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Abstract Benchmark experiments are one of the cornerstones of modern machine learning research.
An essential part in the design of such experiments is the selection of datasets. We present
the OpenML Curated Tabular Regression benchmarking suite 2023 (OpenML-CTR23). It
is available on OpenML and comprises 35 regression problems that have been selected
according to a set of strict criteria. We compare its design with existing regression benchmark
suites and also challenge some of the dataset choices of previous efforts. As a first experiment,
we compare five machine learning methods of varying complexity on the OpenML-CTR23.

1 Introduction

Machine learning algorithms and their respective implementations should be studied not only
through the lens of formal analysis, but also through proper empirical evaluation. Very often,
specific details in their construction (which we abstract away in mathematical derivations) influence
performance results considerably, and many real-world datasets do not fully satisfy the assumptions
we make about data in formal analysis. For this reason, benchmark experiments are an integral
part of modern machine learning research. To perform them effectively, researchers need access to
a diverse collection of datasets.

In this paper, we present the OpenML Curated Tabular Regression benchmarking suite 2023
(OpenML-CTR23), a collection of 35 regression problems that meet a large number of quality
criteria. We follow many of the design choices of the OpenML-CC18 (Bischl et al., 2021), which is
the first benchmarking suite for classification algorithms that was created using rigorous inclusion
criteria, and refine them for regression. We also evaluate five (non-deep) machine learning methods
of varying complexity on the benchmark suite. These are XGBoost, a Random Forest, a Generalized
Additive Model (GAM), a Ridge Regression and a Regression Tree.

First, we discuss related work. Then, we will outline the benchmark suite, its design criteria,
and compare it to existing work. In the next section, we describe the experimental results. Finally,
we will discuss the broader impact and limitations of our work.

2 Background and Related Work

OpenML (Vanschoren et al., 2014) is a platform for collaborative research in machine learning.
As part of this it hosts thousands of easily accessible datasets in a standardized format. It also
supports the creation of machine learning tasks, which are concrete problem specifications on
datasets (they define the target variable and train-test splits such as k-fold cross-validation). Tasks
can be bundled into benchmarking suites, which are curated sets of tasks that meet certain quality
criteria defined by the creator (Bischl et al., 2021). These make it easier for researchers to quickly
find high-quality datasets on which to evaluate their methods. The use of clearly defined inclusion
criteria is a substantial improvement over the common practice of selecting datasets without a
clear rationale for their selection.
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Figure 1: Size of the datasets in the OpenML-CTR23. We show the number of observations on the
x-axis and the number of features on the y-axis; both are on log scale.

Most tabular benchmarking suites deal with supervised classification, such as the OpenML-
CC18 and the suites mentioned therein (Bischl et al., 2021), but there are also two benchmarking
suites for regression, that we discuss in more detail in section 3.2.

Beyond OpenML, there are also other repositories that offer access to large collections of
datasets, including Kaggle (Anthony and Howard, 2010), the UCI machine learning repository (Dua
and Graff, 2017), and the Penn Machine Learning Benchmark (Olson et al., 2017).

There also exists a large-scale comparison of regression methods using a subset of 42 regression
problems from the UCI repository (Fernández-Delgado et al., 2019). However, the focus of this
study was to empirically compare methods, not to create an easy-to-use benchmarking suite.

3 Benchmarking Suite

Our main contribution is a curated collection of 35 regression problems available on OpenML.1 The
benchmarking suite is accessible either via the website or the REST API, for which client libraries
exist in Python (Feurer et al., 2021), R (Casalicchio et al., 2019), Java (van Rijn, 2016), and Julia.2 In
addition to using existing OpenML datasets, we have also uploaded new datasets. In many cases,
we have also re-uploaded datasets to OpenML with more accurate metadata.

We now discuss our design criteria and then compare our proposed suite with existing bench-
marking suites. Figure 1 shows the distribution of the number of features and number of observa-
tions in a scatter plot and we provide an overview of all datasets in Appendix A.

3.1 Quality Criteria

We follow the design criteria of the OpenML-CC18 (Bischl et al., 2021) as it was the first bench-
marking suite to follow clearly defined inclusion criteria. We list these criteria here in order to
keep the paper self-contained:

(a) There are between 500 and 100000 observations.

(b) There are less than 5000 features after one-hot encoding all categorical features.

