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ABSTRACT

For i = 1, 2, let Si be the sample covariance of Zi with ni p-dimensional vectors.
First, we theoretically justify an improved Fréchet Inception Distance (dFID) al-
gorithm that replaces np.trace(sqrtm(S1S2)) with np.sqrt(eigvals(S1S2)).sum().
With the appearance of unsorted eigenvalues in the improved dFID, we are then
motivated to propose sorted eigenvalue comparison (dEig) as a simple alternative:

dEig(S1,S2)
2 =

∑p
j=1(

√
λ1
j −

√
λ2
j )

2, and λi
j is the j-th largest eigenvalue of Si.

Second, we present two main takeaways for the improved dFID and proposed dEig.
(i) dFID: The error bound for computing non-negative eigenvalues of diagonalizable
S1S2 is reduced to O(ε)∥S1∥∥S1S2∥, along with reducing the run time by ∼ 25%.
(ii) dEig: The error bound for computing non-negative eigenvalues of sample
covariance Si is further tightened to O(ε)∥Si∥, with reducing ∼ 90% run time.
Taking a statistical viewpoint (random matrix theory) on Si, we illustrate the
asymptotic stability of its largest eigenvalues, i.e., rigidity estimates of O(n

− 1
2+α

i ).
Last, we discuss limitations and future work for dEig.

1 INTRODUCTION

1 import numpy as np
2 from scipy.linalg import eigvals, eigvalsh
3
4 # The square of improved dFID

5 def dFID(mean1, cov1, mean2, cov2):
6 eigval = eigvals(cov1 @ cov2)
7 # Round computational errors (if exist)
8 # that lead to negative eigenvalues close to 0
9 eigval[eigval < 0] = 0

10 dif = mean1 - mean2
11 res = dif.dot(dif) + np.trace(cov1 + cov2)
12 return res - 2 * np.sqrt(eigval).sum()
13
14 # The square of proposed dEig

15 def dEig(scm1, scm2):
16 # Sorted eigenvalues
17 eigval1 = eigvalsh(scm1)
18 eigval1[eigval1 < 0] = 0
19 eigval2 = eigvalsh(scm2)
20 eigval2[eigval2 < 0] = 0
21 dif = np.sqrt(eigval1) - np.sqrt(eigval2)
22 return dif.dot(dif)

Figure 1: Python codes for the square of improved dFID and proposed dEig.

In the image domain, it is of great interest to analyze the distribution shift between two collections of
data entries (Wiles et al., 2021; Borji, 2019). On one hand, this is driven by the increasing awareness
about the violation of the assumption of ‘identical distribution’ between training and (real-world) test
datasets (Wu et al., 2022b). As for instance illustrated in the leaderboard of WILDS (Koh et al., 2021;
Sagawa et al., 2021), many algorithms suffer from performance degradation and fail to generalize to
heterogeneous testing settings. On the other hand, the importance of assessing distribution shift has
been recognized with the rise of generative adversarial nets (GAN) (Goodfellow et al., 2014; Heusel
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et al., 2017). The rapid development of GAN variants (Karras et al., 2019; 2020b) urges reliable and
accurate metric(s) to assess the discrepancy between generated and real images (Borji, 2019).

To objectively assess GAN models, researchers have proposed a plethora of evaluation scores
including Inception Score (Salimans et al., 2016), Kernel Inception Distance (dKID) (Bińkowski et al.,
2018), and Precision/Recall (Kynkäänniemi et al., 2019; Sajjadi et al., 2018) (please also see (Borji,
2019; 2022) for in-depth review). Among various scores, Fréchet Inception Distance (dFID) (Heusel
et al., 2017) is arguably the most widely-used metric for benchmarking GAN performance (Parmar
et al., 2022). This is mainly due to the favorable theoretical property of being a mathematical
metric (Dowson & Landau, 1982) and practical property of being well-correlated with perceived
image quality (Sajjadi et al., 2018). Meanwhile, Chong & Forsyth (2020) argued that dFID is a biased
estimator and Kynkäänniemi et al. (2022) observed its undesirable sensitivity towards fringe features
or classes. Despite these weaknesses, dFID currently remains the ’gold standard’ for GAN evaluation
and continuously attracts broad attention. In a recent study, Mathiasen & Hvilshøj (2020) proposed
to compute eigenvalues rather than square root of a matrix as in dFID. We view this as a promising
simplification and improvement, nonetheless a precise theoretical analysis has not been performed
and therefore becomes the starting point of this paper.

