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Abstract

Understanding how large language models001
(LLMs) acquire and store factual knowledge002
is crucial for enhancing their interpretability,003
reliability, and efficiency. In this work, we ana-004
lyze the evolution of factual knowledge repre-005
sentation in the OLMo-7B model by tracking006
the roles of its Attention Heads and Feed For-007
ward Networks (FFNs) over training. We clas-008
sify these components into four roles—general,009
entity, relation-answer, and fact-answer spe-010
cific—and examine their stability and transi-011
tions. Our results show that LLMs initially012
depend on broad, general-purpose components,013
which later specialize as training progresses.014
Once the model reliably predicts answers, some015
components are repurposed, suggesting an016
adaptive learning process. Notably, answer-017
specific attention heads display the highest018
turnover, whereas FFNs remain stable, continu-019
ally refining stored knowledge. These insights020
offer a mechanistic view of knowledge forma-021
tion in LLMs and have implications for model022
pruning, optimization, and transparency. (A023
repository link for reproducibility will be pro-024
vided.)025

1 Introduction026

Large Language Models (LLMs) are trained on027

vast datasets including resources like Wikipedia028

imbuing them with extensive factual knowledge.029

As a result, these models can provide informed030

answers when queried about facts. To uncover031

the mechanisms that enable such factual responses,032

mechanistic interpretability (MI) methods (Olah033

et al., 2020; Elhage et al., 2021) are employed.034

MI aims to reverse-engineer neural networks by035

translating their internal processes into human-036

understandable algorithms and concepts, and has037

made great progress in explaining how transformer-038

based LLMs process and store information.039

A key approach within MI is Circuit Analy-040

sis (Olah et al., 2020; Elhage et al., 2021; Wang041

Figure 1: Factual Knowledge Probing. We track how
Olmo-7B processes factual knowledge across snapshots
by analyzing outputs, extracting information flow cir-
cuits, and comparing accuracy. Additionally, we ex-
amine component dynamics by tracking their counts,
measuring Intersection over Union (IoU) between snap-
shots and the fully trained main model, and analyzing
role switches over time.

et al., 2023), which isolates minimal computa- 042

tional subgraphs—comprising essential compo- 043

nents like attention heads and FFNs—that repro- 044

duce a model’s behavior on a given task. Prior 045

work on factual recall has focused on localizing 046

knowledge within transformer parameters (Meng 047

et al., 2022; Geva et al., 2021, 2022, 2023; Hernan- 048

dez et al., 2024) and on behavioral analyses that 049

trace the emergence of linguistic and reasoning ca- 050

pabilities during pretraining (Rogers et al., 2020; 051

Liu et al., 2021; Chiang et al., 2020; Chang et al., 052

2024; Xia et al., 2023; Hu et al., 2023; Biderman 053

et al., 2023a). While these studies have advanced 054

our understanding of factual knowledge from both 055

internal and external perspectives, they have not 056

systematically examined how the components of a 057

factual recall circuit evolve over training. 058

In this work, we bridge this gap by conducting a 059

time-course mechanistic interpretability study on 060

training snapshots of the Olmo-7B model (Groen- 061

eveld et al., 2024). Specifically, we investigate: 062
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• Which components (attention heads, FFNs)063

