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Towards Multimodal Inductive Learning: Adaptively Embedding
MMKG via Prototypes

Anonymous Author(s)

Abstract
Multimodal Knowledge Graphs (MMKG) models integrate multi-
modal contexts to improve link prediction performance. All ex-
isting MMKG models follow the transductive setting with a fixed
predefined set, meaning that all the entities, relations, and multi-
modal information in the test graph are observed during training.
This hinders their generalization to real-world MMKG with un-
seen entities and relations. Intuitively, a MMKG model trained on
DBpedia cannot infer on Freebase. To address above limitations,
we make the first attempt towards inductive learning for MMKG
and propose a multimodal Inductive MMKG model (IndMKG)
that is universal and transferable to any MMKG. Distinct from
existing transductive methods, our model does not rely on spe-
cific trained embeddings; instead, IndMKG generates adaptive em-
beddings conditioned on any new MMKG via multimodal proto-
types. Specifically, we construct class-adaptive prototypes to ap-
propriately characterize the multimodal feature distribution of the
given graph and equip IndMKG with robust adaptability to mul-
timodal information across MMKGs. In addition, IndMKG learns
non-specific structural embeddings based on meta relations. Such
strategies tackle the challenge of notable multimodal feature dis-
crepancies in cross-graph induction and allow the pre-trained In-
dMKG model to effectively zero-shot generalize to any MMKG.
The strong performance in both inductive and transductive set-
tings, across more than 20+ different scenarios, confirms the ef-
fectiveness and robustness of IndMKG. Our code is released at
https://anonymous.4open.science/r/IndMKG.

Keywords
Inductive Learning, Multimodal Knowledge Graph, Link Prediction,
Knowledge Representation Learning and Embedding

1 INTRODUCTION
Multimodal Knowledge graph (MMKG)[17] extends the representa-
tional richness of traditional knowledge graphs by integrating and
utilizing the comprehensive multimodal attributes of given entities,
typically including text, pictures, topologies, and is crucial for accu-
rately revealing complex patterns of relations between potentially
related entities. At present, MMKG has been extensively researched
and applied in various fields, including intelligent search[37], per-
sonalized recommendation[29], bioinformatics[18], etc.

Link prediction[20, 23, 32] as a pivotal task in MMKG, aims to
infer missing triples by integrating multimodal contexts[13, 22] to
enhance the completeness of knowledge graphs, such as predict-
ing the head or tail entity, namely 〈?, r, t〉 or 〈h, r, ?〉. However,
existing MMKG models follow the transductive setting with a fixed
predefined set, meaning that all the entities, relations, and multi-
modal information in the test graph are observed during training, as
shown in Fig. 1a (I) and (II). In this setting, the entities, relations, and
multimodal information in both the training and inference sets are

Seen entity 
and relation

(I) Training graph

(IV) Inductive Inference
 (Graph N)

Transfer Transfer

…

Proposed Model
Existing Model

Unseen entity 
and relation

Predict triple

cre
ate

belong to

co
op

er
at

e

create

HERO

MARVEL

DC FIRM

WILSON
BATMAN

one nation

cooperate

publish

graduate

(III) Inductive Inference
 (Graph 1)

OXFORD CAMB.

PRINCIPIA

housed 

pa
in

te
d located died in

(II)Transductive Inference

FRANCE

MONA  LISA

TOUR EIFFE

DA VINCI

housed 

pa
in

te
d located 

France

TOUR EIFFE

DA VINCI

MONA  LISA

NEWTON

(a) Examples of transductive and inductive inference

MKG-Y MKG-W WN18RR++ DB15K FB15K237
0.0

0.2

0.4
Moci_mrr
our_mrr
Moci_hit1
our_hit1
Moci_hit10
our_hit10
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Figure 1: (a) Task Comparison (b) Performance Compari-
son: Existing SOTA MMKG models achieve up to 46% of our
model’s induction performance (trained on YAGO 15K).

the same, represented as E𝑡𝑟𝑎𝑖𝑛 = E𝑖𝑛𝑓 , R𝑡𝑟𝑎𝑖𝑛 = R𝑖𝑛𝑓 ). Existing
MMKG models make predictions rely on the specific trained em-
beddings, which means that a MMKG model trained on DBpedia[1]
cannot infer on Freebase[2]. Consequently, they costly retrainwhen-
ever a new graph is introduced [8, 9, 27], since these models cannot
handle new entities, relations, and multimodal information. This
limitation hinders their generalization to real-world MMKG sce-
narios involving unseen entities and relations. Fig. 1b presents the
performance of current MMKG models in inductive settings, reveal-
ing that even leading models struggle with effective cross-graph
inductive inference.

To overcome the limitations of existing transductive MMKG
models, this paper presents the first attempt towards inductive
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Figure 2: Framework comparison between existing transductive models and our inductive model.

learning for MMKG. We aim to propose a multimodal inductive
MMKG framework (IndMKG) that is universal and transfer-
able to any MMKG. However, inductive reasoning for MMKG
presents a non-trivial challenge. To begin with, each MMKG encap-
sulates multimodal contexts that reflect its unique characteristics
and domain-specific information. Furthermore, these graphs are
shaped by various construction preferences and approaches to
multimodal knowledge acquisition. As a result, there are signifi-
cant differences in multimodal features among different MMKG.
Consequently, a notable challenge emerges for models engaged in
cross-graph induction: how to effectively address and leverage en-
tirely unseen multimodal information that may differ significantly
from the modalities observed in the training graph.

To address the challenge of multimodal feature disparity in
MMKG inductive learning, we propose generating adaptive em-
beddings conditioned on the any graph through prototypes. Specif-
ically, we propose a modality class-adaptive prototype learning
strategy that dynamically models prototypes tailored to the given
graph, allowing for the expression of its multimodal features rather
than relying on fixed patterns. Furthermore, we implement proto-
type regularization and alignment to ensure compact embeddings
within each class while preserving inter-class distinctiveness. For
graph structure learning, we extract meta-relations across various
relative positional contexts to produce structural embeddings. Fi-
nally, our model follows a dual-cue prediction that incorporates
both structural cues and multimodal cues for the final predictions.
Fig. 2 provides the framework comparison between the existing
MMKG model and our proposed inductive MMKG model. Unlike
transductive models that rely on learning specific embeddings, our
model focuses on generating adaptive embeddings conditioned on
the given graph, enabling transferable learning and facilitating
effective cross-graph induction within MMKG.