The study of random matrix theory (RMT), with an emphasis on understanding the properties
of (random) eigenvalues (Paul & Aue, 2014), has brought novel insights in the domain of deep
learning (Liao & Couillet, 2018; Pastur, 2022; Baskerville et al., 2022), among which Seddik
et al. (2020) analyzed deep learning representations of GAN generated images through the lens of
eigenvalues of their sample covariance matrix (SCM). Driven by the need to efficiently quantify
the distribution shift between two collections of heterogeneous data entries, we propose to compare
sorted eigenvalues (dEig) as a simple alternative to dFID. Our contributions are summarized as follows:
For i = 1, 2, let Si be the sample covariance of Zi = (zi

1, . . . ,z
i
ni
) with ni p-dimensional vectors.

• (dFID) We articulate the fact that S1S2 is diagonalizable and has non-negative eigenvalues.
This allows us to theoretically justify an improved algorithm of dFID, i.e., by replacing the
unique principal square root of a matrix with the element-wise square root of its eigenvalues.
Therefore, the error bound for computing its eigenvalues is reduced to O(ε)∥S1∥∥S1S2∥,
reducing the run time by ∼ 25%.

• (dEig) Since Si is symmetric positive semidefinite, the error bound for computing its non-
negative eigenvalues is further tightened to O(ε)∥Si∥, along with reducing ∼ 90% run time.
From the viewpoint of random matrix theory (RMT), we demonstrate the asymptotically
stable behavior of the largest eigenvalues (spikes).

2 THE IMPROVED dFID

(Linear Algebra) Notation: Lower case Roman or Greek letters (e.g., s, ϵ, γ, λ) denote scalars, bold
lower case letters (e.g., v, z,µ) denote vectors, and bold upper case letters (e.g., Q,S,U ,Z,Λ)
denote matrices. T is matrix transpose, ∥.∥ is L2 norm, ≲ denotes asymptotically less than.

2.1 PRINCIPAL SQUARE ROOT OF A MATRIX

Without loss of accuracy, we discuss dFID through the lens of linear algebra. More specifically, scalars,
vectors and matrices discussed in the section are deterministic, while a statistical viewpoint on these
objects will be later introduced in the proposed dEig section. For i = 1, 2, let Zi = (zi

1, . . . ,z
i
ni
) be

a collection of ni p-dimensional vectors. For simplicity, we assume sample mean 1
ni

∑ni

k=1 z
i
k = 0

throughout Sec. 2. Accordingly, Si =
1
ni
ZiZ

T
i denotes the sample covariance matrix (SCM) of Zi.

We start the discussion with revisiting standard the definition(s) of dFID (Givens & Shortt, 1984), then
we elaborate the properties of principal square root – the key computational challenge of dFID.

2.1.1 Trace((S
1
2
1 S2S

1
2
1 )

1
2 )

Definition 1. Let Si be the SCM of Zi and w.l.o.g. S1 is non-singular, then we define

dFID(S1,S2)
2 = Trace(S1 + S2 − 2(S

1
2
1 S2S

1
2
1 )

1
2 ). (1)
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To compute the Trace() of dFID, we first need to clarify the symbol
1
2 in Eq. 1. As mentioned in

(Dowson & Landau, 1982),
1
2 denotes the positive (or principal (Higham, 2008)) square root of a

matrix S such that S
1
2S

1
2 = S, and ‘principal’ specifies the square root(s) S

1
2 with non-negative

eigenvalues. In general, the square root of a matrix may neither exist nor be unique (Higham, 2008).
Consider now the special case where S is symmetric positive semidefinite (PSD), then we have

Theorem 2. (Principal square root) Let a symmetric PSD S be decomposed as S = QΛQT,
where Q is an orthogonal matrix and Λ is a diagonal matrix with non-negative eigenvalues, then
S

1
2 := QΛ

1
2QT is the unique principal square root of S.

Based on the definition of S
1
2 , it is easy to see that S

1
2S

1
2 = S. Importantly, S

1
2 is unique in the

sense that if there exists another symmetric SPD S̃
1
2 such that S̃

1
2 S̃

1
2 = S, then S̃

1
2 = S

1
2 . With

Thm. 2 in hand and given the fact that S
1
2
1 and S2 are symmetric PSD, we make the following claim.

