
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FAIR SUBMODULAR COVER

Anonymous authors
Paper under double-blind review

ABSTRACT

Machine learning algorithms are becoming increasing prevalent in the modern
world, and as a result there has been significant recent study into algorithmic fair-
ness in order to minimize the possibility of unintentional bias or discrimination in
these algorithms. Submodular optimization problems also arise in many machine
learning applications, including those such as data summarization and clustering
where fairness is an important concern. In this paper, we initiate the study of
the Fair Submodular Cover Problem (FSC). Given a ground set U , a monotone
submodular function f : 2U → R≥0, and a threshold τ , the goal of FSC is to
find a balanced subset of U with minimum cardinality such that f(S) ≥ τ . We
first introduce discrete algorithms for FSC that achieve a bicriteria approximation
ratio of (1ε , 1 − O(ε)). We then present a continuous algorithm that achieves a
(ln 1

ε , 1 − O(ε))-bicriteria approximation ratio, which matches the best approxi-
mation guarantee of submodular cover without a fairness constraint. Finally, we
complement our theoretical results with a number of empirical evaluations that
demonstrate the efficiency of our algorithms on instances of maximum coverage.

1 INTRODUCTION

From high-volume applications such as online advertising and smart devices to high-impact appli-
cations such as credit assessment, medical diagnosis, and self-driving vehicles, machine learning
algorithms are increasingly prevalent in technologies and decision-making processes in the modern
world. However, the amount of automated decision-making has resulted in concerns about the risk of
unintentional bias or discrimination (Chouldechova, 2017; Kleinberg et al., 2018; Berk et al., 2021).
For example, Chierichetti et al. (2017) noted that although machine learning algorithms may not be
biased or unfair by design, they may nevertheless acquire and amplify biases already present in the
training data available to the algorithms. Consequently, there has recently been significant focus on
achieving algorithmic fairness for a number of fundamental problems, such as classification (Zafar
et al., 2017), clustering (Chierichetti et al., 2017), data summarization (Celis et al., 2018b), and
matchings (Chierichetti et al., 2019). Though various definitions have been proposed, there is no
universal notion of fairness; indeed, determining the correct notion of fairness is an ongoing active
line of research. In fact, Kleinberg et al. (2017) showed that three common desiderata of fairness
(probabilistic calibration across classes, numerical balance across classes, and statistical parity) are
inherently incompatible. Nevertheless, there has been significant focus recently (Chierichetti et al.,
2017; Celis et al., 2018a;b;c; Chierichetti et al., 2019; El Halabi et al., 2020; Halabi et al., 2024) on
the fairness notion that demands a solution to be balanced with respect to a sensitive attribute, such
as ethnicity or gender.

In this work, we focus on fairness within submodular optimization. Submodular functions infor-
mally satisfy a diminishing returns property that is exhibited by many objective functions for fun-
damental optimization problems in machine learning. In particular, a function f : 2U → R is
submodular if for every X ⊂ Y ⊂ U and for every x ∈ U \ Y , we have f(X ∪ {x}) − f(X) ≥
f(Y ∪ {x}) − f(Y). We further assume f is monotone, i.e., f(Y) ≥ f(X) for every X ⊂ Y .
Thus, submodular optimization naturally arises in a wide range of applications, such as clustering
and facility location (Gomes & Krause, 2010; Lindgren et al., 2016), document summarization (Lin
& Bilmes, 2011; Wei et al., 2013; Sipos et al., 2012), image processing (Iyer & Bilmes, 2019),
principal component analysis (Khanna et al., 2015), and recommendation systems (Leskovec et al.,
2007; El-Arini & Guestrin, 2011; Bogunovic et al., 2017; Mitrović et al., 2017; Yu et al., 2018;
Avdiukhin et al., 2019; Yaroslavtsev et al., 2020). While submodular maximization has received the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

most attention, submodular cover is also an important problem arising in machine learning appli-
cations (Iyer & Bilmes, 2013b; Mirzasoleiman et al., 2015; Soma & Yoshida, 2015; Norouzi-Fard
et al., 2016; Mirzasoleiman et al., 2016; Ghuge et al., 2021; Ran et al., 2022; Chen & Crawford,
2024). In monotone submodular cover (SC), the monotone submodular function arises in the con-
straint: Given oracle access to a monotone submodular function f : 2U → R and a threshold τ , the
goal of SC is to identify a subset S ⊂ U of minimum cardinality such that f(S) ≥ τ .

Many applications of submodular functions such as in clustering (Gomes & Krause, 2010; Lindgren
et al., 2016) and data summarization (Lin & Bilmes, 2011; Wei et al., 2013; Sipos et al., 2012), are
also applications where algorithmic fairness is important. Motivated by this, fair submodular max-
imixation (FSM) has been considered under both a cardinality constraint and a matroid constraint
(Celis et al., 2018a; Halabi et al., 2020). In the fair setting, we assume that each element in U is
associated with a color c that denotes a protected attribute, which partitions U into disjoint groups
U1, . . . , UN . Then informally, the goal is to maximize the objective while selecting a representative
number of elements from each color. Surprisingly, there has been no previous work studying fair-
ness for the submodular cover problem, to the best of our knowledge. Thus in this work, we initiate
the study of fairness for monotone submodular cover1.

Definition 1 (Fair Submodular Cover (FSC)). Given input threshold τ , and bounds on the pro-
portion of the elements in each group pc and qc, FSC is to find argminS⊆U |S| such that pc|S| ≤
|S ∩ Uc| ≤ qc|S| for all c ∈ [N] and f(S) ≥ τ .

This definition of fairness incorporates multiple other existing notions of fairness, such as diversity
rules (Biddle, 2017; Cohoon et al., 2013), statistical parity (Dwork et al., 2012), or proportional rep-
resentation rules (Monroe, 1995; Brill et al., 2017). To guarantee the existence of feasible subsets,
we assume that the inputs satisfy

∑
c∈[N] pc ≤ 1 and

∑
c∈[N] qc ≥ 12. To further illustrate FSC, we

describe a fair data summarization application. Let U be a dataset that is split into disjoint subsets
U1, ..., UN such that each subset represents some attribute. The function f is a monotone and sub-
modular function that measures the information contained in a subset X ⊆ U , such as a submodular
information measure (Iyer et al., 2021). The values of pc and qc for all c ∈ [N], and τ , are input
by the user. Then FSC asks to find a minimum size summary that contains sufficient information
(f(S) ≥ τ), while maintaining a balanced representation amongst the attributes (determined by pc
and qc).

Our contributions. In this paper, we propose bicriteria approximation algorithms for FSC. An
(α, β)-bicriteria approximation algorithm for FSC returns a solution set X that satisfies |X| ≤
α|OPT |, pc|X| ≤ |X ∩ Uc| ≤ qc|X| for all c ∈ [N], and f(X) ≥ βτ , where OPT is an optimal
solution to the instance of FSC. Notice that the solution of a bicriteria algorithm for FSC always
satisfies the fairness constraint. However, the constraint on the function value (f(X) ≥ τ) might be
violated by a factor of β and therefore the solution is not necessarily feasible. But, if β to close to 1,
we can get a solution that is close to being feasible. We now describe the main contributions of the
paper:

• In our first result, we take advantage of the dual relationship between FSM and FSC,
and present two algorithms that convert bicriteria approximation algorithms for FSM
into bicriteria approximation algorithms for FSC in Section 2. The first algorithm,
convert-fair, is designed to convert discrete algorithms for FSM into ones for FSC.
In particular, convert-fair takes a (γ, β)-bicriteria approximation algorithms for FSM
and converts it into a ((1 + α)β, γ)-bicriteria approximation algorithm for FSC. Our sec-
ond conversion algorithm, convert-continuous, takes a continuous (γ, β)-bicriteria

1Notice that it is not necessarily obvious what values of input τ , and pc, qc result in an instance of FSC
having a feasible solution. In particular, because f is monotone it is easy to check whether there exists a set X
such f(X) ≥ τ by simply testing whether τ ≤ f(U), but whether there exists such a set that also satisfies the
fairness constraint is unclear. We discuss the question of existence of a feasible solution further in Appendix
B.4, and throughout the paper assume that values of input τ , and pc, qc are chosen such that there does exist a
feasible solution to the instance.

2Notice that this assumption is necessary: If
∑

c∈[N] pc > 1, then
∑

c∈[N] pc|S| > |S|. However, by the
definition of fairness constraint in FSC, we can get pc|S| ≤ |S ∩ Uc|. It then follows that

∑
c∈[N] pc|S| ≤∑

c∈[N] |S∩Uc| = |S|, which is a contradiction, implying there are no feasible sets. Similarly, if
∑

c∈[N] qc ≥
1, we can also prove that no feasible sets satisfy the constraint.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

approximation algorithm and converts it into a ((1 + α)β, (1−3ε)γ−2ε

1+3ε+ 2ε
γ

)-bicriteria approxi-

mation algorithm for FSC.

Using our above result, we are now able to convert existing algorithms for FSM into algorithms
for FSC. In particular, the algorithm Fair-Greedy in El Halabi et al. (2020) can be converted into
bicriteria (1 + α, 1/2) for FSC. However, a factor of 1/2 on the feasibility constraint of f(X) ≥ τ
means that our solution is relatively far from being feasible. Motivated by this, our subsequent
results focus on developing bicriteria algorithms for FSC that produce solutions arbitrarily close to
being feasible. In particular:

• In our second result, we develop the first bicriteria approximation algorithms for FSC
that find nearly feasible solutions. In particular, we propose three bicriteria algorithms
for FSM that can be paired with our converting algorithms in order to find approxi-
mate solutions for FSC that are arbitrarily close to meeting the constraint f(S) ≥ τ
in FSC. The first two algorithms are the discrete algorithms greedy-fairness-bi
and threshold-fairness-bi, which both achieve bicriteria approximation ratios of
(1− O(ε), 1

ε), but the latter makes less queries to f compared to the former. The third al-
gorithm is a continuous one, cont-thresh-greedy-bi, which achieves an improved
(1 − O(ε), ln 1

ε + 1) bicriteria approximation ratio but requires more queries to f . The
theoretical analysis of all these algorithms depends on Lemma 2, which is one of our cen-
tral technical contributions and distinguishes our approach from the traditional submodular
cover problem.

By leveraging greedy-fairness-bi and threshold-fairness-bi as subroutine
algorithms for convert-fair and cont-thresh-greedy-bi as a subroutine for
convert-continuous, we can obtain algorithms for FSC with a bicriteria approximation ra-
tio of ((1 + α) 1ε , 1 − O(ε)) and ((1 + α)(ln(1ε) + 1), 1 − O(ε)) respectively. In contrast, using
existing algorithms for FSM along with the converting algorithm does not yield solutions that are
very close to being feasible for FSC. Finally:

• We perform an experimental comparison between our discrete algorithms for FSC and the
standard greedy algorithm (which does not necessarily find a fair solution) on instances
of fair maximum coverage in a graph and fair image summarization. We find that our
algorithms find fair solutions while the standard greedy algorithm does not, but at a cost of
returning solutions of higher cardinality.

1.1 RELATED WORK

Celis et al. (2018a) first gave a (1 − 1/e)-approximation algorithm for fair monotone submodular
maximization under a cardinality constraint, which is tight given a known (1− 1/e) hardness of ap-
proximation even without fairness constraints (Nemhauser & Wolsey, 1978). This is accomplished
by converting their instance of FSM into monotone submodular maximization with a specific type
of matroid constraint called a fairness matroid, which we describe in more detail in Section 1.2, and
then using existing algorithms for submodular maximization with a matroid constraint. The standard
greedy algorithm is a 1/2 approximation for the submodular maximization with a matroid constraint
(Fisher et al., 1978), and in addition there exists approximation algorithms using the multilinear ex-
tension that achieve a 1 − 1/e approximation guarantee (Calinescu et al., 2007; Badanidiyuru &
Vondrák, 2014). Halabi et al. (2024) gave a (1 − 1/e)-approximation algorithm for fair monotone
submodular maximization under general matroid constraints, though their algorithm only achieves
the fairness constraints in expectation. Fair submodular optimization has also been under both car-
dinality and matroid constraints in the streaming setting (El Halabi et al., 2020; Halabi et al., 2024).

For the classical submodular cover problem without fairness constraints and integral valued f , the
standard greedy algorithm, where the element of maximum marginal gain is selected one-by-one un-
til f has reached τ , has been shown to have an approximation ratio of O(logmaxe∈U f(e)) (Wolsey,
1982). To deal with real-valued f (as in our case), a slight variant of the greedy where we stop at
(1 − ε)τ instead of τ has been shown to be a (ln(1/ε), 1 − ε)-bicriteria approximation algorithm
(Krause et al., 2008). On the other hand, set cover is a special case of fair submodular cover (FSC),
and by the result of Feige (1998), it is not possible to achieve a (1 − o(1)) · ln(n) approximation
to FSC unless NP has “slightly superpolynomial time algorithms”. Therefore, a large part of our

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

motivation in considering bicriteria approximation guarantees for FSC is to develop constant factor
approximation at the price of a small reduction to feasibility. Indeed, for a fixed ε, our algorithms
achieve a constant factor approximation. If we set ε = 1/n, our continuous algorithm (Algorithm
2) for FSM with the converting algorithm (Algorithm 1) achieves a ((1 + α) ln(n) + 1), 1 − 7/n)
bicriteria approximation guarantee for an instance of FSC, and so is very close to being feasible
while having an approximation guarantee close to the lower bound.