To the best of our knowledge, we are the first to shift the MMKG
paradigm from a traditional transductive setting to an inductive
framework. We introduce a universal inductive MMKG model that
avoids learning graph-specific embeddings, enabling zero-shot gen-
eralization across diverse MMKG. Additionally, our model is com-
patible with transductive link prediction, offering efficiency, flexi-
bility, and ease of use. Our contributions are as follows:

• Our IndMKG is the first model for multimodal inductive link
prediction, offering universal and transferable capabilities
beyond the transductive setting of existing MMKG models.

• The proposed class-adaptive prototype learning addresses
the challenge of multimodal feature discrepancies in cross-
graph induction, enabling effective leverage of multimodal
features to enhance the inductive performance of MMKG.

• We validated IndMKG in >20 scenarios with nodes rang-
ing from 14,541-411,05 and edges from 26,638-3,101,16. In
Zero-shot settings, IndMKG outperformed SOTA inductive
model (non-multimodal) by up to 216%, while the exist-
ing best-performing MMKG models reached only 43% of
our performance. Additionally, IndMKG exceeded SOTA
transductive models with >10x fewer parameters.

2 RELATEDWORK
2.1 Multimodal Knowledge Graph
MMKG integrates diverse modalities such as text and image data
to enhance knowledge representation and link prediction. Mod-
els like MKGC[20], IKRL[31], AdaMF-MAT[39], and NativE[38]
focus on effectively combining these modalities to enrich entity
representations by projecting modality-specific information into
unified embedding spaces. Additional models[3, 4, 7, 21, 28, 36]
also leverage diverse modalities but often struggle to maintain the
unique properties of each one. To address this challenge, IMF[15]
emphasizes the independent learning of distinct modality-specific
features, while MoCi[35] captures inter-entity modality seman-
tics and integrates them to improve link prediction. Despite these
advancements, existing MMKG models still operate under a trans-
ductive setting, where all entities, relations, and multimodal data
in the test graph are observed during training. This restricts their
ability to generalize to new entities, relations, or unseen multimodal
information, often necessitating costly retraining when new graphs
are introduced. Consequently, this limitation hinders their appli-
cability in real-world MMKG scenarios involving unseen entities,
relations, and multimodal information.

2.2 Inductive Learning
Although a number of inductive KG models have been proposed,
they all have various limitations. The initial inductive KG models[9,
19, 26, 27] requires that unseen entities be associated with new
entities. Then there are inductive models that can deal with entities
that are completely unseen, but they require all relations to be seen
in order to obtain embeddings of unseen entities or inductive in-
ference through relational patterns, such as NBFNet[40], Grail[25],
INDIGO[16], and Morse[6]. However, such models cannot deal with
unseen relations, which means that they are no longer effective

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Towards Multimodal Inductive Learning: Adaptively Embedding MMKG via Prototypes

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

when unseen relations occur. To the best of our knowledge, the
first method that can solve the simultaneous occurrence of unseen
entities and unseen relations is Maker[5], which realizes inductive
reasoning by meta-learning. However, such methods need to build
sub graphs, which is very expensive to calculate and cannot be
extended to large datasets. Finally, INGRAM[12], HyRel[34], and
Ultra[8] can leverage the shared structural information of KG to
address unknown entities and relations for inductive reasoning. Im-
proving the inductive inference performance by structure-shared
encoding is limited since there are significant differences between
diverse KGs, which makes it difficult to accurately capture fine-
grained semantic differences cross modality, especially in MMKG.
Additionally, these models do not account for multimodal informa-
tion, which prevents them from fully utilizing the rich data available
for inductive reasoning, thereby restricting their performance and
application in multimodal contexts.

3 TASK FORMULATION
A knowledge graph is formalized as G = (E,R,T), where E,R de-
note the entity set and relation set, and T = {(ℎ, 𝑟, 𝑡) |ℎ, 𝑡 ∈ E, 𝑟 ∈
R} refers to triplets that describe relations between entities. In
MMKG, each entity is associated with multi-modal context, includ-
ing textual, visual, and structural information. We define the set
of modalities as 𝑀 = {𝑠, 𝑣, 𝑡}, where 𝑠 , 𝑣 , and 𝑡 denote structural,
visual, and textual modalities, respectively.

Transductive Inference: Transductive Inference requires that
all entities, relations, and multimodal information be observed dur-
ing the training phase, with predictions limited to new graphs
containing only seen entities and relations. In this setting, the enti-
ties and relations in the training and inference sets are the same,
expressed as E𝑡𝑟𝑎𝑖𝑛 = E𝑖𝑛𝑓 and R𝑡𝑟𝑎𝑖𝑛 = R𝑖𝑛𝑓 . Consequently, the
model is evaluated on the same entities and relations it was trained
on, utilizing the learned embeddings to make predictions.

Inductive Inference: In this paper, we pose a more challenging
and universal task: inductive MMKG inference. Under the inductive
setting, the test graphs are permitted to encompass entities and rela-
tions that are unobserved in the training set, or even entirely novel.
To maximize the generalizability of the task, our focus primarily lies
on the fully unseen scenario, where the test set is disjoint from the
training set, meaning that the entities and relations in the inference
graph are entirely unseen during training, i.e., G𝑡𝑟𝑎𝑖𝑛 ∩ G𝑖𝑛𝑓 = ∅.
This implies that all entities and relations in the inference graph
are new, expressed as E𝑡𝑟𝑎𝑖𝑛 ∩ E𝑖𝑛𝑓 = ∅ and R𝑡𝑟𝑎𝑖𝑛 ∩ R𝑖𝑛𝑓 = ∅. In
this setting, our model leverages weight transfer learned during
the training phase to generate adaptive embeddings for the given
graph, allowing it to generalize and make predictions on these
unobserved entities and relations, thereby enabling cross-graph
induction within MMKG. Meanwhile, it is noteworthy that our
proposed model, not being tailored to learn embeddings for specific
graphs, is also compatible with partially unseen cases in the test
set and equally applicable to the transductive setting.