Corollary 3. S
1
2
1 S2S

1
2
1 is a symmetric PSD matrix and therefore has a unique principal square root.

Claim. Accordingly, Trace((S
1
2
1 S2S

1
2
1 )

1
2 ) (Eq. 1) can be derived after eigenvalue decomposition sug-

gested in Thm. 2. As a computational routine, this formulation is nevertheless undesirable. Because
we need to call the eigenvalue decomposition function twice, which potentially increases computa-
tional time and error risk. Instead, we seek for another equivalent formulation of Eq. 1 (Givens &
Shortt, 1984).

2.1.2 Trace((S1S2)
1
2 )

Lemma 4. Following the specifications of Si in Eq. 1, then we have

dFID(S1,S2)
2 = Trace(S1 + S2 − 2(S1S2)

1
2 ). (2)

Because of non-singular S1, it is not difficult to see that eigenvalues of S
1
2
1 S2S

1
2
1 and S1S2 are

identical, and the corresponding eigenvectors are identical up to an invertible linear transformation
S

1
2
1 (or S− 1

2
1 ). Due to the fact that S

1
2
1 S2S

1
2
1 is symmetric PSD, then we have

Corollary 5. S1S2 is a diagonalizable matrix with non-negative eigenvalues and therefore has a
unique principal square root.

Remark 6. Note that at least one of S1 and S2 should be non-singular, or the null space of S1 should
be contained in that of S2 (Dowson & Landau, 1982). If S1 is singular, then the above discussions
remain the same after switching the role of S1 and non-singular S2.

Claim. Consequently, eigenvalues of (S1S2)
1
2 are mathematically equivalent to the element-

wise square root of eigenvalues of S1S2. Since S1S2 and S
1
2
1 S2S

1
2
1 have identical eigenval-

ues and the trace of a diagonalizable matrix is the sum over its eigenvalues, then we have
Trace((S1S2)

1
2 ) = Trace((S

1
2
1 S2S

1
2
1 )

1
2 ) and prove Lem. 4. Importantly, this rigorously justifies the

workaround algorithm of dFID that computes the element-wise square root of eigenvalues, which
bypasses the expansive computation of the square root of a matrix.

2.2 ELEMENT-WISE SQUARE ROOT OF EIGENVALUES

Before substituting the square root component of dFID, let us take a step back and re-examine its
widely-used implementation scipy.lingalg.sqrtm()1. In a nutshell, the underlying computational
routine is a blocked Schur algorithm (Björck & Hammarling, 1983; Deadman et al., 2012), which
includes two phases: Schur decomposition (schur()) and solving (triangular) Sylvester equation. For
computing Trace() of p× p diagonalizable matrix (S1S2)

1
2 , we show the latter phase is redundant.

1https://github.com/GaParmar/clean-fid/blob/main/cleanfid/fid.py
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2.2.1 NUMERICAL ERROR BOUND

Corollary 7. (Schur decomposition) Let the diagonalizable matrix S1S2 be decomposed as QUQT.
Here, Q is an orthogonal matrix and U is an upper triangular matrix. Then Trace((S1S2)

1
2 ) =∑p

j=1

√
ujj , where u11, . . . , upp are diagonal entries of U .

This equation is derived from the fact that diagonal entries of U are exactly (non-negative) eigenvalues
of S1S2. As an immediate consequence, it suffices to compute schur() for obtaining Trace((S1S2)

1
2 ).

By default, schur() simultaneously computes U and Q. In our case, we only want to compute
diagonal entries of U . This leads to a more speedy eigvals() that shares the same core routine
as schur(). Eventually, we replace the standard pythonic implementation np.trace(sqrtm()) with
np.sqrt(eigvals()).sum() (See Fig. 1 for more details and Mathiasen & Hvilshøj (2020) for reference).
Such a series of algorithmic simplification allows us to propose a (strictly) tighter error bound
compared to the original case w.r.t. sqrtm().

Error bound of eigvals(). As discussed in (Anderson et al., 1999), for the computed eigenvalue γ̂j
and eigenvalue γj of S1S2 we have |γ̂j − γj | ≲ O(ϵ)s−1

j ∥S1S2∥, where ϵ is machine epsilon. The
remaining task is to compute sj . Since if vj is the right eigenvector for γj , then the left eigenvector

is vT
j S

−1
1 . Because of sj := |vT

j S
−1
1 vj | = ∥S− 1

2
1 vj∥2 we have s−1

j ≤ ∥S
1
2
1 ∥2 = ∥S1∥. For

j = 1, . . . , p, the (asymptotic) error bound for computing eigenvalue γj can be formulated as

|γ̂j − γj | ≲ O(ϵ)∥S1∥∥S1S2∥. (3)

Moreover, if we want to compute eigenvalues of the p× p SCM Si that is symmetric PSD, we can
utilize the eigvalsh() with lower run time and obtain a tighter error bound.