(c) The dataset is not in a sparse format.
1https://www.openml.org/search?type=study&study_type=task&sort=tasks_included&id=353
2https://www.openml.org/apis
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(d) The observations are i.i.d., which means that we exclude datasets that have time dependencies
or require grouped data splits.

(e) The dataset comes with a source or reference that clearly describes it.

(f) We did not consider the dataset to be artificial, but allowed simulated datasets, see Bischl et al.
(2021) for more information on the difference.

(g) The data is not a subset of a larger dataset.

In addition, we introduce the following criteria, which are relevant for regression tasks (and ignore
the CC18 criteria, which are specific to classification tasks):

(a) There is a numeric target variable with at least 5 different values.

(b) The dataset is not trivially solvable by a linear model, i.e. the training error of a linear model
fitted to the whole data has an 𝑅2 of less than 1.

Moreover, we have included the following two criteria to increase the broad usability of our
benchmarking suite (see Appendix C for more details):

(a) The dataset does not have ethical concerns.

(b) The use of the dataset for benchmarking is not forbidden.

In addition to the datasets, the OpenML tasks also contain resampling splits, which were determined
according to the following rule: If there are less than 1000 observations we use 10 times repeated
10-fold CV. If there are more than 10000 observations we use a 33% holdout split, and for everything
between, we use 10-fold CV.

3.2 Comparison with existing OpenML Regression Suites

There are two other regression benchmarking suites available on OpenML, one from the AutoML
benchmark (Gijsbers et al., 2022), which we will refer to as AMLB from now on, and another from a
recent comparison of deep learning methods with tree-based models (Grinsztajn et al., 2022), which
we will refer to as GOVB (Grinsztajn, Oyallon, and Varoquaux Benchmark). For a more fine-grained
discussion on the dataset level (here we only compare design criteria), see Appendix C.
Additional Datasets : the OpenML-CTR23 contains 23 datasets that are not included in any of the
existing regression suites.
Quality of Description : we put a strong emphasis on the quality of the dataset description.
This excludes datasets from both existing suites for which we were unable to find satisfactory
information.
Dataset Size : we focused on medium-sized datasets in the range of 500 to 100000 observations.
The GOVB contains datasets from 3000 up to around 5.5 million observations. The AMLB covers
datasets from 240 up to 10 million observations. The rationale for this is to make it widely usable
by limiting the computational requirements of running experiments on the suite.
Usage Restrictions : we exclude datasets from Kaggle challenges that can only be legally used
during the duration of the competition. We find such datasets in the other two suites.
Missing Values : both the AMLB and CTR23 contain datasets with missing values, while they have
been removed in the GOVB. Since some learning algorithms handle missing values natively, such
global preprocessing steps may put these algorithms at a relative disadvantage.
Removed Features : the GOVB excludes categorical features with more than 20 items and numerical
featureswith less than 10 unique values. Therefore, the resulting tasksmightmiss important features
and do not necessarily respond to real-world problems anymore.
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Dataset Difficulty : the CTR23 is the most conservative of the three benchmarking suites in terms of
removing datasets based on a difficulty criterion, as we only remove datasets that follow a perfectly
linear relationship. Both the AMLB and the GOVB remove datasets when the score difference
between selected evaluated machine learning methods are considered to be too small.
Task Splits : Both the AMLB and the CTR23 use OpenML task splits, while the the GOVB does
not. In fact, we found 3 datasets in the GOVB that require custom train-splits, which we list in
Appendix C.

4 Experiments

We now compare five machine learning models on all CTR23 datasets. The selected methods range
from complex black box models (XGBoost, Random Forest) to simple interpretable models (Ridge
Regression, Decision Tree). As a middle ground between these two extremes, we also consider
a Generalized Additive Model (GAM). With this experiment, we test whether the datasets are
sufficiently complex that the simple models are not yet able to adequately capture the functional
relationships between the features and the target. We will also compare the experimental results
with the results of previous studies to see if they are in agreement.

