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ABSTRACT

Single Domain Generalization Object Detection (S-DGOD) is a challenging yet
practical task, where we only have access to data from one specific source domain
to train an object detection network, but have to generalize to numerous unseen
target domains. Recent works point out that the learning dynamics of Deep Neural
Networks (DNNs) are biased by gradient descent to learn simple semantics, which
are usually non-causal and spuriously correlated to the ground truth labels, as a re-
sult, DNN-based object detection networks fail to consistently generalize well in
the Out-of-Domain (OoD) scenario. In this paper, we focus on S-DGOD based on
theoretical analysis, exploring a classic and widely-used approach, Generalizable
Reweighting (GRW), which iteratively reweightes the training samples to improve
generalization performance. In our theoretical analysis, we first identify that the
vanilla GRW hardly outperforms Empirical Risk Minimization (ERM) in the S-
DGOD scenario. To provide a generalization guarantee, we further derive Certifi-
able Feature Perturbation (CFP) based on our theory, which aims to train a robust
object detection network against additional perturbations added to the extracted
features. We demonstrate that GRW works well with CFP in achieving OoD gen-
eralization, thus, surpassing ERM by a large margin under worse conditions. This
brand new reweighting strategy is named Certifiable Reweighting (CARD). Our
extensive experiments show that the proposed CARD achieves SOTA performance
compared to baseline methods on the five urban-scene S-DGOD benchmarks.

1 INTRODUCTION

Object detection (Ren et al., 2015; Redmon et al., 2016; Lin et al., 2017a; Tan & Le, 2019; Zhu
et al., 2020; Dai et al., 2021) is a fundamental task in computer vision. However, previous works
lack thorough theoretical and systematic analysis on their generalization studies, especially the cases
where networks to generalize to unseen test data drawn from the test distribution distinct from the
training distribution. Recently, researchers (Pan et al., 2018; 2019; Huang et al., 2019; Wu & Deng,
2022; Vidit et al., 2023; Rao et al., 2023) have been dealing with a realistic task, Single Domain
Generalization Object Detection (S-DGOD), which aims to train an object detection network on
single source domain data and then generalize to multiple unseen target domains, to improve object
detectors’ generalization ability. Pezeshki et al. (2021); Krueger et al. (2021); Huang et al. (2022)
point out that the failure of Deep Neural Networks (DNNs) in generalization is due to the learning
bias of DNNs under gradient descent, where DNNs exhibit an inclination to make predictions based
on the easy-to-learn features, such as backgrounds.

A classical yet effective technique to cope with this is Generalizable Reweighting (GRW), which
aims to reweight the training samples to rebuild a weighted loss (Shimodaira, 2000; Fang et al., 2020;
Sagawa et al., 2019; Krueger et al., 2021), forcing DNNs to upweight the influence of those samples
with predictive features during training DNNs. However, we identify and theoretically demonstrate
that the DNN trained by vanilla GRW is hard to overwhelm the one trained by Empirical Risk
Minimization (ERM). Theory can be found in Section 4. In our theory, when a network is over-
parameterized, as training risk R̂ → 0, both the networks trained by ERM and GRW converge
to the same networks. The intuition is that when the training samples carry sufficient features,
i.e., all the features in the hidden feature space can be represented by the interpolation between
the given training features, then there is exactly one optimal network. Thus, when R̂ → 0, both
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Figure 1: Illustration of the failure of GRW and how CARD works. Left: As time t → ∞ and
training risk R̂ → 0, both ERM and GRW converge to the same solution f∗, although the training
dynamics are going along two different paths. Thus, GRW is hard to improve over ERM in the
OoD scenario. Middle: With the utilization of CFP on GRW, ERM and GRW converge to different
parameters, f∗ERM and f∗CARD, respectively. Right: Our proposed CARD is demonstrated to be robust
against perturbations, and have a flat minima on training risk compared to ERM. Thus, the network
f∗CARD trained on the source domain generalizes better than f∗ERM and the corresponding risk on
target domains R̂C,test is lower than R̂E,test.

ERM and GRW converge to the same parameter although they are optimized along different paths.
See Figure 1 (left) for illustration.

To address this, we propose Certifiable Feature Perturbation (CFP) to guide the learning dynamics
of GRW, and the overall algorithm is named Certifiable Reweighting (CARD). In Section 5.1, we
theoretically demonstrate that CFP helps the converged network trained by GRW prevail over the one
trained by ERM. Our theory shows that with the help of CFP, as the training risk R̂ → 0, networks
trained by ERM and GRW converge to different f∗ERM, f

∗
CARD, respectively, where f∗CARD depends

not only on the training samples but also their weights. See Figure 1 (middle) for illustration.
In this case, the learning dynamics of parameters are guided by the reweighted training samples,
eliminating the learning bias of DNNs to improve generalization. Meanwhile, we theoretically
demonstrate in Section 5.3 that the network f∗CARD is more robust against perturbations, which helps
find the flat minima, thus, having lower test risk R̂test than f∗ERM. See Figure 1 (right).

Our main contributions can be summarized as follows:

1. To the best of our knowledge, we are the first to identify and demonstrate that the vanilla
GRW fails to overwhelm ERM in the S-DGOD task, which pertains to both classification
and regression simultaneously.

2. To address this, we propose CARD, a methodology with theoretical guarantees that certifies
the effectiveness of the converged network trained by GRW with CFP in achieving OoD
generalization.

3. Extensive experiments demonstrate our algorithm stemmed from CARD empirically out-
performs previous SOTA baselines on the challenging urban-scene S-DGOD benchmarks.

2 RELATED WORKS

2.1 GENERALIZABLE REWEIGHTING

To improve robustness and generalization performance, researchers have proposed various classic
yet effective reweighting strategies. The most popular one is Importance Weighting (IW) (Shi-
modaira, 2000; Fang et al., 2020), which reweights training samples by quantifying their impor-
tance and leads to weighted empirical training loss. The rest of the works can be categorized into
static (Shimodaira, 2000; Sagawa et al., 2020; Cui et al., 2019; Cao et al., 2019; Liu & Chawla,
2011) and dynamic methods (Wen et al., 2014; Zhai et al., 2021b; Michel et al., 2021; Zhai et al.,
2021a; Lahoti et al., 2020; Michel et al., 2022; Lin et al., 2017b; Sagawa et al., 2019; Shu et al.,
2019; Han et al., 2023; Krueger et al., 2021).
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Figure 2: Samples of the S-DGOD datasets. The dataset contains 5 domains: Daytime-Sunny
(source), Daytime-Foggy, Dusk-Rainy, Night-Sunny and Night-Rainy. S-DGOD aims at finding a
network trained on a single source domain, which generalizes well to the multiple target domains.