4 METHODOLOGY
Existing MMKG models struggle to handle the differences in mul-
timodal features between different graphs, especially when faced

with completely unknown multimodal information, resulting in
limited generalization capabilities. To address this issue, we ex-
tract meta-relations under different relative positional contexts,
generating embeddings that are independent of specific entities,
relations, and graph structures. Moreover, we propose modality
class-adaptive prototype learning to generate embeddings of each
modility that are conditioned on the given graph. Furthermore, we
apply cross-modality entity and prototype alignment to ensure that
the embeddings within each class are more compact while maintain-
ing distinctiveness between classes. Finally, we implement dual cues
prediction, which incorporates both structural cues from the graph
and fused multimodal information cues for the final predictions.
Fig.3 presents the overall architecture of IndMKG.

4.1 Non-specific Graph Structure Learning
Currently, MMKG learning methods all adopt transductive strat-
egy and rely on entity and relation embeddings derived from a
specific training graph, which limits their generalization ability to
handle unseen entities and relations. To address this limitation, we
propose non-specific graph structure learning method inspired by
[10, 40], which leverages the naturally intrinsic relative positions of
relations (called transferable meta-relations) to capture structural
embeddings that are independent of any particular graph.

Specifically, We define four common types of meta-relations,
denoted as P = {ℎ−ℎ,ℎ−𝑡, 𝑡−ℎ, 𝑡−𝑡}, where ℎ−ℎ, ℎ−𝑡 , 𝑡−ℎ, and 𝑡−𝑡
represent head-to-head, head-to-tail, tail-to-head, and tail-to-tail
meta-relations, respectively. Building on the above, we construct
the meta-relation graph G𝑟 = (R,P,T𝑝 ), where T𝑝 = {(𝑟1, 𝑝, 𝑟2) |
𝑟1, 𝑟2 ∈ R, 𝑝 ∈ P}. Given a query (ℎ, 𝑟, ?), we can obtain neighbor-
aware relation embedding 𝑟𝑁 via message passing over G𝑟 :

r𝑙+1𝑁 = 𝐴𝑔𝑔
(
𝑀𝑠𝑔 (r𝑙𝑤 , p) |𝑤 ∈ N𝑝 (𝑟 ), 𝑝 ∈ P

)
(1)

where r𝑙+1
𝑁

is the 𝑙 + 1-layer relation embedding integrated with
neighbor information.N𝑝 (𝑟 ) indicates the set of neighbors for rela-
tion 𝑟 at meta-relation 𝑝 . The initial relation embedding of the 1-st
layer is defined as r1 = 1r=𝑟 ∗1𝑑 .𝐴𝑔𝑔 () represents sum aggregation,
and𝑀𝑠𝑔 () is a non-parametric DistMult function[8, 33]. Then, the
relation embedding at layer 𝑙 + 1 is obtained by r𝑙+1 =𝑊𝑟 [r𝑙 ; r𝑙+1𝑁 ],
where𝑊𝑟 ∈ R2𝑑×𝑑 is learnable parameter matrix used to aggregate
neighbor-aware relation embeding and original relation embedding.
Similarly, we can obtain the entity neighbor-aware embedding 𝑒𝑁
via relation-assisted message passing over original G:

e𝑙+1𝑁 = 𝐴𝑔𝑔
(
𝑀𝑠𝑔 (e𝑙𝑤 , 𝑀𝑙𝑝 (r)) |𝑤 ∈ N𝑟 (𝑒), 𝑟 ∈ R

)
(2)

where N𝑟 (𝑒) indicates the set of neighbors for entity node 𝑒 with
relation 𝑟 . The initial entity embedding of the 1-st layer is defined as
e1 = 1e=𝑒 ∗ r, where r corresponds to the relation embedding of the
last layer obtained above. Then, the entity embedding at layer 𝑙 + 1
is obtained by e𝑙+1 =𝑊𝑒 [e𝑙 ; e𝑙+1𝑁 ], where𝑊𝑒 ∈ R2𝑑×𝑑 is learnable
parameter matrix. Here, we define the learned entity embeddings
of the last layer as structure features and denote as 𝑒𝑠 . That above
learning strategies allow IndMKG to take advantage of the meta-
relations objectively present in any graph to generate flexible non-
specific graph structure embeddings. Additionally, by observing
these complex interaction patterns, it facilitates the understanding
of unseen entities and relations in new graphs.

3
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Figure 3: The overall architecture of the IndMKG model. IndMKG generates relation and entity structure embeddings using
Non-specific Graph Structure Learning(Sec. 4.1). Modality Class-adaptive Prototype Learning(Sec. 4.2) produces graph-specific
multimodal embeddings, while Cross-modality Entity and Prototype Alignment(Sec. 4.3) enhances prototype robustness and
embedding expressiveness, followed by predictions using Dual Cues Prediction(Sec. 4.4).

4.2 Modality Class-adaptive Prototype Learning
Although multimodal information can provide rich context and de-
tails for entity representation, intra-modality variations and inter-
modality semantic gaps, particularly in cross-graph scenarios, in-
crease reasoning challenges. To effectively capture the multimodal
distribution of the given graph-level features of all entities, and ac-
curately describe the entity-level multimodal details of each entity,
thereby improving the model’s robust adaptability to multimodal
information across MMKG, we propose the modality class-adaptive
prototype learning strategy.

