
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FLASHDP: MEMORY-EFFICIENT AND HIGH-
THROUGHPUT DP-SGD TRAINING FOR LARGE LAN-
GUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

As large language models (LLMs) increasingly underpin technological advance-
ments, the privacy of their training data emerges as a critical concern. Differential
Privacy (DP) serves as a rigorous mechanism to protect this data, yet its integration
via Differentially Private Stochastic Gradient Descent (DP-SGD) introduces sub-
stantial challenges, primarily due to the complexities of per-sample gradient clip-
ping. Current explicit methods, such as Opacus, necessitate extensive storage for
per-sample gradients, significantly inflating memory requirements. Conversely,
implicit methods like GhostClip reduce storage needs by recalculating gradients
multiple times, which leads to inefficiencies due to redundant computations. This
paper introduces FlashDP, an innovative cache-friendly method that consolidates
necessary operations into a single task, calculating gradients only once in a fused
manner. This approach not only diminishes memory movement by up to 50% but
also cuts down redundant computations by 20%, compared to previous methods.
Consequently, FlashDP does not increase memory demands and achieves a 90%
throughput compared to the Non-DP method on a four-A100 system during the
pre-training of the Llama-13B model, while maintaining parity with standard DP-
SGD in terms of accuracy. These advancements establish FlashDP as a pivotal
development for efficient and privacy-preserving training of LLMs.

1 INTRODUCTION

The transformer architecture (Vaswani et al., 2017) has revolutionized fields like natural language
processing (Gao et al., 2024; Xie et al., 2023), embodied AI (Song et al., 2023; Duan et al., 2022;
Xu et al., 2024), and AI-generated content (AIGC) (Cao et al., 2023; Wu et al., 2023), with Large
Language Models (LLMs) demonstrating exceptional abilities in text generation, complex query re-
sponses, and various language tasks due to training on massive datasets. These models, exemplified
by ChatGPT, are applied across diverse areas, including healthcare, where they enhance diagnosis
and drug discovery by analyzing medical data (Toma et al., 2023; Ali et al., 2023; Sheikhalishahi
et al., 2019; Sallam, 2023; Biswas, 2023). However, the extensive capabilities of LLMs raise signif-
icant privacy concerns, particularly as they can inadvertently expose or generate sensitive informa-
tion, owing to their potential to memorize data from large training sets (Pang et al., 2024; Nasr et al.,
2023; Carlini et al., 2023; Ippolito et al., 2022; McCoy et al., 2023; Tirumala et al., 2022; Zhang
et al., 2023; Ashkboos et al., 2023).

Differential Privacy (DP) ensures privacy by adding noise during data processing, such that any sin-
gle data point’s influence on outcomes is minimal (Dwork, 2006). As the most commonly adopted
methods for ensuring DP in deep learning models, Differentially Private Stochastic Gradient Descent
(DP-SGD) based methods (Abadi et al., 2016) adapt traditional stochastic gradient descent by clip-
ping gradients per sample and adding noise. Although DP-SGD’s application in LLMs is increasing,
recent research (Li et al., 2022; Bu et al., 2023; Anil et al., 2022; Hoory et al., 2021) primarily tar-
gets the fine-tuning phase, providing privacy only for fine-tuned data. While some studies (Lee &
Kifer, 2021; Li et al., 2022; Bu et al., 2023) have applied DP-SGD to pre-training, they typically use
shorter sequence lengths, not maximizing the benefits of longer sequences used in modern LLMs.
This limitation arises from the high computational and memory demands of DP-SGD, especially
with long sequences typical in LLM pre-training.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Comparison of different training methods. (a)
Standard DP-SGD: Stores per-sample gradients G (red ex-
plicit cache), increasing memory usage (blue buffer). (b)
FlashDP: Optimizes gradient processing by consolidating
computations into a single pass, reducing redundancy and
memory use.

Integrating DP into LLM training
via DP-SGD/Adam poses significant
challenges, particularly due to per-
sample gradient clipping. This cru-
cial privacy technique involves ad-
justing each data sample’s gradients
to limit their influence on model up-
dates. While critical for maintain-
ing strict privacy standards, this ap-
proach requires computing and stor-
ing individual gradients, significantly
raising computational and memory
demands. Managing these gradients
is especially taxing in LLMs, which
are known for their large parameter
spaces. Each gradient must be care-
fully clipped and aggregated before
updating model parameters, straining
computational resources, and pro-
longing training times. These scala-
bility issues are particularly acute in
settings with limited hardware, creating significant barriers to efficiently training privacy-aware
LLMs (Li et al., 2022; Bu et al., 2023).

Current research on DP-SGD for training LLMs can be categorized into two classes: explicit meth-
ods like Opacus (Yousefpour et al., 2021) stand out by directly storing per-sample gradients. This
approach, while straightforward, significantly increases the memory footprint (Appendix Table 4),
which becomes prohibitive for state-of-the-art LLMs characterized by billions of parameters (Tou-
vron et al., 2023; Achiam et al., 2023). Such a substantial increase in memory requirements hampers
scalability and renders these methods impractical for deployment in large-scale model training envi-
ronments. The direct storage of gradients, essential for ensuring the privacy guarantees of DP, thus
poses a substantial barrier to the efficient implementation of DP in LLMs.

Conversely, implicit methods, exemplified by innovations such as GhostClip (Li et al., 2021), ad-
dress the memory challenge by circumventing the need for persistent storage of per-sample gra-
dients. These methods segment the DP-SGD process into multiple discrete computational tasks,
ostensibly to mitigate memory demands. However, this strategy necessitates the frequent recalcu-
lation of per-sample gradients, which introduces a high degree of computational redundancy (Table
4). This redundancy not only undermines training efficiency but also extends the duration of the
training process significantly. For LLMs, which require substantial computational resources and
extended training times, the inefficiencies introduced by such redundant computations become a
critical bottleneck. These implicit methods, while innovative in reducing memory usage, thus strug-
gle to deliver a practical solution for the privacy-preserving training of LLMs at scale.