contribute to solving factual knowledge tasks?064

• How do these circuits for factual knowledge065

evolve over the course of model training?066

To achieve this, we trace information flow routes067

(Ferrando and Voita, 2024) in Olmo-7B using in-068

terpretability tools, analyze component dynamics,069

and identify which parts of the model (attention070

heads, layers, FFNs) encode and retrieve factual071

knowledge across different training snapshots. We072

make the following contributions:073

• Factual Knowledge Dataset Construction:074

A pipeline for constructing a factual knowl-075

edge probing dataset that minimizes ambi-076

guity. Using this pipeline, we create a new077

dataset specifically designed for analyzing fac-078

tual knowledge in LLMs.079

• Component Attribution for Factual Knowl-080

edge: We analyze which components are re-081

sponsible for processing factual knowledge at082

different training stages.083

• Temporal Evolution of Knowledge Repre-084

sentation: We track how circuits responsible085

for factual knowledge stabilize or change role086

over the course of training.087

2 Background088

2.1 Circuit Analysis089

A circuit is defined as the minimal computational090

subgraph that faithfully reproduces a model’s per-091

formance on a specific task (Olah et al., 2020; El-092

hage et al., 2021; Wang et al., 2023). Circuits iso-093

late key components—such as attention heads and094

FFNs—that drive predictions. Various techniques095

extract these circuits, including activation patching096

(which selectively corrupts activations to assess097

performance impact), attribution-based methods098

(e.g., edge attribution patching (EAP) and its in-099

tegrated gradients variant, EAP-IG (Hanna et al.,100

2024; Nanda et al., 2023)), and gradient-based ap-101

proaches like integrated gradients (Sundararajan102

et al., 2017). However, these methods often be-103

come computationally prohibitive for large models104

or when evaluating multiple snapshots due to their105

complexity and memory demands.106

2.2 Information Flow Routes107

To overcome these limitations, we leverage Infor-108

mation Flow Routes (IFRs) (Ferrando and Voita,109

2024). IFRs conceptualize the model as a com- 110

putational graph and recursively trace pathways 111

from the output token back through the network. 112

At each step, only nodes and edges with contribu- 113

tions exceeding a threshold θ are retained, ensuring 114

that only paths significantly impacting the final 115

prediction are included. The importance of each 116

edge is quantified using a modified ALTI (Aggre- 117

gation of Layer-Wise Token-to-Token Interactions) 118

score (Ferrando et al., 2022). Compared to tra- 119

ditional circuit-finding methods, IFRs are more 120

scalable, require minimal prompt design, and are 121

well-suited for large models like Olmo-7B across 122

multiple training snapshots. Furthermore, IFRs 123

sidestep challenges posed by self-repair mecha- 124

nisms in LLMs (McGrath et al., 2023; Rushing and 125

Nanda, 2024), making them a robust tool for circuit 126

analysis. 127

3 Factual Knowledge Probing over Time 128

In this section, we describe our approach to probing 129

factual knowledge. We first introduce our dataset 130

(Sec. 3.1), then detail the OLMo-7B training snap- 131

shots used (Sec. 3.2), and finally assess snapshot 132

performance via accuracy (Sec. 3.3). 133

Key Terms. A fact is defined as a subject- 134

relation-object triple (e.g., (Canada, has_capital, 135

Ottawa)), where has_capital is the relation repre- 136

senting the pairing of a country with its capital. 137

Token Positions. In our experiments, facts ap- 138

pear in sentences such as “Canada has the capital 139

city of Ottawa.” We distinguish three sets of subto- 140

ken positions: (i) SUBJECT for the subject (e.g., 141

“Canada”); (ii) END for the subtoken immediately 142

before the answer (e.g., “of” in “has the capital city 143

of”); and (iii) ANSWER for the tokens forming the 144

answer, beginning with the token following END. 145

3.1 Dataset 146

We develop a dataset designed to probe the factual 147

knowledge encoded in the Olmo-7B model. See Ta- 148

ble 1. To minimize syntactic ambiguity, we avoid 149

templates that may lead to multiple valid answers; 150

e.g., for the prompt "The Eiffel Tower is located 151

in", both Paris and France are correct. Similarly, 152

we avoid cases involving regional variations in ter- 153

minology (e.g., soccer vs. football) and eliminate 154

instances where the answer is already contained 155

in the subject (e.g., "The Leaning Tower of Pisa 156

is a landmark in the city of Pisa."). Our focus is 157
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Location-based Relations (LOC)

Relation Prompt Template # Facts Example Subject

CITY_IN_COUNTRY {} is part of the country of 14 Rio de Janeiro, Buenos Aires
COMPANY_HQ The headquarters of {} are in the city of 20 Zillow, Bayrischer Rundfunk
COUNTRY_CAPITAL_CITY {} has the capital city of 19 Canada, Nigeria
FOOD_FROM_COUNTRY {} is from the country of 17 Sushi, Ceviche
OFFICIAL_LANGUAGE In {}, the official language is 14 France, Egypt
PLAYS_SPORT {} plays professionally in the sport of 12 Kobe Bryant, Roger Federer
SIGHTS_IN_CITY {} is a landmark in the city of 17 The Eiffel Tower, The Space Needle

Name-based Relations (NAME)

Relation Prompt Template # Facts Example Subject

BOOKS_WRITTEN The Book {} was written by the author with the name of 13 The Hunger Games, Life of Pi
COMPANY_CEO Who is the CEO of {}? Their name is 17 Ubisoft, Pinterest
MOVIE_DIRECTED The Movie {} was directed by the director with the name of 17 The Godfather, Forrest Gump

Table 1: Overview of the Factual Knowledge dataset, grouped by relation type.