We run each algorithm once on every task defined by the benchmarking suite and use the root
mean-squared error (RMSE) as the evaluation measure. We use the train-test splits provided on
OpenML, which we have defined in section 3.2 and conduct a rank-based analysis of the results
using the Friedman test (Friedman, 1937) and the Nemenyi post-hoc test (Demšar, 2006). Further
details on the experimental setup and specific configurations can be found in the Appendix B. The
code and experimental results are available on GitHub.3

4.1 Models

We briefly describe the algorithms we compare and refer to Appendix B for additional details and
hyperparameter search spaces.
XGBoost (Chen and Guestrin, 2016): we tune 8 hyperparameters for 500 random search itera-
tions (Bergstra and Bengio, 2012) and use a nested resampling procedure.
Random Forest (Breiman, 2001): we use the implementation from the R package ranger (Wright
and Ziegler, 2017) with the default configuration which is known to work reasonably well (Probst
et al., 2019).
Generalized Additive Model: a flexible statistical model that (additively) combines multiple smooth
functions of predictor variables (Hastie, 2017). We used the the R package mgcv (Wood, 2001) and
neither performed hyperparameter tuning nor specified interaction effects.
Ridge Regression (Hoerl and Kennard, 1970): The lambda parameter is tuned using a simple grid
search and an inner cross-validation. We use the implementation from the R package glmnet (Fried-
man et al., 2010).
Regression Tree: a single decision tree (Breiman, 1984) as a baseline model without hyperparameter
tuning. We use the implementation from the R package rpart (Therneau and Atkinson, 2022).

4.2 Results

A global Friedman test showed the results to be significant on the 5% levels. Figure 2 summarizes the
results of the post-hoc Nemenyi test. XGBoost is statistically different in all pairwise comparisons
and is the clear winner with an average rank of 1.31. The Random Forest comes in second with an
average rank of 2.46, but is not significantly different from the GAM, which has an average rank of
2.83. The two worst-performing models are the Ridge Regression with an average rank of 4.17 and
the Regression Tree with 4.23.

3https://github.com/slds-lmu/paper_2023_regression_suite
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Figure 2: A critical difference plot visualizing the results of the post hoc Nemenyi test for pairwise
comparisons. Algorithms that are connected by a thick horizontal line have a rank difference
smaller than the critical difference value and are not significantly different on the 5% level.

The top performance of XGBoost is not surprising, as it is the only model other than the
much simpler Ridge Regression that we have tuned. This is consistent with the results of Grin-
sztajn et al. (2022), where XGBoost is also the best performing model for the regression datasets.
Fernández-Delgado et al. (2019) also find a gradient boosted tree (although the gbm implementation
of Greenwell et al. (2022)) to be superior to all other methods considered in our benchmark experi-
ment. They also find the Random Forest (albeit a different implementation) to be superior to the
GAM, Ridge Regression and the (rpart) decision tree. As the ranking reflects the complexity of the
models considered, we can conclude that the relationships in the CTR23 datasets are challenging
enough to be used to benchmark more sophisticated algorithms.

5 Conclusion

Our goal was to provide a high-quality collection of carefully curated regression problems and to
make it easily accessible via OpenML. The result of this effort is the OpenML-CTR23, a benchmark
suite of 35 regression problems. As design criteria, we adapted those of the CC18 to the regression
setting and added two criteria to make it more usable. We then evaluated five machine learning
methods of varying complexity, whose performance differed significantly. From this, we con-
cluded that the developed regression suite contains sufficiently challenging datasets to discriminate
between simple and complex methods.

While these design criteria are conceptually motivated, they are not experimentally evaluated.
An interesting question for further research is how different choices of quality criteria, such as the
exclusion of time dependencies, different difficulty criteria, or the inclusion of simulated datasets,
affect the results of benchmark experiments.

6 Broader Impact and Limitations

We are not aware of any direct negative impact on society. By providing carefully curated datasets,
we hope to help other researchers in two ways. First, they will need to spend less time collecting
datasets, as the work has already been done for them. Second, because our primary focus was the
creation of a benchmarking suite rather than developing a new method, we probably spent more
time selecting datasets than is realistic in a study where a dataset collection is only a by-product.
We, therefore, hope that the use of this benchmarking suite will lead to more reliable results in
future machine learning research.

Althoughwewere alreadymore conservative about including datasets due to license restrictions,
we still included some datasets without explicit licenses, when we felt they were clearly intended for
academic use. These are mostly old datasets from a time when dataset licenses were not commonly
added. We acknowledge that this is not optimal, but also see it as a step in the right direction and a
FAIRer research culture (Stall et al., 2019).
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A Dataset Overview

Table 1 summarizes all datasets contained in the OpenML-CTR23.

