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ABSTRACT

Instance segmentation is critical in biomedical imaging for accurately distinguish-
ing individual objects, such as cells, which often overlap and vary in size. Recent
query-based methods—where object-specific queries guide segmentation—have
shown strong performance in this task. While U-Net has been a go-to architec-
ture in medical image segmentation, it was neither specifically designed for in-
stance segmentation nor explored in the context of query-based approaches. In
this work, we present IAUNet, a novel architecture that brings instance aware-
ness to U-Net with query-based mechanisms to achieve superior pixel-to-instance
clustering. The key design includes lightweight Instance Activation (IA) layers,
which generate guided object queries by highlighting semantically important re-
gions. Additionally, we propose a Parallel Dual-Path Transformer decoder that
refines object-specific features across multiple scales, allowing us to assign multi-
ple queries from different scale levels to a specific object. Finally, we introduce the
2025 Revvity Full Cell Segmentation Dataset, comprising hundreds of manually
labeled cells from brightfield images. This dataset is unique in capturing the com-
plex morphology of overlapping cell cytoplasm with an unprecedented level of
detail, making it a valuable resource and benchmark for advancing instance seg-
mentation in biomedical imaging. Experiments on multiple public datasets and
our own show that IAUNet outperforms most state-of-the-art fully convolutional,
transformer-based, and query-based models, setting a strong baseline for medical
image instance segmentation tasks.

1 INTRODUCTION

Studying biological systems at the cellular and tissue levels is essential for understanding complex
biological processes. At the cellular level, research provides valuable quantitative information on
individual cell properties, including shape, position, signaling pathways, and RNA/protein expres-
sions Boutros et al. (2015) Björklund et al. (2006). On the other hand, tissue-level studies reveal
collective cell behavior within the context of development and disease. Integrating both approaches
leads to a more comprehensive understanding of biological systems, supporting the development of
treatments for diseases like cancer, Alzheimer’s, and cardiovascular disorders Pös et al. (2018).

Deep learning models have significantly advanced biomedical imaging by outperforming traditional
methods and, in some cases, exceeding human expertise He et al. (2015). These models have trans-
formed image segmentation tasks in biomedical imaging, leading to breakthroughs in understanding
disease processes and treatment development. Image segmentation using deep learning has become
increasingly essential in understanding complex biological structures and processes Liu et al. (2021).
Among these tasks, cell segmentation – identifying and separating individual cells within images –
has become a key area of research. Cell segmentation involves identifying and separating individual
cells within images. Deep learning make it possible to obtain quantitative data on cell characteristics,
such as shape and position.

However, cell segmentation faces challenges due to the heterogeneity of biological samples. Vari-
ations in object count, cell proximity, and overlapping instances make it hard for the models to
perform well on segmentation tasks. Among imaging techniques, brightfield microscopy remains
popular for its simplicity, low cost, and versatility Morrison et al. (2020) Wang & Fang (2012). It
involves emitting natural light through samples and capturing resulting images. Brightfield imaging
does not require complex equipment or sample labeling and allows real-time observation of cellular
processes. While techniques like fluorescence microscopy require specialized training and equip-
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Figure 1: (a) IAUNet model. (b) Parallel Dual-Path Transformer Decoder processes mask and in-
stance features concurrently. (c) Pixel Decoder extracts pixel-wise features. (d) Transformer decoder
refines object features across scales. (e) Instance Activation (IA) Layer generates guided instance
queries for effective pixel-to-instance clustering.

ment, brightfield microscopy is widely used in biological research and medical diagnostics Ali et al.
(2022) Fishman et al. (2021) Salem et al. (2021). Despite its popularity, brightfield image segmenta-
tion has received less attention than other modalities due to its complex, noisy, and variable nature,
making precise cell segmentation challenging.

Many previous works have been designed specifically for instance segmentation of natural objects
and directly applied to the medical imaging domain without making model-specific adjustments.
With such a significant domain shift, these methods often underperform when it comes to segment-
ing individual objects in microscopic samples Follmann & König (2020). In contrast to many ap-
proaches, U-Net Ronneberger et al. (2015) has been a go-to method for semantic segmentation due
to its robustness and effectiveness in handling complex structures and intricate details Zhou et al.
(2018).

