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ABSTRACT

We benchmarked different approaches for creating 2D visualizations of large doc-
ument libraries, using the MEDLINE (PubMed) database of the entire biomedical
literature as a use case (19 million scientific papers). Our optimal pipeline is based
on log-scaled TF-IDF representation of the abstract text, SVD preprocessing, and
t-SNE with uniform affinities, early exaggeration annealing, and extended opti-
mization. The resulting embedding distorts local neighborhoods but shows mean-
ingful organization and rich structure on the level of narrow academic fields.

1 INTRODUCTION

Many academic fields that traditionally did not have to deal with high-dimensional data analysis now
face the challenge of having rich datasets with millions of samples. One example is digital humani-
ties, with digital libraries now providing millions of documents. Here we focus on two-dimensional
visualization of such libraries based on the document text (Schmidt, 2018). An alternative ap-
proach is to base visualization on the citation graph (Noichl, 2021) (see also opensyllabus.org,
paperscape.org, or connectedpapers.com), which is beyond the scope of our analysis.

One of the most popular dimensionality reduction algorithms for 2D visualization is t-SNE (van der
Maaten & Hinton, 2008), based on the earlier SNE (Hinton & Roweis, 2002). Modern implemen-
tations (Linderman et al., 2019; Artemenkov & Panov, 2020) allow to run t-SNE on millions of
samples. Closely related algorithms include LargeVis (Tang et al., 2016) and UMAP (McInnes
et al., 2018). These methods have already been used to visualize document corpora such as the
HathiTrust library (n = 14 M) (Schmidt, 2018) or its subsets (Kobak et al., 2019), but there has
been no systematic benchmark of different algorithms and processing choices.

Here we develop a t-SNE pipeline to produce a visualization (Figure 1) of the MEDLINE
database of scientific articles on life science and biomedicine (used by the PubMed search engine,

Figure 1: Our t-SNE embedding of the MEDLINE dataset (n = 19 M). Paper abstracts were trans-
formed into TF-IDF representation, dimensionality was reduced to 300 with SVD and then to two
with t-SNE (using uniform affinities on the k = 10 kNN graph, early exaggeration annealing, and
10,250 iterations). (a) Coloured using labels based on journal titles. (b) Uncoloured. (c) Coloured
by publication year (dark: 1970 and earlier; light: 2021). See Figures A1–A3 for larger versions.
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pubmed.ncbi.nlm.nih.gov). We benchmark different text preprocessing methods, embed-
ding algorithms (t-SNE and UMAP) and t-SNE parameters, and show how to overcome challenges
arising from the extremely large sample size (n = 19 M papers).

2 METHODS

2.1 T-SNE ALGORITHM, AFFINITIES, AND EXAGGERATION

The t-SNE objective is to find a low-dimensional representation yi ∈ R2 of high-dimensional points
xi ∈ Rd that would preserve pairwise similarities (affinities) pij between points. The affinities are
normalized to sum to 1 and are defined as follows:

pij =
vij
n

, vij =
pi|j + pj|i

2
, pj|i =

vj|i∑
k ̸=i vk|i

, vj|i = exp

(
−∥xi − xj∥2

2σ2
i

)
. (1)

The variance σ2
i of the Gaussian similarity kernel is chosen to yield a pre-specified value of the

perplexity P = 2H of pj|i values, where H = −
∑

j ̸=i pj|i log2 pj|i is the entropy. The affinities
decay exponentially with distance, taking infinitesimal values for the majority of pairs of points.
Modern t-SNE implementations (van Der Maaten, 2014; Linderman et al., 2019) explicitly truncate
the affinities and use the k-nearest-neighbor (kNN) graph of the data with k = 3P as the input.

The affinity matrix can be further simplified by replacing Gaussian similarity kernel with the kNN
graph adjacency matrix, by defining vj|i = 1 if point j is within k nearest neighbors of point i and 0
otherwise. These uniform affinities with k = P/3 typically yield a layout very similar to Gaussian
affinities with perplexity P (Böhm et al., 2020), but require kNN graph with 9x smaller value of k.