Although submodular maximization has received relatively more attention than submodular cover,
the problems have a dual relationship and thus, a natural approach for submodular cover is to con-
vert existing algorithms for submodular maximization into ones for cover (Iyer & Bilmes, 2013a;
Chen & Crawford, 2024). In particular, Iyer & Bilmes (2013a) showed that given a (γ, β)-bicriteria
approximation algorithm for submodular maximization with a cardinality constraint, one can pro-
duce a ((1+α)β, γ)-bicriteria approximation algorithm for submodular cover by making log1+α(n)
guesses for |OPT | in the instance of submodular cover, running the submodular maximization al-
gorithm with the cardinality constraint set to each guess, and returning the smallest solution with
f value above γτ . However, this approach does not take into account the fairness constraints and
cannot be used to convert algorithms for FSM into ones for FSC.

1.2 PRELIMINARIES

We now present preliminary definitions and notation that will be used throughout the paper. OPT
refers to the size of the optimal solution to the instance of FSC. We use [N] to denote the set
{1, 2, ..., N}. The marginal gain of adding an element s to the subset S is denoted as ∆f(S, s). In
addition, for any vector v⃗ = (v1, v2, ..., vN), and any k ∈ R, we define kv⃗ = (kv1, kv2, ..., kvN),
and we define ⌈v⃗⌉ = (⌈v1⌉, ⌈v2⌉, ..., ⌈vN⌉) and ⌊v⃗⌋ = (⌊v1⌋, ⌊v2⌋, ..., ⌊vN⌋).
We now define the related problem of fair submodular maximization (FSM) of a monotone sub-
modular function f (El Halabi et al., 2020), as the search problem of max{f(S) : S ⊆ U, lc ≤
|S ∩ Uc| ≤ uc,∀c ∈ [N], |S| ≤ k} where lc and uc are the bound of cardinality within each small
group. Without loss of generality, in this problem, it is assumed that

∑
c∈[N] uc ≥ k. This is be-

cause if
∑

c∈[N] uc < k, then |S| =
∑

c∈[N] |S ∩ Uc| ≤
∑

c∈[N] uc ≤ k. Therefore, the problem is
equivalent to setting k =

∑
c∈[N] uc. Since for the cover problem, the objective is to minimize the

cardinality of the solution set which means |S| is not fixed as it is in FSM, therefore we introduced
the definition of fairness for FSC as a natural modification of the above problem where the fairness
constraint is a proportion of the solution size as opposed to a fixed value.

The set of subsets satisfying fairness constraint above for FSM is not a matroid. However, it was
proven by El Halabi et al. (2020) that we can convert an instance of FSM into an instance of submod-
ular maximization problem with a matroid constraint; we state this result as Lemma 3 in Appendix
A. This matroid constraint is called a fairness matroid, which we denote as Mfair(P, κ, l⃗, u⃗) =
{S ⊆ U : |S ∩ Uc| ≤ uc,∀c ∈ [N],

∑
c∈[N] max{|S ∩ Uc|, lc} ≤ k}, where P = {U1, ..., UN} is

the partition of the ground set U , k is the total cardinality constraint, l⃗, u⃗ ∈ NN are the lower and
upper bound vectors respectively. Below we propose the idea of a β-extension of a fairness matroid,
which we will use in our bicriteria algorithms for FSM.

Definition 2. For any β ∈ N+, we define the β-extension of the fairness matroid to be Mβ =

Mfair(P, βκ, βl⃗, βu⃗) = {S ⊆ U : |S∩Uc| ≤ βuc,∀c ∈ [N],
∑

c∈[N] max{|S∩Uc|, βlc} ≤ βκ}.

Our continuous algorithms will use the multilinear extension of f , defined as follows.

Definition 3. For any submodular objective f : 2U → R+ with |U | = n, the multi-linear extension
of f is defined as F(x) =

∑
S⊆U

∏
i∈S xi

∏
j /∈S(1 − xj)f(S) where x ∈ [0, 1]n, and xi is the

i-th coordinate of x. If we define S(x) to be a random set that contains each element i ∈ U with
probability xi, then by definition, we have that F(x) = Ef(S(x)).

We now present the definitions of discrete and continuous algorithms with an (α, β)-bicriteria ap-
proximation ratio for FSM, which is defined to find argmaxS∈Mfair(U,k,⃗l,u⃗) f(S).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Definition 4. A discrete algorithm for FSM with an (α, β)-bicriteria approximation ratio returns a
solution X such that

f(X) ≥ αf(OPT) ∀c ∈ [N], |X ∩ Uc| ≤ βuc,
∑
c∈[N]

max{|X ∩ Uc|, βlc} ≤ βk.

Here OPT is the optimal solution of the problem FSM, i.e., OPT = argmaxS∈Mfair(P,k,⃗l,u⃗) f(S).

By this definition, we have that an algorithm satisfies a (α, β)-bicriteria approximation ratio for
FSM i.f.f the output set S satisfies f(S) ≥ αf(OPT) and that S ∈Mβ .
Definition 5. A continuous algorithm with (α, β)-bicriteria approximation ratio for FSM returns a
fractional solution x such that

F(x) ≥ αf(OPT), x ∈ P(Mβ).

Here OPT is the optimal solution of the problem FSM, i.e., OPT = argmaxS∈Mfair(P,κ,⃗l,u⃗) f(S).

Mβ is the β-extension of the fairness matroidMfair(P, κ, l⃗, u⃗), and P(Mβ) is the matroid poly-
tope ofMβ . More specifically, P(Mβ) = conv{1S : S ∈Mβ}.

2 CONVERSION ALGORITHMS FOR FSC

In this section, we introduce two algorithms that make use of the dual relationship between FSC
and FSM, and convert bicriteria approximation algorithms for FSM into ones for FSC. The first
algorithm, convert-fair, is designed to convert discrete algorithms for FSM into ones for FSC.
In particular, convert-fair takes an (γ, β)-bicriteria approximation algorithms for FSM that
runs in time T (n, κ) and converts it into a ((1+α)β, γ)-bicriteria approximation algorithm for FSC
that runs in time O(log(|OPT |)

log(α+1) T (n, (1 + α)|OPT |)). However, because of the matroid constraint,
better approximation guarantees for FSM may be achieved by a continuous algorithm that produce a
fractional solution. Motivated by this, our second converting algorithm, convert-continuous,
takes a continuous (γ, β)-bicriteria approximation algorithm (where guarantees are with respect to
the multilinear extension as described in Section 1.2), and converts it into a ((1+α)β, (1−3ε)γ−2ε

1+3ε+ 2ε
γ

)-

bicriteria approximation algorithm for FSC. In the next section, we will develop corresponding
bicriteria approximation algorithms for FSM that can be used along with the results in this section in
order to produce approximately optimal solutions for FSC that are arbitrarily close to being feasible.

For both algorithms, it is required that the sets Uc for c ∈ [N] be sufficiently large so that our
method of constructing a solution does not run out of elements to pick. In particular, we assume that
the instance of FSC satisfies that

∑
c∈[N] min{qc, |Uc|

β(1+α)|OPT |)} ≥ 1. Recall from the definition
of FSC that it is already assumed

∑
c∈[N] qc ≥ 1, so this assumption is essentially requiring that

there be enough elements within each set Uc of the partition, relative to parameters α and β, to
ensure that the rank of the β-extension of the fairness matroid Mβ (see definition in Section 1.2)
is βκ. For example, with the existing algorithm for FSM in El Halabi et al. (2020), β is 1 and
therefore the assumption is met if |Uc| ≥ qc(1 + α)|OPT | for all c ∈ [N]. For our algorithms
greedy-fairness-bi and cont-thresh-greedy-bi in Section 3, β would be 1/ϵ and
ln(1/ϵ) respectively, and the assumption is met if |Uc| ≥ qc(1 + α)|OPT |/ϵ and |Uc| ≥ qc(1 +
α) ln(1/ϵ)|OPT | for all c ∈ [N] respectively.

We first consider our algorithm convert-fair for converting discrete algorithms for FSM. Pseu-
docode for convert-fair is provided in Algorithm 1. convert-fair takes as input an in-
stance of FSC, a (γ, β)-bicriteria approximation algorithm for FSM, and a parameter α > 0. Each
iteration of the while loop from Line 2 to Line 4 corresponds to a guess κ on the size of the op-
timal solution to the instance of FSC. For each guess κ, we have an instance of FSM with budget
κ, fairness vector of lower bound κp⃗, fairness vector of upper bound κq⃗. We then run the algo-
rithm for FSM on this instance to get a set S. Notice that this algorithm will convert the matroid
corresponding to the instance of FSM into its β-extension. In Lines 6 to 8, convert-fair adds
additional elements so that the lower bounds are met for every one of the partitions. Next in Lines
10 to 12, convert-fair then adds elements until the size constraint βκ is met, without breaking
the fairness constraints. Finally, convert-fair checks if the set S satisfies f(S) ≥ γτ . If it does
not, the guess of optimal solution size increases by a factor of 1 + α and the process repeats itself.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 convert-fair
Input: An FSC instance with threshold τ , fairness parameters p⃗, q⃗, partition of U P , a (γ, β)-
bicriteria approximation algorithm for FSM, α > 0
Output: S ⊆ U

1: κ← (1 + α), S ← ∅.
2: while f(S) < γτ do
3: S ← Run (γ, β)-approximation algorithm for FSM with fairness matroid
Mfair(P, κ, ⌊p⃗κ⌋, ⌈q⃗κ⌉)

4: κ← ⌈(1 + α)κ⌉
5: //Rounding the solution
6: for c ∈ [N] do
7: if |S ∩ Uc| < β⌊pcκ⌋ then
8: Add new elements from Uc/S to S until |S ∩ Uc| ≥ β⌊pcκ⌋
9: if |S| < βκ then

10: for c ∈ [N] do
11: while |S| < βκ and |S ∩ Uc| < β⌈qcκ⌉ do
12: Add new elements in Uc/S to S

13: return S

We now state the theoretical results for convert-fair below in Theorem 1. We defer the proof
and analysis of the proof of Theorem 1 to Appendix C.1.

Theorem 1. Suppose
∑

c∈[N] min{qc, |Uc|
β(1+α)|OPT |)} ≥ 1. Then any (γ, β)-bicriteria approxi-

mation algorithm for FSM that returns a solution set in time T (n, κ) can be converted into an
approximation algorithm for FSC that is a ((1 + α)β, γ)-bicriteria approximation algorithm that
runs in time O(log(|OPT |)

log(α+1) T (n, (1 + α)|OPT |)).

We now present our algorithm convert-continuous for converting continuous algorithms. To
motivate it, notice that here we can’t directly use the converting theorem for discrete algorithms.
There are two reasons for this: (i) The output solution is fractional so we need a rounding step, and
(ii) the bicriteria approximation ratio for the continuous algorithms is on the value of the multi-linear
extension and we don’t have exact access to F , so we can’t check directly if F(x) ≥ γτ as we did on
Line 2 of convert-fair. Then we develop the converting algorithm convert-continuous
for continuous algorithms. The key idea of the converting theorem is similar to convert-fair,
so we defer the pseudocode of convert-continuous to Algorithm 4 in Section C.2 of the
appendix. Here we describe the major differences. For each guess of optimal solution size κ,
convert-continuous invokes the continuous subroutine algorithm for FSM to obtain a frac-
tional solution x. Since F can’t be queried exactly in general, we estimate F(x) by taking a sufficient
number of samples in Line 4. Once the estimate of F(x) is higher than γτ , we use the pipage round-
ing technique to convert x into a subset S, and then use the rounding procedure analogous to that in
Lines 6 to 12 in Algorithm 1 to obtain a solution set with fairness guarantee. Notice that since the
solution set obtained from the pipage rounding step is only guaranteed to satisfy that Ef(S) ≥ F(x),
the approximation guarantee on the function value in Theorem 5 holds in expectation. The corre-
sponding theoretical guarantees for convert-continuous are stated below in Theorem 2. The
proof of Theorem 2 can be found in Section C.2 of the appendix.

Theorem 2. Suppose
∑

c∈[N] min{qc, |Uc|
β(1+α)|OPT |)} ≥ 1. Then with probability at least 1 − δ,

any (γ, β)-bicriteria approximation algorithm for FSM that returns a solution set in time T (n, κ)
with probability at least 1− δ

n can be converted into an approximation algorithm for FSC that is a
((1 +α)β, (1−3ε)γ−2ε

1+3ε+ 2ε
γ

)-bicriteria approximation algorithm where (1−3ε)γ−2ε

1+3ε+ 2ε
γ

holds in expectation.