Recently, following the success of DETR Carion et al. (2020) in object detection, query-based
single-stage instance segmentation methods have gained prominence. These methods move away
from traditional convolutional approaches, instead utilizing the powerful attention mechanism
Cheng et al. (2022a) together with learnable queries to directly predict object classes and segmenta-
tion masks.

In this work, we bridge the gap between the U-Net model, a powerful architecture for biomedical
imaging, and the task of instance segmentation, offering fine-grain segmentation that outperforms
specialized architectures across various segmentation tasks in the medical domain. We demonstrate
that our query-based U-Net variant achieves top-tier performance for instance segmentation task in
the medical imaging domain.

Our primary focus is to develop a robust method for cell segmentation in medical images. We extend
the U-Net architecture by introducing a novel pixel decoder with decoupled branching on each of its
levels, which makes the model instance-aware and capable of adapting to varying object shapes and
sizes. Additionally, we integrate a Transformer decoder to enhance the model’s ability to capture
rich semantic features. Within the Transformer decoder, we employ a novel Parallel Dual-Path
Update strategy to simultaneously refine object and pixel features.

We propose key improvements that drive superior performance. First, we remove the need for
having a traditional two-stage model for the bounding box prediction process. Instead, we employ
object queries guided by activation maps on training, allowing the model to focus on instance-
specific features while maintaining high explainability. Secondly, we introduce a feature decoupling
mechanism within each decoder layer to keep object and pixel-level features aligned, capturing
better per-object semantic features. Lastly, we build on top of the classical U-Net architecture which
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allows for sequential multi-scale feature propagation in our decoder. Our model shows on-par state-
of-the-art performance across multiple diverse datasets while maintaining explainability and being
robust.

The main contributions of this paper include:

1. We extend the U-Net architecture by integrating a query-based approach with a Trans-
former decoder, making the U-Net model instance aware.

2. We introduce a novel pixel decoder with decoupled mask and instance feature branching
and a Parallel Dual-Path Update strategy within the Transformer decoder, which refines
both object and pixel features simultaneously in U-Net’s hierarchical fashion.

3. We employ object queries guided by activation maps during training, making our model
explainable.

4. We introduce the novel 2025 Revvity Full Cell Segmentation Dataset, which comprises
hundreds of images with thousands of manually annotated cell instances.

2 RELATED WORK

Mask R-CNN He et al. (2018) has set the standard for instance segmentation in natural images
through its proposal-based approach. Building on Faster R-CNN Ren et al. (2016), Mask R-CNN
adds a dedicated mask prediction branch, enabling end-to-end segmentation of individual instances.
The process begins with detecting object bounding boxes, followed by applying Region of Interest
(RoI) operations, such as RoI-Pooling Girshick et al. (2014) or RoI-Align He et al. (2018), to extract
detailed region features for object classification and mask generation. While these two-stage, region-
based methods have achieved high performance across various benchmarks, they are often hindered
by inefficiencies from generating numerous redundant region proposals, limiting their scalability in
practical, real-world applications.

The latest iteration, YOLOv8 Reis et al. (2024), represents a state-of-the-art solution for both ob-
ject detection and instance segmentation, significantly improving COCO Mean Average Precision
(mAP) scores. YOLOv8 introduces the C2f (Cross Stage Partial Fusion) building block, designed
for more efficient feature extraction and fusion, enhancing both detection and segmentation tasks.
Following this, YOLOv9 Wang et al. (2024) builds on YOLOv8 by introducing the GELAN (Gra-
dient Enhanced Layer Aggregation Network) and PGI (Progressive Gradient Interpolation), which
further enhance multi-scale feature fusion and improve the model’s performance during training. In
addition, the YOLO family employs an advanced data augmentation scheme, notably Mosaic Aug-
mentation Hao & Zhili (2020), where images are transformed by stitching together four different
images. This augmentation pushes the model to learn better generalization by exposing it to objects
in diverse positions, levels of occlusion, and environments.