In the low-dimensional space, affinities qij are defined using the Cauchy similarity kernel:

qij =
wij

Z
, wij =

1

1 + ∥yi − yj∥2
, Z =

∑
k ̸=l

wkl, (2)

and the loss function is the Kullback-Leibler divergence
∑

ij pij log(pij/qij). This loss is optimized
using gradient descent, which makes close neighbors feel attractive forces, while other points feel
repulsive forces. One standard optimization trick is to increase the strength of all attractive forces
by a factor ρ = 12 in the first 250 iterations. This ‘early exaggeration’ (van der Maaten & Hinton,
2008) helps avoiding cluster fragmentation. Recent work (Kobak & Berens, 2019; Böhm et al.,
2020) showed that in some cases, particularly for large datasets, it may be beneficial to keep some
exaggeration on until the end of optimization. While high exaggeration helps preserving continuous
manifold structures and emphasizes large clusters (Böhm et al., 2020), it comes with a price of
distorting local neighborhoods.

2.2 MEDLINE DATASET AND EXPERIMENTAL SETUP

We downloaded the full MEDLINE database (∼250 GB) as XML files using the bulk down-
load service (www.nlm.nih.gov/databases/download/pubmed_medline.html) on
26.01.2021. We used the Python xml package to extract PubMed ID, title, abstract, language, jour-
nal name, and publication date of all ∼30 M papers. We filtered out all 4.7 M non-English papers
and all 7.6 M English papers with abstracts shorter than 250 or longer than 4000 symbols, leaving
19,016,308 papers for further analysis.

We labeled the dataset by selecting 21 frequent terms among journal names: bioinformatics, biology,
cancer, cardiology, cell, chemistry, ecology, engineering, environmental, food, genetics, immunol-
ogy, material, microbiology, neuroscience, nutrition, pediatric, psychiatry, psychology, surgery, and
veterinary. Papers were assigned a label if their journal title contained that term (journal titles con-
taining more than one term were assigned randomly to one of them), and left unlabeled otherwise.
This resulted in 5,147,755 labeled papers (27%).

All experiments were performed in Python. We used Scikit-learn 0.24.1 (Pedregosa et al., 2011)
for TF-IDF vectorizer, count vectorizer, and for truncated SVD. We used openTSNE 0.6.0 (Poličar
et al., 2019), a Python reimplementation of FIt-SNE (Linderman et al., 2019), and UMAP 0.5.1
(McInnes et al., 2018). We used default parameters, unless specified.
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All experiments were run on a server with 384 GB of RAM and 64 double-threaded 2.90 GHz CPU
cores. Parsing the XML files took ∼10 h. Computing TF-IDF representation took 1 h. Truncated
SVD took 4 h, t-SNE affinity calculation took 2 h, and subsequent t-SNE optimization took 2 h for
the default 750 iterations, 4 h for 2250 iterations, and over 3 days for 10,250 iterations.

The code is available at https://github.com/berenslab/pubmed-tsne-iclr.

3 RESULTS

TF-IDF The abstracts were transformed into the bag-of-words representation Cij , with ele-
ments denoting the number of times word j appears in abstract i. This was a sparse matrix
of 19,016,308× 4,114,381 size (0.003% non-zero elements). We tried various normalization ap-
proaches and used kNN classification accuracy to assess the quality of each representation (Table 1).
We obtained the highest kNN accuracy (0.71) with the TF-IDF (term frequency – inverse document
frequency) representation (Jones, 1972) with log-scaling, as defined in the scikit-learn implementa-
tion:

Xij = (1 + log2 Cij) ·
(
1 + ln

1 + n

1 +
∑

k(Ckj > 0)

)
if Cij > 0, else Xij = 0, (3)

where n is the total number of documents. In scikit-learn, the TF term is substituted by word counts
Cij for computational simplicity and instead, Xij is row-normalized such that each row has norm 1.

Table 1: kNN classification accuracies for different preprocessing methods (with k = 10, test set
of 500 labeled papers, and training set consisting of all remaining labeled papers). Row (4) is a
standard preprocessing approach in single-cell transcriptomics (Luecken & Theis, 2019). Scaling
term 100 was chosen as an approximate average abstract length (the average was 106 words).