The query complexity is at most O
(

log(|OPT |)
log(α+1) T (n, (1 + α)|OPT |) + n log1+α |OPT |

ε2 log n
δ

)
.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3 BICRITERIA ALGORITHMS FOR FSM

In the last section, we propose converting algorithms to convert bicriteria algorithms for FSM into
ones for FSC. Existing algorithms for FSM can be used as the input (γ, β)-bicriteria subroutine, but
these algorithms all return feasible solutions to the instance of FSM and have guarantees of β = 1
and γ ≤ 1− 1/e. After applying the converting algorithms in Section 2 this results in solutions for
FSC that are far from feasible. For example, the greedy algorithm for FSM proposed has γ = 1/2
and β = 1, and the continuous greedy algorithm for FSM has γ = 1− 1/e and β = 1 (Celis et al.,
2018a).

In this section, we propose new algorithms that can be used for FSM where γ is arbitrarily close to
1 and β > 1. As a result, the algorithms proposed in this section can be paired with the converting
theorems in Section 2 to find solutions to our instance of FSC that are arbitrarily close to being
feasible. We propose three bicriteria algorithms for FSM. The first two algorithms are the discrete
algorithms greedy-fairness-bi and threshold-fairness-bi, which both achieve bi-
criteria approximation ratios of (1−O(ε), 1

ε) where the former is in time O(nκ/ε) and the latter in
time O(nε log κ

ε). The third algorithm is a continuous one, cont-thresh-greedy-bi, which
achieves a (1−O(ε), ln 1

ε + 1) bicriteria approximation ratio in time O
(
nκ
ε4 ln2(n/ε)

)
.

In the case of submodular maximization with a cardinality constraint without fairness, one can find
a solution with f value that is a factor of 1 − ε off of that of the optimal solution by greedily
adding O(ln(1/ε))κ elements beyond the cardinality constraint κ. However, existing algorithms
for FSM transform the instance into an instance of submodular maximization subject to a fairness
matroid constraint, and it is not clear how one can take an analogous approach and produce an
infeasible solution in order to get a better approximation guarantee when dealing with a matroid
constraint while maintaining a fair solution. We propose the β-extension of a fairness matroid,
defined in Section 1.2, in order to get a (γ, β)-bicriteria algorithm for FSM with γ > 1 − 1/e.
In particular, we will return a solution that is a feasible solution to the β-extension of the fairness
matroid corresponding to our instance of FSM.

We now introduce two lemmas concerning the β-extension of a matroid that will be needed for
our algorithms and their theoretical analysis. Before we proceed to present our algorithms, we first
introduce the following general lemma that helps to build a connection between the fairness matroid
M and its β-extension Mβ . For the sake of simplicity in notation throughout this section and
its subsequent proofs, we use the notationMβ , representing the β-extension ofMfair(P, κ, l⃗, u⃗),
which is defined in Section 1.2. Since the bicriteria algorithm for FSM is designed as a subroutine
for the converting theorem with inputMfair(P, κ, p⃗κ, q⃗κ), we have that here lc = ⌊pcκ⌋ and uc =
⌈qcκ⌉. From the fact that

∑
c∈[N] pc ≤ 1 ≤

∑
c∈[N] qc, we have that

∑
c∈[N] lc ≤ κ ≤

∑
c∈[N] uc.

Since the bicriteria algorithm for FSM is used as a subroutine for the converting theorems for FSC,
where we assume

∑
c∈[N] min{qc, |Uc|

β(1+α)|OPT |)} ≥ 1 in both Theorem 1 and Theorem 2, we have

that rank(Mfair(P, κ, l⃗, u⃗)) = κ and that rank(Mβ) = βκ. Therefore, we have the following
Lemma 1.

Lemma 1.
∑

c∈[N] lc ≤ κ ≤
∑

c∈[N] uc and rank(Mfair(P, κ, l⃗, u⃗)) = κ, rank(Mβ) = βκ.

Next, we present Lemma 2, which is one of the most interesting and novel parts of our analysis in
proposing the bicriteria algorithm for FSM, and is necessary in the proof of all the bicriteria algo-
rithm for FSM. Notice that in the bicriteria algorithm for submodular maximization with cardinality
constraint, the greedy step is achieved by simply adding the element with the highest marginal gain.
However, since we need to consider the fairness constraint in our paper, we can only add the ele-
ment that makes the solution set feasible. To prove the theoretical guarantee, we have to construct
a mapping from the solution set to the optimal solution. To tackle this difficulty, we propose and
analyze Lemma 2, which guarantees the existence of such a mapping.

Lemma 2. For any β ∈ N+ and any fairness matroid Mfair(P, κ, l⃗, u⃗), denote Mβ as the β-
extended fairness matroid of Mfair(P, κ, l⃗, u⃗). Then for any set S ∈ Mβ with |S| = βκ, T ∈
Mfair(P, κ, l⃗, u⃗) with |T | = κ, and any permutation of S = (s1, s2, ..., sβκ), there exist a sequence
E = (e1, e2, ..., eβκ) such that each element in T appears β times in E and that

Si ∪ {ei+1} ∈ Mβ , ∀i ∈ {0, 1, ..., βκ}

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

where Si = (s1, s2, ..., si) and S0 = ∅.

Notice that this mapping is not straightforward and trivial due to two reasons. First of all, the size of
the optimal solution and the solution set are different. Second, the portion of |S ∩Uc| over |T ∩Uc|
can be different for different subroup c ∈ [N]. To prove Lemma 2, we construct the mapping by an
iterative proof and by dealing with different cases for each step. This lemma is of great importance
in our analysis as it guarantees the existence of a mapping from the solution set to the set containing
β copies of the OPT . The detailed proof of this lemma is deferred to the appendix.

On the other hand, we highlight that this lemma reveals an important and general fact about the
fairness matroid: For each base set T ∈ Mfair(P, κ, l⃗, u⃗), and each subset S ∈ Mβ that is a base
set, we can find a mapping from T to a sequence E that contains β copies of T such that Si ∪ {ei}
is always feasible for Mβ . Notice that since Mβ is a matroid, then for any subset S1 ⊆ S2, if
S2 ∈ Mβ then S1 ∈ Mβ . Consequently, the above lemma holds for not only just base set ofMβ ,
but also for any subset ofMβ by adding dummy variables to the end of the sequence S if the number
of elements in S is less than βκ. Building upon this lemma, we propose three bicriteria algorithms
in the following part.

3.1 DISCRETE BICRITERIA ALGORITHMS FOR FSM

We now analyze two discrete bicriteria algorithms for FSM, greedy-fair-bi and
threshold-fairness-bi. Let SMMC refer to the problem of monotone submodular max-
imization with a matroid constraint. greedy-fair-bi is based on the standard greedy algorithm
which is well-known to produce a feasible solution with a 1/2 approximation guarantee in O(nk)
time for SMMC (Fisher et al., 1978), where k is the rank of the matroid. greedy-fair-bi
proceeds in a series of rounds, where at each round we select the element x ∈ U with the high-
est marginal gain to f that stays on the 1/ε-extension of the fairness matroid corresponding to the
instance of FSM, i.e. S ∪ {x} ∈ M1/ε. threshold-fairness-bi is based on the thresh-
old greedy algorithm (Badanidiyuru & Vondrák, 2014), which is also a 1/2 − ε approximation for
SMMC but requires only O(n log k) queries of f . threshold-fairness-bi iteratively makes
passes through the universe U and adds all elements into its solution with marginal gains exceeding
τ that are feasible with respect to the 1/ε-extension of the fairness matroid, and this threshold is
decreased by 1 − ε at each round until it falls below a stopping criterion. Notice that these algo-
rithms specifically use the β-extension of the fairness matroid, and therefore do not apply to the
more general setting of submodular maximization with a matroid constraint. Pseudocode for the
algorithms greedy-fair-bi and threshold-fairness-bi are included in Appendix D as
Algorithms 5 and Algorithm 6 respectively.

We now present the theoretical guarantees of greedy-fair-bi and
threshold-fairness-bi. The key benefit of these algorithms over existing ones for FSM is
that by making ε arbitrarily small and using convert-fair in Section 2, we have algorithms
for FSC that are arbitrarily close to being feasible. In particular, if we use greedy-fair-bi
as a subroutine in convert-fair, we have a (1ε + 1, 1 − ε)-bicriteria algorithms for FSC
in O(n log(n)κ/ε2) queries of f . If we use threshold-fairness-bi, we get a similar
approximation guarantee in O(n log(n) log(κ/ε)/ε2) queries of f . The proofs of both of these
theorems can be found in Section D of the appendix.

Theorem 3. Suppose that greedy-fairness-bi is run for an instance of FSM, then
greedy-fairness-bi outputs a solution S that satisfies a (1− ε, 1

ε)-bicriteria approximation
guarantee in at most O (nκ/ε) queries of f .

Theorem 4. Suppose that threshold-fairness-bi is run for an instance of FSM with
ε ∈ (0, 1). Then threshold-fairness-bi outputs a solution S that satisfies a (1 − 2ε, 1

ε)-
bicriteria approximation guarantee in at most O (n/ε log(κ/ε)) queries of f .

3.2 CONTINUOUS ALGORITHMS FOR FSM

A downside to the discrete greedy algorithms proposed in Section 3 is that we are above our budget κ
by a factor of 1/ε, which is weaker than the analogous guarantee of ln(1/ε) that the greedy algorithm
gives for submodular maximization with a cardinality constraint without fairness. We now introduce

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Algorithm 2 cont-thresh-greedy-bi (cont-bi)

1: Input: ε, δ,M∈ 2U

2: x← 0
3: d := maxs∈M f(s),
4: for t = 1 to 1/ε do
5: B ←decreasing-threshold-procedure (x, ε, δ, d,M)
6: x← x + ε · 1B
7: return x

Algorithm 3 decreasing-threshold-procedure (DTP)

1: Input: x, ε, δ, d,M∈ 2U

2: B ← ∅
3: DenoteMfair(P, κ ln(1/ε), l⃗ ln(1/ε), u⃗ ln(1/ε)) asMln(1/ε).
4: for w = d; w > εd

κ ; w = w(1− ε) do
5: for u ∈ U do
6: X = ∆f(S(x + ε1B), u)
7: if B ∪ {u} ∈ Mln(1/ε)+1 then
8: X̂ ← average over 3κ

ε2 log 4n4

ε3 samples from DX

9: if X̂ ≥ w then
10: B ← B ∪ {u}
11: w = w(1− ε)

12: return B

and analyze our continuous algorithm cont-thresh-greedy-bi (cont-bi), which produces
a fractional solution for FSM that achieves a (1−O(ε), ln(1/ε) + 1)-bicriteria approximation ratio
in O

(
nκ ln2(n)

)
time. cont-bi is based on the continuous threshold greedy algorithm of Badani-

diyuru & Vondrák (2014). Compared to the discrete algorithms presented in Section 3.1, cont-bi
improves the ratio on the cardinality of the solution from O(1/ε) to O(ln(1/ε)), and therefore has
as strong of guarantees as the greedy algorithm without fairness. We can achieve a discrete solution
with an arbitrarily small loss by employing rounding schemes, like swap rounding (Chekuri et al.,
2010), on the returned fractional solution x.

cont-bi iteratively takes a step of size ε in the direction 1B , where 1B is the indicator func-
tion of a set B ⊆ U , over 1/ε iterations. At each step, the set B is determined by the subroutine
decreasing-threshold-procedure (DTP). DTP builds B over a series of rounds corre-
sponding to thresholds w, where w begins as the max singleton marginal gain and the rounds exit
once w is sufficiently small. During each round, we iterate over the universe U , and if an ele-
ment u ∈ U can be added to B while staying on the ln(1/ε) + 1-extension of the fairness ma-
troid, then we approximate the multilinear extension f and add u to B if and only if the marginal
gain is above w. Pseudocode for cont-bi is provided in Algorithm 2, and pseudocode for
decreasing-threshold-procedure is provided in Algorithm 3.
Theorem 5. Suppose that Algorithm 2 is run for an instance of FSM, then with probability at least
1 − 1

n2 , cont-thresh-greedy-bi outputs a solution S that satisfies a (1 − 7ε, ln(1ε) + 1)-
bicriteria approximation guarantee in at most O

(
nκ
ε4 ln2(n/ε)

)
queries of f .

By applying a converting theorem, we can obtain the algorithm for submodular cover that achieves
an approximation ratio of ((1+α)(ln(1ε)+1), 1−O(ε)), which aligns with the best-known results for
bicriteria submodular cover without the fairness constraint (Chen & Crawford, 2024; Iyer & Bilmes,
2013b). The detailed theoretical guarantee and proof of the algorithm can be found in Corollary 5.1
in the appendix.