In biomedical image segmentation, where objects in microscopy typically have complex shapes, ran-
dom orientations, and varying sizes, traditional axis-aligned bounding boxes perform poorly Foll-
mann & König (2020), Kirillov et al. (2016). For instance, CellPose Stringer et al. (2021) provides a
novel approach by generating topological maps through a simulated diffusion process. The method
uses a U-Net architecture Ronneberger et al. (2015) to predict horizontal and vertical gradients, as
well as a binary map of cell pixel predictions. These predicted gradients are then used to create a
vector field that groups pixels by their directional flow towards the cell’s center of mass. By tracking
these gradients, CellPose successfully segments individual cells, although this method often requires
an additional size model to predict object diameters and scale images, especially when faced with
high variability in object sizes.

Query-based methods have gained prominence with the introduction of DETR Carion et al. (2020),
which demonstrated the potential of a Transformer-based encoder-decoder architecture to achieve
competitive results in detection and segmentation tasks. Unlike traditional region-based methods,
query-based models rely on object queries to predict object instances directly, eliminating the need
for handcrafted representations like bounding boxes. This shift marked a significant advancement in
the efficiency and performance of instance segmentation models. Extensions such as Mask2Former
and FastInst Cheng et al. (2022a) He et al. (2023) introduced masked attention for improved conver-
gence and segmentation accuracy, while Mask DINO Li et al. (2022) unified object detection and
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segmentation tasks into a single framework. Finally, U-Net has long been a standard for medical
image segmentation, consistently demonstrating superior performance due to its use of skip connec-
tions and hierarchical decoder structures that capture rich contextual information. In this work, we
introduce a query-based approach to a standard U-Net architecture, demonstrating that this adapta-
tion significantly enhances instance segmentation performance in the medical domain

3 MODEL OVERVIEW

Instance segmentation is a critical task in computer vision, particularly for applications such as
biomedical imaging, where identifying individual objects in complex environments is essential. In-
stance segmentation can be formulated as a task of grouping related pixels for each of the N defined
objects in an image. This process can may resemble clustering, where each object is represented
as a cluster center, and the goal is to assign associated pixel features to their corresponding ob-
ject. The object representation serves as the centroid, and pixels belonging to the same object are
grouped together based on feature similarity. Recent works, such as DETR Carion et al. (2020) and
Mask2Former Cheng et al. (2022a), have shown that a good instance representation is crucial in ac-
curate segmentation tasks. Inspired by these models, we represent each object as a D-dimensional
feature vector, forming instance embeddings also known as instance queries. These queries act
as cluster centers in the D-dimensional feature space, guiding the assignment of pixel features to
specific instances.

To effectively model both mask and instance features, we propose a convolutional Pixel decoder ??
with decoupled branches. One branch handles mask features, representing per-pixel embeddings of
the entire image. The other branch models instance features and outputs a corresponding instance
embeddings for guidance. Similar to a standard U-Net, our decoder incorporates skip connections
to enrich semantic information from earlier layers, ensuring that both pixel and instance features
benefit from multi-scale contextual information.

The Transformer decoder addresses the clustering idea by iteratively updating the mask and instance
features in parallel and subsequently refining instance queries. Unlike traditional methods that per-
form multi-scale feature fusion before decoding, we utilize U-Net’s hierarchical decoding structure,
making the process iterative. In this approach, features from each decoder layer are passed sequen-
tially to the next, allowing instance queries to be refined in a stepwise manner across multiple scales.
The final instance mask predictions are decoded from the refined mask features and object queries.

4 PIXEL DECODER

Multi-scale and high-context features have proven to be crucial for segmentation tasks Chen et al.
(2017) Wang et al. (2020b) Kirillov et al. (2019). In the biomedical domain, U-Net, with all its
variants, still holds the ground as the most superior network for accurate segmentation.n. This is
primarily due to the design of U-Net’s decoder, which maintains high semantic consistency through
the use of skip connections that transfer important features across layers.

We introduce a simple U-Net-like pixel decoder to propagate feature maps. Our pixel decoder works
with three types of features: main features, mask features, and instance features 1. The main features
serve a similar role to those in the vanilla U-Net, aggregating spatial context across the image. The
instance and mask features, however, are specifically designed to support instance segmentation and
are tightly integrated with the Transformer decoder. The mask features act as per-pixel embeddings,
capturing rich semantic information, while the instance features are responsible for generating object
queries at each level. Since both the mask and instance features are derived from the main feature
map, they remain aligned, ensuring parallel information flow between pixel-level and object-level
representations.