B More Details on Benchmark

B.1 Software Environment

The experiments were carried out using the R package mlr3 (Lang et al., 2019), which is a machine
learning framework for the R language (R Core Team, 2018). The data was pre-processed using
the mlr3 extension mlr3pipelines (Binder et al., 2021). We also used the R package batchtools (Lang
et al., 2017) to run the experiments on the cluster. Although the experiments were performed in R,
the results are included in the GitHub repository as a CSV file.

B.2 Preprocessing

We included the following preprocessing operations:

• We collapse the rarest categorical levels until there are at most 1000 different factor levels.

• If the method cannot handle categorical data, such features are one-hot encoded.

• If the method cannot handle missing data, missing categorical values are imputed using out-of-
range imputation.

• If the method cannot handle missing data, missing numerical features are imputed by sampling
values from their empirical histogram.
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Name Data ID Task ID n p Source
abalone 44956 361234 4177 9 Nash et al. (1994)

airfoil_self_noise 44957 361235 1503 6 Brooks et al. (1989)
auction_verification 44958 361236 2043 8 Ordoni et al. (2022)

brazilian_houses 44990 361267 10692 10 Kaggle (2020)
california_housing 44977 361255 20640 9 Pace and Barry (1997b)

cars 44994 361622 804 18 Kuiper (2008)
concrete_compressive_strength 44959 361237 1030 9 Yeh (1998)

cps88wages 44984 361261 28155 7 Bierens and Ginther (2001)
cpu_activity 44978 361256 8192 22 Rasmussen et al. (1996)

diamonds 44979 361257 53940 10 Wickham (2011)
energy_efficiency 44960 361617 768 9 Tsanas and Xifara (2012)

fifa 45012 361272 19178 29 Kaggle (2021)
forest_fires 44962 361618 517 13 Cortez and Morais (2007)

fps_benchmark 44992 361268 24624 44 Peeters et al. (2021)
geographical_origin_of_music 44965 361243 1059 117 Zhou et al. (2014)

grid_stability 44973 361251 10000 13 Arzamasov et al. (2018)
health_insurance 44993 361269 22272 12 Olson (1998)

kin8nm 44980 361258 8192 9 Ghahramani (1996a)
kings_county 44989 361266 21613 22 Kaggle (2016)

miami_housing 44983 361260 13932 16 Kaggle (2022)
Moneyball 41021 361616 1232 15 Kaggle (2017)

naval_propulsion_plant 44969 361247 11934 15 Coraddu et al. (2016)
physiochemical_protein 44963 361241 45730 10 Rana (2013)

pumadyn32nh 44981 361259 8192 33 Ghahramani (1996b)
QSAR_fish_toxicity 44970 361621 908 7 Cassotti et al. (2015)

red_wine 44972 361250 1599 12 Cortez et al. (2009)
sarcos 44976 361254 48933 22 Vijayakumar and Schaal (2000)

socmob 44987 361264 1156 6 Biblarz and Raftery (1993)
solar_flare 44966 361244 1066 11 Bradshaw (1989)
space_ga 45402 361623 3107 7 Pace and Barry (1997a)

student_performance_por 44967 361619 649 31 Cortez and Silva (2008)
superconductivity 44964 361242 21263 82 Hamidieh (2018)
video_transcoding 44974 361252 68784 19 Deneke et al. (2014)

wave_energy 44975 361253 72000 49 Nesha (2019)
white_wine 44971 361249 4898 12 Cortez et al. (2009)

Table 1: Overview of datasets, including the name, OpenML data and task ID, the number of observa-
tions (n), the number of features (p), and the source.