4 EXPERIMENTS

In this section, we evaluate several of our algorithms for FSC on instances of fair maximum cover-
age, where the objective is to identify a set of fixed nodes that optimally maximize coverage within

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

EN

DE

FR

ES

RU

ZH

EN

0.2
0.4

0.6
0.8

(a) greedy-bi

EN

DE

FR

ES

RU

ZH

EN

0.05
0.10

0.15
0.20

(b) greedy-fairness-bi

EN

DE

FR

ES

RU

ZH

EN

0.05
0.10

0.15
0.20

(c) threshold-fairness-bi

1500 1700 1900 2100 2300 2500
Value of the given threshold

0.4

0.8

1.2

1.6

2.0

Va
lu

e
of

 f

×103

GREEDY
GREEDY-Fair
THRES-Fair

(d) f

1500 1700 1900 2100 2300 2500
Value of the given threshold

0

100

200

300

400
Co

st
GREEDY
GREEDY-Fair
THRES-Fair

(e) Cost

1500 1700 1900 2100 2300 2500
Value of the given threshold

0.0

0.2

0.4

0.6

0.8

Fa
ir

ne
ss

 d
iff

er
en

ce

GREEDY
GREEDY-Fair
THRES-Fair

(f) Fairness difference

Figure 1: Performance comparison on the Twitch 5000 dataset for Maximum Coverage. 1a, 1b, 1c
illustrate the distribution of users speaking different languages in the solutions produced by various
algorithms with τ = 2400. f : the value of the objective submodular function. Cost: the size of the
returned solution. Fairness difference: (maxc |S ∩ Uc| −minc |S ∩ Uc|)/|S|.

a graph. The dataset utilized is a subset of the Twitch Gamers dataset (Rozemberczki & Sarkar,
2021), comprising 5,000 vertices (users) who speak English, German, French, Spanish, Russian, or
Chinese. We aim to develop a solution with a high f value exceeding a given threshold τ while
ensuring a fair balance between users who speak different languages. Additional discussion about
the application as well as experimental setup including parameter settings are included in Appendix
G. In addition, we include experiments on instances of fair image summarization in Appendix G.

We evaluate the performance of our discrete bicriteria algorithms greedy-fair-bi and
threshold-fairness-bi for FSM as subroutines in our algorithm convert-fair. In ad-
dition, we consider the baseline algorithm, greedy-bi, which is the standard greedy algorithm for
submodular cover without fairness. Figures 1a, 1b and 1c showcase the distribution of users speaking
different languages in the solutions produced by these algorithms with τ = 2400. Figures 1d, 1e and
1f present the performance of these algorithms (f value, cost, and fairness difference) for varying
values of τ . As shown in Figure 1a, with τ = 2400, over 80% of the users in the solution returned by
greedy-bi are English speakers, which indicates a lack of fairness in user language distribution.
While the solutions produced by greedy-fair-bi and threshold-fairness-bi exhibit
significantly fairer distributions across different languages, demonstrating the effectiveness of our
proposed algorithms. Further, as the value of given τ increases, the magnitude of this difference also
increases (see Figure 1f). Figure 1d showcases that for all these algorithms the objective function
value f(S) scales almost linearly with the threshold τ , which aligns with the theoretical guarantees
of the approximation ratio. Additionally, as shown in Figure 1e, the cost of the solutions returned by
our proposed algorithms is higher than that of the solution from greedy-bi. This is an expected
trade-off, as our algorithms have to include more elements to maintain the approximation ratio while
ensuring fairness. Overall, our proposed algorithms are efficient and effective in producing a fair
solution.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Dmitrii Avdiukhin, Slobodan Mitrovic, Grigory Yaroslavtsev, and Samson Zhou. Adversarially
robust submodular maximization under knapsack constraints. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD., pp. 148–156,
2019.

Ashwinkumar Badanidiyuru and Jan Vondrák. Fast algorithms for maximizing submodular func-
tions. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms,
pp. 1497–1514. SIAM, 2014.

Richard Berk, Hoda Heidari, Shahin Jabbari, Michael Kearns, and Aaron Roth. Fairness in criminal
justice risk assessments: The state of the art. Sociological Methods & Research, 50(1):3–44,
2021.

Dan Biddle. Adverse impact and test validation: A practitioner’s guide to valid and defensible
employment testing. Routledge, 2017.

Ilija Bogunovic, Slobodan Mitrović, Jonathan Scarlett, and Volkan Cevher. Robust submodular
maximization: A non-uniform partitioning approach. In Proceedings of the 34th International
Conference on Machine Learning, ICML, pp. 508–516, 2017.

Markus Brill, Jean-François Laslier, and Piotr Skowron. Multiwinner approval rules as apportion-
ment methods. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, pp.
414–420, 2017.

Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a submodular set
function subject to a matroid constraint. In International Conference on Integer Programming
and Combinatorial Optimization, pp. 182–196. Springer, 2007.

L. Elisa Celis, Lingxiao Huang, and Nisheeth K. Vishnoi. Multiwinner voting with fairness con-
straints. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intel-
ligence, IJCAI, pp. 144–151, 2018a.

L. Elisa Celis, Vijay Keswani, Damian Straszak, Amit Deshpande, Tarun Kathuria, and Nisheeth K.
Vishnoi. Fair and diverse dpp-based data summarization. In Proceedings of the 35th International
Conference on Machine Learning, ICML, pp. 715–724, 2018b.

L. Elisa Celis, Damian Straszak, and Nisheeth K. Vishnoi. Ranking with fairness constraints. In 45th
International Colloquium on Automata, Languages, and Programming, ICALP, pp. 28:1–28:15,
2018c.

Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Dependent randomized rounding via exchange
properties of combinatorial structures. In 2010 IEEE 51st Annual Symposium on Foundations of
Computer Science, pp. 575–584. IEEE, 2010.

Wenjing Chen and Victoria Crawford. Bicriteria approximation algorithms for the submodular cover
problem. Advances in Neural Information Processing Systems, 36, 2024.

Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii. Fair clustering through
fairlets. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems, pp. 5029–5037, 2017.

Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii. Matroids, matchings, and
fairness. In The 22nd International Conference on Artificial Intelligence and Statistics, AISTATS,
2019.

Alexandra Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism
prediction instruments. Big data, 5(2):153–163, 2017.

Joanne McGrath Cohoon, James P. Cohoon, Seth Reichelson, and Selwyn Lawrence. Effective
recruiting for diversity. In IEEE Frontiers in Education Conference, FIE, pp. 1123–1124, 2013.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Pinar Duygulu, Kobus Barnard, Joao FG de Freitas, and David A Forsyth. Object recognition as
machine translation: Learning a lexicon for a fixed image vocabulary. In Computer Vision—ECCV
2002: 7th European Conference on Computer Vision Copenhagen, Denmark, May 28–31, 2002
Proceedings, Part IV 7, pp. 97–112. Springer, 2002.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard S. Zemel. Fairness
through awareness. In Innovations in Theoretical Computer Science, pp. 214–226, 2012.

Khalid El-Arini and Carlos Guestrin. Beyond keyword search: discovering relevant scientific litera-
ture. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 439–447. ACM, 2011.

Marwa El Halabi, Slobodan Mitrović, Ashkan Norouzi-Fard, Jakab Tardos, and Jakub M Tarnawski.
Fairness in streaming submodular maximization: Algorithms and hardness. Advances in Neural
Information Processing Systems, 33:13609–13622, 2020.

Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652, 1998.

Marshall L Fisher, George L Nemhauser, and Laurence A Wolsey. An analysis of approximations
for maximizing submodular set functions—II. Springer, 1978.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: accurate post-training
quantization for generative pre-trained transformers. CoRR, abs/2210.17323, 2022.

Rohan Ghuge, Anupam Gupta, and Viswanath Nagarajan. The power of adaptivity for stochastic
submodular cover. In International Conference on Machine Learning, pp. 3702–3712. PMLR,
2021.

Ryan Gomes and Andreas Krause. Budgeted nonparametric learning from data streams. In Pro-
ceedings of the 27th International Conference on Machine Learning, ICML, pp. 391–398, 2010.

Marwa El Halabi, Slobodan Mitrovic, Ashkan Norouzi-Fard, Jakab Tardos, and Jakub Tarnawski.
Fairness in streaming submodular maximization: Algorithms and hardness. In Advances in Neu-
ral Information Processing Systems 33: Annual Conference on Neural Information Processing
Systems, NeurIPS, 2020.

Marwa El Halabi, Suraj Srinivas, and Simon Lacoste-Julien. Data-efficient structured pruning via
submodular optimization. In Advances in Neural Information Processing Systems 35: Annual
Conference on Neural Information Processing Systems, NeurIPS, 2022.

Marwa El Halabi, Jakub Tarnawski, Ashkan Norouzi-Fard, and Thuy-Duong Vuong. Fairness in
submodular maximization over a matroid constraint. In International Conference on Artificial
Intelligence and Statistics, pp. 1027–1035, 2024.

Rishabh Iyer and Jeffrey Bilmes. Near optimal algorithms for hard submodular programs with
discounted cooperative costs. In Proceedings of Machine Learning Research, volume 89, pp.
276–285, 2019.

Rishabh Iyer, Ninad Khargonkar, Jeff Bilmes, and Himanshu Asnani. Generalized submodular in-
formation measures: Theoretical properties, examples, optimization algorithms, and applications.
IEEE Transactions on Information Theory, 68(2):752–781, 2021.

Rishabh K. Iyer and Jeff A. Bilmes. Submodular optimization with submodular cover and submodu-
lar knapsack constraints. In Advances in Neural Information Processing Systems 26: 27th Annual
Conference on Neural Information Processing Systems, pp. 2436–2444, 2013a.

Rishabh K Iyer and Jeff A Bilmes. Submodular optimization with submodular cover and submodular
knapsack constraints. Advances in neural information processing systems, 26, 2013b.

David Kempe, Jon M. Kleinberg, and Éva Tardos. Maximizing the spread of influence through a
social network. Theory Comput., 11:105–147, 2015.

Rajiv Khanna, Joydeep Ghosh, Russell Poldrack, and Oluwasanmi Koyejo. Sparse Submodular
Probabilistic PCA. In Proceedings of the Eighteenth International Conference on Artificial Intel-
ligence and Statistics, pp. 453–461, 2015.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jon Kleinberg, Himabindu Lakkaraju, Jure Leskovec, Jens Ludwig, and Sendhil Mullainathan. Hu-
man decisions and machine predictions. The quarterly journal of economics, 133(1):237–293,
2018.

Jon M. Kleinberg, Sendhil Mullainathan, and Manish Raghavan. Inherent trade-offs in the fair
determination of risk scores. In 8th Innovations in Theoretical Computer Science Conference,
ITCS, pp. 43:1–43:23, 2017.

Andreas Krause, H Brendan McMahan, Carlos Guestrin, and Anupam Gupta. Robust submodular
observation selection. Journal of Machine Learning Research, 9(12), 2008.

Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne VanBriesen, and Na-
talie Glance. Cost-effective outbreak detection in networks. In Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data mining, pp. 420–429. ACM,
2007.

Hui Lin and Jeff Bilmes. A class of submodular functions for document summarization. In Pro-
ceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies-Volume 1, pp. 510–520. Association for Computational Linguistics, 2011.

Erik M. Lindgren, Shanshan Wu, and Alexandros G. Dimakis. Leveraging sparsity for efficient
submodular data summarization. In Advances in Neural Information Processing Systems 29:
Annual Conference on Neural Information Processing Systems, pp. 3414–3422, 2016.

Baharan Mirzasoleiman, Amin Karbasi, Ashwinkumar Badanidiyuru, and Andreas Krause. Dis-
tributed submodular cover: Succinctly summarizing massive data. Advances in Neural Informa-
tion Processing Systems, 28, 2015.

Baharan Mirzasoleiman, Morteza Zadimoghaddam, and Amin Karbasi. Fast distributed submodular
cover: Public-private data summarization. Advances in Neural Information Processing Systems,
29, 2016.

Slobodan Mitrović, Ilija Bogunovic, Ashkan Norouzi-Fard, Jakub Tarnawski, and Volkan Cevher.
Streaming robust submodular maximization: A partitioned thresholding approach. In Advances
in Neural Information Processing Systems 30: Annual Conference on Neural Information Pro-
cessing Systems, pp. 4560–4569, 2017.

Burt L Monroe. Fully proportional representation. American Political Science Review, 89(4):925–
940, 1995.

George L. Nemhauser and Laurence A. Wolsey. Best algorithms for approximating the maximum
of a submodular set function. Math. Oper. Res., 3(3):177–188, 1978.

Ashkan Norouzi-Fard, Abbas Bazzi, Ilija Bogunovic, Marwa El Halabi, Ya-Ping Hsieh, and Volkan
Cevher. An efficient streaming algorithm for the submodular cover problem. Advances in Neural
Information Processing Systems, 29, 2016.

Yingli Ran, Zhao Zhang, and Shaojie Tang. Improved parallel algorithm for minimum cost submod-
ular cover problem. In Conference on Learning Theory, pp. 3490–3502. PMLR, 2022.

Benedek Rozemberczki and Rik Sarkar. Twitch gamers: a dataset for evaluating proximity preserv-
ing and structural role-based node embeddings. arXiv preprint arXiv:2101.03091, 2021.

Ravid Shwartz-Ziv, Micah Goldblum, Yucen Lily Li, C. Bayan Bruss, and Andrew Gordon Wilson.
Simplifying neural network training under class imbalance. In Advances in Neural Information
Processing Systems 36: Annual Conference on Neural Information Processing Systems, NeurIPS,
2023.