Specifically, IndMKG first performs K-means clustering on mul-
timodal inputs of all entities to obtain 𝐾 clustering centers of
different modalities, defined as 𝑍𝑚 ∈ R𝐾×𝑑 ,𝑚 ∈ {𝑡, 𝑣}. Then,
visual prototypes and textual prototypes are obtained by 𝐶𝑣 =

𝑍 𝑣𝑊 𝑣,𝐶𝑡 = 𝑍 𝑡𝑊 𝑡 , respectively, where𝑊 𝑣 and𝑊 𝑡 ∈ R𝑑×𝑑 are
learnable parameter matrices. For multimodal features of each en-
tity 𝑒𝑚 ∈ R𝑑 ,𝑚 ∈ {𝑡, 𝑣}, the corresponding 𝑖 prototypes 𝑐𝑚

𝑖
∈ R𝑑 ,

namely the 𝑖-th row of 𝐶𝑚 , entities and prototypes are matched
according to the modality-specific clustering centers. To accurately
generate the entity-level features for each modality, we construct
a feature gating unit by leveraging prototypes with global infor-
mation in conjunction with entity-specific local features, which
dynamically adjusts the contribution of different components. The
prototype-based embedding is defined as follows:

ẽ𝑚 = 𝑐𝑚𝑖 + 𝜎
(
𝑓 ((𝑐𝑚𝑖 ) ⊕ ℎ(𝑒𝑚))

)
⊙ ℎ(𝑒𝑚) (3)

where 𝑐𝑚
𝑖

is 𝑖-th prototype of modality𝑚. 𝑓 (), ℎ() are modality-
shared single-layer MLPs used to transform the modality features
into shared semantic spaces, and ⊕ is the concatenation operation
used to fuse global prototype and local modality-specific feature.
Moreover, 𝜎 () and ⊙ are sigmoid activation function and element-
wise product for gating probability generation and feature filtering,
respectively. Utilizing the gate mechanism in Eq. (3), we eliminate
class-irrelevant information from the original modality feature 𝑒𝑚 ,
resulting in consistent embeddings within each cluster.

To further enhance the distinctiveness of prototypes and allevi-
ate semantic overlap among modality embeddings, we introduce
prototype regularization strategy to encourage inter-class sepa-
ration by constraining the similarity of different prototypes. We
calculate the cosine similarity between prototypes as follows:

𝑋𝑚 = 𝐶𝑚 ·𝐶𝑚⊤ ∈ R𝐾×𝐾 (4)

where𝐶𝑚 ∈ R𝐾×𝑑 is normalized form of prototypes𝐶𝑚 = [𝑐𝑚1 ; ...𝑐𝑚
𝐾
]⊤

of modality 𝑚 ∈ {𝑡, 𝑣}. Hence, 𝑥𝑚
𝑖 𝑗

denotes the cosine similarity
between prototype 𝑐𝑚

𝑖
and 𝑐𝑚

𝑗
. To enhance the spatial distinction

between prototypes, we aim to decrease the cosine similarities
among them, thereby minimizing the 𝐿2,1 norm of 𝑋𝑚 .

L𝑠𝑖𝑚 =
1
|𝑚 |

∑︁
𝑚∈{𝑡,𝑣}

(
𝑋𝑚

2,1) (5)

Considering the advantage of cosine similarity in capturing di-
rectivity and the intuitiveness of Euclidean distance in measuring
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spatial distance, we further supplement the spatial distance percep-
tion of L𝑠𝑖𝑚 by introducing Euclidean distance. The contrastive
strategy between different prototypes of modality𝑚 is defined as:

𝐷𝑚𝑖 𝑗,𝑖≠𝑗 =

𝑐𝑚𝑖 − 𝑐𝑚𝑗
2
2

(6)

where 𝐷𝑚 = (𝑑𝑚
𝑖 𝑗
) ∈ R𝐾×𝐾 , represents the Euclidean distance

between the prototypes 𝑐𝑚
𝑖

and 𝑐𝑚
𝑘
. To keep the distance between

prototypes, we sort the elements of each row in the matrix 𝐷𝑚

in increasing order to get 𝐷𝑚
′
= (𝑑𝑚′

𝑖𝑘
) ∈ R𝑁×𝑁 , and choose the

top-𝑘 minimum of each row to broaden them:

L𝑑𝑖𝑠 =
1
2

∑︁
𝑚∈{𝑡,𝑣}

(
max(0,−𝑑𝑚

′
+ 𝛾)

)
, 𝑑𝑚

′
=

1
𝑁𝑘

𝑁∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑑𝑚
′

𝑖 𝑗 (7)

where 𝛾 is a hyperparameter that adjusts the distance margin. The
loss for modality class-adaptive prototype learning is defined as:

L𝑝𝑟 = L𝑠𝑖𝑚 + L𝑑𝑖𝑠 (8)

The combined regularization loss ensures robust prototype learning.

4.3 Cross-modality Entity and Prototype
Alignment

Aiming to enhance prototype robustness and entity embedding
expressiveness, we design a loss function for fine-grained matching
between entities and their corresponding prototypes, which com-
pacts embeddings within each class while preserving inter-class
distinctiveness. The alignment loss between entity and prototype
is defined as follows:

L𝑎𝑒𝑝 = −1
2

∑︁
𝑚∈{𝑣,𝑡 }

log
exp(⟨𝑒, 𝑐𝑚

𝑖
⟩/𝜏)∑𝐾

𝑖=0 exp(⟨𝑒, 𝑐𝑚𝑗 ⟩/𝜏)
(9)

where 𝑒 ∈ {𝑒𝑠 , 𝑒 𝑓 }, · denotes the normalization operation, 𝜏 is a
learnable temperature hyperparameter, and 𝑁 is the number of
modality prototype categories. Eq. (9) associates the multimodal
features of each entity, namely 𝑒𝑠 , ẽ𝑡 , and ẽ𝑣 obtained by Eq.(2)
and Eq.(3), with its matching prototypes with global semantics
𝑐𝑚
𝑖
,𝑚 ∈ {𝑣, 𝑡}. It is worth noting that e𝑓 ∈ R𝑑 denotes the fused

multimodal feature of given entity, which is obtained through the
multilinear transformation of individual modality embeddings, and
the specific operation is provided as below.