At each pixel decoder layer, given the main feature map X , we combine it with a skip connection
from the encoder. The combined features are then passed through a simple double depth-wise con-
volution with residual connection to retain lightweight nature of pixel decoder. The result is a refined
main feature map X , which we then use to decouple both mask features Xm and instance features
Xi.
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Figure 2: Overview of IAUNet’s Parallel Dual-Path Transformer Decoder. (a) The Pixel Decoder
generates mask and instance features, which are then processed by the Parallel Dual-Path Trans-
former Decoder. (b) Multi-query clustering assigns each object two queries, allowing for more
robust feature representation and better captures complex shapes of objects. (c) Cross-attention is
performed between instance queries and pixel features to refine object-level predictions – two atten-
tion matrices for 2N queries.

To maintain global consistency across layers, we process the main feature map X separately with
the upscaled mask features X ′

m and instance features X ′
i from the previous layer. Specifically,

we concatenate X with X ′
m to update the mask features, and X with X ′

i to update the instance
features. These concatenated features are processed by corresponding branches. We use two parallel
stacked 3x3 convolution blocks for both the instance and mask branches. We use a simple bilinear
interpolation is used to propagate all the features to the next decoder layer.

Unlike other methods that directly employ the feature maps from the pixel decoder to produce seg-
mentation masks, we leverage a Transformer decoder to further refine these features. This design
reduces the pixel decoder’s need for heavy context aggregation and allows the Transformer decoder
to handle the more complex instance segmentation refinement.

5 GUIDED INSTANCE QUERIES

Central to this refinement process are guided instance queries, which ensure accurate object seg-
mentation. Object queries play a crucial role in the Transformer decoder Liang et al. (2023) Carion
et al. (2020). Since object queries are used to embed information about the object, they serve as the
basis for accurate instance segmentation. Models like DETR Carion et al. (2020) and Mask2Former
Cheng et al. (2022a) utilize either zero-initialized or learnable embeddings to describe instances
without relying on prior knowledge of the image semantics.

In contrast, we introduce query guidance to avoid convergence into suboptimal local minima and
to guide the model toward learning more informative object representations. At each level of the
decoder, the model learns to generate guided queries, which capture denser and more accurate object
representations. These instance embeddings get progressively refined through the decoder while
preserving high-resolution object features.

At each decoder stage, the Instance Activation (IA) layer 1 generates N guided instance queries
a ∈ RN×H×W . Given the instance features Xi from the Pixel decoder, the IA layer produces
activation maps by highlighting important regions for each object. Formally, IA can be defined as:

a = softmax(f(Xi)) ∈ RN×H×W (1)

where f(x) is a simple 3x3 convolution followed by a softmax function to normalize the activations.

After obtaining normalized instance activation maps a ∈ RN×H×W , we select N object queries
from the instance features Xi with high foreground probabilities from instance activations. We then
perform an element-wise multiplication with the Xi feature map to generate the final object queries:
q = a ·XT

i ∈ RN×256. Thus, each object gets encoded into a 256-dimensional vector.
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The learning of instance activation maps is driven solely by how accurate the resulting instance
predictions are. This eliminates the need for explicit guidance to optimize the activations. Since
the model is guided only by the accuracy of the final segmentation, it can adapt its activations to
represent highly variable object shapes without any rigid constraints.

6 PARALLEL DUAL-PATH TRANSFORMER DECODER

In the IAUNet model, we implement a Parallel Dual-Path Transformer Decoder that updates both ob-
ject queries and pixel features in parallel. The key component of our Transformer decoder includes
double-center clustering, where the object gets represented with two queries.

At each decoder layer l, we generate new instance queries q from the instance features Xi and
concatenate them with N instance queries from the previous layer (“support” queries) to obtain a
total of 2N instance queries 2. Each object is represented with two queries (“two cluster centers”).
The total 2N object queries, q ∈ R2N×256, are processed with the flattened high-resolution mask
and instance features Xm ∈ RL×256 and Xi ∈ RL×256, where L = Hl ×Wl for the l-th decoder
layer.