To effectively tackle the challenges presented by existing methods of integrating DP into the training
of LLMs, we introduce FlashDP, a novel, cache-friendly implicit algorithm designed to streamline
the DP-SGD process (Figure 1 (a)). FlashDP uniquely implements a unified computational strategy
that performs the gradient operations required for DP-SGD in a single pass (Figure 1 (b)). This
innovative approach not only eliminates the need for multiple recalculations of per-sample gradi-
ents but also consolidates the entire process into one cohesive computational task. To be specific,
FlashDP’s architecture, which consolidates the entire DP-SGD process into a single GPU kernel,
eliminates redundant computations and optimizes data flow within the GPU. This integration re-
sults in a streamlined workflow that efficiently manages memory and processing resources. Also,
FlashDP reorganizes the GPU operations to maximize data throughput and minimize latency, ef-
fectively enhancing the overall efficiency of the training process. These architectural improvements
significantly reduce the volume of memory transfers and computational redundancies, thereby opti-
mizing both the speed and resource utilization during the training of LLMs with DP.

By re-designing the gradient computation workflow, FlashDP dramatically reduces the volume of
memory transfers by 50% and decreases redundant computational tasks by 20% compared to pre-
vious implicit methods. This optimization is achieved through an advanced caching mechanism

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

that efficiently manages gradient data and computation within GPU memory, minimizing the data
movement across the system. As a result, FlashDP significantly alleviates the memory overhead
traditionally associated with DP-SGD, enhancing the model’s scalability and training speed.

The practical impact of these improvements is substantial. On a computational platform equipped
with four NVIDIA A100 GPUs, FlashDP achieves a remarkable 90% throughput compared to the
non-DP method during the pre-training phase of the Llama-13B model, a state-of-the-art LLM
known for its extensive data and computation demands. Crucially, this enhanced performance is
attained without any degradation in the accuracy or dilution of the privacy guarantees that are fun-
damental to DP-SGD. FlashDP thus not only meets but exceeds the operational requirements for
effective and efficient privacy-preserving training of LLMs.

Our contributions can be summarized as follows:
• Enhanced Throughput for Long Sequence LLM training with DP: We propose

FlashDP, which effectively resolves the issue of low throughput in DP-SGD/Adam dur-
ing the training of LLMs with long sequence lengths. By optimizing the computational
workflow and integrating more efficient handling of per-sample gradients, FlashDP sig-
nificantly enhances the processing speed without compromising the model’s accuracy or
privacy integrity.

• Innovative GPU I/O Optimization: Our study pioneers the exploration of DP-SGD from
the perspective of GPU input/output operations. FlashDP’s architecture, which consoli-
dates the entire DP-SGD process into a single GPU kernel, eliminates redundant compu-
tations and optimizes data flow within the GPU. This approach not only reduces the com-
putational load but also minimizes the number of GPU memory accesses, setting a new
standard for efficiency in DP implementations.

• Experimental Validation of Efficiency and Scalability: In practical LLM models involv-
ing Llama-13B, FlashDP matches the speed and memory usage of non-DP training meth-
ods and achieves a significant 90% throughput compared with Non-DP methods. This
performance is achieved on a computational platform equipped with four NVIDIA A100
GPUs. Importantly, it accomplishes this without any degradation in the precision or the
privacy guarantees typically observed in standard DP-SGD implementations. This capa-
bility demonstrates FlashDP’s effectiveness in scaling DP applications to larger and more
complex LLMs without the usual trade-offs.

2 RELATED WORK

Improving Time and Memory Complexities of DP-SGD. The transition from standard stochas-
tic gradient descent to DP-SGD introduces substantial modifications in memory and computational
demands. In conventional settings, parameter updates are efficiently computed by aggregating gradi-
ents across all samples within a batch. This approach is both memory-efficient and computationally
straightforward. In contrast, DP-SGD mandates that each sample’s gradients be preserved, clipped,
and subsequently aggregated to uphold privacy guarantees. Recent innovations in DP-SGD have
primarily concentrated on ameliorating its computational and memory inefficiencies. TF-Privacy
vectorizes the loss to calculate per-sample gradients through backpropagation, which is efficient in
terms of memory but slow in execution Abadi et al. (2015). Opacus Yousefpour et al. (2021) and
Rochette et al. (2019) enhance the training efficiency by employing the outer product method Good-
fellow (2015), albeit at the cost of increased memory usage needed to store per-sample gradients.
This memory overhead is mitigated in FastGradClip Lee & Kifer (2020) by distributing the space
complexity across two stages of backpropagation, effectively doubling the time complexity. Addi-
tionally, ghost clipping techniques Goodfellow (2015), Li et al. (2021), Bu et al. (2022) allow for
clipping per-sample gradients without full instantiation, optimizing both time and space, particularly
when feature dimensions are constrained. Furthermore, Bu et al. (2023) introduces a ’book-keeping’
(BK) method that achieves high throughput and memory efficiency while falling short in handling
the long sequence lengths typical in LLM training.

While these methodologies have made significant strides in mitigating the extensive computational
and memory demands typically associated with managing per-sample gradients in DP-SGD, they
have not addressed the optimization of DP training from the perspective of GPU architecture and
memory access. Additionally, the approaches detailed thus far do not cater effectively to the training
of today’s long-sequence LLMs. FlashDP aims to enhance the efficiency and feasibility of training

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

LLMs with long sequences under the constraints of differential privacy, ensuring both high perfor-
mance and adherence to privacy standards.