Multilinear Transformation Fusion: To achieve efficient mul-
timodal context interaction between the structure embedding (𝑒𝑠 )
and the prototype-based modal embedding (ẽ𝑡 , ẽ𝑣), we employ a
multilinear transformation fusion strategy [35]:

Ẽ′ = Ẽ ∗ W̃ = 𝑓 𝑜𝑙𝑑 (𝑏𝑐𝑖𝑟𝑐 (Ẽ) · 𝑢𝑛𝑓 𝑜𝑙𝑑 (W̃)) (10)

where Ẽ ∈ R |𝐸 |×𝑑×|𝑀 | is composed of structural, visual, textual
features 𝑒𝑠 , ẽ𝑡 and ẽ𝑣 ∈ R𝑑 . Here |𝐸 |, and |𝑀 | defaults to 3, denote
the number of entity and the number of modality, respectively.
W̃ ∈ R𝑑×𝑑

′×|𝑀 | is learnable parameters for multilinear feature
transformation and fusion, and ∗ indicates the Tensor product op-
erator. 𝑏𝑐𝑖𝑟𝑐 (Ẽ) ∈ R |𝑀 | |𝐸 |× |𝑀 |𝑑 means that performing block cir-
culant unfolding on Ẽ. The 𝑢𝑛𝑓 𝑜𝑙𝑑 () operator flattens tensor Ẽ to
matrix with size of |𝑀 | |𝐸 | ×𝑑 , and 𝑓 𝑜𝑙𝑑 () corresponds to its inverse.
More details about the Tensor product operation can be referred to
[11, 30]. Subsequently, Ẽ′ ∈ R |𝐸 |×𝑑×|𝑀 | is summed along the 3-rd

dimension to obtain the joint features after full multimodal context
interaction and fusion, namely 𝐸 𝑓 =

∑
𝑚 Ẽ′ ::,𝑚 ∈ R |𝐸 |×𝑑 .

After multilinear transformation fusion operation, the entity em-
bedding 𝑒 𝑓 ∈ R𝑑 , and prototype embeddings 𝑐𝑚,𝑚 ∈ {𝑡, 𝑣} ∈ R𝑑 ,
also pass through a parameter-shared𝑀𝐿𝑃 layer before computing
alignment loss between entity and prototype according to Eq.(9).

4.4 Dual Cues Prediction
IndMKG follows a dual-cue prediction that incorporates both struc-
tural cues and multimodal cues for the final predictions. Specifi-
cally, we obtain a precise entity-relation composite representation
through convolutional relational context, represented as e

′𝑚 =

[e𝑚 ; r𝑚] ∗ 𝜔 , where 𝑚 ∈ {𝑠, 𝑓 } and 𝜔 is the convolutional filter.
Subsequently, e

′𝑚 will pass through the final𝑀𝑙𝑝 :R𝑑 → R1, which
maps the node states to logits 𝑝𝑏 (ℎ, 𝑟, 𝑡), representing the score of
node 𝑡 as a potential tail of the initial query (ℎ, 𝑟, ?). We train by
minimizing the binary cross entropy loss on positive and negative
triplets:

L𝑏𝑐𝑒 =
1
|2|

∑︁
𝑚∈{𝑠,𝑗 }

(
− log𝑝𝑏 (ℎ𝑚, 𝑟 , 𝑡

′𝑚)

−
𝑛∑︁
𝑖=1

1
𝑛
log(1 − 𝑝𝑏 (ℎ𝑚∗

𝑖 , 𝑟 , 𝑡
′𝑚∗
𝑖 ))

) (11)

where negative samples generated by corrupting either the head
ℎ or the tail 𝑡 of the positive sample. To optimize the model, we
define a total loss function:

L = L𝑝𝑟 + L𝑎𝑒𝑝 + L𝑏𝑐𝑒 (12)

In the subsequent experiments, we will discuss the effectiveness of
each loss term adopted here in detail.

Table 1: Overview of Datasets.

Datasets #Ent #Rel #Triplets

Train Valid Test

YAGO15K [17] 15,283 32 86,020 12,289 24,577
DB15K [17] 14,777 279 69,319 9,903 19,806

FB15K-237 [17] 14,541 237 272,115 17,535 20,466
WN18RR++ [14] 41,105 11 86,835 3,034 3,134
MKG-W [39] 15,000 169 34,196 4,276 4,274
MKG-Y [39] 15,000 28 21,310 2,665 2,663

5 EXPERIMENTAL SETUP
5.1 Datasets
In this paper, we extensively gathered nearly all existing MMKG
datasets, including YAGO15K (based on YAGO[24]), DB15K (based
on DBpedia[1]), and FB15K-237 (based on Freebase[2]) fromMMKG
[17], as well as WN18RR++ (based on WordNet) from VISTA[14],
andMKG-W (based onWikidata) andMKG-Y (based on YAGO) from
AdaMF-MAT[39]. Table 1 provides a detailed statistical overview.
These datasets encompass a wide range of information collected
from various domains, such as film, sports, and education, demon-
strating significant differences in both domains and content, which
presents a substantial challenge for cross-graph inductive reasoning.
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Table 2: The performance of IndMKG and baselines in inductive link prediction. ∗ represents the results obtained by retraining
the model after zero-shot inductive inference.

Trained on DB15K

Model
DB15K to MKG-Y DB15K to YAGO15K DB15K to MKG-W DB15K to WN18RR++ DB15K to FB15K237

MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

INGRAM[12]𝐼𝐶𝑀𝐿′23 0.0260 0.0120 0.0750 0.0360 0.0190 0.0610 0.0860 0.0420 0.1060 0.0210 0.0130 0.0610 0.0980 0.0580 0.1750
*IMF[15]𝑊𝑊𝑊 ′23 0.0042 0.0017 0.0075 0.0585 0.0482 0.0723 0.0840 0.0811 0.0867 0.0223 0.0197 0.0272 0.0187 0.0148 0.0259

*MoCi[35]𝐴𝐶𝑀𝑀𝑀 ′24 0.0181 0.0142 0.0250 0.0919 0.0491 0.1804 0.1317 0.0991 0.1915 0.0265 0.0203 0.0383 0.0257 0.0187 0.0390
ULTRA[8]𝐼𝐶𝐿𝑅′24 0.3272 0.2904 0.3919 0.3582 0.2790 0.5087 0.3048 0.2421 0.4169 0.2505 0.1529 0.4322 0.2068 0.1252 0.3773

HyRel[34]𝐴𝐶𝑀𝑀𝑀 ′24 0.0750 0.0310 0.0980 0.0960 0.0410 0.1210 0.1040 0.0710 0.1360 0.0430 0.0210 0.0970 0.1240 0.0670 0.1810

OUR zero-shot 0.3692 0.3331 0.4354 0.4027 0.3280 0.5342 0.3382 0.2755 0.4559 0.2535 0.1570 0.4392 0.2510 0.1723 0.4090
OUR fine-tuned 0.3940 0.3570 0.4550 0.4443 0.3820 0.5620 0.3779 0.3184 0.4943 0.5495 0.5020 0.6430 0.3624 0.2630 0.5520