The Parallel Dual-Path Transformer performs parallel mask and instance features update and query
update. The new instance queries hold rich object features and act as primary cluster centers. While
the previous instance queries function as support centers. Such dual representation allows the model
to better capture complex object structures by associating pixel features with two distinct queries.

6.1 POSITIONAL EMBEDDINGS

To maintain spatial awareness, which is crucial for Transformer-based models, we add learnable po-
sitional embeddings to object queries. For the “support” queries, we use additional N learnable posi-
tional embeddings. For each resolution, we add sinusoidal positional embeddings epos ∈ RHlWl×D

to the mask and instance features Xm and Xi following [ref].

6.2 PIXEL FEATURES UPDATE

We refine both the mask and instance pixel features in parallel. Since mask features Xm are crucial
for describing the semantics of the entire image, the model learns to associate such features with in-
dividual objects. Instance features Xi, on the other hand, are the key to predicting correct activation
maps. In the parallel feature update, we first want to associate each object with its set of pixel fea-
tures. For each mask and instance features we use cross-attention layers followed by a feed-forward
network (FFN):

Xl = softmax
(
QlK

T
l

)
Vl +Xl−1 (2)

Here Ql ∈ RHlWl×256 are the pixel features at the l-th layer and Kl, Vl ∈ R2N×256 refer to 2N
D-dimensional instance features ql. For each set of pixel features Xm, Xi and the 2N object queries
q, the attention matrix M ∈ RL×2N can be intuitively divided into two subgroups. The first group
captures the attention of the new instance queries toward the pixel features, while the second group
focuses on the support queries. Both object queries come from the relatively same region of features
guided by learnable activation maps. Therefore, the attention matrices 2 between pixel features and
queries for both groups are expected to be quite similar. The support queries are meant to match
the correct pixel features back to the instance cluster, even if the new instance queries have less
attention to these pixel features. The whole process tries to make the feature-query update smoother
by accounting for object information from previous layers.

Finally, the newly refined mask and instance features are passed to the next decoder level, ensuring
consistent multi-scale updates across layers.

6.3 INSTANCE QUERIES UPDATE

Assymetrically, we update 2N instance queries with respect to the instance features Xi. We use
cross-attention layer followed by the self-attention layer and FFN layer. This design maintains
awareness between all the queries ensuring full object separation.
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Figure 3: Comparison of instance segmentation performance between Mask R-CNN, PointRend Kir-
illov et al. (2020), Mask2Former, and IAUNet models with a ResNet-50 backbone on the Revvity-25
dataset.

7 MASK LEVEL MATCHING

During training the model outputs N instance mask predictions. To supervise the model’s training,
we utilize a matching strategy to assign predictions to the gt masks and compute losses. We employ
the optimal bipartite matching Carion et al. (2020) Cheng et al. (2022b), resulting in a set of cor-
responding {prediction, ground-truth} instance mask pairs. We adopt one-to-one label assignments
to get the best predictions. Given a set of M ground truth masks G = {g0, g1, . . . , gm} and a fixed-
size set of N predictions P = {p0, p1, . . . , pn}, where N > M , we calculate losses in the subset
of best-matched predictions of P . The one-to-one matching assignment finds a minimum weighted
bipartite graph matching σ ∈ S within the sets G and P :

σ = argmin
σ∈S

n∑
i=1

C(pσ(i), gi) (3)

where σ is the permutation representing the matching between predicted and ground truth masks
that minimizes the sum, S is the set of permutations, and C is a pair-wise matching cost between
G and P that is a weighted combination of both classification cost Ccls and mask regression cost
Cmask = {Cdice, Cbce}. Each target is assigned to an object prediction through an optimal assign-
ment problem computed efficiently using the Hungarian algorithm ?. With the Hungarian approach,
we find the optimal match between M ground truth objects and N predictions given a weighted cost
matrix C

We define the matching cost functions in alignment with the calculation of our losses to maintain
consistency. The weights assigned to all the cost functions correspond to the weights applied to all
the losses. Specifically, we set the coefficient λcls to 1.0, λdice to 2.0, and λbce to 5.0.