DP for Large Language Models. The field of privacy-preserving LLMs is characterized by the use
or exclusion of DP and its extensions. Kerrigan et al. (2020) demonstrated that public pretraining
could facilitate downstream DP fine-tuning, although they did not explore fine-tuning large pre-
trained models using DP-SGD. Qu et al. (2021) explored the fine-tuning of BERT for language un-
derstanding tasks under local DP. Bommasani et al. (2021) suggested the potential for cost-effective
private learning through fine-tuning large pre-trained language models. Anil et al. (2021) and Dupuy
et al. (2022) extended these studies to BERT, pretraining and fine-tuning under global DP, respec-
tively, with Anil et al. (2021) addressing datasets comprising hundreds of millions of examples, and
Dupuy et al. (2022) reporting on datasets of utterances with relatively high ✏ values. Our research
distinguishes itself by focusing on pre-training and fine-tuning large language models with high
throughput and low memory usage.

3 UNDERSTANDING THE LIMITATIONS OF PREVIOUS METHODS

Figure 2: Comparison of different training methods. (a) Non-DP: Basic training without DP. (b)
Explicit Method (e.g., Opacus, FastClip): Stores per-sample gradients G (red explicit cache), in-
creasing memory usage. (c) Implicit Method (e.g., GhostClip, BK): Reduces memory by recalculat-
ing gradients in fused manners (blue dotted box) but implicitly calculating the per-sample gradient
twice, causing computational redundancy. (d) FlashDP: Optimizes gradient processing by consoli-
dating computations into a single pass, reducing redundancy and memory use.

In this section, we introduce the previous non-DP, explicit, and implicate methods of DP-SGD from
the GPU I/O perspective to see their weakness, which motivates our framework. Due to the space
limit, please refer to Appendix A for the background on DP, Transformers, GPU architecture, and
CUDA programming. As discussed in Section A.2, the linear operation is crucial in the architecture
of LLMs, particularly within Multi-Head Attention (MHA) and Feedforward Network (FFN) mod-
ules. Given its significance, we utilize the linear operation as an exemplar to elucidate the training
workflow on GPUs, as shown in Figure 2. See Appendix B for details.

In the standard non-private training workflow, the forward pass involves a matrix multiplication
Y = XWT between the activation tensor X 2 RB⇥T⇥P and the weight matrix W 2 RD⇥P , result-
ing in the output Y 2 RB⇥T⇥D, where B, T , P , and D denote the batch size, sequence length, input
feature dimension, and output feature dimension, respectively. The backward pass calculates the out-
put gradient rY 2 RB⇥T⇥D and the weight gradient rW 2 RD⇥P via rW =

P
B

P
T (rY )TX .

Figure 2 (a) illustrates this process, showing that the activation tensor X and weights W are stored
in HBM for efficient access during computations, while intermediate operations utilize SRAM to
enhance memory access time and throughput.

The explicit DP-SGD workflow, as depicted in Figure 2 (b), categorizes the process into four stages
to ensure privacy adherence by explicitly managing per-sample gradients. Stage 1 involves comput-
ing per-sample gradients G =

P
T rT

Y X using batched GEMM operations on SRAM to minimize
latency, with subsequent storage of the gradients back to HBM. Stage 2 requires reloading these
gradients to compute their norm kGk =

pP
D

P
P G2, then storing the results back in HBM.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Stage 3 includes loading the gradients and their norms for clipping operations, ensuring that no gra-
dient norm exceeds the predefined threshold C, with the clipped gradients G0 written back to HBM.
Stage 4 focuses on adding Gaussian noise to the clipped gradients in SRAM for privacy preser-
vation, followed by their aggregation for model updates, and storing the final noisy gradient rW

back in HBM. This explicit handling of per-sample gradients not only increases memory usage but
also complicates processing due to frequent memory swaps and disrupts efficient GPU utilization by
breaking down kernel fusion strategies, becoming notably impractical for LLMs with their extensive
parameter and gradient sizes, severely impacting training efficiency.

The implicit DP-SGD workflow, illustrated in Figure 2 (c), employs a method such as GhostClip
to recalculate gradients in a fused manner, thus circumventing the need for explicit storage of per-
sample gradients. Stage 1 consolidates the first three stages of the explicit method into a single fused
computational step, where the activation tensor X and output gradient tensor rY are loaded into
SRAM. Per-sample gradient tensor G recalculations, norm calculations, and clipping are integrated
into one operation, minimizing latency and avoiding repeated data transfers to HBM. Stage 2 mirrors
the explicit method’s final stage, where the recalculated and clipped gradients G0 undergo Gaussian
noise addition in SRAM, followed by aggregation and storage in HBM for model updates. This
approach reduces memory usage but increases computational load due to the redundancy of multiple
gradient recalculations, which can significantly extend training times, particularly for LLMs with
extensive sequence lengths, rendering the method less practical due to the increased time complexity
proportional to T .

To address the previous limitations, the subsequent section will introduce FlashDP, a novel strategy
designed to address these inefficiencies by rethinking the execution pipeline of DP-SGD. Without
delving into specifics here, FlashDP’s architecture will streamline the integration of per-sample gra-
dient computation and clipping, potentially reducing the operational bottlenecks observed in existing
methods.

4 FLASHDP ALGORITHM DESIGN

Figure 3: Illustration of FlashDP. It depicts the core algorithm design of FlashDP. Its features are
integrated with on-chip per-sample gradient norm calculations. The workflow incorporates block-
wise all-reduce and synchronization to facilitate efficient norm aggregation. SRAM (orange) and
HBM (green) are optimally utilized to manage memory efficiently, addressing the kernel fusion
challenges and reducing computational redundancy inherent in traditional DP-SGD implementa-
tions.

4.1 ALGORITHMIC ENHANCEMENTS IN FLASHDP
FlashDP introduces a suite of algorithmic enhancements designed to reconcile the computational
demands and memory constraints associated with DP-SGD. At the heart of these enhancements is the
Block-wise All-Reduce algorithm, which integrates several critical operations into a unified kernel
execution, thereby optimizing on-chip memory utilization and enhancing computational throughput.