Trained on YAGO15K

Model
YAGO15K to MKG-Y YAGO15K to MKG-W YAGO15K to WN18RR++ YAGO15K to DB15K YAGO15K to FB15K237

MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

INGRAM[12]𝐼𝐶𝑀𝐿′23 0.0830 0.0510 0.1210 0.0060 0.0020 0.0130 0.0310 0.0190 0.0430 0.0870 0.0430 0.1530 0.0130 0.0040 0.0260
*IMF[15]𝑊𝑊𝑊 ′23 0.0046 0.0021 0.0071 0.0959 0.0887 0.1035 0.0215 0.0188 0.0258 0.0725 0.0630 0.0865 0.0210 0.0165 0.0297

*MoCi[35]𝐴𝐶𝑀𝑀𝑀 ′24 0.0206 0.0151 0.0263 0.1427 0.1023 0.2030 0.0255 0.0201 0.0378 0.0796 0.0554 0.1363 0.0243 0.0179 0.0367
ULTRA[8]𝐼𝐶𝐿𝑅′24 0.3513 0.3113 0.4299 0.2991 0.2319 0.4310 0.2753 0.1919 0.4294 0.2048 0.1333 0.3493 0.1596 0.0916 0.2983

HyRel[34]𝐴𝐶𝑀𝑀𝑀 ′24 0.1040 0.0630 0.1340 0.0230 0.0050 0.0410 0.0430 0.0210 0.0840 0.1140 0.0830 0.1670 0.0610 0.0230 0.0930

OUR zero-shot 0.3604 0.3300 0.4150 0.3338 0.2763 0.4472 0.3194 0.2368 0.4708 0.3433 0.2654 0.4932 0.2870 0.1979 0.4689
OUR fine-tuned 0.3958 0.3620 0.4583 0.3715 0.3130 0.4880 0.5351 0.4990 0.6070 0.4324 0.3720 0.5530 0.3514 0.2710 0.5180

Trained on WN18RR++

Model
WN18RR++ to MKG-W WN18RR++ to YAGO15K WN18RR++ to DB15K WN18RR++ to MKG-Y WN18RR++ to FB15K237

MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

INGRAM[12]𝐼𝐶𝑀𝐿′23 0.0650 0.0240 0.0960 0.0570 0.0370 0.0910 0.0360 0.0210 0.0850 0.1030 0.0860 0.1350 0.0750 0.0350 0.1130
*IMF[15]𝑊𝑊𝑊 ′23 0.0875 0.0817 0.0941 0.0650 0.0522 0.0878 0.0649 0.0587 0.0705 0.0050 0.0026 0.0081 0.0213 0.0166 0.0300

*MoCi[35]𝐴𝐶𝑀𝑀𝑀 ′24 0.1356 0.1001 0.1985 0.0933 0.0478 0.1784 0.0803 0.0566 0.1375 0.0214 0.0163 0.0266 0.0228 0.0165 0.0359
ULTRA[8]𝐼𝐶𝐿𝑅′24 0.1768 0.1319 0.2612 0.1776 0.1352 0.2487 0.1329 0.0843 0.2375 0.1352 0.0929 0.2119 0.1089 0.0560 0.2107

HyRel[34]𝐴𝐶𝑀𝑀𝑀 ′24 0.0790 0.0350 0.1130 0.0890 0.0390 0.1110 0.0460 0.0260 0.0890 0.1060 0.0890 0.1400 0.0910 0.0670 0.1440

OUR zero-shot 0.2363 0.1821 0.3370 0.1804 0.1122 0.3170 0.1601 0.1063 0.2730 0.1804 0.1267 0.3005 0.1346 0.0731 0.2578
OUR fine-tuned 0.3729 0.3140 0.4860 0.4413 0.3900 0.5410 0.4483 0.3820 0.5740 0.3946 0.3570 0.4600 0.3687 0.2790 0.5510

Trained on MKG-Y

Model
MKG-Y to MKG-W MKG-Y to YAGO15K MKG-Y to DB15K MKG-Y to WN18RR++ MKG-Y to FB15K237

MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

INGRAM[12]𝐼𝐶𝑀𝐿′23 0.0640 0.0310 0.1050 0.0120 0.0030 0.0180 0.0310 0.0190 0.0830 0.0040 0.0010 0.0130 0.0640 0.0230 0.0950
*IMF[15]𝑊𝑊𝑊 ′23 0.0961 0.0889 0.1054 0.0491 0.0243 0.0737 0.0724 0.0628 0.0857 0.0215 0.0188 0.0258 0.0208 0.0162 0.0288

*MoCi[35]𝐴𝐶𝑀𝑀𝑀 ′24 0.1377 0.1021 0.1975 0.0908 0.0487 0.1796 0.0852 0.0574 0.1384 0.0245 0.0197 0.0381 0.0254 0.0179 0.0412
ULTRA[8]𝐼𝐶𝐿𝑅′24 0.2446 0.1753 0.3851 0.3413 0.2875 0.4303 0.2290 0.1554 0.3783 0.2701 0.1786 0.4215 0.1158 0.0719 0.2035

HyRel[34]𝐴𝐶𝑀𝑀𝑀 ′24 0.0870 0.0470 0.1090 0.0650 0.0140 0.0840 0.0930 0.0450 0.1540 0.0510 0.0160 0.0770 0.1070 0.0510 0.1350

OUR zero-shot 0.3033 0.2381 0.4254 0.3688 0.3070 0.4884 0.2663 0.1921 0.4113 0.3133 0.2291 0.4695 0.1772 0.1075 0.3294
OUR fine-tuned 0.3679 0.3040 0.4910 0.4472 0.3860 0.5590 0.4290 0.3670 0.5460 0.5373 0.4970 0.6230 0.3680 0.2710 0.5620

To validate the model’s cross-domain performance across different
scenarios, we conducted cross-graph inductive experiments.