C = Ccls · λcls + Cdice · λdice + Cbce · λbce (4)

During inference, we re-score the predicted masks and use non-maximum suppression (NMS). We
leverage the classification scores to assess the confidence level of each predicted instance. Simul-
taneously, for each instance we calculate the maskness metrics Wang et al. (2020a), denoted as

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 4: Instance segmentation performance comparison of Mask R-CNN, PointRend,
Mask2Former, and IAUNet models with a ResNet-50 backbone, evaluated on the LiveCell dataset.

mi = 1
N

∑N
i=1 pi, where p is the predicted probability mask with N pixels. Thus, the combined

confidence score s is computed as a contribution of both class confidence c and maskness scores m:
si = ci ·mi

8 EXPERIMENTS

Datasets.

We evaluate our performance on several datasets, including our novel Revvity-25 dataset. We report
Average Precision scores for the LiveCell, EVICAN, and NeurIPS-CellSeg 22 datasets. For each
dataset, we preprocess all images to contain a maximum of 100 instances.

Evaluation Metrics. For our main results of instance segmentation, we report COCO ? mask AP
scores on the test subsets for all datasets. We specifically focus on the AP to get a general understand-
ing of model’s performance. We also propose to compare the performance with the state-of-the-art
models in both natural and cellular domains.

8.1 TRAINING SETTINGS

All experiments were conducted on a single Tesla V100 GPU with 32GB of memory. Our model is
implemented using the PyTorch framework (torch==2.3.1) Paszke et al. (2019) and runs on CUDA
12.1. We adopt the training scheme published in earlier works Cheng et al. (2022a). We use the
CosineAnnealingLR scheduler Loshchilov & Hutter (2017) with a minimum learning rate of 1e-6,
and the AdamW optimizer Loshchilov & Hutter (2019) with an initial learning rate of 1e-4 and
a weight decay of 0.05. During training, we employ longest-side resizing to scale all images to
512x512 pixels while maintaining their original aspect ratio. For data augmentation, we adopt scale
jittering augmentation Cheng et al. (2022b) with a random scale sampled from the range 0.8 to 1.5
followed by a fixed size crop to 512x512 and random flipping. We follow a consistent augmentation
strategy across all models and benchmarks. All models were trained until full convergence with
a batch size of 8. Unless specified, we use the same longest-side resizing processing to test and
benchmark models. During inference, we maintained the same thresholds for the non-maximum
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Table 1: Instance segmentation performance comparison of various models on multiple datasets,
including LiveCell-Crop, NeurIPS22-CellSeg challenge, and EVICAN2, with different back-
bone architectures. We differentiate all model architectures by their subgroup convolutional and
transformer-based backbones as well as YOLO and SAM Kirillov et al. (2023) family models and
CellPose model with additional Size Model (SM) Stringer et al. (2021).