Representation Equation kNN accuracy
Word counts Cij 0.49
Log-transformed counts log2(1 + Cij) 0.54
Term frequencies (TF) Cij/

∑
k Cik 0.54

scRNA-seq approach log2(1 + TF · 100) 0.62
Schmidt (2018) max(0, log2(TF · 100)) 0.43
TF-IDF without log-scaling Cij instead of 1 + log2 Cij in Eq. 3 0.63
TF-IDF with log-scaling Xij , Eq. 3 0.71

SVD It is computationally infeasible to use the entire Xij matrix for t-SNE. We therefore used
singular value decomposition (SVD) to reduce dimensionality down to 300 — the largest number
we could use given our memory resources. We employed SVD instead of PCA to avoid centering the
sparse matrix. We did not observe any difference in performance between the randomized and
arpack SVD solvers and used the latter solver for all further processing (randomized solver was
25% faster but used up 22% more RAM). After SVD, the kNN accuracy decreased only slightly, to
0.66 (Figures 2b, A4). At the same time, kNN recall (fraction of preserved k = 10 nearest neighbors,
measured on a random subset of 500 papers) (Lee & Verleysen, 2009) was only 0.05, meaning that
SVD was unable to accurately preserve nearest neighbors in our dataset (Figure A4). See Table A2
for 10 nearest neighbors in the TF-IDF and SVD spaces for one exemplary paper.

t-SNE affinities We found it impossible to use default t-SNE affinities with our sample size due
to memory constraints, so we used uniform affinities (as implemented in openTSNE) with k = 10.
Using a n = 2 M subset of the data, we confirmed that the resulting layout was nearly identical to
using default affinities with perplexity 30 (Figure A5). Default affinities required 2.7x more RAM
and took 1.05x more time.

t-SNE exaggeration We experimented with different values of exaggeration, ρ ∈ {1, 2, 4}, and
found that ρ > 1 led to lower kNN recall (Figure 2a), in agreement with Böhm et al. (2020), and
also lower kNN accuracy (Figure 2b). Visually, ρ = 2 led to somewhat increased cluster separation,
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Figure 2: t-SNE embedding quality across iterations. (a) kNN recall compared to SVD (k = 10,
test set size 10,000). (b) kNN accuracy for labeled papers (k = 10, test set size 10,000). (c) kNN
recall during longer optimization.

whereas ρ = 4 lumped all points together (Figure A6), and neither provided clear benefits compared
to ρ = 1. We conclude that exaggeration was not helpful for visualizing the dataset studied here.
Without exaggeration, kNN accuracy after t-SNE was 0.57, while kNN recall was 0.014 compared
to the SVD representation (Figure 2). We observed that kNN recall after t-SNE strongly decreased
with increasing the sample size (Figure A7): from 0.2 at n = 2000 to 0.01 at n = 19 M.

UMAP UMAP (McInnes et al., 2018), a recent and very popular neighbor embedding method,
yields very similar results to t-SNE with increased exaggeration, such as ρ = 4 (Böhm et al., 2020).
Using a n = 2 M subset of the data, we confirmed that the UMAP embedding was qualitatively
similar to the t-SNE embedding with ρ = 4 (Figure A8), and its kNN recall and kNN accuracy were
both in between t-SNE values with ρ = 2 and ρ = 4, and worse than t-SNE without exaggeration
(Figure A9). We used a subset of the data for this experiment because we were unable to run
UMAP on the entire dataset due to memory constraints (UMAP uses Pynndescent for kNN graph
construction and it needs more RAM than Annoy, employed by openTSNE).

Number of gradient descent iterations By default, gradient descent in openTSNE runs for 750
iterations (with learning rate n/12, Belkina et al., 2019). We observed that while kNN accuracy
plateaued after around 300 iterations (Figure 2b), kNN recall did not plateau within 750 iterations
(Figure 2a), so we used 2250 iterations for most experiments. Running optimization even longer
increased kNN recall further (to 0.03 with respect to SVD, 0.01 with respect to TF-IDF, both after
10,250 iterations, Figure 2c), but took a long time: 4 hours for 2250 but over 3 days for 10,250
iterations. Note that the run time does not scale linearly because FIt-SNE approximation slows
down when the embedding increases in size (Linderman et al., 2019). We felt that 2250 iterations
provided a reasonable trade-off between accuracy and runtime.