B.3 Hyperparameter Settings

XGBoost : the search space is defined in Table 2 and is taken from Bischl et al. (2023). As mentioned
in section 4.1, we tune XGBoost using 500 random search iterations and using a nested resampling
procedure. In the inner resampling we use 10-fold cross-validation for datasets with less than
1000 observations, 3 folds for datasets between 1000 and 10000 observations and a 33% holdout
resampling for everything else.
Random Forest : we use the default configuration from the R package ranger (Wright and Ziegler,
2017).
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Hyperparameter Range Scale
𝜂 [1 × 10−4, 1] Logscale
𝑛rounds [1, 5000]
max_depth [1, 20]
colsample_bytree [0.1, 1]
colsample_bylevel [0.1, 1]
𝜆 [0.001, 1000] Logscale
𝛼 [0.001, 1000] Logscale
subsample [0.1, 1]

Table 2: Search space for XGBoost

GAM For the generalised additive model we add smooth effects for all numerical features with
more than 20 different values. We set the number of knots for each smooth effect to 5 if the ratio of
the number of observations to the number of features is less than 10, and to 5 otherwise, thereby
avoiding non-identifiable models.
Ridge Regression : we tune the lambda parameter using the default tuning strategy of the glmnet
package (Friedman et al., 2010). For the inner resampling we use 20-fold cross-validation for datasets
with less than 1000 observations and 10-fold cross-validation for all other datasets.
Regression Tree : We tune no hyperparameters and use the default configuration from the rpart
package (Therneau and Atkinson, 2022).

B.4 Computational Workload and Reproducibility

The total amount of CPU hours for the final experiment was roughly 13000. The code for the
experiments4 is available and open source. Seeds are set for all experiments and an renv file
describing the computational environment (Ushey, 2023) is included. Instructions on how to
reproduce the results are contained in the README file of the repository.

B.5 More results

Table 3 contains the RMSE of all five models on all datasets.

4https://github.com/slds-lmu/paper_2023_ci_for_ge
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Task XGBoost RF GAM Ridge Tree
abalone 2.118 2.133 2.120 2.330 2.404 ×100

airfoil_self_noise 1.170 2.203 4.588 4.930 4.414 ×100
auction_verification 0.394 2.972 6.140 6.301 3.155 ×103

brazilian_houses 0.446 0.587 0.321 0.442 1.149 ×104
california_housing 4.464 5.050 6.193 7.247 7.809 ×104

cars 2.111 2.486 2.935 3.080 3.422 ×103
concrete_compressive_strength 0.371 0.529 0.963 1.075 0.900 ×101

cps88wages 3.800 3.830 3.856 4.120 4.027 ×102
cpu_activity 2.190 2.461 2.714 9.984 4.767 ×100

diamonds 0.521 0.540 2.127 1.335 1.311 ×103
energy_efficiency 0.280 1.082 2.934 3.298 2.575 ×100

fifa 0.893 0.929 0.904 1.517 1.029 ×104
forest_fires 4.830 5.037 4.883 4.601 6.112 ×101

fps_benchmark 0.051 3.363 1.166 1.189 2.339 ×101
geographical_origin_of_music 1.519 1.567 1.733 1.711 1.809 ×101

grid_stability 0.744 1.280 1.711 2.212 2.678 ×10−2
health_insurance 1.439 1.452 1.465 1.503 1.523 ×101

kin8nm 1.092 1.452 1.974 2.034 2.160 ×10−1
kings_county 1.144 1.314 1.560 1.651 2.050 ×105

miami_housing 0.815 0.925 1.328 1.803 1.726 ×105
Moneyball 2.218 2.428 2.090 2.265 3.640 ×101

naval_propulsion_plant 0.078 0.112 0.013 1.080 0.773 ×10−2
physiochemical_protein 3.326 3.456 4.951 5.232 5.422 ×100

pumadyn32nh 2.176 2.621 3.306 3.322 2.424 ×10−2
QSAR_fish_toxicity 0.864 0.861 0.923 0.986 1.028 ×100

red_wine 5.473 5.614 6.508 6.647 6.828 ×10−1
sarcos 0.214 0.292 0.472 0.628 1.122 ×101

socmob 1.246 1.902 2.119 2.904 2.273 ×101
solar_flare 7.627 8.004 7.664 8.106 7.921 ×10−1
space_ga 1.049 1.151 1.053 1.535 1.400 ×10−1

student_performance_por 2.675 2.638 2.749 2.844 2.889 ×100
superconductivity 0.901 0.914 1.414 1.901 1.796 ×101
video_transcoding 0.078 0.337 1.092 1.115 0.706 ×101

wave_energy 0.497 4.536 0.009 0.420 9.226 ×104
white_wine 5.693 5.937 7.183 7.639 7.613 ×10−1