Efficient Kernel Fusion through Block-wise All-Reduce. Central to FlashDP’s strategy is our
proposed Hierarchical Reduction Architecture (HRA), which encompasses more than just reduction

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

operations. HRA is a structured approach that manages the computation and synchronization of
data across various stages, beginning with intra-block reduction of gradient norms within individual
GPU blocks. This phase employs an HRA-based reduction strategy executed in shared memory,
culminating in a single norm scaler per block. Such a design significantly reduces the data footprint
necessary for subsequent inter-block communications, optimizing the efficiency of the all-reduce
operation across the GPU grid.

Following the compact intra-block reduction, FlashDP coordinates a global all-reduce operation
across blocks, which computes a global gradient norm crucial for consistent gradient clipping across
the entire mini-batch. Efficiently handled in HBM thanks to the minimized data size from earlier
reductions, this step avoids the common memory bottlenecks typically associated with large-scale
data operations in HBM, thus maintaining high computational throughput.
Algorithm 1 Algorithm: FlashDP with Block-wise All-Reduce on GPUs

Require: Input activation tensor X 2 RB⇥T⇥P and output gradient tensor rY 2 RB⇥T⇥D in
GPU HBM

Require: Clipping threshold C, noise scale �
Require: Block dimensions b, t, d, and p for batch size, sequence length, output features, and input

features, respectively.
1: Split block for output gradient tensor BrY 2 Rb⇥t⇥d, input activation tensor BX 2 Rb⇥t⇥p

based on GPU on-chip SRAM size M .
2: for each training backward iteration do
3: for each block input index ip = 1, 2, . . . , P

p in parallel do
4: for each block output feature id = 1, 2, . . . , D

d in parallel do
5: for each block batch size ib = 1, 2, . . . , B

b in parallel do
6: Load output gradient block BrY and input activation block BX from HBM to

SRAM.
7: Compute per-sample gradients block BG =

P
T BT

rY
BX on-chip SRAM.

8: Intra-block Reduce: Compute per-sample gradients norm square block kBGk2 =P
d

P
p BG

2 on-chip SRAM.
9: Inter-block Reduce: Offload all per-sample gradients norm square blocks kBGk2

from SRAM to HBM, and perform block-wise all-reduce.
10: Block-wise synchronization: Wait until all blocks finish the all-reduce operation

to get all-reduced per-sample gradients norm square blocks kBGk2
0.

11: Upload kBGk2
0 from HBM to SRAM.

12: Compute clipped per-sample gradients block B0
G = BG/max

✓
1,

p
kBGk20

C

◆

on-chip SRAM.
13: Add noise to clipped per-sample gradients block and aggregate to compute pa-

rameter gradient block BrW =
P

b B
0
G +N (0,�2C2I) on-chip SRAM.

14: Offload parameter gradient block BrW from SRAM to HBM.
15: end for
16: end for
17: end for
18: end for
19: Return entire parameter gradient rW .

The strategic implementation of HRA not only facilitates these reductions but also orchestrates syn-
chronized updates and data consistency across the GPU architecture. By managing data flow from
the point of loading through to final computation and storage, HRA ensures that the most intensive
computations are confined to the faster, on-chip memory. This methodical approach leverages the
GPU’s capabilities to facilitate high-performance differentially private training, minimizing memory
and bandwidth overhead.

The practical implementation and operational dynamics of the FlashDP approach are thoroughly
illustrated in Algorithm 1 and visually depicted in Figure 3. FlashDP innovatively reduces the four
distinct stages typically involved in explicit DP-SGD into a single streamlined stage. This con-
solidation is achieved without adding any extra computational steps, thereby enhancing the overall
efficiency of the process. Here is a detailed breakdown of this single streamlined stage:

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Optimized Block Processing and Memory Management (Line 1-6). Initially, FlashDP partitions
the input activation tensor X and the output gradient tensor rY into blocks based on the SRAM
capacity. This strategic partitioning is crucial for managing the limited on-chip memory more effec-
tively and ensuring that data transfers between the HBM and SRAM are minimized.

Fused Computation of Gradients and Norms (Line 7-8). Within the GPU’s SRAM, FlashDP
simultaneously computes the per-sample gradients block and their norms square (intra-block re-
duce) for each block. This computation leverages the GPU’s powerful batched GEMM operations,
enabling it to handle large data sets efficiently.

Block-wise All-Reduce (Line 9-11). After computing the gradient norms, FlashDP performs a
Block-wise All-Reduce operation in parallel to aggregate these norms across all blocks (inter-block
reduce). This all-reduce operation is crucial for obtaining a global view of gradient norms square,
which is necessary for consistent gradient clipping across the entire batch. This step is executed
efficiently within the SRAM, reducing the latency and memory bandwidth requirements typically
associated with inter-GPU communications.

Gradient Clipping and Noise Addition in SRAM (Line 12-13). Following the gradient and norm
calculations, clipping is performed directly on the chip. Each gradient is scaled according to the
computed norms and a predefined clipping threshold C, ensuring compliance with DP standards.
Immediately after clipping, Gaussian noise based on the noise scale � and the clipping threshold is
added to each gradient block.

Efficient Parameter Aggregation (Line 14-19). The final step in the FlashDP algorithm involves
aggregating the noisy, clipped gradients across all blocks and batches directly within SRAM. This
aggregation is optimized to minimize memory accesses, ensuring that only the final gradient used
for the model update is transferred back to HBM.

4.2 ADAPTIVE KERNEL IMPLEMENTATION

The implementation of the FlashDP algorithm leverages the robust and versatile capabilities of the
PyTorch framework Paszke et al. (2019), which is renowned for its intuitive handling of automatic
differentiation and dynamic computational graphs. One of the critical features of our implemen-
tation involves customizing PyTorch’s autograd functionality to accommodate the specific needs
of differential privacy during the training of deep neural networks. To this end, operators that ne-
cessitate trainable parameters are intricately defined by wrapping them within PyTorch’s autograd
function.