on categorical facts associated with well-defined158

relation types, specifically Location-Based Rela-159

tions (LOC) and Name-Based Relations (NAME).160

Table 1 provides an overview of these relations,161

along with the prompt templates, number of facts,162

and example subjects for each relation type. Al-163

though manually curated, our dataset is inspired164

by existing resources such as LRE (Hernandez165

et al., 2024), CounterFact (Meng et al., 2022),166

and ParaRel (Elazar et al., 2021), as well as Sum-167

ming Up The Facts (Chughtai et al., 2024). We168

extended these resources by integrating relations169

such as BOOKS_WRITTEN and MOVIE_DIRECTED us-170

ing data from Goodreads and IMDb’s Top Favorites171

list. To ensure reliability and eliminate potential172

confounds in our analysis, we implement a multi-173

step validation pipeline to rigorously evaluate both174

the prompts and the facts (see Appendix B).175

3.2 Models176

We study the evolution of factual knowledge using177

the OLMo-7B model (Groeneveld et al., 2024),1 a178

flagship open-source LLM with 32 layers (each179

with 32 attention heads) pretrained on over 2.5180

trillion tokens. During training, checkpoints were181

saved every 500 steps (2B tokens per interval) from182

initialization up to step161000-tokens675B,183

and then at 1000-step intervals until the fi-184

nal checkpoint, step651581-tokens2731B.185

For our analysis, we select 40 snapshots186

spanning from step5000-tokens20B to187

step200000-tokens838B (in 5000-step in-188

crements), along with the fully trained main189

model.2 We denote these snapshots as SX-YB,190

1https://huggingface.co/allenai/OLMo-7B-0424-hf/
tree/main

2Due to an issue with step115000, we use
step115500-tokens462B instead.

where X represents the training step (in multiples 191

of 5000) and Y the token count in billions. 192

3.3 Accuracy 193

Since we are interested in the time course of factual 194

knowledge during training, we first establish how 195

the acquisition of knowledge evolves as measured 196

by top-1 and top-10 accuracy on the first token of 197

ANSWER. We group our relations into two groups: 198

NAME (the answer is the name of a person) and 199

LOC (the answer is a location). See Appendix C 200

for per-relation graphs. 201

Figure 2 shows that LOC relations converge 202

faster than NAME relations: A top-1 accuracy of 203

0.8 is first reached at S5 for LOC and at S14 for 204

NAME. LOC also has less top-1 volatility than 205

NAME. top-10 accuracy for NAME is also lower 206

than for LOC, but top-10 values are much higher, 207

starting at about S13. This indicates that fairly 208

early on, the correct NAME is in the pool of candi- 209

dates that the model has identified as relevant and 210

that the remaining problem of knowledge acquisi- 211

tion is then correct ranking. The likely reason for 212

these differencec between NAME and LOC is that 213

there are many more prominent person names than 214

prominent locations in the model’s training data, 215

making it more challenging to learn the correct 216

answer for a person than for a location. 217

4 How do Components Evolve? 218

We now examine Olmo-7B’s internal mechanics 219

during pretraining. Using IFR, we trace the full 220

circuit behind each predicted token to identify the 221

contributing components, i.e., attention heads and 222

FFNs. We classify these components based on their 223

roles in the circuit, distinguishing generalized com- 224

ponents that contribute broadly from specialized 225
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Figure 2: Accuracy of LOC and NAME relations across snapshots.

