⋆∥2 +
2η2

N

N∑
c=1

Tr(Σc
ε) ,

and the result of the Lemma follows from the Tower property.

Theorem F.2 (Convergence rate). Assume A1 and A3(2). Then, for any η ≤ 1
2L and T > 0, it holds

E[ψK ] ≤
(
1− ζ

)K (∥θ0 − θ⋆∥2 +
η2

p2
∆heter

)
+

2η2

ζ

1

N

N∑
c=1

Tr(Σc
ε) ,

where ζ = min
(
ηa, p2

)
.

Corollary F.3 (Iteration complexity). Let ϵ > 0. Set η = min
(

1
2L ,

ϵ2a
8σ̄

ε

)
and p =

√
ηa (so that

ζ = ηa). Then, E[ψK ] ≤ ϵ2 as long as the number of iterations is

K ≥ max

(
2L

a
,
4σ̄ε
ϵ2a2

)
log

(
∥θ0 − θ⋆∥2 +min

(
1

2aL ,
ϵ2

8σ̄
ε

)
∆heter

2ϵ2

)
,

which corresponds to an expected number of communication rounds

T ≥ max

(√
2L

a
,

√
4σ̄ε
ϵ2a2

)
log

(
∥θ0 − θ⋆∥2 +min

(
1

2aL ,
ϵ2

8σ̄
ε

)
∆heter

2ϵ2

)
.
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Theorem F.4 (No linear speedup in the probabilistic communication setting with control variates).
The bounds obtained in Theorem F.2 are minimax optimal up to constants that are independent from
the problem. Precisely, for every (p, η) there exists a FLSA problem such that

E[ψK ] =
(
1− ζ

)K (∥θ0 − θ⋆∥2 +
η2

p2
∆heter

)
+

2η2

ζ
σ̄ε ,

where we have defined ζ = min
(
2ηa, p2

)
.

Proof. Define for all c ∈ [N ],

Āc = aI , b̄c = bcu ,

where u is a vector whom all coordinates are equal to 1. We also consider the sequence of i.i.d random
variables (Zc

k) such that that for all c ∈ [N ]and 0 ≤ t ≤ T , Zc
k follows a Rademacher distribution.

Moreover, we define

Ac(Zc
k) = Āc , bc(Zc

k) = b̄c + Zc
ku .

In particular this implies

ωc(z) = Zc
ku .

We follow the same proof of Lemma F.1 until the chain of equalities breaks. Thereby, we start from

E[ψk] = E[
N∑
c=1

∥θck − θ⋆∥2 +
η2

p2

N∑
c=1

∥ξck − ξc⋆∥2]

= E[
N∑
c=1

∥(I− ηAc(Zc
k)){θck−1 − θ⋆} − ηωc(Zc

k))∥2 + (1− p2)
η2

p2

N∑
c=1

∥ξck−1 − ξc⋆∥2]

= E[
N∑
c=1

∥(I− ηĀc){θck−1 − θ⋆} − ηωc(Zc
k))∥2 + (1− p2)

η2

p2

N∑
c=1

∥ξck−1 − ξc⋆∥2]

= E[
N∑
c=1

(1− ηa)2∥θck−1 − θ⋆∥2 + η2∥ωc(Zc
k)∥2 + (1− p2)

η2

p2

N∑
c=1

∥ξck−1 − ξc⋆∥2]

where we used that Ac(Zc
k) = Āc. Unrolling the recursion gives the desired result.

G Experimental Details and Additional Experiments

G.1 Experimental Details

Here, we give additional details regarding the numerical experiments. The environments used
are instances of Garnet, where we use 30 states, embedded via a random projection in a d = 8-
dimensional space. We use two actions, and consider a branching factor of two, meaning that, from
each state, one can transition to two different states with some probability. The rewards are then
drawn uniformly randomly from the interval [0, 1].

In the homogeneous setting, we sample one Garnet environment. Each client then receives a
perturbation of this instance, where we perturb all non-zeros probabilities of transition from one state
to another and all rewards with a random variable ϵ ∼ U(0, 0.02).
In the heterogeneous setting, we proceed similarly, except that we sample two different Garnet
environments, with the same parameters. Half of the agents receive the first environment, and the
second half receive the second environment. As in the homogeneous setting, each agent’s environment
slightly differs from the base environment by a small perturbation ϵ ∼ U(0, 0.02).
All the experiments presented in this paper can be run on a single laptop in just a few hours.
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Figure 3: MSE as a function of the number of communication rounds for FedLSA and SCAFFLSA
applied to federated TD(0) in homogeneous settings with η = 0.1, for different number of agents
(N = 10 on the first line, N = 100 on the second line) and different number of local steps. Green
dashed line is FedLSA’s bias, as predicted by Theorem 4.1. For each algorithm, we report the average
MSE and variance over 5 runs.
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Figure 4: MSE as a function of the number of communication rounds for FedLSA and SCAFFLSA
applied to federated TD(0) in heterogeneous settings with η = 0.1, for different number of agents
(N = 10 on the first line, N = 100 on the second line) and different number of local steps. Green
dashed line is FedLSA’s bias, as predicted by Theorem 4.1. For each algorithm, we report the average
MSE and variance over 5 runs.