However, implementing the Block-wise All-Reduce algorithm has presented unique challenges, pri-
marily due to the limitations of CUDA’s programming model in facilitating block-wise synchroniza-
tion. Block-wise synchronization is essential in our algorithm; without it, clip operations might be
executed prematurely, while the inter-block reduce operation is still incomplete, leading to numeri-
cal inaccuracies in the computation of per-sample gradients’ norm squares. There are two primary
methods to implement synchronization: 1. cooperative groups (CG) 1 and 2. adaptive kernel. We
opted for the second method because the grid synchronization required by CG necessitates launching
all blocks simultaneously, which is impractical for DP applications.

To address this limitation, FlashDP’s implementation employs an adaptive approach. Instead of
relying on a monolithic kernel to perform the entire Block-wise All-Reduce operation, the process is
split across different kernels, which are executed iteratively over the batch dimension. This iterative
approach allows for synchronization points between the execution of kernels, using the inherent
block synchronization that occurs at kernel launch and completion.

The execution flow in FlashDP is as follows: (1) Intra-block Reduction: Each block computes
the norms of its gradients and performs an HRA-based reduction within the shared memory. This
step employs a shuffle-reduce mechanism, optimizing intra-block operations by minimizing memory
footprint and synchronization overhead. This results in a single norm value per block. (2) Inter-
block Reduction: Each block transfers the outcome of its intra-block reduction to the HBM. This
transfer is facilitated through atomic operations for several reasons. Firstly, the result of the intra-
block reduction comprises only a single element, and each block elects only one thread to perform
the atomic operation on this element. This approach minimizes potential bottlenecks, as the differing
execution speeds across blocks prevent serious serialization issues. Secondly, atomic operations

1https://developer.nvidia.com/blog/cooperative-groups/

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

benefit from acceleration by the hardware instruction set, ensuring that these operations are executed
swiftly and efficiently. (3) Inter-kernel Synchronization: After the completion of the inter-block
reduction, FlashDP leverages the termination of the kernel as a natural synchronization point. At
this juncture, all blocks have finished their individual reductions. (4) Iterative Kernel Launch: For
each batch element, a new kernel is launched serially, maintaining synchronization across kernels.
This approach involves broadcasting operations where source operands are dimensionally disparate,
ensuring uniform data handling across computational units.

This implementation strategy, while divergent from the ideal single-kernel solution, allows FlashDP
to function effectively within the current constraints of CUDA. It underscores FlashDP’s adaptability
and represents a practical solution to the block synchronization challenge, ensuring accurate gradient
norm calculations essential for maintaining the model’s differential privacy. Our analysis on memory
and access in Appendix C shows the utility of this implementation.

5 EXPERIMENTS

Our experimental suite is methodically designed to assess the robustness and efficiency of FlashDP
across a range of training paradigms and hardware configurations. We explore FlashDP’s perfor-
mance in terms of memory efficiency and throughput under varying batch sizes, its adaptability to
Automatic Mixed Precision (AMP) training (Appendix Section E.2), its consistency across different
sequence lengths, and its scalability when employing Distributed Data Parallel (DDP) and Pipeline
Parallel (PP) techniques.

Table 1: Differential Batch-size Analysis. The table displays a multi-panel comparison of memory
usage and throughput for four differential privacy methods—NonDP, Opacus, GhostClip, BK, and
FlashDP—across different batch sizes B (1, 2, 4, and 8) when applied to GPT-2 models of varying
sizes (small, medium, and large). Instances of ‘-’ in the table indicate scenarios where the corre-
sponding method failed to execute due to memory constraints.

Model B Memory Usage (MB x1e4) Throughput (tokens/sec x1e4)
NonDP Opacus GhostClip BK FlashDP NonDP Opacus GhostClip BK FlashDP

GPT2-small 0.50 0.75(x1.50) 0.46(x0.92) 0.53(x1.06) 0.50(x1.00) 2.84 0.91(x0.32) 0.57(x0.20) 1.56(x0.54) 1.83(x0.64)
GPT2-medium 1 1.26 1.53(x1.21) 1.12(x0.89) 1.68(x1.33) 1.26(x1.00) 1.10 0.42(x0.38) 0.39(x0.35) 0.75(x0.68) 0.86(x0.78)

GPT2-large 2.48 3.99(x1.61) 2.17(x0.88) 2.73(x1.18) 2.48(x1.00) 0.58 0.25(x0.43) 0.27(x0.46) 0.40(x0.69) 0.51(x0.89)
GPT2-small 0.87 1.30(x1.49) 0.79(x0.91) 1.01(x1.16) 0.87(x1.00) 3.22 1.68(x0.52) 0.92(x0.29) 1.91(x0.59) 2.32(x0.72)

GPT2-medium 2 2.07 2.89(x1.39) 1.87(x0.90) 2.44(x1.18) 2.07(x1.00) 1.28 0.74(x0.58) 0.59(x0.46) 0.81(x0.63) 1.02(x0.80)
GPT2-large 3.91 4.79(x1.23) 3.53(x0.90) 4.81(x1.23) 3.91(x1.00) 0.68 0.38(x0.56) 0.38(x0.56) 0.45(x0.66) 0.59(x0.87)
GPT2-small 1.53 2.07(x1.35) 1.44(x0.94) 1.68(x1.09) 1.53(x1.00) 3.60 2.42(x0.67) 1.42(x0.39) 2.24(x0.62) 2.59(x0.72)

GPT2-medium 4 3.58 4.26(x1.19) 3.33(x0.93) 4.00(x1.12) 3.58(x1.00) 1.42 0.90(x0.63) 0.81(x0.57) 0.95(x0.67) 1.13(x0.80)
GPT2-large 6.60 - 6.15(x0.93) 6.60(x1.00) 6.60(x1.00) 0.76 - 0.50(x0.66) 0.53(x0.70) 0.64(x0.84)
GPT2-small 2.86 3.44(x1.20) 2.72(x0.95) 2.86(x1.00) 2.86(x1.00) 3.80 2.64(x0.69) 1.92(x0.51) 2.40(x0.63) 2.72(x0.72)