ones with more focused functions. By tracking226

how these roles evolve during pretraining, we gain227

deeper insights into the model’s learning dynamics228

for factual knowledge.229

4.1 Model Component Roles230

We take a systematic approach to defining model231

component roles based on their contributions232

within token circuits. These roles are determined by233

the types of tokens a component influences and the234

scope of its contribution. A component may con-235

tribute to all tokens or to a subset, to only one fact236

or multiple facts etc. We now define a structured237

classification schema that captures the functional238

behavior of each component.239

For each snapshot s, relation r, fact f and subto-240

ken position t, we use IFR to compute the circuit241

that produced the output subtoken at that t. We set242

csrft = 1 if component c is part of the circuit, 0243

otherwise.244

We then define csrf (T ) =
1

|T (f)|
∑

t∈T (f) csrft,245

i.e., csrf is the activation of c averaged over the246

subtoken positions T (f). Given the sentence corre-247

sponding to fact f , T (f) is a subset of its subtokens.248

We now define different roles of a component by249

defining T (f) differently, e.g., containing only the250

ANSWER subtokens or all subtokens.251

4.1.1 General role252

For the general role, we use the subtoken selector253

Tg(f). Tg(f) is the set of all subtokens of the254

sentence (except for the final period).255

We define the general activation score of a com-256

ponent c for snapshot s as:257

cgs =

∑
r∈R

∑
f∈r csrf (Tg)∑

r∈R
∑

f∈r 1
258

That is, cgs is the activation of c for snapshot s,259

microaveraged over facts. R is the set of relations.260

We classify a component c as having a general 261

role for snapshot s if cgs > θ, where we set θ = 0.1. 262

4.1.2 Entity role 263

For the entity role, we use the subtoken selector 264

Te(f). Te(f) is the set of all subtokens of SUB- 265

JECT and ANSWER.3 266

We define the entity activation score of a compo- 267

nent c for snapshot s as: 268

ces =

∑
r∈R

∑
f∈r csrf (Te)∑

r∈R
∑

f∈r 1
269

That is, ces is the subject and answer activation of c 270

for snapshot c, microaveraged over facts. 271

We classify a component c as having an entity 272

role for snapshot s if ces > θ where θ = 0.1. 273

4.1.3 Relation-answer specific role 274

For the relation role, we use the subtoken selector 275

Ta(f). Ta(f) selects the subtokens of the AN- 276

SWER. We then define the relation-answer acti- 277

vation score of a component c for snapshot s and 278

relation r as: 279

crs =

∑
f∈r csrf (Ta)∑

f∈r 1
280

That is, crs is the answer activation of c for snapshot 281

s and relation r, averaged over facts. 282

We classify a component c as having a relation- 283

answer role if crs > θ where θ = 0.1. 284

4.1.4 Fact-answer specific role 285

For a fact f belonging to relation r, we set cfs = 286

cfsrf (Ta). 287

We classify a component c as having a fact- 288

answer role if cfs > θ where θ = 0.1. 289

3For the SUBJECT, there is no helpful context for the predic-
tion of its first subtoken, e.g., for “France” in “France has the
capital . . . ”. We therefore shift the subtokens considered to
the right by 1 for SUBJECTS.
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4.1.5 Proper Components290