Early exaggeration annealing By default, the early exaggeration factor is switched off after 250
iterations. We hypothesized that this abrupt transition may potentially ‘trap’ some points in sub-
optimal locations. If so, gradually annealing early exaggeration factor down to 1 during iterations
125–250 could potentially improve the final embedding.

Using annealing, we observed almost no improvement in kNN recall (Figure 2a,c), however this
metric may not be very sensitive to a minority of papers or clusters located suboptimally. We visually
investigated the effect of annealing and found that while overall the embeddings with and without
annealing looked very similar, there were some subtle changes on a smaller scale. One such example
is shown in Figure 3. Without annealing (Figure 3a), there was an isolated island with predominantly
blue papers (labeled ‘materials’) that ceased to exist when the exaggeration was annealed. Instead,
its points got fused with two bigger regions of blue points (Figure 3b,c), suggesting that annealing
helped them to drift to more meaningful locations. Two further examples of this effect can be seen
in Figures A10 and A11.

For our final pipeline (Figure 1), we combined long optimization (10,250 iterations) with the early
exaggeration annealing.
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Figure 3: Annealing early exaggeration. (a) Isolated island (labeled ‘materials’) in the default em-
bedding. (b) No such island after early exaggeration annealing. (c) Papers belonging to the original
island highlighted after annealing.

4 DISCUSSION

Here we developed a pipeline for making 2D visualizations of large document libraries, using the
MEDLINE database of the entire biomedical literature as a use case. The pipeline is based on
TF-IDF representation, SVD preprocessing, and t-SNE with uniform affinities, early exaggeration
annealing, and extended optimization. Our final embedding (Figures 1, A1–A3) shows meaningful
structure with good topic separation.

The closest neighbors were strongly distorted compared to the TF-IDF representation (Table A2),
suggesting that such an embedding may not be suitable for literature queries. However, bigger-scale
structure was meaningful, emphasizing small clusters containing 100s–1000s of papers on clearly
defined topics.

In ongoing work, we found that random projection (Schmidt, 2018) outperformed SVD in terms of
kNN recall, but resulted in poor t-SNE embeddings; future work is needed to explain this observa-
tion. It will also be interesting to replace TF-IDF with a pretrained language model such as PubMed
BERT (Gu et al., 2021).
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A APPENDIX

A.1 SUPPLEMENTARY TABLES

Table A1: Nearest neighbor titles for Kobak & Berens (2019) (title: “The art of using t-SNE for
single-cell transcriptomics”) in the TF-IDF space (d = 4 M), SVD space (d = 300), and t-SNE
space (d = 2). The t-SNE representation is the same as shown in Figure 1.

TF-IDF Neighbor 1: Application of t-SNE to human genetic data.
Neighbor 2: Heavy-tailed kernels reveal a finer cluster structure in t-SNE visualisations.
Neighbor 3: Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq data.
Neighbor 4: Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large

datasets.
Neighbor 5: Performance comparison of dimensionality reduction methods on RNA-Seq data from the GTEx project.
Neighbor 6: Visualizing the spatial gene expression organization in the brain through non-linear similarity embeddings.
Neighbor 7: Visual analysis of mass cytometry data by hierarchical stochastic neighbour embedding reveals rare cell types.
Neighbor 8: Generalizable and Scalable Visualization of Single-Cell Data Using Neural Networks.
Neighbor 9: Visualization of Single Cell RNA-Seq Data Using t-SNE in R.
Neighbor 10: Current Projection Methods-Induced Biases at Subgroup Detection for Machine-Learning Based Data-Analysis of Biomedical

Data.