LiveCell NeurIPS22 EVICAN2E EVICAN2M EVICAN2D

Models backbones AP AP50 AP AP50 AP AP50 AP AP50 AP AP50 #params. FLOPs
Models with Convolution-Based Backbones
Mask R-CNN R50 44.7 74.2 52.8 74.7 48.1 75.9 20.7 42.5 19.1 39.8 44M 115G
PointRend R50 44.0 73.5 54.7 74.8 26.6 47.9 18.0 38.5 13.4 28.3 56M 66.3G
Mask2Former R50 43.7 73.8 42.9 66.6 53.4 89.1 29.1 54.9 24.2 50.4 44M 66.2G
IAUNet (ours) R50 44.7 73.9 49.0 75.1 53.3 85.6 29.2 55.0 25.3 47.9 65M 292.6G
Mask R-CNN R101 44.2 73.2 53.3 73.2 41.5 69.9 23.3 46.9 17.8 36.7 63M 134G
PointRend R101 44.0 73.7 52.0 76.0 41.3 65.2 20.2 39.3 14.8 32.1 75M 85.7G
Mask2Former R101 44.0 73.5 44.2 68.3 54.4 87.8 27.1 51.7 20.4 42.4 63M 85.6G
IAUNet (ours) R101 44.7 74.1 49.3 74.6 59.6 88.7 29.8 52.9 28.5 52.6 84M 331.6G
Models with Transformer-Based Backbones
Mask R-CNN Swin-S 44.3 73.3 55.4 76.2 - - - - - - 69M 141G
PointRend Swin-S 43.9 73.5 54.6 76.5 - - - - - - 81M 92.9G
Mask2Former Swin-S 44.6 74.3 43.9 67.9 - - - - - - 69M 92.8G
IAUNet (ours) Swin-S 43.9 73.6 52.4 72.8 - - - - - - 77M 328G
Mask R-CNN Swin-B 44.2 73.1 56.0 76.6 - - - - - - 107M 179G
PointRend Swin-B 44.0 73.7 55.0 77.1 - - - - - - 119M 131G
Mask2Former Swin-B 44.9 74.7 46.3 70.9 - - - - - - 107M 134G
IAUNet (ours) Swin-B 44.0 73.4 55.8 80.3 - - - - - - 117M 412G
YOLO Family
YOLOv8-M - 37.5 72.2 44.9 81.1 43.8 82.3 27.5 57.1 20.0 46.2 27.2M 110.4G
YOLOv8-L - 40.5 72.5 45.4 81.5 44.7 83.1 28.1 58.2 20.3 46.1 45.9M 220.8G
YOLOv8-X - 41.1 73.1 47.7 81.4 45.8 85.6 28.9 59.2 20.7 47.3 71.8M 344.5G
YOLOv9-C - 41.2 73.2 46.9 81.6 45.6 84.4 27.2 57.9 20.1 47.3 27.8M 159.1G
YOLOv9-E - 41.4 73.1 47.6 82.8 45.9 85.6 28.3 59.8 22.2 49.9 60.5M 248.1G
IAUNet (ours) R50 44.7 73.9 49.0 75.1 53.3 85.6 29.2 55.0 25.3 47.9 65M 292.6G
CellPose Family
CellPose - 34.5 60.1 32.9 51.5 0.9 2.8 0.1 0.3 0.0 0.0 6.6M 163.6G
CellPose + SM - 34.9 60.4 44.1 74.8 8.7 16.8 1.6 4.4 2.3 6.8 6.6M 163.6G
IAUNet (ours) R50 44.7 73.9 49.0 75.1 53.3 85.6 29.2 55.0 25.3 47.9 65M 292.6G
SAM Family
SAM-B (points) - 5.0 12.4 30.7 56.6 28.4 56.0 5.4 13.8 3.2 7.2 90M 742G
SAM-B (boxes) - 24.3 56.9 54.3 91.7 55.0 96.6 38.6 91.2 34.8 82.3 90M 742G
IAUNet (ours) R101 44.7 74.1 49.3 74.6 59.6 88.7 29.8 52.9 28.5 52.6 84M 331.6G

suppression overlap and confidence for objects and used the same mask prediction threshold of 0.5
for all the trained models.

8.2 RESULTS

In Table 1, we compare the performance of IAUNet with other state-of-the-art models such as Mask
R-CNN, PointRend, and Mask2Former across several datasets, including LiveCell, NeurIPS22, and
EVICAN2. For models utilizing the ResNet-50 backbone, IAUNet shows competitive performance,
especially on the EVICAN2 datasets. On the EVICAN2Easy dataset, IAUNet achieves an AP of
53.3, which is marginally lower than the 53.4 obtained by Mask2Former but significantly higher
than both Mask R-CNN (48.1) and PointRend (26.6). Notably, IAUNet achieves superior AP50

on the same dataset, with 85.6, second only to Mask2Former (89.1). On the EVICAN2Medium

dataset, IAUNet outperforms all other models in both AP (29.2) and AP50 (55.0), indicating its
strong ability to segment verying in size objects in complex scenes. On the LiveCell dataset, IAUNet
achieves an AP of 44.7, with similar performance to Mask R-CNN but surpassing PointRend (44.0)
and Mask2Former (43.7). Across the YOLO family of models, IAUNet demonstrates significant
performance improvements on the YOLOv8 and YOLOv9 models.

We perform an evaluation of the IAUNet model, comparing it with popular state-of-the-art instance
segmentation models such as Mask R-CNN, PointRend, and Mask2Former on our Revvity-25. The
dataset offers a challenging benchmark for instance segmentation tasks due to the complex shapes
and varying sizes of cells.