GPT2-medium 8 6.60 - 6.24(x0.95) 6.60(x1.00) 6.60(x1.00) 1.52 - 0.99(x0.65) 1.03(x0.68) 1.19(x0.78)
GPT2-large - - - - - - - - - -

5.1 EXPERIMENTAL SETUP

Our experiments utilize the Wikitext dataset Merity (2016) and are conducted on NVIDIA A100
(80GB) GPUs using the PyTorch framework Paszke et al. (2019). We assess the performance of
FlashDP across various configurations by comparing it with established explicit methods Opacus
Yousefpour et al. (2021), and implicit method GhostClip Li et al. (2021) and BK Bu et al. (2023),
under different training paradigms. The tested models include GPT-2 Radford et al. (2019) with a
sequence length of 1024 and the TinyLlama Zhang et al. (2024) and Llama Touvron et al. (2023)
models, both with a sequence length of 2048. Our evaluations mainly focus on memory usage (MB)
and throughput (tokens/sec) to determine the efficiency. We also show the loss of the validation
data to measure the utility of private pre-training. Unless specified otherwise, the settings for each
experiment use GPT-2 models with a sequence length of 1024, and Llama models with a sequence
length of 2048, employing the AdamW optimizer as the base. More experimental settings can be
found in Appendix D.

5.2 RESULTS OF BATCH SIZE & MICRO BATCH SIZE

Efficient batch processing is crucial in LLM training due to its high computational and memory
demands. By examining both batch and micro-batch sizes, we assess FlashDP’s ability to manage
memory more effectively and maintain high throughput. This also tests the practicality of gradient
accumulation (GA), which allows larger effective batch sizes by splitting them into smaller, manage-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

able micro-batches. The experiment results of different micro batch sizes can be seen in Appendix
E.1.

In Table 1, FlashDP was benchmarked against traditional DP-SGD methods like Opacus, GhostClip,
and BK, as well as a non-DP (NonDP) configuration, demonstrating superior memory efficiency and
throughput. FlashDP utilized approximately 38% less memory than Opacus and nearly matched the
NonDP configuration while processing the GPT-2 large model at a batch size of 1. It achieved
a throughput nearly double that of Opacus and only slightly lower than NonDP, showcasing its
effective balance between privacy preservation and computational efficiency. Opacus exhibited the
highest memory usage, which escalated with batch size, leading to failure at a batch size of 8.
GhostClip, while more memory-efficient than Opacus, suffered from reduced throughput at higher
batch sizes due to gradient re-computation. BK’s performance was intermediate, lacking distinct
advantages. Overall, FlashDP not only maintained lower memory usage and higher throughput than
the DP methods across all batch sizes but also approached the efficiency of NonDP configurations.

(a) Memory Usage (b) Throughput

Figure 4: Memory and Throughput Comparison for TinyLlama with Varied Sequence Lengths
Using Flash Attention. (a) Memory usage across sequence lengths of 1024, 2048, 4096, and 8192.
(b) Throughput measured in tokens per second across the same sequence lengths.
5.3 RESULTS OF SEQUENCE LENGTH

In the training of LLMs, the ability to process long sequences of data is crucial for enhancing the
model’s capability to understand and generate coherent, contextually rich text.

Memory Usage Analysis. As illustrated in Figure 4 (a), there is a clear trend of increasing mem-
ory usage with longer sequence lengths across all methods, which is expected due to the larger
computational requirements. However, FlashDP always maintains the same GPU memory usage as
NonDP, especially at the highest sequence length of 8192. This indicates that FlashDP’s method is
particularly effective at managing the increased memory demands, thus facilitating the scalability of
models trained with long sequences.

Throughput Performance. Figure 4 (b) highlights throughput in terms of tokens per second at
varying sequence lengths. FlashDP consistently maintains higher throughput compared to Opacus
and BK across all sequence lengths, with its performance closely approaching that of the NonDP
method. This efficiency in throughput underlines FlashDP’s capability to handle larger sequence
lengths without significant compromises in processing speed, a critical factor for training usable and
responsive LLMs.

The experimental data clearly demonstrates FlashDP’s superior memory management and through-
put efficiency across a range of sequence lengths. The ability of FlashDP to handle longer sequences
with minimal increase in memory usage and only slight reductions in throughput is particularly im-
pressive.

5.4 RESULTS OF DISTRIBUTED TRAINING

Distributed Data Parallel (DDP) Li et al. (2020) and Pipeline Parallel (PP) Kim et al. (2020) are two
advanced techniques crucial for scaling the training of LLMs efficiently across multiple GPUs or
nodes.

Distributed Data Parallel (DDP). Figure 8 in Appendix illustrates the performance of different
methods in a DDP setting across GPT-2 models of varying sizes. FlashDP showcases superior

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) Memory Usage (b) Throughput

Figure 5: Memory and Throughput for Llama Models Using Pipeline Parallel Training. (a)
Memory usage for Llama-3B, Llama-7B, and Llama-13B models. (b) Throughput in tokens per
second across these model sizes. A value of 0 indicates out of memory.

memory usage efficiency and higher throughput across all model sizes when compared to Opacus
and BK. Notably, even as the model size increases, FlashDP maintains a competitive edge close to
the NonDP benchmarks, highlighting its effective parameter distribution and gradient computation
across multiple GPUs. This is crucial in scenarios where training speed and model scalability are
priorities.

Pipeline Parallel (PP). In the PP scenario depicted in Figure 5, FlashDP was tested with Llama
models varying from 3 billion to 13 billion parameters. The results indicate that FlashDP not
only scales efficiently with increasing model size but also demonstrates significant throughput im-
provements compared to Opacus and BK. Particularly, FlashDP’s ability to handle the largest model
(Llama-13B) with minimal throughput degradation illustrates its robustness in managing extensive
computational loads, characteristic of PP environments.

5.5 RESULTS OF UTILITY

Table 2: FlashDP Pretrain Precision validation on GPT2-small with different privacy ✏.