SVD Neighbor 1: PyBDA: a command line tool for automated analysis of big biological data sets.
Neighbor 2: Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq data.
Neighbor 3: scGEAToolbox: a Matlab toolbox for single-cell RNA sequencing data analysis.
Neighbor 4: Protocol for Identification and Removal of Doublets with DoubletDecon.
Neighbor 5: GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks.
Neighbor 6: Improved dropClust R package with integrative analysis support for scRNA-seq data.
Neighbor 7: Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data.
Neighbor 8: Falco: a quick and flexible single-cell RNA-seq processing framework on the cloud.
Neighbor 9: zUMIs - A fast and flexible pipeline to process RNA sequencing data with UMIs.
Neighbor 10: scGMAI: a Gaussian mixture model for clustering single-cell RNA-Seq data based on deep autoencoder.

t-SNE Neighbor 1: Customized workflow development and data modularization concepts for RNA-Sequencing and metatranscriptome experi-
ments.

Neighbor 2: RNA-Rocket: an RNA-Seq analysis resource for infectious disease research.
Neighbor 3: Deep Cap Analysis of Gene Expression (CAGE): Genome-Wide Identification of Promoters, Quantification of Their Activity,

and Transcriptional Network Inference.
Neighbor 4: Workflow Development for the Functional Characterization of ncRNAs.
Neighbor 5: Exploring transcriptional switches from pairwise, temporal and population RNA-Seq data using deepTS.
Neighbor 6: Defining data-driven primary transcript annotations with primaryTranscriptAnnotation in R.
Neighbor 7: TRUFA: A User-Friendly Web Server for de novo RNA-seq Analysis Using Cluster Computing.
Neighbor 8: S-MART, a software toolbox to aid RNA-Seq data analysis.
Neighbor 9: A Guide to the Chloroplast Transcriptome Analysis Using RNA-Seq.
Neighbor 10: RNA-Seq in the Collaborative Cross.
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A.2 SUPPLEMENTARY FIGURES

Figure A1: Our t-SNE embedding of the MEDLINE dataset (n = 19 M) coloured using labels based
on journal titles. Unlabeled papers are shown in grey but are plotted underneath the labeled papers.
For the visualization purposes, the labels are positioned in the location of the highest density of the
corresponding class (obtained using a kernel density estimate).
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Figure A2: Our t-SNE embedding of the MEDLINE dataset (n = 19 M), without colours and with
increased transparency of each dot, highlighting large number of small clusters.
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Figure A3: Our t-SNE embedding of the MEDLINE dataset (n = 19 M) coloured by publication
year. The bright yellow island in the middle corresponds to papers on Covid-19.
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Figure A4: Representation quality after SVD. (a) kNN recall compared to TF-IDF (k = 10, test set
size 500). (b) kNN accuracy for labeled papers (k = 10, test set size 500).

Figure A5: t-SNE embedding of a subset of the MEDLINE dataset (n = 2 M) using (a) the default
affinities (perplexity 30), and (b) uniform affinities (k = 10), both with ρ = 1 and 2250 iterations.
Runtimes and memory requirements: 65 min and 37 GB for the default affinities; 62 min and 14 GB
for the uniform affinities.

Figure A6: t-SNE embedding of the MEDLINE dataset (n = 19 M) for different values of exagger-
ation: (a) ρ = 1 (default), (b) ρ = 2, and (c) ρ = 4.
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Figure A7: kNN recall (k = 10) after t-SNE for different subset sizes of the MEDLINE dataset.

Figure A8: Embeddings of a n = 2 M subset of the MEDLINE dataset with (a) UMAP (k = 10),
(b) t-SNE with ρ = 4, and (c) t-SNE without exaggeration (ρ = 1). The UMAP embedding was
rotated to better align it with the t-SNE embeddings.
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Figure A9: t-SNE and UMAP embedding quality across iterations for the n = 2 M subset. (a) kNN
recall compared to SVD (k = 10, test set size 10,000). (b) kNN accuracy for labeled papers (k = 10,
test set size 10,000).
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Figure A10: Annealing early exaggeration. (a) Isolated island in the default embedding. (b) No such
island after early exaggeration annealing. (c) Papers belonging to the original island highlighted in
black after annealing.

Figure A11: Annealing early exaggeration. (a) Isolated island in the default embedding. (b) No such
island after early exaggeration annealing. (c) Zoom out of the embedding after annealing. (d) Papers
belonging to the original island highlighted in black.
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