5.2 Baselines
To demonstrate our model’s performance in the multimodal induc-
tive setting, we selected the most classic and recent SOTA inductive
inference models: INGRAM[34], HyRel[34], and Ultra[8], which can
handle unknown entities and relations with scalability, leveraging
the shared structural information of KG for inductive reasoning.
In the inductive setting, MMKG models do not fix the number of
entities and relations, enabling inductive learning, with final results
obtained through retraining after zero-shot inductive inference.

Similarly, to demonstrate our model’s performance in the MMKG
transductive setting, we selected several classic and SOTA MMKG

models: MKGC[20], IKRL[31], AdaMF-MAT[39], VISTA[14], and
NativE[38], which focus on effectively integrating various modali-
ties to enrich entity representations by projecting modality-specific
information into unified embedding spaces. IMF[15], in particular,
emphasizes the independent learning of distinct modality-specific
features, while MoCi[35] captures inter-entity modality semantics
and integrates them.

5.3 Implementation Details
Our experiments were conducted on NVIDIA RTX L20 GPUs with
48GB of RAM. We configured the training process for 20 epochs,
using a batch size of 64, with modality embedding dimensions set
to 128 and the number of negative samples set to 512. We employed
the Adam optimizer for parameter learning, setting its learning
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Table 3: Transductive Results on MKG-W and WN18RR++.

Model
MKG-W WN18RR++

MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

IKRL[31]𝐼 𝐽𝐶𝐴𝐼 ′17 0.323 0.261 0.440 0.381 0.302 0.474
MKGC[20]𝑆𝐸𝑀𝐸𝐴𝑉𝐿′18 0.312 0.239 0.438 0.369 0.290 0.469
INGRAM[12]𝐼𝐶𝑀𝐿′23 0.099 0.064 0.166 0.066 0.044 0.098
IMF[15]𝑊𝑊𝑊 ′23 0.345 0.288 0.454 0.474 0.439 0.543

HyRel[34]𝐴𝐶𝑀𝑀𝑀 ′24 0.126 0.079 0.216 0.077 0.049 0.124
AdaMF-MAT[39]𝐶𝑂𝐿𝐼𝑁𝐺 ′24 0.358 0.290 0.484 - - -

VISTA[14]𝐸𝑀𝑁𝐿𝑃 ′24 - - - 0.552 0.487 0.675
MoCi[35]𝐴𝐶𝑀𝑀𝑀 ′24 0.358 0.307 0.459 0.514 0.468 0.611
NativE[38]𝑆𝐼𝐺𝐼𝑅′24 0.365 0.295 - - - -
ULTRA[8]𝐼𝐶𝐿𝑅′24 0.338 0.276 0.457 0.495 0.451 0.595

OUR 0.380 0.319 0.499 0.579 0.534 0.683

Table 4: Transductive Results on MKG-Y and FB15K_237.

Model
MKG-Y FB15K_237

MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

IKRL[31]𝐼 𝐽𝐶𝐴𝐼 ′23 0.332 0.303 0.382 0.309 0.232 0.493
MKGC[20]𝑆𝐸𝑀𝐸𝐴𝑉𝐿′18 0.312 0.281 0.363 0.297 0.229 0.494
INGRAM[12]𝐼𝐶𝑀𝐿′23 0.064 0.042 0.117 0.093 0.061 0.157
IMF[15]𝑊𝑊𝑊 ′23 0.358 0.330 0.406 0.367 0.273 0.557

HyRel[34]𝐴𝐶𝑀𝑀𝑀 ′24 0.164 0.098 0.297 0.122 0.086 0.175
VISTA[14]𝐸𝑀𝑁𝐿𝑃 ′23 - - - 0.380 0.287 0.571
MoCi[35]𝐴𝐶𝑀𝑀𝑀 ′23 0.388 0.356 0.449 0.369 0.276 0.554
NativE[38]𝑆𝐼𝐺𝐼𝑅′23 0.390 0.347 - - - -

AdaMF-MAT[39]𝐶𝑂𝐿𝐼𝑁𝐺 ′23 0.385 0.343 0.457 - - -
ULTRA[8]𝐼𝐶𝐿𝑅′23 0.351 0.314 0.416 0.358 0.250 0.565

OUR 0.397 0.359 0.464 0.399 0.304 0.592

rate to 5 × 10−4. For the baseline methods, we utilized both their
originally reported results and our reproduced results.

6 EXPERIMENTAL RESULTS
6.1 Inductive Link Prediction Performance
Zero-Shot Inference: IndMKG consistently surpasses all baseline
models across various evaluation metrics, establishing new state-
of-the-art inductive inference performance, as shown in Table 2.

Experimental results show that even SOTA transductive models,
such as IMF[15] and MoCi[35], experience a decline in performance
under inductive scenarios. Even at their best performance, (as seen
on the MKG-W dataset), MoCi achieves only about 43% of the per-
formance of IndMKG. The reason lies in the fact that the reasoning
capabilities of existing MMKG models depend on learning specific
features and patterns from the training data. Yet, upon generaliz-
ing these models to novel, unseen graphs, the previously acquired
specific embeddings fail to retain their efficacy. In contrast, our
model does not rely on pre-trained embeddings; instead, it gen-
erates embeddings conditioned on the given graph for reasoning
when faced with new graphs. Consequently, it demonstrates strong
generalization and adaptability across all inductive scenarios.

Additionally, the SOTA inductive model (non-multimodal) UL-
TRA shows some generalization ability in MMKG inductive sce-
narios, mainly due to its transferable learning of graph structures.
Table 2 shows that IndMKG exceeds ULTRA by up to 216% (hit@1
for YAGO15 zero-shot inference to FB15K-237). IndMKG consis-
tently outperforms in 20 inductive scenarios. For instance, com-
pared to the best existing model, it exceeds MRR by 14.33%, Hit@1
by 13.21%, and Hit@10 by 14.39% in YAGO15 zero-shot inference to
DB15K. This indicates that the class-adaptive prototypes modeled

by IndMKG effectively characterize multimodal features, exhibiting
robustness and high feature utilization efficacy, thus tackling the
challenge posed by significant multimodal feature discrepancies
between inductive graphs.