9
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Revvity-25

Models backbone AP AP50 AP75 APS APM APL #params. FLOPs
Models with Convolution-Based Backbones
Mask R-CNN R50 40.8 79.8 38.4 0.1 20.7 45.4 44M 115G
PointRend R50 45.1 83.2 47.0 0.1 25.1 50.0 57M 66.3G
Mask2Former R50 40.2 73.0 41.7 0.8 16.6 46.2 44M 66.2G
IAUNet (ours) R50 51.4 84.6 55.9 0.5 27.7 58.0 65M 292.6G
Mask R-CNN R101 39.0 79.1 35.5 0.4 18.7 43.4 63M 134G
PointRend R101 44.4 82.4 44.5 0.0 20.7 49.6 75M 85.7G
Mask2Former R101 44.4 78.4 46.7 0.9 20.7 50.6 63M 85.6G
IAUNet (ours) R101 51.0 83.0 55.7 1.5 28.0 57.8 84M 331.6G
Models with Transformer-Based Backbones
Mask R-CNN Swin-S 24.1 59.2 14.4 0.0 6.6 28.1 69M 141G
PointRend Swin-S 48.0 85.8 51.1 0.4 25.3 53.3 81M 92.9G
Mask2Former Swin-S 37.6 65.6 40.1 0.1 16.3 43.7 69M 92.8G
IAUNet (ours) Swin-S 53.3 86.2 58.3 1.8 29.9 59.8 77M 328G
Mask R-CNN Swin-B 18.8 50.6 8.4 0.0 3.7 22.5 107M 179G
PointRend Swin-B 45.9 83.2 46.2 0.1 24.4 51.0 119M 131G
Mask2Former Swin-B 52.0 84.1 57.4 1.0 28.1 58.7 107M 134G
IAUNet (ours) Swin-B 52.8 85.0 58.7 1.2 29.7 59.2 117M 412G

Table 2: Performance comparison of instance segmentation models with ResNet-50, ResNet-101,
Swin-S, and Swin-B backbones on the Revvity-25 dataset.

Convolution-Based Backbones In 2 models using the ResNet-50 backbone, IAUNet achieves an
AP of 51.4, outperforming PointRend (45.1) and Mask2Former (40.2). IAUNet also achieves the
highest AP50 (84.6) and AP75 (55.9), showcasing its strong performance in detecting and segment-
ing instances at varying IoU thresholds. IAUNet shows particular strength in medium and large
object detection, achieving 27.7 in APM and 58.0 in APL, both higher than its competitors.

With the ResNet-101 backbone, IAUNet maintains its lead, scoring 51.0 in AP, while PointRend
and Mask2Former hover around 44.4. The improvement is more prominent in the segmentation of
medium and large objects, further confirming the model’s ability to handle complex object structures
better than traditional region-based approaches.

Transformer-Based Backbones With Swin-S and Swin-B backbones, IAUNet further extends its
performance lead, achieving 53.3 and 52.8 in AP, respectively. In comparison, PointRend reaches
48.0 and 45.9, while Mask2Former achieves 52.0 on Swin-B but struggles on smaller object in-
stances. IAUNet demonstrates superior segmentation of medium and large objects, achieving 29.7
and 59.2 on Swin-B, highlighting its ability to handle objects of varying sizes 3 without relying on
bounding box detections that lead to duplicate proposals.

9 LIMITATIONS AND CONCLUSION

In this work, we introduced IAUNet, a novel architecture combining U-Net with query-based mech-
anisms for instance segmentation. The model’s Instance Activation layers generate guided object
queries, while the Parallel Dual-Path Transformer Decoder refines features across multiple scales.
IAUNet outperforms leading models, especially in handling medium and large objects, and sets a
new baseline for biomedical imaging tasks, as demonstrated on the 2025 Revvity Full Cell Segmen-
tation Dataset.

IAUNet faces challenges with small object segmentation, similar to other query-based methods
Cheng et al. (2022a); He et al. (2023). Additionally, IAUNet could be optimized to handle a higher
number of instances per image. Future research should focus on developing more efficient solutions
for small object segmentation.
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