Static methods. This kind of method primarily employs static weights which depend on the train-
ing distribution. Cui et al. (2019) propose to quantify the data overlap by a small neighboring region
associated with each training sample to discover the effective number of samples for each class to
reweight the training loss. Cao et al. (2019) proposes label-distribution-aware margin (LDAM) loss
together with reweighting to deal with the category imbalance.

Dynamic methods. On the contrary, dynamic methods adaptively adjust the weights based on the
learning dynamics for each training sample. Sagawa et al. (2019) aims to determine the worst-case
and minimize their loss over the worst groups in the training data, which can be seen as a special case
of IW where the weights of worst-cases are updated based on the current loss. Krueger et al. (2021)
reweighs the training loss for each sample by adding a penalty on the variance of training risks. Han
et al. (2023) proposes a straightforward framework employing IW on mixed-up samples, mitigating
overfitting in over-parameterized models, and enhancing robustness against subpopulation shifts.

While the idea of GRW has been widely used, our study reveals that the vanilla GRW struggles to
surpass ERM in S-DGOD.

2.2 SINGLE DOMAIN GENERALIZATION OBJECT DETECTION

S-DGOD aims at training object detectors on a single source domain and then generalizing to nu-
merous target domains, see Figure 2 for details. Previous methods for S-DGOD can be generally
categorized into feature normalization (Pan et al., 2018; Huang et al., 2019; Fan et al., 2021), and
invariant-based algorithms (Choi et al., 2021; Wu & Deng, 2022; Zhao et al., 2022).

Feature normalization. IBN-Net (Pan et al., 2018) proposes to integrate Instance Normaliza-
tion (IN) and Batch Normalization (BN) into DNNs for effective generalization. Iterative Normal-
ization (Huang et al., 2019) leverages Newton’s iterations to perform feature normalization in an
iterative manner. ASRNorm (Fan et al., 2021) proposes adaptive standardization and rescaling nor-
malization for improving single domain generalization performance.

Invariant-based. RobustNet (Choi et al., 2021) proposes an instance-specific whitening loss
function to learn domain-specific features from domain-invariant feature representations. Cyclic-
Disentangled Self-Distillation (Wu & Deng, 2022) tries to disentangle the domain-invariant repre-
sentations using a distillation module. Style-Hallucinated Dual Consistency Learning (Zhao et al.,
2022) introduces two key constraints, encouraging models to learn invariant representation across
style-diversified samples.

Others. CLIPGap (Vidit et al., 2023) attempts to align the pre-trained knowledge of CLIP with the
S-DGOD task. Their findings indicate that the size of the pre-training dataset significantly influences
the enhancement of generalization capabilities.

While numerous approaches have been proposed for S-DGOD, we argue that the majority of these
methods fundamentally adhere to the core idea of GRW. Most methods endeavor to facilitate the ac-
quisition of more universally applicable features for predictions. In doing so, they implicitly change
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the influence of different features in the learning process, predisposing DNNs towards acquiring gen-
eralizable attributes. Given that the experimental outcomes on S-DGOD benchmarks reveal these
methods fall short of significantly surpassing ERM, this inspires us to investigate the underlying
cause in this paper. We commence this inquiry by examining the vanilla GRW.

3 NOTATIONS

We denote each datum with its corresponding labels (xi,y1,i,y2,i)
n
i=1 ∈ {X,Y1,Y2} with cat-

egories labels y1,i and bounding box labels y2,i. We use P to denote the data distribution of
{X,Y1,Y2}P and Ptrain, Ptest to denote the training and testing distributions. Generally, object
detection network f(·) contains a shared feature extraction network with parameters Θ, a classifi-
cation branch with parameters η1, and a regression branch with parameters η2. The classification
and bounding box predictions are denoted as ŷ1 = f(x; Θ, η1) and ŷ2 = f(x; Θ, η2), respectively.
Operation · denotes the matrix product. Empirical Risk Minimization (ERM) (Vapnik, 1999) trains
a network via minimizing the empirical risk: R̂Ptrain =

1
n

∑n
i=1 L̂train(xi,y1,i,y2,i; Θ, η1, η2), where

training loss L̂train contains classification loss Lcls and regression loss Lreg, L̂train = Lcls + Lreg.

4 FAILURE OF GRW ON S-DGOD

As discussed in Section 2.2, we argue that various algorithms proposed for improving S-DGOD per-
formance are indeed variants of RW. Instead of analyzing these algorithms individually, we consider
a general form of what we call, Generalizable Reweighting (GRW):

Ltrain(f) =
∑
i

wi (Lcls(xi,y1,i; Θ, η1) + Lreg(xi,y2,i; Θ, η2)) , (1)

where w = [w1, . . . , wn]
T is a pre-defined vector of each fixed weight wi assigned for each training

sample (xi,y1,i,y2,i). We now consider training dynamic for GRW, where the weight w(t) is the
weight at t-th iteration:

Ltrain(f) =
∑
i

w
(t)
i

(
Lcls(xi,y1,i; Θ

(t), η
(t)
1 ) + Lreg(xi,y2,i; Θ

(t), η
(t)
2 )
)
, (2)

In the regime of Neural Tangent Kernel (NTK) (Jacot et al., 2018), we have the following Proposition
of an object detection network:
Proposition 1. (NTRF approximation of DNNs.) When the width of neural networks goes infi-
nite, the output of over-parameterized neural networks can be approximated as a linear function at
iteration t:

ŷ
(t)
1 = ψ(t) ·Θ(t) · η(t)1 , (3)

ŷ
(t)
2 = ψ(t) ·Θ(t) · η(t)2 , (4)

where ψ(t) = ψ
(
X,Θ(t)

)
∈ Rn×m is the Neural Tangent Random Feature (NTRF) matrix (Cao &

Gu, 2019) of n training data X , Θ ∈ Rm×k denotes the concatenation of all vectorized trainable
parameters with size m, η(t)1 ∈ Rk and η(t)2 ∈ Rk project features into classification output ŷ(t)

1 ∈
Rn and regression output ŷ(t)

2 ∈ Rn, respectively.

We derive the following theorem and demonstrate that when f is trained simultaneously by classi-
fication loss Lcls and regression loss Lreg, vanilla GRW and ERM converged to the same solution.
This demonstrates the failure of GRW in improving generalization abilities, which explains why
previous algorithms do not achieve significant improvements.