Ruben Sipos, Adith Swaminathan, Pannaga Shivaswamy, and Thorsten Joachims. Temporal corpus
summarization using submodular word coverage. In Proceedings of the 21st ACM international
conference on Information and knowledge management, pp. 754–763. ACM, 2012.

Tasuku Soma and Yuichi Yoshida. A generalization of submodular cover via the diminishing return
property on the integer lattice. Advances in neural information processing systems, 28, 2015.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Kai Wei, Yuzong Liu, Katrin Kirchhoff, and Jeff Bilmes. Using document summarization techniques
for speech data subset selection. In Proceedings of the 2013 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.
721–726, 2013.

Kai Wei, Rishabh K. Iyer, and Jeff A. Bilmes. Submodularity in data subset selection and active
learning. In Proceedings of the 32nd International Conference on Machine Learning, ICML,
volume 37, pp. 1954–1963, 2015.

Laurence A. Wolsey. An analysis of the greedy algorithm for the submodular set covering problem.
Comb., 2(4):385–393, 1982.

Grigory Yaroslavtsev, Samson Zhou, and Dmitrii Avdiukhin. ”bring your own greedy”+max: Near-
optimal 1/2-approximations for submodular knapsack. In The 23rd International Conference on
Artificial Intelligence and Statistics, AISTATS, pp. 3263–3274, 2020.

Qilian Yu, Easton Li Xu, and Shuguang Cui. Streaming algorithms for news and scientific literature
recommendation: Monotone submodular maximization with a d -knapsack constraint. IEEE
Access, 6:53736–53747, 2018.

Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, and Krishna P. Gummadi. Fair-
ness constraints: Mechanisms for fair classification. In Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics, AISTATS, volume 54 of Proceedings of Ma-
chine Learning Research, pp. 962–970, 2017.

A OMITTED LEMMA OF SECTION 1.2

Lemma 3 ((El Halabi et al., 2020)). If f is monotone, then solving FSM is equivalent to the problem
below.

max
S∈U

f(S)

s.t. |S ∩ Uc| ≤ uc ∀c ∈ [N]∑
c∈[N]

max{|S ∩ Uc|, lc} ≤ k

B ADDITIONAL DISCUSSION

B.1 ADDITIONAL APPLICATIONS OF FSC

We first describe an additional number of applications of the fair submodular cover (FSC) problem.

Data summarization. The goal of data summarization is to find a small subset of a dataset, such
as images, documents, etc, that summarizes the dataset. Monotone submodular functions have com-
monly been used in data summarization to quantify the performance of a particular subset (Lin &
Bilmes, 2011; Lindgren et al., 2016), and in particular SC has been used to model the data sum-
marization problem (Mirzasoleiman et al., 2015). In many of these applications, the items of the
dataset can be classified into a number of categories over which a balanced representation in the
summary would be desirable. For example, images may be people of different nationalities, or
news article documents may correspond to different perspectives on an issue. The FSC formulation
emphasizes maintaining a certain information threshold via the constraint f(S) ≥ τ , balancing cat-
egories through a fairness constraint, while minimizing the summary size. One particular possibility
for the constraint on f is that it be nearly its maximum value, i.e., we desire a summary that is as
small as possible while maintaining nearly all of the information from the original dataset. We also
note that data summarization motivates FSM (Halabi et al., 2022). In fact, for many use cases such
a formulation of FSC may be more meaningful than the alternative FSM formulation, which places
emphasis on restricting the summary to a particular budget.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Training data subset selection. A second application is training data subset selection in machine
learning, which has previously been studied from the submodular optimization perspective (Wei
et al., 2015). The fairness constraint can be used to address the problem of innacuracies introduced
by class imbalance during model training, which is a major concern (Shwartz-Ziv et al., 2023).
This problem can be modeled by FSC, where the constraint on the f value represents a requirement
that the smaller training data represent the overall dataset sufficiently well therefore promoting an
accurate learned model, that the training data be balanced over the classes, and we seek to select the
smallest amount of training data possible as training is computationally expensive.

Neural network pruning and quantization. Due to the massive size of modern neural networks,
large, highly-accurate models may require multiple GPUs to do the inference, which limits the
usability of such models. Neural network pruning and quantization address this by reducing network
size or memory while preserving performance. In this task, the goal is to select a subset of neurons
while preserving network performance. One common approach used in neural network pruning
and quantization is the reweighted input change pruning (Frantar et al., 2022), where the objective
function has been proved to preserve weak submodularity (Halabi et al., 2022). Assume that our
goal is to prune the network with the objective function to achieve 70% of the value of F on the
ground set i.e., F (S) ≥ 0.7τ , where τ is F (U) where U is the ground set. Additionally, a fairness
constraint can ensure that neurons are proportionally selected across different layers or blocks to
maintain structural balance.

Influence maximization in social network analysis. As a final application, influence maximiza-
tion is an important problem in social network analysis. Suppose the social graph is described by
G = (V,E, w̄), where V is the set of nodes with |V | = n, E denotes the set of edges, and w̄ is
the weight vector defined on the set of edges E. The objective function is defined on subsets of the
nodes of the graph to be the expected number of nodes influenced in the graph by a chosen seed set
S, and it is well-known to be an example of a monotone and submodular function (Kempe et al.,
2015). In this application, FSC addresses the problem where we want to find the subset of minimum
size that could influence a target fraction of nodes, f(S) ≥ τ , while ensuring fairness in node selec-
tion based on associated features (e.g., demographics). This application highlights FSC’s ability to
balance influence spread across diverse subgroups in social networks.

B.2 COMPARISON WITH EXISTING REDUCTIONS

In this section, we briefly discuss the difference between our reduction and the existing reduction
from general submodular maximization to submodular cover.

The standard reduction from an instance of submodular cover (SC) with objective f and threshold
constraint τ to an instance of submodular maximization (SM) with objective f and budget k involves
iteratively doing the following procedure: A guess is made for the size of the optimal solution
(|OPT |) to the instance of SC, and this guess as the budget along with f are input into an algorithm
for SM. The procedure is repeated with increasingly large guesses until a solution is found with f
value sufficiently close to τ . This process is relatively straightforward since the two problems are
dual to each other, and the conversion requires only a flip between the objective and the constraint.
A clear description of the process is provided in Iyer & Bilmes (2013a).

In contrast, in our fairness setting, the conversion from fair submodular cover (FSC) to fair sub-
modular maximization (FSM) is less clear because of the more complex matroid structure of the
fairness constraints. It is important to note that there is currently no existing formulation of the Sub-
modular Cover (SC) problem that incorporates a matroid constraint, nor has any conversion process
been developed to address such constraints. To address this, we devised a method where each guess
of the size of the optimal solution for the instance of SC is used to construct an extended fairness
matroid (we propose the concept of an extension to a matroid in Section 1.2). This matroid is then
input as a constraint into a bicriteria FSM algorithm, such as those developed in Sections 3.1 and
3.2. Furthermore, post-processing (Lines 6–12 in Algorithm 1 and Lines 7-13 in Algorithm 4) is
required for each guess to ensure the fairness constraint is met, unlike the non-fairness setting where
no such post-processing is necessary. A final difference between our fair setting and the general
setting is that we are the first to introduce a converting process for multilinear extension algorithms
(Algorithm 4).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B.3 COMPARISON WITH ALGORITHMS FOR SM WITH MATROID CONSTRAINTS

In this section, we provide a comparison between our fair submodular maximization algorithms and
existing algorithms for submodular maximization under matroid constraints.

First, we note that the fair submodular maximization (FSM) problem can be converted into an in-
stance of submodular maximization with a general matroid constraint, as shown by Lemma 3 in
Halabi et al. (2020). Therefore, existing algorithms for SM with a general matroid constraint can
also be applied to FSM. Such algorithms return a feasible solution to the instance of SM with a
matroid constraint, and achieve an approximation guarantee of at best 1 − 1/e. However, our goal
with our algorithms for FSM is to use them as subroutines in the conversion process, and so we
develop algorithms that find sets that are better approximations to the optimal solution than 1− 1/e
but are not necessarily feasible. i.e., we propose algorithms for FSM with bicriteria approximation
ratio. To this end, we have developed the notion of an extension of the fairness matroid (see Def-
inition 2 in Section 1.2) and shown that by transferring to this “bigger” constraint we can achieve
better objective values. In the case of our continuous algorithm, this means traveling within an ex-
tended polytope of the β-extension of the fairness matroid. This approach enables the f value of the
solution set to approach arbitrarily close to the optimal objective.

B.4 OMITTED DISCUSSION ON THE FEASIBILITY OF FSC

In Section 1.2, we present the problem definition for FSC. Notice that for some input values of τ ,
and pc, qc, there might be no feasible solution, i.e. the instance of FSC is invalid. Further, it might
not be easy to check whether there exists a feasible solution with the value of submodular objective
f to be higher than τ and also satisfy the fairness constraint. However, if we have an algorithm
that is guaranteed to produce an approximately feasible solution to FSC assuming the instance is
valid, we can use this algorithm to check whether there exists an approximately feasible solution
to the instance or not. In particular, suppose we have an algorithm for valid instances of FSC that
is guaranteed to produce a fair solution X such that f(X) ≥ γτ for some value γ that is close to
1. Then if we run this algorithm on the instance, we can check if the returned solution satisfies
f(X) ≥ γτ and is fair, in which case we know there exists a nearly feasible solution. If the solution
does not satisfy the guarantees, then the FSC instance must not have a feasible solution at all. The
algorithms proposed in this paper are examples of algorithms that provide nearly feasible solutions
to valid instances of FSC. Another approach to find a value for τ which makes the FSC problem
feasible is as follows. We can choose a value of the solution set, denoted as r, which satisfies that
qcr ≤ |Uc| for each c ∈ [N], and run any non-bicriteria algorithm for the FSM instance with the
fairness matroidMfair(P, r, p⃗r, q⃗r). Since that qcr ≤ |Uc|, the rank of the fairness matroid is r.
Therefore, if we set τ to be f(S) where S is the output solution set of the algorithm for FSM, then
the FSC problem would be feasible since S would be a feasible set for the FSC instance.

C APPENDIX FOR SECTION 2

In this section, we present missing discussions and proofs from Section 2 in the main pa-
per. We first present missing proofs of Theorem 1 about algorithm convert-fair in
Section C.1. Then we present the proof of Theorem 2 about the converting algorithm
convert-continuous for continuous algorithms in Section C.2. In addition, pseudocode for
the algorithm convert-continuous is presented in Algorithm 4.

C.1 PROOF OF THEOREM 1

In this section, we present the missing proofs of the lemmas that are used in the proof of Theorem
1. In order to prove Theorem 1, we need the following two lemmas. Lemma 4 guarantees that the
solution set S after the rounding step satisfies the fairness constraint for cover. Lemma 5 implies the
inclusion relationship of the fairness matroid with the same fairness ratios.

Lemma 4. For each guess κ such that κ ≤ (1+α)|OPT |, the solution set S in Algorithm 1 satisfies

β⌊pc|S|
β
⌋ ≤ |S ∩ Uc| ≤ β⌈qc|S|

β
⌉, |S| = βκ.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Proof. Here we denote the solution set returned by the bicriteria algorithm for FSM as S′, and the
solution set after the rounding steps from Line 6 to Line 8 as S′′. From the definition of bicrite-
ria approximation algorithm for FSM, we can see that the solution set returned by the subroutine
algorithm for FSM satisfies that

|S′ ∩ Uc| ≤ β⌈qcκ⌉∑
c∈[N]

max{|S′ ∩ Uc|, β⌊pcκ⌋} ≤ βκ

After the rounding steps for each group from Line 6 to Line 8, the solution set satisfies that |S′′ ∩
Uc| = max{β⌊pcκ⌋, |S′∩Uc|} for any c ∈ [N]. It then follows that β⌊pcκ⌋ ≤ |S′′∩Uc| ≤ β⌈qcκ⌉.
Since that

∑
c∈[N] max{|S′ ∩ Uc|, β⌊pcκ⌋} ≤ βκ, we have that

|S′′| =
∑
c∈[N]

|S′′ ∩ Uc| =
∑
c∈[N]

max{|S′ ∩ Uc|, β⌊pcκ⌋} ≤ βκ.

From the assumption that
∑

c∈[N] qc ≥ 1 and
∑

c∈[N] min{qc, |Uc|
β(1+α)|OPT |)} ≥ 1, after the second

rounding phase from Line 10 to Line 12, we have |S| = βκ and that for each group c,

β⌊pcκ⌋ ≤ |S ∩ Uc| ≤ β⌈qcκ⌉.
Since the solution set S is of cardinality βκ, then we have

β⌊pc|S|
β
⌋ ≤ |S ∩ Uc| ≤ β⌈qc|S|

β
⌉.