Let Jg, Je, Jr and Jf be the sets of components291

that assume the general, entity, relation-answer, and292

fact-answer roles, respectively, as defined above.293

We define the set of proper entity components294

He as those components that assume an entity role295

but not a general role:296

He = Je − Jg297

We define the set of proper relation-answer com-298

ponents Hr as those components that assume a299

relation-answer role but not an entity or general300

role:301

Hr = Jr − Je − Jg302

We define the set of proper fact-answer compo-303

nents Hf as those components that assume a fact-304

answer role but not a general, entity, or relation-305

answer role:306

Hf = Jf − Jr − Je − Jg307

We set:308

Hg = Jg309

because for the general role, there is no change310

from the original set to the proper set.311

Finally, in addition to the sets of components Hg,312

He, Hr, and Hf , we define the set of deactivated313

components Hd as the complement of the union of314

the four other roles g, e, r, f : Hd = C(Hg ∪He ∪315

Hr ∪Hf ).316

4.2 Analysis of Component Dynamics317

After classifying components into five distinct roles318

(general, entity, relation-answer, answer-specific,319

deactivated), we analyze how these components320

evolve during pretraining, quantifying both static321

and dynamic aspects of the roles. We now describe322

our methodology including the measures we use.323

Consistency and Count Metrics: To quantify324

stability, we measure the consistency of each role325

over time by calculating the Jaccard Similarity (In-326

tersection over Union, or IoU) between the set of327

components with a particular role at a given snap-328

shot and the corresponding set in the final model.329

For example, for general components, the IoU is330

defined as:331

IoU(Hg) =
Hgs ∩Hgmain

Hgs ∪Hgmain
,332

where Hgs represents the set of entity components333

in the current snapshot, and Hgmain is the corre-334

sponding set in the final model.335

Role Switch Dynamics: We also track how com- 336

ponents change roles over time: whether they acti- 337

vate, deactivate, or switch functions. By computing 338

the accumulated switch counts across selected snap- 339

shots (S1, S10, S20, S40, and the main model), we 340

capture the dynamics of these transitions, such as 341

deactivated components reactivating in specialized 342

roles or components switching between different 343

roles. 344

Markov Chain Modeling of Transitions: To 345

further characterize role dynamics, we model tran- 346

sitions using a Markov chain. The transition proba- 347

bility from state Hα to state Hβ is given by: 348

P
(
Hα → Hβ

)
=

N
(
Hα → Hβ

)∑
γ∈{g,e,r,f,d}N

(
Hα → Hγ

) , 349

where N(Hα → Hβ) is the number of observed 350

transitions from one state to the following state. 351

4.3 Temporal Consistency and Role Dynamics 352

of Attention Heads 353

Our analysis reveals key trends in the evolution 354

of attention heads. Since differences between 355

LOC and NAME relations are marginal (see Ap- 356

pendix D), we combine them for the subsequent 357

analysis. 358

Using the IoU metric and component counts, we 359

observe that the number of active attention heads 360

increases steadily over the course of training. For 361

instance, the counts for general heads rise from 94 362

to 233, for relation-answer heads from 8 to 78, and 363

for answer-specific heads from 11 to 99. Overall, 364

the total number of active heads grows from 113 365

to 423—rising from approximately 11% to 41% of 366

all heads—while nearly 60% remain deactivated. 367

Figure 3 illustrates these dynamics, with the IoU 368

metric confirming that general heads maintain a 369

high consistency with the final model throughout 370

training. 371

The evolution of attention head roles suggests a 372

hierarchical learning process. Early in training, the 373

model primarily relies on general-purpose heads 374

that generate broad, context-independent represen- 375

tations. As training progresses, specialized heads 376

emerge to support more precise fact retrieval. No- 377

tably, answer-specific heads demonstrate the high- 378

est turnover, indicating frequent role changes and 379

dynamic reallocation of resources. Furthermore, 380

our observations indicate that tasks involving com- 381

plex, name-based relations require longer training 382
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periods and exhibit more frequent role transitions383

compared to simpler, location-based tasks.384

Dynamic Specialization and Generalization of385

Attention Heads Our analysis reveals that atten-386

tion heads frequently transition from deactivated387

to specialized roles—especially to answer-specific388

roles (see Fig. 4). In contrast, general heads are389

more stable or shift to relation-answer roles. A390

heatmap of role transitions (see Fig. 5) shows that391

early and late layers switch frequently, whereas392

middle layers (10–18) are more stable. Notably,393

NAME-based tasks prompt more activations and394

transitions than LOC-based tasks in these layers,395

reflecting the greater complexity of name-based re-396

lations, suggesting that the increased complexity of397

NAME tasks demands a higher degree of dynamic398

reallocation. See Appendix E for details.399

Our Markov chain modeling (see Fig. 6) fur-400

ther quantifies these dynamics: specialized heads401

tend to transition toward more general roles, and402

once deactivated, they rarely reactivate. Although403

individual specialized heads often shift into gen-404

eral roles, the overall count of specialized heads405

increases over time because the rate at which new406

specialized heads emerge exceeds the rate at which407

they generalize. In sum, while specialized heads408

tend to generalize, they are continually replen-409

ished—resulting in a net growth in the total number410

of active heads. This dynamic has significant impli-411

cations for both model interpretability and pruning.412

Overall, the results suggest that while attention413

heads rapidly establish a stable general foundation,414

dynamic specialization occurs later to meet the de-415

mands of complex factual retrieval. The contrasting416

behaviors between general and specialized heads417

highlight the delicate balance between flexibility418

and stability in model architecture.419
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Figure 4: Accumulated Attention Head Switches Across
Training Stages. Heatmaps showing the total number
of transitions between the four types of heads and the
deactivated state at key training snapshots (S1, S10, S20,
S40, and Main).

4.4 FFNs over Time 420

Analogous to our attention head classification, we 421

assign FFNs to four roles (general, entity, relation- 422

answer, and answer-specific), though with a higher 423

activation threshold (θ = 0.90) as suggested in 424

(Ferrando et al., 2022). Unlike the 1024 attention 425

heads, the model uses only 32 FFNs (one per layer), 426

and all actively contribute to answer generation. 427

Steady Backbone: Consistency and Activation 428

Trends Figure 7 shows that early on, most FFNs 429

serve as general components, with only a few op- 430

erating in relation-answer or answer-specific roles. 431

Around stages S7–S8, when accuracy exceeds 80%, 432

many general FFNs shift to relation-answer roles. 433

Over time, the role distribution oscillates, as indi- 434
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Figure 5: Attention Head Role Transitions. Per-layer
heatmaps showing the frequency that a head from one
of the four roles general, entity, relation-answer, and
answer-specific switches to a different role.