Theorem 1. (Failure of GRW on object detection.) If ψ(0) =
[
ψ
(0)
1 , . . . , ψ

(0)
n

]T
is linearly inde-

pendent, then when object detection network Θ, η1, η2 simultaneously trained by 0-1 binary cross
entropy loss and smooth L1 loss1, as t → ∞ and L̂train → 0, both GRW and ERM converge to the
solution Θ∗, η∗1 , η

∗
2 that not depend on w.

1For simplicity, we consider binary classification here and one can easily derive the version for the multi-
category classification following the same analysis. We also consider the interval [−1, 1] for smooth L1 loss,
which can be achieved by normalization on ŷ2.

4



Under review as a conference paper at ICLR 2024

Theorem 1 shows that if the initial NTRF matrix ψ(0), which depends on the training data X and the
initial parameter Θ(0), is linearly independent, then according to Cramer’s Rule, there exists only one
solution for minimizing empirical training risk. Proof of Theorem 1 can be found in Appendix A.1.

5 METHODOLOGY

5.1 FEATURE PERTURBATION

To cope with the issue of GRW, we propose certifiable feature perturbation (CFP), which aims to
achieve single domain generalization through learning a robust network against perturbations and
increasing the impact of w during training. Practically, we add Gaussian perturbation m(t) ∼
N (0, σ2I),m(t) ∈ Rk to the feature extracted by Θ(t) and, in the NTK, the neural network with
CFP is approximated as follows:

ŷ
(t)
1 =

(
ψ(t) ·Θ(t) + 1 ·m(t)T

)
· η(t)1 , (5)

ŷ
(t)
2 =

(
ψ(t) ·Θ(t) + 1 ·m(t)T

)
· η(t)2 , (6)

where 1 · m(t)T = [m(t), . . . ,m(t)]T ,1 · m(t)T ∈ Rn×k is the sample-wise duplication of m(t).
With the new approximation, the presence of weight w during training can be guaranteed by the
following theorem:
Theorem 2. (Presence of weight w.) When object detection network Θ, η1, η2 with feature per-
turbations m trained by GRW, as t → ∞, Θ(t), η

(t)
1 , η

(t)
2 is impacted by w(t) and converge to

Θ∗, η∗1 , η
∗
2 that depend on not only X,Θ(0) but also w(t) for any t.

Proof of Theorem 2 can be found in Appendix A.2. Theorem 2 demonstrates that the sample weights
w should have an impact on the training dynamic, leading ERM and GRW to two different solutions.
This overcomes the previous problem that GRW fails to provide a better solution than ERM.

5.2 CERTIFYING GENERALIZATION.

In this section, we demonstrate the effectiveness of CFP for improving single domain generalization
ability in our algorithm framework. In a nutshell, we want to certify that if the loss of an object
detection network with CFP is lower than the given classification loss Ccls and the given regression
loss Creg

2, this remains true for certain perturbation sets A. Firstly, following Ye et al. (2023), we
define the expectation version of the A-Generalizable for generalization:
Definition 1. (A-Generalizable.) For a binary classification and regression problem, given a closed
set A, when 1

nLcls(x,y1; Θ, η1) < Ccls and 1
nLreg(x,y2; Θ, η2) < Creg, if for perturbation drawn

from distribution a ∈ A, we have:

max
a∈A

Em∼a

[
1

n
Lcls(x,y1,m; Θ, η1)

]
< Ccls, (7)

max
a∈A

Em∼a

[
1

n
Lreg(x,y2,m; Θ, η2)

]
< Creg, (8)

then the object detection network f(Θ, η1, η2) is A-Generalizable.

Based on Definition 1, the generalization ability of the proposed CARD can be guaranteed by the
following theorem:
Theorem 3. (Generalization of feature perturbation.) When an object detection network trained
with Gaussian perturbation m ∼ N (0, σ2I), denoted as fm(Θ, η1, η2), if the classification
loss 1

nLcls (x,y1,m; Θ, η1) < Ccls and the regression loss 1
nLreg (x,y2,m; Θ, η2) < Creg, then

fm(Θ, η1, η2) is A-Generalizable for A = {a : δ ∼ a, µ(δ) = 0,V[δ] ≤ σ2I}.

µ(·) is the mean function, and V[·] is the variance function. Theorem 3 shows that when training
with CARD, the converged model is A-Generalizable. Proof can be found in Appendix A.3.

2Random predictions is like making predictions by flipping coins.

5



Under review as a conference paper at ICLR 2024

5.3 ALGORITHM FRAMEWORK

Practically,estimating w in Equation (1) poses a challenge. Rather than directly applying reweight-
ing during batch-wise training, we introduce a penalty term Lvar based on the variance of batch-wise
loss. This serves to steer the network towards “equally considering” each training sample, mitigating
bias and, in effect, achieving implicit reweighting of the training samples:

Lvar(x,y1,y2) =
1

n

∑
i

(
Ltrain(xi,y1,i,y2,i)−

1

n

∑
k

Ltrain(xk,y1,k,y2,k)

)2

(9)

This approach is supported by Krueger et al. (2021) and the variance penalty fits within the GRW.
Both methods aim to eliminate the learning bias of DNNs by upweighting the samples that carry
causal information ignored by the DNNs. On the other hand, Theorem 2 demonstrates that with
the help of CFP, the modified algorithm should converge to different DNN parameters than ERM.
Moreover, We demonstrate in Theorem 3 that CFP is robust against perturbations and generaliz-
able under OoD scenarios, effectively harnessing the full potential of GRW to alleviate learning
bias. These theoretical guarantees underpin a training algorithm for improved OoD generalization
performances, distinguishing it from most previous efforts in S-DGOD, which rely solely on empir-
ical results. The overall algorithm framework is shown in Algorithm 1 for training object detection
networks for S-DGOD.

Algorithm 1 CARD: CertifiAble Reweighting for Single Domain Generalization Object Detection

Require: Training set Dtrain, maximum of iterations T , learning rate β, penalty weight λp and variance σ2.
Ensure: A-Generalizable object detection network f with optimized parameters Θ∗, η∗1 , η

∗
2 .