Fine-tuned: Table 2 also presents the performance of the short
fine-tuned IndMKG (with one additional epoch), indicating that
fine-tuning further enhances performance. Notably, in most cases,
the fine-tuned performance is comparable to traditional transduc-
tive link prediction methods. This suggests that when handling a
completely new graph, a simple fine-tuning of IndMKG can achieve
results on par with retraining from scratch, while significantly re-
ducing computational overhead. Therefore, IndMKG can achieve
comparable results while minimizing computational overhead with
only minor accuracy trade-offs.

6.2 Transductive Link Prediction Performance
In addition to achieving SOTA performance in inductive settings, In-
dMKG also surpasses all current transductive MMKG models across
six diverse datasets, as shown in Table 3 and 4, IndMKG achieves an
average advancement of about 4% in Hit@10. Despite not training
specific embeddings for testing, as transductive models do, IndMKG
demonstrates superior reasoning performance, validating its capa-
bility to generate adaptive embeddings conditioned on any graph.
Notably, transductive models parameterize embeddings for all en-
tities, relationships, and modalities, resulting in a linear increase
in the number of parameters with the graph’s size. In contrast,
IndMKG does not require the parameterization of all embeddings,
making it significantly more lightweight. For instance, the SOTA
transductive model MoCi[35] has about 39 million and 232 million
parameters for the DB15K and FB15K-237 datasets, respectively
(IMF [15] DB15K: 71 million; FB15K-237: 79 million), whereas our
model comprises only about 3.7 million parameters, reducing the
parameter count by over 10×. This exceptional performance under-
scores the versatility of the proposed IndMKG model across various
tasks and scenarios, as well as its efficiency and applicability for
large-scale MMKGs.

Table 5: Module Ablation studies of IndMKG.

𝐴 𝐵 𝐶
Transductive Setting 0-shot Setting

MRR H@1 H@10 MRR H@1 H@10

0.3964 0.3612 0.4733 0.2895 0.2208 0.4523
✓ 0.4421 0.3680 0.5820 0.3324 0.2587 0.4811
✓ ✓ 0.4557 0.3892 0.5851 0.3387 0.2612 0.4843
✓ ✓ ✓ 0.4688 0.3977 0.6013 0.3433 0.2654 0.4932

6.3 Module and Modality Ablation Study
Module ablation: To validate the effectiveness of each module in
IndMKG, we conducted ablation studies on three key modules: 𝐴
(Modality Class-adaptive Prototype Learning), 𝐵 (Cross-modality
Entity and Prototype Alignment), and 𝐶 (Dual Cues Prediction),
which also reflect the contribution of the corresponding loss func-
tions to the overall performance. These experiments were per-
formed on transductive (YAGO15K) and inductive (YAGO15 zero-
shot inference to DB15K setting) link prediction, as shown in Table
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Figure 4: Comparison of the t-SNE visualization results of entity visual and textual feature distributions between the models
without prototype processing and IndMKG on the YAGO15K dataset.

5. The ablation results highlight the importance of each component.
Removing all three modules leads to a significant performance drop,
while gradually reintroducing them yields consistent improvements.
Their joint integration achieves the best results, showcasing the
synergy and robustness of the IndMKG model.

Table 6: Evaluation Results of Modality Combinations.

Model
Transductive Setting 0-shot Setting

MRR H@1 H@10 MRR H@1 H@10

S 0.4049 0.3300 0.5550 0.2971 0.2223 0.4577
S+V 0.4328 0.3630 0.5740 0.3045 0.2322 0.4527
S+T 0.4379 0.3660 0.5770 0.3169 0.2456 0.4740
S+V+T 0.4688 0.3977 0.6013 0.3433 0.2654 0.4932
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Figure 5: Impact of embedding size and negative sample size.

Modality ablation: To verify the impact of modality informa-
tion on improving MMKG reasoning, we conducted ablation studies
on modality combinations. These experiments were performed on
transductive (YAGO15K) and inductive (YAGO15 zero-shot infer-
ence to DB15K setting) link prediction, as shown in Table 6. This
study involved assessing the contributions of various combinations
of modality embeddings, including structural (S), visual (V), and
textual (T) embeddings. The results clearly indicate that relying on
a single modality leads to the least effective performance, while
the integration of multimodal information significantly enhances
the results. This emphasizes our model’s ability to adeptly leverage
multimodal information through prototypes, thereby improving
performance in both inductive and transductive tasks.

6.4 Parameter Analysis
Figure 5 illustrates the impact of embedding size on the performance
of IndMKG. As shown in the figure, embedding size plays a crucial
role in model performance. It is worth noting, however, that larger
embedding sizes do not always lead to better performance due to
potential overfitting issues. Considering performance, efficiency,
and the inductive task setting, the optimal embedding size for In-
dMKG is 64. At the same time, Figure 5 demonstrates the impact of
the number of negative samples on IndMKG’s performance. The
results suggest that an appropriate selection of negative samples
is essential for optimizing the model’s performance. Considering
the previously discussed factors, the optimal number of negative
samples for IndMKG is determined to be 512.

6.5 Case Study
To intuitively illustrate IndMKG’s ability to produce compact and
distinguishable embeddings, we utilized t-SNE visualization to dis-
play the distribution of entity visual and textual embeddings, as
shown in Figure 4. The results indicate that IndMKG generates more
compact and unique entity embeddings compared to models with-
out prototype processing, visually demonstrating the advantages of
modeling in the semantic space via prototypes. In this context, the
multimodal embeddings learned by IndMKG exhibit a high level
of inter-class distinctiveness and intra-class compactness. This in-
tuitively demonstrates our method’s superiority and explains why
it is effective for inductive tasks in multimodal knowledge graphs,
resulting in strong performance in MMKG reasoning.

7 CONCLUSION
In this study, we introduced the first inductive multimodal knowl-
edge graph infrence model, IndMKG, which shifts the paradigm
from traditional transductive approaches to a more flexible induc-
tive framework. IndMKG demonstrates universal and transferable
capabilities, effectively addressing the limitations of existing models
that rely on specific trained embeddings. Our extensive evaluation
across over 20 scenarios demonstrates that IndMKG surpasses ex-
isting SOTA models by up to 216% in zero-shot settings. Overall,
IndMKG not only advances the state of the art in inductive MMKG
link prediction but also broadens its applicability across diverse
domains, paving the way for future research and real-world appli-
cations in multimodal knowledge representation.
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