cated by an IoU of about 0.5.435

Oscillatory Dynamics in Role Allocation Al-436

though the majority of FFNs remain general, we437

observe occasional role oscillations. For easier438

LOC relations, answer-specific FFNs exhibit mini-439

mal switching, whereas for the more challenging440

NAME relations, a small number of FFNs grad-441

ually transition into answer-specific roles before442

reverting to general roles in subsequent pretrain-443

ing steps. The total switch count and transition444

probability analyses (see Appendix F) suggest that445

general FFNs primarily shift among themselves446

and rarely become permanently specialized.447

FFNs as General Processing Components In448

contrast to the dynamic specialization observed449

in attention heads, FFNs exhibit notable stability,450

predominantly refining the representations gener-451

ated by the attention mechanisms with only minor452

role transitions. While this consistent performance453

supports the view of FFNs as a robust backbone454

for maintaining factual accuracy, it is important455

to consider that such generality might partly stem456

from their large size. Essentially, when analyzing a457

sufficiently large component of any network mod-458

ule, the observed generality could be an artifact of459

scale.460

Figure 6: Markov Chain Transition Probability
Heatmap. Heatmap showing the transition probabili-
ties between different attention head roles across model
snapshots. Each cell represents the probability of a head
transitioning from a source role (rows) in snapshot i to
a target role (columns) in snapshot i+ 1.

5 Related Work 461

This section reviews prior work on mechanistic in- 462

terpretability, model behavior evolution, and how 463

transformers store and retrieve factual knowledge. 464

While past research has deepened our understand- 465

ing of fully trained models, less focus has been 466

given to how these mechanisms evolve during train- 467

ing—a gap this work addresses. 468

5.1 Mechanistic Interpretability 469

Mechanistic Interpretability aims to reverse- 470

engineer neural networks to uncover circuits driv- 471

ing model behavior. Early work (Elhage et al., 472

2021; Olah et al., 2020) focused on vision models 473

and has since extended to transformer language 474

models (Meng et al., 2022; Wang et al., 2023; 475

Hanna et al., 2023; Varma et al., 2023; Merullo 476

et al., 2024; Lieberum et al., 2023; Tigges et al., 477

2023; Mondorf et al., 2024; Tigges et al., 2024). 478

Research has characterized attention heads (Olsson 479

et al., 2022; Chen et al., 2024; Singh et al., 2024; 480

Gould et al., 2024; McDougall et al., 2023; Chugh- 481

tai et al., 2024; Elhelo and Geva, 2024; Ortu et al., 482

2024) and FFNs (Geva et al., 2021; Meng et al., 483

2022; Bricken et al., 2023; Neo et al., 2024; Tian 484

et al., 2024). 485

5.2 Interpretability Over Time 486

Behavioral studies have tracked the emergence of 487

linguistic and reasoning capabilities during pre- 488
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Figure 7: Aggregated FFN Count and IoU Across Olmo-7B Snapshots Left: Counts for general, entity, relation-
answer, and answer-specific categories over snapshots. Right: IoU values comparing each snapshot to main.