1: Initialize the detector network f
(
Θ(0), η

(0)
1 , η

(0)
2

)
;

2: while t ≤ T do
3: for each (x,y) ∈ Dtrain do
4: Extract the feature z = f

(
x; Θ(t)

)
= ψ(0)Θ(t) ;

5: Generate the perturbation m(t) ∼ N (0, σ2I) ;
6: z← z+ 1 ·m(t)T ;
7: Calculate empirical training loss L̂train = Lcls

(
x,y; Θ(t), η

(t)
1

)
+ Lreg

(
x,y; Θ(t), η

(t)
2

)
;

8: Calculate variance penalty Lvar

(
x,y; Θ(t), η

(t)
1 , η

(t)
2

)
according to Equation (9) ;

9: Θ(t+1) ← Θ(t) − β · ▽Θ(L̂train + λpLvar) ;
10: η

(t+1)
1 ← η

(t)
1 − β · ▽η1(L̂train + λpLvar) ;

11: η
(t+1)
2 ← η

(t)
2 − β · ▽η2(L̂train + λpLvar) ;

12: Save the optimized network f(Θ∗, η∗1 , η
∗
2) ;

6 EXPERIMENTS

In this section, we first specify the experimental setting, then we conduct CARD and baseline meth-
ods on the challenging S-DGOD benchmarks for comparison. We also perform an ablation study to
empirically substantiate our theoretical framework. Finally, we provide some visualizations to offer
further insights into the superior performance of CARD. More experiments can be found in Ap-
pendix A.4, including effects of hyper-parameters in Appendix A.4.2 and robustness against adver-
sarial attacks in Appendix A.4.3.

6.1 EXPERIMENTAL SETUP

Datasets. For evaluation, we follow the experimental setting in Wu & Deng (2022). Our evaluation
dataset comprises five urban-scene domains, each characterized by different time and weather con-
ditions. These domains are as follows: Daytime-Sunny, Daytime-Foggy, Dusk-Rainy, Night-Sunny,
and Night-Rainy. The images in the evaluation datasets are collected from multiple commonly-used
benchmark datasets, including BDD100K (Yu et al., 2020), Cityscapes (Cordts et al., 2016), Foggy
Cityscapes (Sakaridis et al., 2018), and Adverse-Weather datasets (Hassaballah et al., 2020). Specif-
ically, the Daytime-Sunny domain contains a total of 27,708 images, with 19,395 allocated for train-
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Method Daytime-Sunny Daytime-Foggy Dusk-Rainy Night-Sunny Night-Rainy Average
Faster R-CNN (Ren et al., 2015) 54.2 38.6 30.6 38.7 14.2 35.3
IBN-Net (Pan et al., 2018) 53.9 38.9 32.2 38.2 15.4 35.7
SW (Pan et al., 2019) 54.0 35.4 27.6 35.9 12.6 33.1
IterNorm (Huang et al., 2019) 53.9 38.1 32.3 38.4 15.2 35.6
ISW (Choi et al., 2021) 52.5 35.9 34.6 33.0 16.2 34.4
ASRNorm (Fan et al., 2021) 54.1 36.6 30.4 37.8 14.4 34.7
CDSD (Wu & Deng, 2022) 55.2 33.9 30.2 39.2 14.0 34.5

CARD (Ours) 59.5 36.7 35.5 44.6 16.8 38.6

Table 1: Single domain generalization object detection results. All algorithms are initialized by
the ImageNet pre-trained weights and are trained on the Daytime-Sunny domain then tested on the
other four domains. Average results are calculated using the five domain results. All algorithms are
implemented on the mmdetection code suite (Chen et al., 2019). The numbers in bold or underlined
denote the highest and the second performance, respectively. The results demonstrate that our ap-
proach is robust against domain shifts and achieves the SOTA average S-DGOD performance.

Method Init Quantity D-S D-F D-R N-S N-R Average
CLIPGap (Vidit et al., 2023) CLIP 400M 58.4 44.3 34.1 41.3 16.8 39.0

Faster R-CNN (Ren et al., 2015) ImageNet 1.2M 54.2 38.6 30.6 38.7 14.2 35.3
Faster R-CNN (Ren et al., 2015) ImageNet + MS COCO 1.5M 57.7 37.1 34.2 44.2 16.6 38.0

CARD (Ours) ImageNet 1.2M 59.5 36.7 35.5 44.6 16.8 38.6
CARD (Ours) ImageNet + MS COCO 1.5M 59.9 37.3 35.9 45.3 17.4 39.2

Table 2: Comparisons with different initialization strategies. “Init” column is the dataset used
in pre-training and “Quantity” is the number of images in datasets. D, F, R, N, and S represent
Daytime, Foggy, Rainy, Night, and Sunny, respectively. These results demonstrate that pre-trained
datasets can significantly impact the generalization performance, while our proposed CARD is less
reliant on pre-trained knowledge to achieve supreme OoD generalization performance.

ing and 8,313 for test. The remaining four domains are exclusively reserved for test. The Daytime-
Foggy domain comprises 3,775 images, the Dusk-Rainy comprises 3,501 images, the Night-Sunny
comprises 26,158 images and the Night-Rainy domain comprises 2,494 images. To be consistent
with Wu & Deng (2022), we target seven important object categories, including bus, bike, car, mo-
torbike, person, rider, and truck. Samples of this dataset are shown in Figure 2.

Baselines. We follow the S-DGOD benchmarks proposed by Wu & Deng (2022), which con-
tains five well-developed algorithms for improving generalization ability, including IBN-Net (Pan
et al., 2018), Switchable Whitening (SW) introduced by Pan et al. (2019), Iterative Normalization
(IterNorm) introduced by Huang et al. (2019), RobustNet (ISW) introduced by Choi et al. (2021),
Adversarially Adaptive Normalization (ASRNorm) introduced by Fan et al. (2021), and Cyclic-
Disentangled Self-Distillation (CDSD) introduced by Wu & Deng (2022). We also present the per-
formance of Faster R-CNN (Ren et al., 2015) as all algorithms are implemented based on Faster R-
CNN. Additionally, we further compare our method with the current SOTA method, CLIPGap (Vidit
et al., 2023). However, the authors highlight that the improvement is primarily attributed to the pre-
trained weights obtained from CLIP (Radford et al., 2021), which utilizes an extremely large-scale
dataset. In contrast, other baseline algorithms developed on the S-DGOD benchmarks Wu & Deng
(2022) only have access to much smaller datasets (Deng et al., 2009). To ensure fairness, we further
compare with CLIPGap under different pre-training strategies, as shown in Table 2.

Evaluation metric. In all experiments, we use the Mean Average Precision (mAP) to evaluate
methods’ performances and report the AP of each class. Specifically, we follow the PASCAL VOC
evaluation metric (Everingham et al., 2010) and report the mAP with a 0.5 intersection over union
(IoU) threshold, where a prediction is considered as true positive if its IoU score with the ground
truth label is more than 0.5.