Method Validation loss
✏ = 0.2 ✏ = 0.5 ✏ = 0.8

DP-SGD 4.8082 4.8063 4.8061
FlashDP 4.8082 4.8063 4.8061

In our study, FlashDP is meticulously optimized for DP-SGD, focusing on enhancing GPU I/O and
system-level efficiencies without altering the fundamental algorithmic components of DP-SGD. We
conducted experiments on utility with GPT-2 small to support this, whose results are shown in Table
2. From the table, we can easily see that FlashDP demonstrates an identical validation loss to that
of standard DP-SGD across all privacy levels.

6 CONCLUSION

In this paper, we introduce FlashDP, a novel approach for integrating differentially private SGD
(DP-SGD) into the training of large language models (LLMs) while enhancing memory efficiency
and computational throughput. By optimizing GPU input/output operations, FlashDP significantly
reduces the memory transaction overhead, allowing it to achieve near-non-private throughput levels
while maintaining strict privacy standards. Central to FlashDP’s strategy is the Block-wise All-
Reduce algorithm, which integrates several critical operations into a unified kernel execution. To
achieve this, we propose a Hierarchical Reduction Architecture (HRA), which encompasses more
than just reduction operations. Moreover, we employ an adaptive kernel approach to implement
HRA, which addresses the limitations of CUDA’s programming model in facilitating block syn-
chronization. Our experiments demonstrate that FlashDP reduces memory usage to levels compara-
ble with non-private methods and increases throughput, making the efficient training of substantial
models like the Llama 13B feasible on modern hardware. The minimal interference in the training
process and the maintenance of computational precision suggest that FlashDP could significantly
advance the adoption of DP in sectors where privacy is crucial, making secure and efficient machine
learning more accessible for a wider range of applications.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Watten-
berg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. URL http://tensorflow.org/. Software available from
tensorflow.org.

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Stephen R Ali, Thomas D Dobbs, Hayley A Hutchings, and Iain S Whitaker. Using chatgpt to write
patient clinic letters. The Lancet Digital Health, 5(4):e179–e181, 2023.

Rohan Anil, Badih Ghazi, Vineet Gupta, Ravi Kumar, and Pasin Manurangsi. Large-scale differen-
tially private bert. arXiv preprint arXiv:2108.01624, 2021.

Rohan Anil, Badih Ghazi, Vineet Gupta, Ravi Kumar, and Pasin Manurangsi. Large-scale differen-
tially private bert. In Findings of the Association for Computational Linguistics: EMNLP 2022,
pp. 6481–6491, 2022.

Saleh Ashkboos, Ilia Markov, Elias Frantar, Tingxuan Zhong, Xincheng Wang, Jie Ren, Torsten
Hoefler, and Dan Alistarh. Towards end-to-end 4-bit inference on generative large language mod-
els. arXiv preprint arXiv:2310.09259, 2023.

Som S Biswas. Role of chat gpt in public health. Annals of biomedical engineering, 51(5):868–869,
2023.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
nities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Zhiqi Bu, Jialin Mao, and Shiyun Xu. Scalable and efficient training of large convolutional neu-
ral networks with differential privacy. Advances in Neural Information Processing Systems, 35:
38305–38318, 2022.

Zhiqi Bu, Yu-Xiang Wang, Sheng Zha, and George Karypis. Differentially private optimization on
large model at small cost. In International Conference on Machine Learning, pp. 3192–3218.
PMLR, 2023.

Yihan Cao, Siyu Li, Yixin Liu, Zhiling Yan, Yutong Dai, Philip S Yu, and Lichao Sun. A com-
prehensive survey of ai-generated content (aigc): A history of generative ai from gan to chatgpt.
arXiv preprint arXiv:2303.04226, 2023.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and Chiyuan
Zhang. Quantifying memorization across neural language models. In International Conference
on Learning Representations, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Jiafei Duan, Samson Yu, Hui Li Tan, Hongyuan Zhu, and Cheston Tan. A survey of embodied
ai: From simulators to research tasks. IEEE Transactions on Emerging Topics in Computational
Intelligence, 6(2):230–244, 2022.

11

http://tensorflow.org/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Christophe Dupuy, Radhika Arava, Rahul Gupta, and Anna Rumshisky. An efficient dp-sgd mecha-
nism for large scale nlu models. In ICASSP 2022-2022 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 4118–4122. IEEE, 2022.

Cynthia Dwork. Differential privacy. In International colloquium on automata, languages, and
programming, pp. 1–12. Springer, 2006.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Theory of Cryptography: Third Theory of Cryptography Conference,
TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3, pp. 265–284. Springer, 2006.

Mingqi Gao, Xinyu Hu, Jie Ruan, Xiao Pu, and Xiaojun Wan. Llm-based nlg evaluation: Current
status and challenges. arXiv preprint arXiv:2402.01383, 2024.

Ian Goodfellow. Efficient per-example gradient computations. arXiv preprint arXiv:1510.01799,
2015.

Shlomo Hoory, Amir Feder, Avichai Tendler, Sofia Erell, Alon Peled-Cohen, Itay Laish, Hootan
Nakhost, Uri Stemmer, Ayelet Benjamini, Avinatan Hassidim, et al. Learning and evaluating a
differentially private pre-trained language model. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2021, pp. 1178–1189, 2021.

Daphne Ippolito, Florian Tramèr, Milad Nasr, Chiyuan Zhang, Matthew Jagielski, Katherine Lee,
Christopher A Choquette-Choo, and Nicholas Carlini. Preventing verbatim memorization in lan-
guage models gives a false sense of privacy. arXiv preprint arXiv:2210.17546, 2022.

Gavin Kerrigan, Dylan Slack, and Jens Tuyls. Differentially private language models benefit from
public pre-training. arXiv preprint arXiv:2009.05886, 2020.

Chiheon Kim, Heungsub Lee, Myungryong Jeong, Woonhyuk Baek, Boogeon Yoon, Ildoo Kim,
Sungbin Lim, and Sungwoong Kim. torchgpipe: On-the-fly pipeline parallelism for training giant
models. arXiv preprint arXiv:2004.09910, 2020.