Lemma 5. For any positive integers κ1, κ2 such that κ1 ≤ κ2, we have that

Mfair(P, κ1, ⌈p⃗κ1⌉, ⌈q⃗κ1⌉) ⊆Mfair(P, κ2, ⌊p⃗κ2⌋, ⌈q⃗κ2⌉)

Proof. The lemma is equivalent to prove that for any subset A ∈ Mfair(P, κ1, ⌈p⃗κ1⌉, ⌈q⃗κ1⌉), we
have that A is also inMfair(P, κ2, ⌊p⃗κ2⌋, ⌈q⃗κ2⌉). Since κ1 ≤ κ2, |A ∩ Uc| ≤ ⌈qcκ1⌉ ≤ ⌈qcκ2⌉.
For the second constraint, notice that

∑
c∈[N] max{|A ∩ Uc|, ⌈pcκ1⌉} ≤ κ1 is equivalent to that∑

c∈[N] max{|A ∩ Uc|/κ1,
⌈pcκ1⌉

κ1
} ≤ 1. It then follows that∑

c∈[N]

max{|A ∩ Uc|/κ2,
⌊pcκ2⌋
κ2

} ≤
∑
c∈[N]

max{|A ∩ Uc|/κ1,
⌈pcκ1⌉
κ1

} ≤ 1.

Therefore, A ∈Mfair(P, κ2, ⌊p⃗κ2⌋, ⌈q⃗κ2⌉).

We now prove Theorem 1.

Theorem 1. Suppose
∑

c∈[N] min{qc, |Uc|
β(1+α)|OPT |)} ≥ 1. Then any (γ, β)-bicriteria approxi-

mation algorithm for FSM that returns a solution set in time T (n, κ) can be converted into an
approximation algorithm for FSC that is a ((1 + α)β, γ)-bicriteria approximation algorithm that
runs in time O(log(|OPT |)

log(α+1) T (n, (1 + α)|OPT |)).

Proof. Denote the optimal solution of the FSC as OPT . Since by Lemma 4, the fairness constraint
for cover is always satisfied. When the guess of OPT satisfies that |OPT | < κ ≤ (1 + α)|OPT |,
by the definition of bicriteria approximation algorithm for FSM, it follows that

f(S) ≥ γ max
X∈Mfair(P,κ,⌊p⃗κ⌋,⌈q⃗κ⌉)

f(X).

Since κ > |OPT |, by Lemma 5, we have that Mfair(P, |OPT |, ⌈p⃗|OPT |⌉, ⌈q⃗|OPT |⌉) ⊆
Mfair(P, κ, ⌊p⃗κ⌋, ⌈q⃗κ⌉). Therefore, it follows that

max
X∈Mfair(P,κ,⌊p⃗κ⌋,⌈q⃗κ⌉)

f(X) ≥ max
X∈Mfair(P,|OPT |,⌈p⃗|OPT |⌉,⌈q⃗|OPT |⌉)

f(X)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Since OPT is the optimal solution of FSC, we have that ⌈pc|OPT |⌉ ≤ |OPT ∩Uc| ≤ ⌈qc|OPT |⌉.
It implies that OPT ∈Mfair(P, |OPT |, ⌈p⃗|OPT |⌉, ⌈q⃗|OPT |⌉). Therefore we can get

max
X∈Mfair(P,|OPT |,⌈p⃗|OPT |⌉,⌈q⃗|OPT |⌉)

f(X) ≥ f(OPT) ≥ τ.

Then

f(S) ≥ γτ.

This means that the algorithm stops by the time when κ reaches the region of (|OPT |, (1 +
α)|OPT |], which implies that the output solution set satisfies |S| = βκ ≤ β(1 + α)|OPT |.
Since by Lemma 4, the fairness constraint is always satisfied, the output solution set satisfies a
((1 + α)β, γ)-approximation ratio. The algorithm makes O(log1+α |OPT |) calls to the bicrite-
ria algorithm for FSM with κ = 1 + α, (1 + α)2, ..., (1 + α)|OPT |, so the query complexity is

O(
∑ log(|OPT |)

log(α+1)

i=1 T (n, (1 + α)i)).

C.2 CONVERTING THEOREM FOR CONTINUOUS ALGORITHMS

In this section, we present and analyze the converting algorithm for the continuous algorithms, which
is denoted as convert-continuous. The algorithm description is in Algorithm 4. The main
result of the algorithm is presented in Theorem 2, which we restate as follows.

Theorem 2. Any continuous algorithm with a (γ, β)-bicriteria approximation ratio for FSM
that returns a solution in time T (n, κ) with probability at least 1 − δ

n can be converted into
an approximation algorithm for FSC such that with probability 1 − δ, the algorithm satisfies a
((1 + α)β, (1−3ε)γ−2ε

1+3ε+ 2ε
γ

)-bicriteria approximation ratio where (1−3ε)γ−2ε

1+3ε+ 2ε
γ

holds in expectation. The

query complexity is at most O(log1+α |OPT |T (n, (1 + α)|OPT |)) + n log1+α |OPT |
ε2 log n

δ).

Proof. Throughout the proof, we use OPT to denote the optimal solution of the FSM. In addi-
tion, we denote the optimal solution of FSM under the total cardinality κ as OPTκ, i.e., OPTκ =
argmaxS∈Mfair(P,κ,p⃗κ,q⃗κ) f(S). First of all, notice that there are at most min{n, log1+α |OPT |+
1} number of guesses of |OPT | before κ reaches |OPT | ≤ κ ≤ (1 + α)|OPT |. By taking a union
bound over all guess of |OPT | we would obtain with probability at least 1− δ

2 and for each guess of
|OPT |, the algorithm for FSM outputs a solution x with a bicriteria approximation ratio of (γ, β).

Since F(x) ≤ nmaxs∈Mβ
f(s) ≤ nf(OPTκ), by the Chernoff bound in Lemma 8 and taking the

union bound, it follows that with probability at least 1 − δ
2 , for each guess of |OPT |, the estimate

of F(x) in Line 4 of Algorithm 4 denoted as Y , satisfies that

|Y − F(x)| ≤ 2εf(OPTκ) + 3εF(x).

By the definition of the bicriteria approximation ratio, it follows that Y ≥ {(1−3ε)γ−2ε}f(OPTκ).

Similar to the proof of Theorem 1, we can see that when κ, which is the guess of the size OPT
satisfies that |OPT | ≤ κ ≤ (1 + α)|OPT |, it follows that

f(OPTκ) ≥ τ.

Therefore, Y ≥ {(1 − 3ε)γ − 2ε}τ . It then follows that the algorithm stops before the guess of
|OPT | satisfies |OPT | ≤ κ ≤ (1 + α)|OPT |. The value of multi-linear extension of the output
fractional solution then satisfies

(1 + 3ε)F(x) + 2εf(OPTκ) ≥ Y ≥ {(1− 3ε)γ − 2ε}τ.

Combining the above inequality with that F(x) ≥ γf(OPTκ), then

F(x) ≥ (1− 3ε)γ − 2ε

1 + 3ε+ 2ε
γ

τ.

Since x ∈ P(Mβ), whereMβ is the β extension of the fairness matroid under the guess κ, then after
the pipage rounding step, we would have that S ∈Mβ , and the value of objective function satisfies

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 4 convert-continuous
Input: An FSC instance with threshold τ , fairness parameters p⃗, q⃗, partition P , a (γ, β)-bicriteria
approximation algorithm for FSM, α > 0
Output: S ⊆ U

1: κ← ⌈1 + α⌉, S ← ∅.
2: while true do
3: x← (γ, β)-bicriteria approximation for FSM with fairness matroidMfair(P, κ, p⃗κ, q⃗κ)
4: Y ← average over n

2ε2 log(
4n
δ) samples from F(x)

5: if Y ≥ {(1− 3ε)γ − 2ε}τ then
6: S ← pipage rounding of x
7: for c ∈ [N] do
8: if |S ∩ Uc| < pcβκ then
9: Add new elements from Uc/S to S until |S ∩ Uc| ≥ pcβκ

10: if |S| < βκ then
11: for c ∈ [N] do
12: while |S| < βκ and |S ∩ Uc| < qcβκ do
13: Add new elements in Uc/S to S

14: κ← ⌈(1 + α)κ⌉
15: return S

Ef(S) ≥ F(x) ≥ (1−3ε)γ−2ε

1+3ε+ 2ε
γ

τ . After the rounding steps from Line 7 to Line 13 in Algorithm 4, we

would get that the final solution set satisfies

Ef(S) ≥ (1− 3ε)γ − 2ε

1 + 3ε+ 2ε
γ

τ

β⌊pc|S|
β
⌋ ≤ |S ∩ Uc| ≤ β⌈qc|S|

β
⌉

|S| ≤ (1 + α)β|OPT |.

D APPENDIX FOR SECTION 3

In this section, we present the missing content in Section 3 in the main paper.

D.1 APPENDIX FOR SECTION 3.1

In this portion of appendix, we present the missing details and proofs in Section 3.1
in the main paper, which is about two discrete algorithms greedy-fair-bi and
threshold-fairness-bi. We begin by presenting the proof of Lemma 2, followed by
proofs of the threshold greedy algorithm threshold-fairness-bi. Finally, the pseudocode
of greedy-fair-bi and threshold-fairness-bi are presented in Algorithm 5 and Al-
gorithm 6 respectively.

First of all, we prove Lemma 2, which builds the relationship between the original fairness matroid
and its β-extension for any β ∈ N+.

Lemma 2. For any β ∈ N+ and any fairness matroid Mfair(P, κ, l⃗, u⃗), denote Mβ as the β-
extended fairness matroid of Mfair(P, κ, l⃗, u⃗). Then for any set S ∈ Mβ with |S| = βκ, T ∈
Mfair(P, κ, l⃗, u⃗) with |T | = κ, and any permutation of S = (s1, s2, ..., sβκ), there exist a sequence
E = (e1, e2, ..., eβκ) such that each element in T appears β times in E and that

Si ∪ {ei+1} ∈ Mβ , ∀i ∈ {0, 1, ..., βκ}

where Si = (s1, s2, ..., si) and S0 = ∅.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Proof. Before proving the lemma, we define some notations here. For any sequence of any length
m denoted as A = (a1, a2, ..., am), we define the number of element x in the sequence as |Ax|, i.e.,
|Ax| := |{i : ai = x}|. In addition, we define the number of elements of group c in the sequence
as |Ac|, i.e., |Ac| = |{i : ai ∈ Uc}| =

∑
x∈Uc

|Ax|. For the sequence E, we denote the sequence
containing i-th element to the last elements as Ei, i.e., Ei = (ei, ei+1, ..., eβκ). Now we prove a
stronger claim which would imply the results in the lemma.

Claim 1. For any β ∈ N+, denote Mβ as the β-extension of the fairness matroid. Then for any
set S ∈ Mβ , there exists a sequence E = (e1, ..., eβκ) such that for each i ∈ {0, 1, ..., βκ}, the
sequence Fi = (Si, Ei+1) = (s1, s2, ..., si, ei+1, ..., eβκ) satisfies that

|F c
i | ≤ ucβ ∀c ∈ [N]∑

c∈[N]

max{|F c
i |, lcβ} ≤ βκ.

Here for each e ∈ E, we have e ∈ T . Besides, we have that for any element x ∈ T ,

|F x
i | ≤ β.

We prove the claim by induction. First, when i = βκ, Fi = S. Since S ∈ Mβ , the claim holds.
Suppose the result in the claim holds for i, and we prove the claim for i− 1. There are two cases.

• Case 1. There exists some group c0 such that |(Si−1, Ei+1)
c0 | ≤ lc0β − 1. Since |T | = κ,

|T ∩ Uc| ≥ lc for each c ∈ [N]. Therefore, in this case, there exists at least one element
x ∈ Uc0 ∩ T such that |(Si−1, Ei+1)

x| < β. Then choose ei = x and Ei = (x,Ei+1), the
results in the claim will be satisfied.

• Case 2. For all group c ∈ [N], |(Si−1, Ei+1)
c| ≥ lcβ. Since the sequence (Si−1, Ei+1) is

of length βκ− 1, we have that

|(Si−1, Ei+1)| < βκ ≤ |T |β.

Therefore, there exists at least one group c1 such that |(Si−1, Ei+1)
c1 | < |T ∩ Uc1 |β.

(Otherwise
∑

c∈[N] |(Si−1, Ei+1)
c| ≥

∑
c∈[N] |T ∩Uc|β = βκ, which breaks the assump-

tion.) From |(Si−1, Ei+1)
c1 | < |T ∩ Uc1 |β, we have that there exists at least one element

x ∈ T ∩ Uc1 such that
|(Si−1, Ei+1)

x| ≤ β − 1.

Then we set the i-th element in E to be x, then Ei = (x,Ei+1). It follows that
|(Si−1, Ei)

x| ≤ β. For each element x′ ∈ T/{x} , |(Si−1, Ei)
x′ | = |(Si−1, Ei+1)

x′ | ≤ β.
Since ei = x ∈ Uc1 . For group c ̸= c1, |(Si−1, Ei)

c| = |(Si−1, Ei+1)
c| ≤ ucβ

by the assumption that the claim holds for iteration i. For group c1, |(Si−1, Ei)
c1 | =

|(Si−1, Ei)
c| + 1 ≤ ucβ. Since for all group c ∈ [N], |(Si−1, Ei+1)

c| ≥ lcβ, it follows
that |(Si−1, Ei)

c| ≥ lcβ. Thus∑
c∈[N]

max{|(Si−1, Ei)
c|, lcβ} =

∑
c∈[N]

|(Si−1, Ei)
c|

= |(Si−1, Ei)| = βκ.