Implemetation details. All baseline algorithms use the popular two-stage Faster R-CNN detec-
tor Ren et al. (2015) with ResNet-101 backbone (He et al., 2016) and Feature Pyramid Network
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Dusk-Rainy Night-Sunny
Method Bus Bike Car Motor Person Rider Truck mAP Bus Bike Car Motor Person Rider Truck mAP
FR 36.3 22.3 62.7 14.9 27.3 14.8 35.8 30.6 37.5 36.0 61.7 20.9 45.5 27.8 41.3 38.7
IBN-Net 38.1 27.4 63.3 7.8 30.9 19.8 38.2 32.2 36.2 34.7 60.9 18.4 45.2 30.8 41.1 38.2
SW 33.7 20.0 58.5 7.8 22.8 17.5 32.8 27.6 34.8 32.1 57.6 18.2 43.9 26.0 38.4 35.9
IterNorm 39.3 23.3 63.1 10.4 30.6 19.8 39.7 32.3 38.1 30.2 61.0 20.1 46.9 31.0 41.6 38.4
ISW 39.9 22.7 65.0 15.5 38.3 21.6 39.0 34.6 32.8 26.8 59.4 13.4 40.6 23.9 34.1 33.0
ASRNorm 36.7 23.1 62.8 6.4 27.9 16.8 39.3 30.4 37.6 35.9 60.1 11.2 46.1 29.8 43.6 37.8
CDSD 37.9 20.5 59.1 13.8 24.6 16.3 39.3 30.2 36.7 35.7 62.0 23.2 41.5 33.5 41.5 39.2

CARD (Ours) 43.2 26.1 67.8 12.2 32.4 21.4 45.5 35.5 44.0 40.2 67.4 25.7 52.2 35.3 47.8 44.6

Table 3: Per-class results on Dusk-Rainy and Night-Sunny. FR denotes Faster R-CNN. The
numbers in bold or underlined denote the highest and the second performance, respectively.

Method CFP Daytime-Sunny Daytime-Foggy Dusk-Rainy Night-Sunny Night-Rainy Average
ERM ✗ 54.2 38.6 30.6 38.7 14.2 35.3
ERM ✓ 58.1 35.9 33.9 41.7 16.3 37.2

GRW ✗ 55.4 36.0 31.4 40.1 14.9 35.6
GRW ✓ 59.5 36.7 35.5 44.6 16.8 38.6

Table 4: Ablation study. These results show that the vanilla GRW marginally outperforms ERM
and the effectiveness of CFP in improving OoD performance. Moreover, GRW works well with
CFP and significantly achieves the optimal average performance.

(FPN) introduced by Lin et al. (2017a) 3. At the beginning of training, if not specified, networks are
initialized by the ImageNet pre-trained weights. We train all models on the Daytime-Sunny source
domain for 24 epochs for full convergence. We set the λg to 1.0 and the σ2 to 0.0001. We apply the
Stochastic Gradient Descent optimizer with the 0.02 learning rate. All experiments are conducted
on a server with 8 GPUs with 4 samples per GPU.

6.2 COMPARISON WITH THE STATE OF THE ART

We first report the overall results on the S-DGOD benchmark and then per-class results.

Overall S-DGOD results. Table 1 shows the mAP results on all domains, including Daytime-
Sunny, Daytime-Foggy, Dusk-Rainy, Night-Sunny, and Night-Rainy, in which Daytime-Sunny is
for training. As shown in Table 1, our proposed CARD significantly improves the average per-
formance to 38.6% compared with the baselines algorithm, i.e., IBN-Net, which achieves 35.7%.
This suggests CARD learns the generalizable features to make predictions. Furthermore, we com-
pare CARD with the current SOTA algorithm, CLIPGap, under the same experimental protocol
introduced by Vidit et al. (2023) in the five domains. Results are shown in Table 2 and our pro-
posed CARD surpasses CLIPGap by 0.2% with significantly less pre-trained knowledge. These
results demonstrate the supreme ability of CARD in learning generalizable features and achieving
SOTA OoD performance.

Per-class results. Table 3 lists the per-class results of CARD and baselines in the Dusk-Rainy,
and Night-Sunny, which are two extremely challenging target domains. For more per-class re-
sults, please refer to Appendix A.4.1. The results show that CARD outperforms baselines in de-
tecting buses, cars, and trucks with the highest accuracy while showing comparable accuracy in
other classes. These demonstrate the effectiveness of CARD and also indicate that CARD is ef-
fective in the popular life-critical application, autonomous driving (AD), where the DNN-based
AD system significantly degenerates in new environments, suffering a lot from the domain shift.
Moreover, CARD achieves SOTA performance in all classes in the Night-Sunny domain, where it
is especially challenging to clearly identify completed objects even for humans. This demonstrates
the generalization ability of CARD as well as the robustness against low-light conditions.

6.3 ABLATION STUDY

We conduct an ablation study to understand the effect of GRW and CFP separately. As shown in Ta-
ble 4, GRW without (w/o) CFP marginally surpasses ERM w/o CFP by 0.3% in terms of average

3The results later updated by Wu & Deng (2022) in the released codes use the FPN. To align with Wu &
Deng (2022), all used baselines are re-implemented. Baseline results are improved with the FPN.
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Figure 3: EigenCam Visualization. Left: Ground truth. Middle: Baselines. Right: CARD. These
figures show that CARD is able to make predictions based on the object-related pixels, while base-
line focuses less on the object itself.

car: 0.49

car: 0.49car: 0.98car: 1.00

car: 1.00 car: 0.92 car: 0.43

car: 0.32

car: 0.95

car: 0.72

person: 0.79
person: 0.82person: 0.92

car: 0.77

Baseline CARD Baseline CARD Baseline CARD Baseline CARD

Figure 4: Inference results (category: confidence) on the four target domains. Every two
columns, where the left column is the results of baseline and the right is CARD’s, from left to
right represent the results on Daytime-Foggy, Dusk-Rainy, Night-Sunny, and Night-Rainy. Com-
pared with baselines, CARD is able to detect the lost objects and accurately recognize objects and
contexts. Better view in zoom-in mode.

performance. This empirically demonstrates that the vanilla GRW is hard to outperform ERM, con-
sistent with the proposition in Theorem 1. On the contrary, the inclusion of CFP (”w. CFP”) in the
GRW framework elevates the average performance to 38.6%, surpassing GRW w/o CFP by 3.0%.
Additionally, ERM w. CFP also surpasses ERM w/o CFP by 1.9%. These results underscore the
generalizability of CFP against challenging domain shifts, aligning with the theoretical insights pre-
sented in Theorem 3. Moreover, CFP enhances the performance of both ERM and GRW, with the
improvement on GRW surpassing that on ERM. This suggests that CFP synergizes effectively with
GRW in OoD scenarios, harnessing the full potential of GRW to alleviate learning bias.