Jaewoo Lee and Daniel Kifer. Scaling up differentially private deep learning with fast per-example
gradient clipping. arXiv preprint arXiv:2009.03106, 2020.

Jaewoo Lee and Daniel Kifer. Scaling up differentially private deep learning with fast per-example
gradient clipping. Proceedings on Privacy Enhancing Technologies, 2021.

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff
Smith, Brian Vaughan, Pritam Damania, et al. Pytorch distributed: Experiences on accelerating
data parallel training. arXiv preprint arXiv:2006.15704, 2020.

Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori Hashimoto. Large language models can be
strong differentially private learners. arXiv preprint arXiv:2110.05679, 2021.

Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori Hashimoto. Large language models can be
strong differentially private learners. In International Conference on Learning Representations,
2022.

Anton Lozhkov, Loubna Ben Allal, Leandro von Werra, and Thomas Wolf. Fineweb-edu, May 2024.
URL https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu.

R Thomas McCoy, Paul Smolensky, Tal Linzen, Jianfeng Gao, and Asli Celikyilmaz. How much
do language models copy from their training data? evaluating linguistic novelty in text generation
using raven. Transactions of the Association for Computational Linguistics, 11:652–670, 2023.

Stephen Merity. The wikitext long term dependency language modeling dataset. Salesforce Meta-
mind, 9, 2016.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision
training. arXiv preprint arXiv:1710.03740, 2017.

12

https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Milad Nasr, Nicholas Carlini, Jonathan Hayase, Matthew Jagielski, A Feder Cooper, Daphne Ip-
polito, Christopher A Choquette-Choo, Eric Wallace, Florian Tramèr, and Katherine Lee. Scalable
extraction of training data from (production) language models. arXiv preprint arXiv:2311.17035,
2023.

Qi Pang, Jinhao Zhu, Helen Möllering, Wenting Zheng, and Thomas Schneider. Bolt: Privacy-
preserving, accurate and efficient inference for transformers. In 2024 IEEE Symposium on Secu-
rity and Privacy (SP), pp. 130–130. IEEE Computer Society, 2024.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Chen Qu, Weize Kong, Liu Yang, Mingyang Zhang, Michael Bendersky, and Marc Najork. Privacy-
adaptive bert for natural language understanding. arXiv preprint arXiv:2104.07504, 190, 2021.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Gaspar Rochette, Andre Manoel, and Eric W Tramel. Efficient per-example gradient computations
in convolutional neural networks. arXiv preprint arXiv:1912.06015, 2019.

Malik Sallam. Chatgpt utility in healthcare education, research, and practice: systematic review on
the promising perspectives and valid concerns. In Healthcare, volume 11, pp. 887. MDPI, 2023.

Seyedmostafa Sheikhalishahi, Riccardo Miotto, Joel T Dudley, Alberto Lavelli, Fabio Rinaldi, Venet
Osmani, et al. Natural language processing of clinical notes on chronic diseases: systematic
review. JMIR medical informatics, 7(2):e12239, 2019.

Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun Chao, and Yu Su.
Llm-planner: Few-shot grounded planning for embodied agents with large language models. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2998–3009,
2023.

Kushal Tirumala, Aram Markosyan, Luke Zettlemoyer, and Armen Aghajanyan. Memorization
without overfitting: Analyzing the training dynamics of large language models. Advances in
Neural Information Processing Systems, 35:38274–38290, 2022.

Augustin Toma, Patrick R Lawler, Jimmy Ba, Rahul G Krishnan, Barry B Rubin, and Bo Wang.
Clinical camel: An open-source expert-level medical language model with dialogue-based knowl-
edge encoding. arXiv preprint arXiv:2305.12031, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Jiayang Wu, Wensheng Gan, Zefeng Chen, Shicheng Wan, and Hong Lin. Ai-generated content
(aigc): A survey. arXiv preprint arXiv:2304.06632, 2023.

Yaqi Xie, Chen Yu, Tongyao Zhu, Jinbin Bai, Ze Gong, and Harold Soh. Translating natural lan-
guage to planning goals with large-language models. arXiv preprint arXiv:2302.05128, 2023.

Zhiyuan Xu, Kun Wu, Junjie Wen, Jinming Li, Ning Liu, Zhengping Che, and Jian Tang. A survey
on robotics with foundation models: toward embodied ai. arXiv preprint arXiv:2402.02385, 2024.

Ashkan Yousefpour, Igor Shilov, Alexandre Sablayrolles, Davide Testuggine, Karthik Prasad, Mani
Malek, John Nguyen, Sayan Ghosh, Akash Bharadwaj, Jessica Zhao, et al. Opacus: User-friendly
differential privacy library in pytorch. arXiv preprint arXiv:2109.12298, 2021.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Chiyuan Zhang, Daphne Ippolito, Katherine Lee, Matthew Jagielski, Florian Tramèr, and Nicholas
Carlini. Counterfactual memorization in neural language models. Advances in Neural Information
Processing Systems, 36:39321–39362, 2023.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385, 2024.

14


	Introduction
	Related Work
	Understanding the Limitations of Previous Methods
	FlashDP Algorithm Design
	Algorithmic Enhancements in FlashDP
	Adaptive Kernel Implementation

	Experiments
	Experimental Setup
	Results of Batch Size & Micro Batch Size
	Results of Sequence Length
	Results of Distributed Training
	Results of Utility

	Conclusion
	Preliminaries
	Differential Privacy
	Transformers
	GPU Architecture and CUDA Programming

	Details of Training Workflow
	Non-private Training Workflow
	Explicit DP-SGD Workflow
	Implicit DP-SGD Workflow

	Analysis of HBM Memory Usage and Accesses in FlashDP
	Proofs of Theorems on HBM Memory Usage and Accesses

	Additional Experiments Settings
	More Experimental Results
	Results of Micro Batch Size
	Results of AMP Training Scalability

	Additional Tables and More Figures