Thus we prove the claim for iteration i − 1 under the assumption that the claim holds for
i. By induction, the claim holds for all i. For i = 0, (S0, E0) = E. From the construction
of E we have that |E| = βκ, and that |Eo| = β for all o ∈ T . Since for each group c,
we have |Si ∪ {ei+1} ∩ Uc| ≤ |(Si, Ei)

c|. From the result in the claim, we can prove that
Si ∪ {ei+1} ∈ Mβ .

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

D.1.1 PROOF OF THEOREM 3

Theorem 3. Suppose that greedy-fairness-bi is run for an instance of FSM, then
greedy-fairness-bi outputs a solution S that satisfies a (1− ε, 1

ε)-bicriteria approximation
guarantee in at most O (nκ/ε) queries of f .

Proof. Denote the optimal solution of maxS∈Mfair(P,κ,⃗l,u⃗) f(S) as OPT , i.e., OPT =

argmaxS∈Mfair(P,κ,⃗l,u⃗) f(S). Since by Lemma 1, we have M1/ε = Mfair(P, κ/ε, l⃗/ε, u⃗/ε)

is a matroid of rank κ/ε, then the Algorithm 5 ends after κ/ε steps and the output solution set
satisfies |S| = κ/ε. Since S ∈M1/ε, then

|S ∩ Uc| ≤ uc/ε ∀c ∈ [N]

max
c∈[N]

{|S ∩ Uc|, lc/ε} ≤ κ/ε.

Then it remains to prove that f(S) ≥ (1 − ε)f(OPT). From Lemma 2, we know that there exists
a sequence E that contains 1/ε copies of OPT and that at each step i, Si ∪ {ei+1} ∈ M1/ε. Then
by the greedy selection strategy, we have

f(Si+1)− f(Si) ≥ f(Si ∪ {ei+1})− f(Si).

Thus by submodularity, we have

f(Si+1)− f(Si) ≥ f(Si ∪ {ei+1})− f(Si) ≥ ∆f(S, ei+1).

Summing over all i, we would get
k
ε−1∑
i=0

f(Si+1)− f(Si) ≥
k
ε−1∑
i=0

∆f(S, ei+1).

Since the sequence E contains 1/ε copies of each element in OPT , then
∑ k

ε−1
i=0 ∆f(S, ei+1) =

1/ε
∑

o∈OPT ∆f(S, o). Since
∑ k

ε−1
i=0 f(Si+1)− f(Si) = f(S)− f(∅) and that f is nonnegative,

f(S) ≥
k
ε−1∑
i=0

∆f(S, ei+1) ≥ 1/ε
∑

o∈OPT

∆f(S, o) ≥ f(OPT)− f(S)

ε
.

Thus we have

f(S) ≥ 1

1 + ε
f(OPT) ≥ (1− ε)f(OPT).

D.1.2 PROOF OF THEOREM 4

Before we present the proof of the theorem, first we present the proof of the following lemma. Let
us denote the solution set after the i-th element in threshold-fairness-bi as Si. By Lemma
2, we know that we can construct a sequence E = (e1, e2, .., eκ/ε) that contains 1/ε copies of OPT
and that Si ∪ {ei+1} ∈ M1/ε. Then we have the following lemma.

Lemma 6. For any 0 ≤ i < κ/ε, it follows that

∆f(Si, si+1) ≥ (1− ε)∆f(Si, ei+1)− εd/κ.

Proof. First, we consider the case if si+1 is added to the solution set and is not a dummy variable,
it follows that ∆f(Si, si+1) ≥ τ . Since Si ∪ {ei+1} ∈ M1/ε, then if ei+1 /∈ Si, by submodularity
we have ∆f(Si, ei+1) ≤ τ/(1 − ε). If ei+1 ∈ Si, then ∆f(Si, ei+1) = 0 ≤ τ/(1 − ε). Next,
we consider the case if si+1 is a dummy variable, then ∆f(Si, si+1) = 0. If ei+1 ∈ Si, then
∆f(Si, ei+1) = 0 and the above inequality in the lemma holds. If ei+1 /∈ Si, since Sκ1 ∪ {ei+1} ∈
M1/ε, then ∆f(Si, ei+1) ≤ εd/κ. Therefore, we have that

∆f(Si, si+1) ≥ (1− ε)∆f(Si, ei+1)− εd/κ.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Next, we present the proof of Theorem 4.
Theorem 4. Suppose that threshold-fairness-bi is run for an instance of FSM with
ε ∈ (0, 1). Then threshold-fairness-bi outputs a solution S that satisfies a (1 − 2ε, 1

ε)-
bicriteria approximation guarantee in at most O (n/ε log(κ/ε)) queries of f .

Proof. First, notice that the Algorithm 6 ends in at most (1/ε) log(κ/ε) number of iterations. There-
fore, there are at most n/ε log(κ/ε) number of queries to f . Next, we prove the bicriteria approxi-
mation ratio of threshold-fairness-bi. From the description of Algorithm 6, we have that
the output solution set S ∈M1/ε, then

|S ∩ Uc| ≤ uc/ε ∀c ∈ [N]

max
c∈[N]

{|S ∩ Uc|, lc/ε} ≤ κ/ε.

It remains to prove that f(S) ≥ (1− 2ε)f(OPT) where OPT is defined as the optimal solution of
FSM, i.e., OPT = argmaxS∈Mfair(P,κ,⃗l,u⃗) f(S). For simplicity, we assume the returned solution
has size |S| = k1. As discussed in the proof of Theorem 3, Rank(M1/ε) = κ/ε. Here we denote
the solution set as S = (s1, s2, ..., sκ/ε), and we define Si as Si = (s1, ..., si). Here si is the
i-th element added to the solution set. In the case when the threshold τ drops below εd/κ at the
termination and κ1 ≤ κ/ε, we can add dummy elements to S such that |S| = κ/ε. By Lemma 6,
we have that there is a sequence E = (e1, e2, ..., ek/ε) that contains 1/ε copies of OPT and

∆f(Si, si+1) ≥ (1− ε)∆f(Si, ei+1)− εd/κ.

Thus by submodularity, we have

f(Si+1)− f(Si) ≥ (1− ε){f(Si ∪ {ei+1})− f(Si)} − εd/κ ≥ (1− ε)∆f(S, ei+1)− εd/κ.

Summing over all i, we would get

k/ε−1∑
i=0

f(Si+1)− f(Si) ≥ (1− ε)

κ/ε−1∑
i=0

∆f(S, ei+1)− d.

Since the sequence E contains 1/ε copies of each element in OPT , then
∑ k

ε−1
i=0 ∆f(S, ei+1) =

1/ε
∑

o∈OPT ∆f(S, o). Since
∑κ/ε−1

i=0 f(Si+1)− f(Si) = f(S)− f(∅) and that f is nonnegative,

f(S) ≥ (1− ε)

κ/ε−1∑
i=0

∆f(S, ei+1)− d

≥ (1− ε)

ε

∑
o∈OPT

∆f(S, o)− d

≥ 1

ε
{(1− ε){f(OPT)− f(S)} − εf(OPT)}

≥ 1

ε
{(1− 2ε)f(OPT)− (1− ε)f(S)}.

By re-arranging the above equation, we have that

f(S) ≥ (1− 2ε)f(OPT).

D.2 APPENDIX FOR SECTION 3.2

In this section, we provide the omitted content from Section 3.2 of the main paper. Specifically, we
present the proof of Lemma 7, which offers the theoretical guarantee for the subroutine algorithm
decreasing-threshold-procedure of the continuous algorithm cont-bi. The statement
of the Lemma is as follows.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Algorithm 5 greedy-fairness-bi

1: Input: ε, fairness matroidMfair(P, κ, l⃗, u⃗)
2: Output: S ∈ U
3: S ← ∅
4: DenoteMfair(P, κ/ε, l⃗/ε, u⃗/ε) asM1/ε.
5: while ∃x s.t. S ∪ {x} ∈ M1/ε do
6: V ← {x ∈ U |S ∪ {x} ∈ M1/ε}
7: u← argmaxx∈V ∆f(S, x)
8: S ← S ∪ {u}

return S

Algorithm 6 threshold-fairness-bi

1: Input: ε, fairness matroidMfair(P, κ, l⃗, u⃗)
2: Output: S ∈ U
3: S ← ∅
4: DenoteMfair(P, κ/ε, l⃗/ε, u⃗/ε) asM1/ε

5: d← max{x}∈M1/ε
f({x})

6: for τ = d; τ ≥ εd/k; τ ← τ(1− ε) do
7: for x ∈ U do
8: if S ∪ {x} ∈ M1/ε and ∆f(S, x) ≥ τ then
9: S ← S ∪ {x}

10: if |S| = κ/ε then
11: return S

return S

Lemma 7. During each call of decreasing-threshold-procedure, the output coordinate
set B satisfies that

F(x + ε1B)− F(x) ≥ ε{ln(1/ε) + 1}((1− 6ε)f(OPT)− F(x + ε1B)).

Proof. For notation simplicity, we denote the rank of the matroid Mln(1
ε)+1 as m, i.e., m :=

(ln(1ε) + 1)κ. Here we denote the output solution set as B = {b1, b2, ..., bm} where bi is the i-
th element that is added to set B. Here if |B| < m, then for any i > |B|, bi is defined as a dummy
variable. In addition, we define Bi = {b1, b2, ..., bi}. Since Mln(1

ε)+1 is an ln(1ε) + 1-extension
of the original fairness matroid, then by Lemma 2, there exists a sequence E = (e1, e2, ..., em)
such that E contains ln(1/ε) + 1 copies of the optimal solution OPT = {o1, o2, ..., oκ} such that
Bi−1 ∪ {ei} ∈ Mln(1/ε)+1 for each i ∈ [m].

Notice that by Lemma 8, we have that with probability at least 1 − ε3

2n4 , for any fixed x + 1B and
fixed element u, the empirical mean X̂(Bi, u), which is the average over 3κ

ε2 log 4n4

ε3 samples of the
random variable X = ∆f(S(x + ε1Bi

), u) satisfies that

|X̂(Bi, u)− E∆f(S(x + ε1Bi
), u)| ≤ ε

κ
f(OPT) + εE∆f(S(x + ε1Bi

), u). (1)

Since during the execution of cont-bi, there are at most n
ε2 log(κ/ε) such estimations, by applying

the union bound, we have that with probability at least 1− 1
2n2 , the inequality (1) holds for each x,

B and u during cont-bi. From the description in Algorithm 3, we can see that X̂(Bi−1, bi) ≥
w. For the element ei, we have that X̂(Bi−1, ei) ≤ w

1−ε or at the last iteration, we have that
X̂(Bi−1, ei) ≤ εd

κ . Therefore, we have that X̂(Bi−1, bi) ≥ (1 − ε)X̂(Bi−1, ei) − εd
κ . Since

OPT = maxS∈Mfair(P,κ,p⃗κ,q⃗κ) f(S) ≥ d, it then follows that

(1 + ε)E∆f(S(x + ε1Bi−1
), bi) ≥ (1− ε)2E∆f(S(x + ε1Bi−1

), ei)−
3ε

κ
f(OPT).

By rearranging the above inequality and simple calculations, we have

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

E∆f(S(x + ε1Bi−1), bi) ≥ (1− 3ε)E∆f(S(x + ε1Bi−1), ei)−
3ε

κ
f(OPT).

By the construction of set B, we would get

F(x + ε1B)− F(x) =
m∑
i=1

F(x + ε1Bi)− F(x + ε1Bi−1)

=

m∑
i=1

ε · ∂F
∂bi

∣∣
x=x+1Bi−1

≥ ε

m∑
i=1

E∆f(S(x + ε1Bi−1), bi)

≥ ε

m∑
i=1

(1− 3ε)E∆f(S(x + ε1Bi−1
), ei)−

3εf(OPT)

κ

= ε(1− 3ε)

m∑
i=1

E∆f(S(x + ε1Bi−1
), ei)

− 3ε2(ln(
1

ε
) + 1)f(OPT)

≥ ε(1− 3ε)

m∑
i=1

E∆f(S(x + ε1B), ei)

− 3ε2(ln(
1

ε
) + 1)f(OPT),

where the last inequality results from the submodularity of f . From Lemma 2, we have that

F(x + ε1B)− F(x) ≥ ε(1− 3ε)(ln(
1

ε
) + 1)

κ∑
i=1

E∆f(S(x + ε1B), oi)

− 3ε2(ln(
1

ε
) + 1)f(OPT)

≥ ε(1− 3ε)(ln(
1

ε
) + 1){f(OPT)− F(x + ε1B)}

− 3ε2(ln(
1

ε
) + 1)f(OPT)

≥ ε{ln(1/ε) + 1}((1− 6ε)f(OPT)− F(x + ε1B)).