6.4 VISUALIZATION

EigenCam. Figure 3 presents the EigenCam (Muhammad & Yeasin, 2020) results of baselines
and CARD. As the figure shows, our proposed CARD makes predictions based on the object-related
regions, while baselines rely on the background-related features. These show that CARD effectively
mitigates the impact of spurious correlations and makes predictions grounded on causal information.

Inference results. Figure 4 presents some inference comparisons of baselines and CARD on the
four target domains and demonstrates the supreme generalization ability of CARD under extremely
challenging scenarios. More inference results can be found in Appendix A.5.

7 CONCLUSION

In this paper, we introduce a novel approach named Certifiable Reweighting (CARD), which is OoD-
aware with theoretical guarantees, for single domain generalization object detection (S-DGOD).
First of all, we consider the effective technique for improving OoD performance, Generalizable
Reweighting (GRW), which reweights the training samples during training. We identify and demon-
strate that the vanilla GRW struggles to surpass the performance of Empirical Risk Minimization
(ERM). To address this challenge, we introduce Certifiable Feature Perturbation (CFP), which is
designed to train a robust neural network against random perturbations and helps GRW learn a
generalizable network. Our extensive experiments show our proposed CARD achieves SOTA per-
formance compared with previous SOTA baselines in the challenging S-DGOD benchmarks.
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A APPENDIX

A.1 PROOF OF THEOREM 1

We first restate the linear approximation of DNNs:
Proposition 1. (NTRF approximation of DNNs.) When the width of neural networks goes infi-
nite, the output of over-parameterized neural networks can be approximated as a linear function at
iteration t:

ŷ
(t)
1 = ψ(t) ·Θ(t) · η(t)1 , (3)

ŷ
(t)
2 = ψ(t) ·Θ(t) · η(t)2 , (4)

where ψ(t) = ψ
(
X,Θ(t)

)
∈ Rn×m is the Neural Tangent Random Feature (NTRF) matrix (Cao &

Gu, 2019) of n training data X , Θ ∈ Rm×k denotes the concatenation of all vectorized trainable
parameters with size m, η(t)1 ∈ Rk and η(t)2 ∈ Rk project features into classification output ŷ(t)

1 ∈
Rn and regression output ŷ(t)

2 ∈ Rn, respectively.

Then we restate the theorem as follows:

Theorem 1. (Failure of GRW on object detection.) If ψ(0) =
[
ψ
(0)
1 , . . . , ψ

(0)
n

]T
is linearly inde-

pendent, then when object detection network Θ, η1, η2 simultaneously trained by 0-1 binary cross
entropy loss and smooth L1 loss4, as t → ∞ and L̂train → 0, both GRW and ERM converge to the
solution Θ∗, η∗1 , η

∗
2 that not depend on w.

Proof. According to Lee et al. (2019), NTRF matrix ψ(t) changes very little during training, and

following Pezeshki et al. (2021), we set ψ(t) ≡ ψ(0). As ψ(0) =
[
ψ
(0)
1 , . . . , ψ

(0)
n

]T
is linearly

independent, according to Cramer’s Rule, there is exactly one Θ∗, η∗1 , η
∗
2 so that:

y1 = ψ(t)Θ∗η∗1 = ψ(0)Θ∗η∗1 , (10)

y2 = ψ(t)Θ∗η∗2 = ψ(0)Θ∗η∗2 . (11)

Recall the empirical training loss:

L̂train(x,y; Θ, η1, η2) = Lcls(x,y; Θ, η1) + Lreg(x,y; Θ, η2). (12)

For regression, we have:∣∣∣ψ(0)
(
Θ(t)η

(t)
2 −Θ∗η∗2

)∣∣∣ = ∣∣∣(ψ(0)Θ(t)η
(t)
2 − y2

)
−
(
ψ(0)Θ∗η∗2 − y2

)∣∣∣
≤
∣∣∣ψ(0)Θ(t)η

(t)
2 − y2

∣∣∣+ ∣∣∣ψ(0)Θ∗η∗2 − y2

∣∣∣ . (13)

Together with

Lreg(x,y2; Θ, η2) =
1

2

(
ψ(0)Θ(t)η

(t)
2 − y2

)T (
ψ(0)Θ(t)η

(t)
2 − y2

)
, (14)

as t→ ∞ and L̂train → 0, we have Lreg → 0. Therefore, we have:∣∣∣ψ(0)Θ(t)η
(t)
2 − y2

∣∣∣+ ∣∣∣ψ(0)Θ∗η∗2 − y2

∣∣∣→ 0, (15)∣∣∣ψ(0)
(
Θ(t)η

(t)
2 −Θ∗η∗2

)∣∣∣→ 0, (16)

where 0 is the all-zeros vector with size n. This indicates that Θ(t) and η(t)2 converge to Θ∗ and η∗2 ,
respectively, because η2 ∈ R. Similarly, for classification at time t, we have:

Lcls(x,y1; Θ
(t), η

(t)
1 ) = −1T ·

(
y1 log

(
ψ(0)Θ(t)η

(t)
1

)
+ (1− y1) log

(
1− ψ(0)Θ(t)η

(t)
1

))
,

(17)

4For simplicity, we consider binary classification here and one can easily derive the version for the multi-
category classification following the same analysis. We also consider the interval [−1, 1] for smooth L1 loss,
which can be achieved by normalization on ŷ2.
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where 1 is the all-ones vector with size n. As t → ∞ and L̂train → 0, we have Lcls → 0, thus, Θ(t)

and η(t)1 converge to Θ∗ and η̃1, respectively. We have:

y1 = ψ(0)Θ∗η̃1. (18)

Together with

y1 = ψ(0)Θ∗η∗1 , (19)

then η̃1 = η∗1 , which means η(t)1 converges to η∗1 . From the above derivation, we can see that
Θ, η1, η2 trained by ERM converge to Θ∗, η∗1 , η

∗
2 . We consider adding sample weights w =

[w1, . . . , wn]
T on Equation (12), we have:

Ltrain(x,y; Θ, η1, η2) = wT (Lcls(x,y; Θ, η1) + Lreg(x,y; Θ, η2)) . (20)

Following the same derivation above, we can conclude that Θ, η1, η2 trained by GRW also con-
verge to Θ∗, η∗1 , η

∗
2 . This demonstrates that as long as t → ∞ and L̂train → 0, when ψ(0) =[

ψ
(0)
1 , . . . , ψ

(0)
n

]T
is linearly independent, both GRW and ERM converge to the same solution

Θ∗, η∗1 , η
∗
2 .