training (Rogers et al., 2020; Liu et al., 2021; Chi-489

ang et al., 2020; Müller-Eberstein et al., 2023; Xia490

et al., 2023; Chang et al., 2023; Hu et al., 2023;491

Biderman et al., 2023a). Yet, they offer limited492

insight into internal circuit evolution. Recent work493

on smaller models shows that internal circuits can494

change abruptly even when overall behavior is sta-495

ble (Nanda et al., 2023; Olsson et al., 2022; Chen496

et al., 2024) and mechanistic studies have begun497

tracking circuit evolution (Tigges et al., 2024).498

5.3 Mechanisms of Knowledge Storage in499

Transformers500

Studies have shown that transformers store factual501

knowledge in (subject, relation, attribute) tuples.502

Causal interventions reveal that early-to-middle503

FFNs enrich subject representations, while atten-504

tion heads pass relation information and later layers505

extract attributes (Meng et al., 2022; Geva et al.,506

2023). Complementary work demonstrates that507

these representations can be decoded to recover508

facts (Hernandez et al., 2024; Chughtai et al., 2024).509

Other research highlights the balance between in-510

context and memorized recall (Yu and Ananiadou,511

2024; Variengien and Winsor, 2023) and the dis-512

tributed nature of knowledge retrieval (Haviv et al.,513

2023; Stoehr et al., 2024; Chuang et al., 2024).514

While previous work has focused on static mod-515

els, we track the evolution of these mechanisms516

during training, offering a dynamic view of factual517

knowledge development in LLMs.518

6 Discussion & Conclusion519

Our study reveals two complementary dynamics520

in Olmo-7B. Attention heads evolve from stable,521

general-purpose units into specialized components522

for complex relational tasks—general heads remain523

stable, while answer-specific heads exhibit high524

turnover and irreversible shifts. In contrast, FFNs525

appear to remain relatively stable, seemingly oper- 526

ating as general processors that refine the represen- 527

tations generated by attention mechanisms. While 528

our observations hint at a complementary dynamic 529

where attention heads adapt to capture task-specific 530

nuances and FFNs offer a consistent foundation for 531

refinement these results should be interpreted with 532

caution. 533

In summary, our key findings are: 534

1. Task Complexity Influences Training Dy- 535

namics: Location-based relations are ac- 536

quired more rapidly and stably than name- 537

based relations, which require more special- 538

ized components. 539

2. Hierarchical Learning Process: Early train- 540

ing is dominated by stable, general attention 541

heads that lay the groundwork for subsequent 542

specialization. 543

3. Adaptive vs. Stable Components: Our anal- 544

ysis indicates that certain attention heads may 545

be repurposed dynamically particularly those 546

associated with answer-specific roles while 547

FFNs tend to exhibit a more stable behav- 548

ior. These observations hint at a possible 549

complementary dynamic between adaptable 550

attention mechanisms and stable processing 551

components. 552

4. Irreversible Specialization: In later stages, 553

the model stabilizes into a configuration 554

where general heads prevail, and deactivated 555

heads rarely reactivate. 556

These insights advance our understanding of MI 557

by showing that dynamic specialization in atten- 558

tion heads supported by consistent FFN refinement 559

underpins effective factual knowledge retrieval. Fu- 560

ture work may explore neuron-level dynamics, as- 561

sess redundancy among head roles, and examine 562

scalability in larger models. 563
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7 Limitations564

Despite our comprehensive analysis, several limita-565

tions remain.566

• Computational Constraints: Due to re-567

source limitations, we could not extend our568

analysis to the neuron level, potentially miss-569

ing finer-grained switching behaviors. Addi-570

tionally, our role classification relies on fixed571

activation thresholds, which may introduce572

bias.573

• Model Checkpoints & Variants: We an-574

alyzed a subset of training snapshots, leav-575

ing gaps in tracking role transitions. Further576

newer versions of the model were released577

during this study, but incorporating them was578

infeasible. Comparing with related models579

like Pythia (Biderman et al., 2023b) could580

provide additional insights.581

• Dataset Scope & Generalizability: Our582

dataset focuses on factual recall in English,583

covering only location-based and name-based584

relations. Expanding to other domains, multi-585

lingual settings, and ambiguous queries would586

improve generalizability.587

• Interpretability Framework: While IFRs ef-588

ficiently trace knowledge circuits, they may589

overlook subtle interactions. Future work590

should compare IFR-based findings with al-591

ternative methods like activation patching and592

causal tracing.593

• Model Adaptability & Downstream Impli-594

cations: While attention heads frequently595

transition roles, FFNs remain stable, but their596

long-term impact on fine-tuning, pruning, and597

continual learning is unclear. Investigating598

their adaptability could enhance optimization599

strategies.600

Future work should address these limitations601

by incorporating more diverse datasets, additional602

model variants, and alternative interpretability tech-603

niques to deepen our understanding of knowledge604

formation in LLMs.605
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A Implementation Details931