G.2 Additional Experiments: Number of Local Steps and Smaller Step-Size

In this section, we give more experimental results for FedLSA and SCAFFLSA. We use the same
setting as in Section 6, but use more settings of local steps.

In Figure 3 and Figure 4, we give report the counterpart of Figure 1 with a wider ranger of number
of local updates H ∈ {1, 10, 100, 1000, 10000}. The results obtained here match with observations
from Section 6: in homogeneous settings, FedLSAand SCAFFLSAexhibit very similar behavior.
In both methods, increasing the number of local steps speeds-up the training, until the stochas-
tic noise dominates. At this point, both algorithms reach a stationary regime with similar error.
In heterogeneous settings, while FedLSA’s bias is smaller than the variance of its iterates, train-
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Figure 5: MSE as a function of the number of communication rounds for FedLSA and SCAFFLSA
applied to federated TD(0) in homogeneous settings with η = 0.01, for different number of agents
(N = 10 on the first line, N = 100 on the second line) and different number of local steps. Green
dashed line is FedLSA’s bias, as predicted by Theorem 4.1. For each algorithm, we report the average
MSE and variance over 5 runs.
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Figure 6: MSE as a function of the number of communication rounds for FedLSA and SCAFFLSA
applied to federated TD(0) in heterogeneous settings with η = 0.01, for different number of agents
(N = 10 on the first line, N = 100 on the second line) and different number of local steps. Green
dashed line is FedLSA’s bias, as predicted by Theorem 4.1. For each algorithm, we report the average
MSE and variance over 5 runs.

ing speeds up when the number of local steps increases. After that point, bias dominates, while
SCAFFLSApreserves the speed-up by eliminating this bias.

Finally, we report in Figure 5 and Figure 6 the results when running the same experiments using
a smaller step size η = 0.01 for different number of agents and local updates. In this setting, all
algorithms manage to find better estimators, since the amount of variance depends on the step size
(as seen in Theorem 4.1 and Theorem 5.1). Additionally, FedLSA’s bias is smaller than in Figure 7,
which is also in line with the upper bound E1/2[∥θ̃(bi,bi)t ∥2] ≲ ηHE

c

[∥θ c

⋆

−θ
⋆

∥]
a from Theorem 4.1.
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Figure 7: MSE as a function of the number of communication rounds for FedLSA and SCAFFLSA
applied to federated TD(0) in homogeneous and heterogeneous settings, for different number of
agents and number of local steps. Green dashed line is FedLSA’s bias, as predicted by Theorem 4.1.
For each algorithm, we report the average MSE and variance over 5 runs.
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Figure 8: MSE as a function of the number of communication rounds for FedLSA and SCAFFLSA
applied to federated TD(0) in homogeneous and heterogeneous settings, for different number of
agents and number of local steps, using a smaller step size η = 0.01. Green dashed line is FedLSA’s
bias, as predicted by Theorem 4.1. For each algorithm, we report the average MSE and variance over
5 runs.

G.3 Additional Experiments: Convergence of FedLSA

In Figure 7 and Figure 8, we give the counterpart of Figure 1, where we additionally plot the
MSE of the estimator θt + θ̃

(bi,bi)
∞ , for different settings of all parameters. We recall that θ̃(bi,bi)∞ =

(I − Γ̄
(η)
H )−1ρ̄H is the bias of FedLSA, as we proved in Theorem 4.1. Therefore, θt + θ̃

(bi,bi)
∞ is a
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proper estimator of θ⋆, although, of course, it cannot be computed in practice since the bias θ̃(bi,bi)∞
is unknown. and we see in Figure 7 that, in homogeneous settings, we recover the same error as
FedLSA and SCAFFLSA. Moreover, in heterogeneous settings, it has an error similar to the one of
SCAFFLSA, meaning that FedLSA, once its bias is removed, converges similarly to SCAFFLSA.
The latter, however, does not require to remove an unknown bias, and directly estimates the right
quantity.
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technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All our theoretical results are provided with clear references to assumptions,
that we all state in Section 3 to ensure that these assumptions are easy to find. All results are
given with proofs, that are correctly references for each theorem and corollary.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Numerical results are stated with a complete description of the environments
that are used, as well as the precise sets of hyperparameters that we used. We stress that
the code (in Python) is provided as supplementary with the paper, making it easy for one to
reproduce our numerical experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All the code is open source, and available at https://github.com/
pmangold/scafflsa.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The algorithm used in the numerical experiments are exactly the algorithms
described in the paper. The Garnet environements are given with the parameters used for
generation, and with reference to the original problem.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All experimental results are given with error bars that consist either in the
standard deviation over multiple independent runs, or the minimal/maximal values obtained
over multiple independent runs.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The experiments in this paper are ran on a single laptop, and can easily be
reproduced by anyone with very limited computational power.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This paper is of purely theoretical nature, and the proposed methods do not
deal with sensitive attributes that could induce unfairness or privacy issues.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [NA]

Justification: This paper is of purely theoretical nature, and although the proposed methods
could help deploy more federated learning solutions, this does not constitute a risk for
societal harm.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: N/A.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: N/A since no existing assets are used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: N/A since the paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: N/A since the paper does not involve crowdsourcing nor research on human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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Justification: Justification: N/A since the paper does not involve crowdsourcing nor research
on human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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