A.2 PROOF OF THEOREM 2

We first restate the theorem:

Theorem 2. (Presence of weight w.) When object detection network Θ, η1, η2 with feature per-
turbations m trained by GRW, as t → ∞, Θ(t), η

(t)
1 , η

(t)
2 is impacted by w(t) and converge to

Θ∗, η∗1 , η
∗
2 that depend on not only X,Θ(0) but also w(t) for any t.

The proof is shown as follows:

Proof. When training with GRW, Θ is updated as the following way:

Θ(t+1) = Θ(t) − β
∑
i

w
(t)
i

(
▽ΘLcls(xi,y1,i; Θ

(t), η
(t)
1 ) + ▽ΘLreg(xi,y2,i; Θ

(t), η
(t)
2 )
)

(21)

= Θ(t) − β
∑
i

w
(t)
i ψ(t)

(
y1,i − ŷ1,i

ŷ1,i(1− ŷ1,i)
η
(t)
1 + (ŷ2,i − y2,i)η

(t)
2

)
(22)

= Θ(t) − β
∑
i

w
(t)
i ψ(0)

(
y1,i − ŷ1,i

ŷ1,i(1− ŷ1,i)
η
(t)
1 + (ŷ2,i − y2,i)η

(t)
2

)
(23)

= Θ(t) − β
∑
i

w
(t)
i ψ(0)cti (24)

cti =
y1,i − ŷ1,i

ŷ1,i(1− ŷ1,i)
η
(t)
1 + (ŷ2,i − y2,i)η

(t)
2 , cti ∈ Rk. (25)

Thus, we can derive the formulation for Θ(t+1):

Θ(t+1) −Θ(0) = −β
∑
j

∑
i

w
(j)
i ψ(0)cji . (26)

This shows that w(t)
i should impact the learning dynamic of Θ. As t→ ∞, Θ(t+1) converges to Θ∗,

and we can have:

Θ∗ = Θ(0) − β
∑
j

∑
i

w
(j)
i ψ(0)cji . (27)
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This shows that Θ∗ depends on w(t)
i , X and Θ(0). Similarly, the update of η1 and η2 can be formal-

ized as:

η
(t+1)
1 = η

(t)
1 − β

∑
i

w
(t)
i

(
▽η1

Lcls(xi,y1,i; Θ
(t), η

(t)
1 ) + ▽η1

Lreg(xi,y2,i; Θ
(t), η

(t)
2 )
)

(28)

= η
(t)
1 − β

∑
i

w
(t)
i

y1 − ŷ1

ŷ(1− ŷ)

(
ψ(0)Θ(t) +m

(t)
i

)
, (29)

η
(t+1)
2 = η

(t)
2 − β

∑
i

w
(t)
i

(
▽η2

Lcls(xi,y1,i; Θ
(t), η

(t)
1 ) + ▽η2

Lreg(xi,y2,i; Θ
(t), η

(t)
2 )
)

(30)

= η
(t)
2 − β

∑
i

w
(t)
i (ŷ2 − y2)

(
ψ(0)Θ(t) +m

(t)
i

)
. (31)

as t→ ∞, η(t+1)
1 and η(t+1)

2 converges to η∗1 and η2∗:

η∗1 = η
(0)
1 − β

∑
j

∑
i

w
(j)
i

y1 − ŷ1

ŷ(1− ŷ)

(
ψ(0)Θ(j) +m

(j)
i

)
, (32)

η∗2 = η
(0)
2 − β

∑
j

∑
i

w
(j)
i (ŷ2 − y2)

(
ψ(0)Θ(j) +m

(j)
i

)
. (33)

These show that η∗1 , η
∗
2 should also depend on w(t)

i for any t and demonstrate the presence of w(t)
i

in the training process.

A.3 PROOF OF THEOREM 3

We first recall the definition of A-Generalizable:
Definition 1. (A-Generalizable.) For a binary classification and regression problem, given a closed
set A, when 1

nLcls(x,y1; Θ, η1) < Ccls and 1
nLreg(x,y2; Θ, η2) < Creg, if for perturbation drawn

from distribution a ∈ A, we have:

max
a∈A

Em∼a

[
1

n
Lcls(x,y1,m; Θ, η1)

]
< Ccls, (7)

max
a∈A

Em∼a

[
1

n
Lreg(x,y2,m; Θ, η2)

]
< Creg, (8)

then the object detection network f(Θ, η1, η2) is A-Generalizable.

We then restate the theorem:
Theorem 3. (Generalization of feature perturbation.) When an object detection network trained
with Gaussian perturbation m ∼ N (0, σ2I), denoted as fm(Θ, η1, η2), if the classification
loss 1

nLcls (x,y1,m; Θ, η1) < Ccls and the regression loss 1
nLreg (x,y2,m; Θ, η2) < Creg, then

fm(Θ, η1, η2) is A-Generalizable for A = {a : δ ∼ a, µ(δ) = 0,V[δ] ≤ σ2I}.

The proof is shown as follows:

Proof. Consider the classification loss using binary cross entropy function:
1

n
Em∼N (0,σ2I) [Lcls (x,y1,m; Θ∗, η∗1)] < Ccls. (34)

For clarity, we assume the category label y1 = 1:
1

n
Em∼N [Lcls (x,y1,m; Θ∗, η∗1)] < Ccls (35)

⇐⇒ 1

n
Em∼N

[
1T · fm(x,y1; Θ

∗, η∗1)
]
>

1

2
(36)

⇐⇒ 1

n
Em∼N (0,σ2I)

[
1T · (ψ(0)Θ∗ + 1 ·m(t)T )η∗1

]
>

1

2
(37)

⇐⇒ 1

n
1Tψ(0)Θ∗η∗1 >

1

2
. (38)
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For some perturbation δ ∈ Rk drawn from some distribution a with zero mean, we have:
1

n
Eδ∼a

[
1T · (ψ(0)Θ∗ + 1 · δT )η∗1

]
=

1

n
1Tψ(0)Θ∗η∗1 >

1

2
. (39)

Consider the regression loss using the smooth L1 function:
1

n
Em∼N (0,σ2I) [Lreg (x,y2,m; Θ∗, η∗2)] (40)

=
1

n
Em∼N (0,σ2I)

[
1

2
(fm(x,y2; Θ

∗, η∗2)− y2)
T
(fm(x,y2; Θ

∗, η∗2)− y2)

]
(41)