D.2.1 PROOF OF THEOREM 5

Theorem 5. Suppose that Algorithm 2 is run for an instance of FSM, then with probability at least
1 − 1

n2 , cont-thresh-greedy-bi outputs a solution S that satisfies a (1 − 7ε, ln(1ε) + 1)-
bicriteria approximation guarantee in at most O

(
nκ
ε4 ln2(n/ε)

)
queries of f .

Proof. First of all, from the description of the subroutine algorithm DTP in Algorithm 3, we can see
that there are at most log(κ/ε)/ε number of iterations in the outer for loop. Therefore, the subroutine
algorithm DTP takes at most O(nκ ln(n/ε) ln(κ/ε)

ε3). Since there are at most 1
ε calls to DTP, we can

prove the sample complexity.

Next, we prove the bicriteria approximation ratio. By Definition 5, it is equivalent to prove that
x ∈ P(Mln(1/ε)+1) and F(x) ≥ (1 − 7ε)f(OPT). Denote B(t) to be the output set of the t-th
call to the subroutine algorithm DTP. Then it follows that the output solution set x of cont-bi can
be denoted as x =

∑1/ε
t=1 ε1B(t) . Since B(t) ∈ Mln(1/ε)+1, we have that 1B(t) ∈ P(Mln(1/ε)+1).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

By the fact that P(Mln(1/ε)+1) is convex, we have that x ∈ P(Mln(1/ε)+1). Denote the fractional
solution x after t-th step as xt, then by Lemma 7, we have

F(xt+1)− F(xt) ≥ ε{ln(1/ε) + 1}((1− 6ε)f(OPT)− F(xt+1)).

For notation simplicity, we define L = ε{ln(1/ε) + 1}. It then follows that

F(xt+1) ≥
F(xt) + L(1− 6ε)f(OPT)

1 + L

Since there are 1/ε iterations in cont-bi, the output x satisfies that x = x1/ε. By applying
induction to the above inequality, we would get

F(x1/ε) ≥ (1− (1 + L)−1/ε){(1− 6ε)f(OPT)}

≥ (1− e
1
ε (

L2

2 −L)){(1− 6ε)f(OPT)}
≥ (1− ε)(1− 6ε)f(OPT)

≥ (1− 7ε)f(OPT).

Observe that compared to greedy-fair-bi and threshold-fairness-bi, our proposed
algorithm cont-bi demonstrates an enhanced approximation ratio for the cardinality of the output
solution set, improving from O(1/ε) to O(ln(1/ε)). This improvement is achieved while maintain-
ing the same order of function value violation, specifically f(S) ≥ (1− O(ε))f(OPT). However,
this enhancement requires an increased number of queries. This suggests the potential for attaining
comparable approximation ratios for the submodular cover problem under specific types of matroid-
type constraints.
Corollary 5.1. Using the Algorithm 3 as the subroutine for the converting algorithm in Algorithm
1, we obtain an algorithm that achieves an approximation ratio of ((1 + α) ln(1ε) + 1, 1−O(ε)) in

at most O(
n(1+α)|OPT | log2(n

ε) log |OPT |
ε4α) with high probability.

Proof. The result of the approximation ratio can be obtained by combining Theorem 2 and Theorem
5 together. Here we provide proof of the sample complexity. Notice that for each guesses of OPT
of cardinality κg , the algorithm cont-bi that runs with the inputMfair(P, κg, p⃗κg, u⃗κg) uses at

most O(
nκg log2(n

ε)

ε4). From the result in Theorem 2 and Theorem 5, the total number of sample

complexity would be O(
n(1+α)|OPT | log2(n

ε) log |OPT |
ε4α).

E PROOF OF TECHNICAL LEMMAS

Lemma 8 (Relative + Additive Chernoff Bound (Lemma 2.3 in Badanidiyuru & Vondrák (2014))).
Let X1, ..., XN be independent random variables such that for each i, Xi ∈ [0, R] and E[Xi] = µ

for all i. Let X̂N = 1
N

∑N
i=1 Xi. Then

P (|X̂N − µ| > αµ+ ε) ≤ 2 exp{−Nαε

3R
}.

F GREEDY-BI ALGORITHM

Algorithm 7 greedy-bi
1: Input: ε, τ
2: Output: S ∈ U
3: S ← ∅
4: while f(S) ≤ (1− ε)τ do
5: u← argmaxx∈U ∆f(S, x)
6: S ← S ∪ {u}

return S

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

G ADDITIONAL EXPERIMENTS

G.1 IMPLEMENTATION

Maximum Coverage. In maximum coverage problems, the objective is to identify a set of fixed
nodes that optimally maximize coverage within a network or graph. Given a graph G = (V,E),
where V and E respectively represent the set of vertices and nodes in the graph. Define a function
N : V → 2V as N(v) = {u, (u, v) ∈ E}, which represents the collection of neighbors of node
v. Then the objective of this maximization problem can be defined as the monotone submodular
function f(S) = | ∪v∈S N(v)|. The dataset utilized in our maximum coverage experiments include
Twitch 2000 and the Twitch 5000 of Twitch Gamers, which is a uniformly sampled subgraph of
the Twitch Gamers dataset (Rozemberczki & Sarkar, 2021), comprising 5,000 vertices and 2,000
vertices (users) who speak English, German, French, Spanish, Russian, or Chinese respectively. We
aim to develop a solution with a high f value exceeding a given threshold τ while ensuring a fair
balance between users who speak different languages.

Set Covering For the datasets annotated with tags, the objective of set covering is to extract a
diverse subset that maximizes the objective function f(S) = | ∪x∈S t(x)|, where the function t
maps an element x in a set N to its corresponding tags t(x). The dataset employed in our set
covering experiments is a subset of Corel5k Duygulu et al. (2002). For each item in the dataset, we
randomly added a category from {0, 2, 3, 4, 5} with a probability of 0.5. Any item not assigned a
random category was assigned category 1. By ensuring a balanced distribution of solutions across
categories, we aim to extract a representative set with a high f value that surpasses a given threshold
τ .

Experimental setup for max coverage. We implement our proposed algorithm on two different
instances, including the Twitch 5000 dataset and Twitch 2000. The algorithms implemented in-
clude convert-fair leveraging two subroutines provided in Appendix D: greedy-fair-bi
(Algorithm 5, referred to as ”GREEDY-Fair”) and threshold-fairness-bi (Algorithm 6,
referred to as ”GREEDY-Fair”). On the relatively small dataset Twitch 2000, we also imple-
ment convert-continuous using cont-bi as the subroutine (referred to as ”CONTI-
Fair”). Due to high query complexity of the continuous algorithm cont-bi, we evaluate
convert-continuous heuristically by taking 5 samples per estimation in Line 8 of the
decreasing-threshold-procedure. We compare our approach to the greedy baseline,
greedy-bi, provided in Appendix F.

To ensure a fair comparison based on the quality of the solutions, we use different default values
for the parameter ε in each algorithm. This is because each algorithm has a varying approximation
ratio. Specifically, we set ε = 0.1, α = 0.2, uc = 1.1/C, lc = 0.9/C for greedy-bi and
greedy-fair-bi (where C is the number of groups). For threshold-fairness-bi, we
use ε = 0.05 while keeping the other parameters the same.

All the experiments are conducted on a single machine equipped with a 13th Gen Intel(R) Core(TM)
i7-13700 CPU, 32GB of RAM, and Ubuntu 22.04.3 LTS. Each experiment with one set of parame-
ters can be done in 120 seconds.

G.2 EXPERIMENTS SETUP FOR SET COVERING.

We implement our proposed algorithm convert-fair leveraging two subroutines provided
in Appendix D: greedy-fair-bi (Algorithm 5) and threshold-fairness-bi (Algo-
rithm 6). We compare our approach to the greedy baseline, greedy-bi, provided in Appendix F.

To ensure a fair comparison based on the quality of the solutions, we use different default values
for the parameter ε in each algorithm. This is because each algorithm has a varying approximation
ratio. Specifically, we set ε = 0.1, α = 0.2, uc = 1.1/C, lc = 0.9/C for greedy-bi and
greedy-fair-bi (where C is the number of groups). For threshold-fairness-bi, we
use ε = 0.05 while keeping the other parameters the same.

All the experiments are conducted on a single machine equipped with a 13th Gen Intel(R) Core(TM)
i7-13700 CPU, 32GB of RAM, and Ubuntu 22.04.3 LTS. Each experiment with one set of parame-
ters can be done in 30 seconds.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0

1

23

4

0

0.1
0.2

0.3
0.4

0.5
0.6

0.7

(a) greedy-bi

0

1

23

4

0

0.05
0.10

0.15
0.20

(b) greedy-fairness-bi

0

1

23

4

0

0.05
0.10

0.15
0.20

(c) threshold-fairness-bi

50 150 250 350
Value of the given threshold

0

60

120

180

240

300

Va
lu

e
of

 f

GREEDY
GREEDY-Fair
THRES-Fair

(d) f

50 150 250 350
Value of the given threshold

25

50

75

100

Co
st

GREEDY
GREEDY-Fair
THRES-Fair

(e) Cost

50 150 250 350
Value of the given threshold

0.15

0.30

0.45

0.60

Fa
ir

ne
ss

 d
iff

er
en

ce

GREEDY
GREEDY-Fair
THRES-Fair

(f) Fairness difference

Figure 2: Performance comparison on the Corel dataset for Set Covering. 2a, 2b, 2c illustrate the
distribution of images across various categories in the solutions produced by different algorithms
with τ = 300. f : the value of the objective submodular function. Cost: the size of the returned
solution. Fairness difference: (maxc |S ∩ Uc| −minc |S ∩ Uc|)/|S|

.

400 500 600
Value of the given threshold

0

150

300

450

600

Va
lu

e
of

 f

GREEDY-Fair
GREEDY
CONTI-Fair
THRES-Fair

(a) f

400 500 600
Value of the given threshold

25

50

75

100

125

Co
st

GREEDY-Fair
GREEDY
CONTI-Fair
THRES-Fair

(b) Cost

Figure 3: Performance comparison on the Twitch 2000 dataset for maximum coverage. ”CONTI-
Fair” corresponds to the convert-fair algorithm using cont-bi as the subroutine. f : the
value of the objective submodular function. Cost: the size of the returned solution. Fairness differ-
ence: (maxc |S ∩ Uc| −minc |S ∩ Uc|)/|S|

.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

G.3 RESULTS

G.4 RESULTS ON COREL DATASET

Figures 2a, 2b and 2c showcase the distribution of images across various categories in the solutions
produced by these algorithms with τ = 300. Figures 2d, 2e and 2f present the performance of these
algorithms (f value, cost, and fairness difference) for varying values of τ . As shown in Figure 2a,
with τ = 300, over 70% of the pictures in the solution returned by greedy-bi are labeled as cate-
gory ‘1’. While the solutions produced by greedy-fair-bi and threshold-fairness-bi
exhibit way fairer distributions across various categories as shown in Figures 2a and 2b). Similarly,
as the value of given τ increases, the magnitude of this difference also increases (see 2f). Figure 2d
showcases that for all these algorithms the objective function value f(S) scales almost linearly with
the threshold τ , which aligns with the theoretical guarantees of the approximation ratio.

Notably, unlike the results presented in Section 4, our proposed algorithms achieve comparable costs
to the greedy-bi solution (as shown in Figure 2e) on the Corel5k dataset. This is likely because
the Corel5k dataset is less biased and the marginal gains for adding different elements are more
uniform, compared to the Twitch Gamer dataset.

G.5 RESULTS ON THE TWITCH 2000 DATASET

The results of comparing different algorithms on the Twitch 2000 dataset are presented in Figure 3a
and 3b. From the results, we can see under fairness constraints, the continuous algorithm CONTI-
Fair achieves a lower cost compared to the discrete algorithms, GREEDY-Fair and THRES-Fair,
aligning with the theoretical guarantees presented in the main paper. However, CONTI-Fair incurs
a higher cost than the greedy algorithm without fairness constraint, potentially due to the limited
sampling (five samples per estimation) of the multilinear extension in Line 8 in Algorithm 3, which
falls short of the theoretical requirements.

28

	Introduction
	Related Work
	Preliminaries

	Conversion Algorithms for FSC
	Bicriteria Algorithms for FSM
	Discrete Bicriteria Algorithms for FSM
	Continuous Algorithms for FSM

	Experiments
	Omitted Lemma of Section 1.2
	Additional Discussion
	Additional Applications of FSC
	Comparison with Existing Reductions
	Comparison with Algorithms for SM with Matroid Constraints
	Omitted Discussion on the Feasibility of FSC

	Appendix for Section 2
	Proof of Theorem 1
	Converting theorem for continuous algorithms

	Appendix for Section 3
	Appendix for Section 3.1
	Proof of Theorem 3
	Proof of Theorem 4

	Appendix for Section 3.2
	Proof of Theorem 5

	Proof of Technical Lemmas
	greedy-bi Algorithm
	Additional Experiments
	Implementation
	Experiments Setup for set covering.
	Results
	Results on Corel dataset
	Results on the Twitch_2000 dataset