Table 3: The root mean-square error of all five models (XGBoost, Random Forest, GAM, Ridge Regres-
sion, and Regression Tree) on all 35 datasets of the CTR23. To obtain the actual RMSE score,
each value must be multiplied by the factor in the rightmost column.
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Task XGBoost RF GAM Ridge Tree
abalone 1 3 2 4 5
airfoil_self_noise 1 2 4 5 3
auction_verification 1 2 4 5 3
brazilian_houses 3 4 1 2 5
california_housing 1 2 3 4 5
cars 1 2 3 4 5
concrete_compressive_strength 1 2 4 5 3
cps88wages 1 2 3 5 4
cpu_activity 1 2 3 5 4
diamonds 1 2 5 4 3
energy_efficiency 1 2 4 5 3
fifa 1 3 2 5 4
forest_fires 3 4 2 1 5
fps_benchmark 1 5 2 3 4
geographical_origin_of_music 1 2 4 3 5
grid_stability 1 2 3 4 5
health_insurance 1 2 3 4 5
kin8nm 1 2 3 4 5
kings_county 1 2 3 4 5
miami_housing 1 2 3 5 4
Moneyball 2 4 1 3 5
naval_propulsion_plant 2 3 1 5 4
physiochemical_protein 1 2 3 4 5
pumadyn32nh 1 3 4 5 2
QSAR_fish_toxicity 2 1 3 4 5
red_wine 1 2 3 4 5
sarcos 1 2 3 4 5
socmob 1 2 3 5 4
solar_flare 1 4 2 5 3
space_ga 2 3 1 5 4
student_performance_por 2 1 3 4 5
superconductivity 1 2 3 5 4
video_transcoding 1 2 4 5 3
wave_energy 3 4 1 2 5
white_wine 1 2 3 5 4

Table 4: The ranks of all five models (XGBoost, Random Forest (RF), GAM, Ridge Regression, and
Regression Tree) on all 35 tasks from the OpenML-CT323. Lower ranks indicate a smaller
root mean-square error.

C Discussion of Datasets
While we compared the design criteria of existing benchmarking suites in section 3.2, here we go
one step further and comment on some of the datasets included in other benchmarking suites.

C.1 Usage Restrictions

Both the AMLB and the GOVB include datasets from Kaggle challenges that can only be used for the
purpose and the duration of the challenge. These include theMercedes-Beng Greener Manufacturing
challenge (OpenML dataset ID 42570) and the Santander Customer Transaction Prediction challenge
(ID 42395).
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C.2 Ethical Considerations

The boston housing (Dataset ID 531) is ethically questionable, as one of its features encodes racist
assumptions (Fairlearn, 2016). As a precaution, we also remove the us crimes dataset (ID 42730),
as the goal is to predict crime rates based on ethnical demographics, for which we do not have
enough information about its context.

C.3 Dataset Description

For both the yprop_4_1 and the topo_2_1 datasets (IDs 416, 550) we could not match the dataset
description from the associated paper (Feng et al., 2003) with the dimensions of the data on
OpenML and therefore exclude them. The paper associated with Buzzinsocialmedia_Twitter (ID
4549) is in French and therefore inaccessible to non-French speakers. Other datasets such as
delays_zurich_transport (ID 40753), pol (ID 201), Yolanda (ID 42705), or quake have rather sparse
descriptions, which make it impossible to judge the quality of the data.

C.4 I.I.D. Data

Some of the datasets in the AMLB and and GOVB have time dependencies. The OnlineNewsPop-
ularity (ID 42724) should be treated with a rolling window cross-validation as described in the
associated article (Fernandes et al., 2015). Another example is Airlines_DepDelay_10M (ID 42728),
as the delays of different aircraft are inherently time related and the dataset is treated accordingly
in other research papers (Bayle et al., 2020). The Bike Sharing Demand data (ID 44142) comes from
a Kaggle forecasting challenge (Kaggle, 2015) and should therefore also be treated with a rolling
window cross-validation. The particulate-matter-ukair-2017 (ID 42207) is a data stream collected
continuously over time.

In addition to time dependencies, other datasets also require custom resampling splits. These
include the ailerons and elevators datasets (IDs 296 and 216, Michie and Camacho (1994)) and the
YearPredictionMSD dataset (ID 44027, Bertin-Mahieux et al. (2011)).
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