=
1

2n
Em∼N (0,σ2I)

[((
ψ(0)Θ∗ + 1 ·mT

)
η∗2 − y2

)T ((
ψ(0)Θ∗ + 1 ·mT

)
η∗2 − y2

)]
(42)

=
1

2n
Em∼N (0,σ2I)

[(
ψ(0)Θ∗η∗2 − y2 + 1 ·mT η∗2

)T (
ψ(0)Θ∗η∗2 − y2 + 1 ·mT η∗2

)]
(43)

=
1

2n

(
ψ(0)Θ∗η∗2 − y2

)T (
ψ(0)Θ∗η∗2 − y2

)
+

1

2n
Em∼N (0,σ2I)

[
η∗2

TmmT η∗2

]
(44)

=
1

2n

(
ψ(0)Θ∗η∗2 − y2

)T (
ψ(0)Θ∗η∗2 − y2

)
+

1

2n
Em∼N (0,σ2I)

[
η∗2

Tm
]2

(45)

=
1

2n

(
ψ(0)Θ∗η∗2 − y2

)T (
ψ(0)Θ∗η∗2 − y2

)
+

1

2n
η∗2

TVm∼N (0,σ2I) [m] η∗2 (46)

=
1

2n

(
ψ(0)Θ∗η∗2 − y2

)T (
ψ(0)Θ∗η∗2 − y2

)
+
σ2

2n
η∗2

T η∗2 < Creg. (47)

(48)
For the perturbation δ ∼ a, if elements in δ are pairwise independent, we have

1

n
Eδ∼a [Lreg (x,y2, δ; Θ

∗, η∗2)] < Creg, (49)

⇐⇒ 1

2n

(
ψ(0)Θ∗η∗2 − y2

)T (
ψ(0)Θ∗η∗2 − y2

)
+

1

2n
η∗2

TVδ∼a [δ] η
∗
2 < Creg, (50)

when V[δ] ≤ σ2I , where V[·] is the variance function.

A.4 MORE EXPERIMENT RESULTS

A.4.1 PER-CLASS RESULTS

Table 5 and Table 6 list the per-class results on Daytime-Foggy and Night-Rainy, respectively.
CARD shows comparable car detection performance on Daytime-Foggy and achieves SOTA per-
formance on Night-Rainy. This indicates our proposed method can be further implemented in the
challenging autonomous driving application, which suffers a lot from the domain shift.

Method Bus Bike Car Motor Person Rider Truck mAP
Faster R-CNN (Ren et al., 2015) 35.7 35.5 58.2 33.9 40.0 42.7 24.1 38.6
IBN-Net (Pan et al., 2018) 34.3 35.4 57.5 34.3 39.8 43.8 27.3 38.9
SW (Pan et al., 2019) 31.1 32.0 52.8 31.9 34.8 41.3 23.8 35.4
IterNorm (Huang et al., 2019) 32.8 35.7 57.3 32.9 39.3 43.4 25.1 38.1
ISW (Choi et al., 2021) 31.2 33.6 52.8 31.7 39.8 40.7 21.6 35.9
ASRNorm (Fan et al., 2021) 30.5 34.7 52.3 31.2 38.9 43.4 25.0 36.6
CDSD (Wu & Deng, 2022) 30.0 29.7 52.4 30.3 33.4 40.1 21.5 33.9

CARD (Ours) 33.0 31.1 58.0 31.6 38.6 40.0 24.9 36.7

Table 5: Per-class results on Daytime-Foggy.

A.4.2 HYPER-PARAMETERS

Table 7 lists the performance on the S-DGOD benchmarks with different hyper-parameters and the
results show that CARD achieves the optimal OoD performance when λp and σ2 are set to 1.0 and
0.0001.
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Method Bus Bike Car Motor Person Rider Truck mAP
Faster R-CNN (Ren et al., 2015) 21.2 9.6 33.9 0.2 11.8 1.5 21.0 14.2
IBN-Net (Pan et al., 2018) 23.1 10.1 34.4 0.2 12.4 4.8 22.6 15.4
SW (Pan et al., 2019) 16.3 9.1 26.2 0.4 10.6 9.1 16.8 12.6
IterNorm (Huang et al., 2019) 24.5 10.7 32.8 0.6 13.9 6.3 17.5 15.2
ISW (Choi et al., 2021) 22.8 10.2 33.5 1.3 15.7 11.4 18.6 16.2
ASRNorm (Fan et al., 2021) 21.9 11.6 30.3 0.1 11.7 4.5 20.5 14.4
CDSD (Wu & Deng, 2022) 19.4 9.5 31.4 0.2 11.1 9.7 16.6 14.0

CARD (Ours) 27.0 9.4 37.6 0.4 12.9 9.1 21.1 16.8

Table 6: Per-class results on Night-Rainy.

Method λp σ2 Daytime-Sunny Daytime-Foggy Dusk-Rainy Night-Sunny Night-Rainy Average
CARD (Ours) 2.0 0.0001 58.9 36.2 34.9 44.2 16.5 38.1
CARD (Ours) 1.0 0.0001 59.5 36.7 35.5 44.6 16.8 38.6
CARD (Ours) 0.5 0.0001 58.7 35.9 35.2 44.0 16.7 38.1

CARD (Ours) 1.0 0.01 57.3 34.7 34.1 42.9 16.0 37.0
CARD (Ours) 1.0 0.001 58.5 35.1 35.3 43.6 16.9 37.9
CARD (Ours) 1.0 0.0001 59.5 36.7 35.5 44.6 16.8 38.6

Table 7: Results of different hyper-parameters.

A.4.3 ADVERSARIAL ATTACK

We conduct the adversarial attack experiments on Table 8 using FGSM (Goodfellow et al., 2014). As
the results show, our CARD surpasses ERM by 4.5% under the attack by FGSM. This demonstrates
that CARD is more robust against adversarial attacks than ERM baselines.

Method Daytime-Sunny Daytime-Foggy Dusk-Rainy Night-Sunny Night-Rainy Average
ERM 54.2 38.6 30.6 38.7 14.2 35.3
ERM+FGSM 50.1 33.9 28.3 35.6 13.8 32.3

CARD (Ours) 59.5 36.7 35.5 44.6 16.8 38.6
CARD (Ours)+FGSM 56.1 34.9 34.2 42.1 16.6 36.8

Table 8: Results under adversarial attack.

A.5 INFERENCE RESULTS

Figure 5 presents more inference results of CARD, which show the supreme performance compared
with baselines.
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Figure 5: More inference results. The left column is the predictions of baselines and the right
column is the predictions of CARD.
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