All datasets are in English. We employed AI assis-932

tants to improve the visual appeal and readability933

of both our data visualizations and certain sections934

of the text. Our setup involved an NVIDIA RTX935

A6000 alongside eight NVIDIA HGX A100-80x4-936

mig GPUs, which were used for inferring OLMo937

and extracting the circuits detailed in this work. Re-938

producing our full analysis and experiments takes939

about 24 hours for OLMo-7B using these eight940

GPUs.941

B Dataset Construction Pipeline942

1. Prompt Template Design and Fact Collec-943

tion: For each of the 10 relations, we com-944

piled 10 prompt templates. These prompts945

were paired with factual examples to serve as946

inputs for model evaluation.947

2. Template Evaluation and Selection: We948

tested all prompt templates with various949

factual inputs and determined the best-950

performing one for each relation. The evalua-951

tion was based on:952

• The average probability of the facts953

where the first token is correct.954

• The reliability score of the second to-955

ken, which is calculated as the ratio of956

valid tokens for the second token (tokens957

with a probability less than 10%) divided958

by the total amount of facts.959

Prompts were ranked based on a combined960

score derived from the average probability of961

the first token and the reliability of the second962

token. This scoring ensured that the prompts963

produced semantically accurate outputs, not964

merely syntactic completions.965

3. Fact Reliability Validation: Using the best-966

performing template for each relation, reliable967

facts were identified by ensuring that:968

• The top-1 token is correct with a proba-969

bility above 75%.970

• The second token has a probability be-971

low 10%.972

This approach reduced reliance on syntactic973

biases and confirmed the semantic validity of974

the model’s predictions.975

4. Final Dataset Generation: For each relation, 976

the dataset was finalized by pairing the best- 977

performing prompt template with the set of 978

validated, reliable facts. 979

The resulting dataset includes 160 facts over 980

10 relations, each with a single best-performing 981

prompt template and a curated collection of reliable 982

facts validated for high accuracy and consistency. 983

Prompts and Facts were validated using the main 984

model to establish a reliable baseline for tracking 985

knowledge evolution. 986

To ensure the robustness of our dataset, we prior- 987

itized semantically meaningful continuations over 988

syntactic ones by evaluating both the first and sec- 989

ond token probabilities. A strict scoring framework 990

ensured that the top-1 token accurately reflected the 991

correct answer while minimizing interference from 992

alternative tokens. By combining insights from 993

prior datasets with meticulous manual curation, we 994

created a high-quality resource for probing factual 995

knowledge. 996
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C Accuracy Plots per Relation997

To complement the aggregated accuracy results998

in Section 3.3, we present relation-level accuracy999

trends for Top-1 and Top-10 metrics across differ-1000

ent model snapshots. These plots illustrate that1001

NAME-based relations require significantly more1002

training to achieve high accuracy compared to1003

LOC relations (Figures 8 and 9). Among NAME1004

relations, MOVIE_DIRECTED is the most chal-1005

lenging, requiring approximately S10 to reach1006

high Top-10 accuracy, while COMPANY_CEO1007

and BOOKS_WRITTEN also exhibit slower con-1008

vergence. In contrast, LOC relations such as1009

PLAYS_SPORT and CITY_IN_COUNTRY are1010

learned much faster.1011

For Top-1 accuracy, OFFICIAL_LANGUAGE1012

is the first relation to reach 100%, achieving this1013

milestone at S4, whereas in the Top-10 metric, it1014

already attains 100% as early as S1. This sug-1015

gests that while correct answers are recognized1016

among the top candidates from the beginning, rank-1017

ing them correctly requires additional training.1018
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Figure 8: Top-1 accuracy across different revisions of the Olmo model. Snapshots (SX -Y B) represent training
checkpoints taken at 5000-step intervals, where Y indicates the number of tokens processed in billions.
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D Relation-Level Component Counts and1019

IoU Values1020
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Figure 10: Relation-level head counts and IoU values.
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Figure 10: (continued) Relation-level head counts and IoU values.
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Figure 11: Relation-level FFN counts and IoU values.
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Figure 11: (continued) Relation-level FFN counts and IoU values.
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E Attention Head Switches1023

In the following two plots, we observe that, as seen1024

in the aggregated figure, layers 10–18 exhibit fewer1025

switches, while switches occur more frequently1026

in the early (0–10) and late (18–31) layers. How-1027

ever, when examining transitions between relation-1028

answer and answer-specific roles, a clear distinc-1029

tion emerges: NAME-based relations (Fig. 13)1030

show significantly more switches in layers 10–181031

compared to LOC-based relations (12). Addition-1032

ally, NAME-based tasks involve a greater number1033

of distinct attention heads during these transitions.1034

A switch refers to the reallocation of an attention1035

head from one role to another among the four pre-1036

defined roles.

Figure 12: Accumulated head switches for LOC relations, independent of switch type.

1037

Figure 13: Accumulated head switches for NAME relations, independent of switch type.
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F FFN Role Transition Count and1038

Transition Probability1039

The following three figures present the metrics1040

and methods used to assess component dynam-1041

ics. As shown in Figure 14, very few switches1042

occur overall, with most transitions happening be-1043

tween general FFNs and relation-answer FFNs. Ex-1044

amining the transition probabilities (see Fig. 15)1045

from our Markov chain analysis, we find that both1046

general and relation-answer FFNs tend to remain1047

in their current roles with high probability; when1048

switches do occur, they are predominantly between1049

these two roles. Additionally, a layer-wise anal-1050

ysis (see Fig. 16) reveals a stark contrast with at-1051

tention heads: starting from the middle layers on-1052

ward, FFN role switches are nearly absent, and1053

their roles become firmly established. Entity and1054

answer-specific FFNs exhibit minimal switching1055

across all layers.1056
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Figure 14: FFN Role Transitions. Heatmaps showing
the frequency of role switches among proper general,
entity, relation-answer, and answer-specific FFNs across
layers.
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Figure 16: Layer-wise analysis of FFN role switching
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