Error bound of eigvalsh(). For j = 1, . . . , p, the error bound for computing eigenvalue λi
j of Si can

be formulated as (Anderson et al., 1999)

|λ̂i
j − λi

j | ≤ O(ϵ)∥Si∥. (4)

2.2.2 EIGENVALUE COMPARISON

Now, we discuss an important variant of dFID when S1 and S2 commute, i.e., S1S2 = S2S1.
Corollary 8. (Unsorted eigenvalue comparison) Let S1,2 be two SCMs that are simultaneously
diagonalizable by an orthogonal matrix Q, then

dFID(S1,S2)
2 = Trace((S

1
2
1 − S

1
2
2 )

2) =

p∑
j=1

(
√
λ̃1
j −

√
λ̃2
j )

2, (5)

where λ̃i
j is the j-th eigenvalue of Si w.r.t. Q.

Under such a special case where S1 and S2 share the same eigenbasis, dFID is reduced to computing
the Euclidean distance between unsorted eigenvalues. Motivated by this reduction, we propose to
compare sorted eigenvalues as a simple alternative to dFID.
Definition 9. (Sorted eigenvalue comparison) Let S1,2 be two SCMs, then we define

dEig(S1,S2)
2 =

p∑
j=1

(
√

λ1
j −

√
λ2
j )

2, (6)

where λi
j is the j-th largest eigenvalue of Si. Accordingly, dEig is a pseudometric on the set of SCMs

with order p.

Note that S1 and S2 in Eq. 6 do not necessarily commute. Instead of eigvals() used for computing
eigenvalues of non-symmetric S1S2 (Eq. 2), dEig can be obtained with a more numerically stable and
faster eigvalsh(), which is customized to compute λi

j of symmetric Si. As a pseudometric, dEig satis-
fies non-negativity, symmetry and triangular inequality, while SCMs need not to be indistinguishable
regarding dEig. Following the convention, dEig and dFID scores reported in the following are always
the square of dEig and dFID resp.
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a.  (Oracle comparison) The  and  scores computed between sample covariance of 50k, 40k, …, 5k data VS ground-truth covariance. d𝖥𝖨𝖣 d𝖤𝗂𝗀

b.  (Real-world comparison )The  and  scores computed between sample covariance of 50k, 40k, …, 5k data VS sample covariance of 50k data.d𝖥𝖨𝖣 d𝖤𝗂𝗀

d𝖥𝖨𝖣 d𝖤𝗂𝗀

dim sqrtm schur eigvals svdvals eigvalsh
16384 1101.04 (1.21) 968.41 (2.47) 854.16 (8.23) 160.17 (0.96) 66.03 (2.50)

8192 168.72 (0.57) 148.47 (0.79) 138.84 (2.33) 20.29 (0.04) 10.72 (0.68)
4096 18.42 (0.04) 15.58 (0.07) 14.47 (0.11) 2.77 (0.00) 2.73 (0.02)
2048 2.34 (0.02) 1.80 (0.02) 1.58 (0.03) 0.43 (0.00) 0.20 (0.00)
1024 0.42 (0.01) 0.33 (0.00) 0.32 (0.02) 0.06 (0.00) 0.04 (0.00)

d𝖤𝗂𝗀d𝖥𝖨𝖣

c.  The  and  run time obtained with different implementation variants.d𝖥𝖨𝖣 d𝖤𝗂𝗀

Figure 2: The toy studies of multivariate Gaussian distribution (0,Σ). Here, all the experiments
are computed with Intel(R) i9-9940X CPU @ 3.30GHZ and repeated with four random seeds. Since
the coefficient of variance std/mean < 0.01 for both dEig and dFID, we only report the mean score in
Plot a and b. Besides, sqrtm(), schur() and eigvals() achieve identical numerical results for computing
dFID up to negligible rounding error. So do svdvals() and eigvalsh() for computing dEig. Therefore,
only two curves are presented in Plot a, b.

2.2.3 TOY STUDIES: dEig IS MORE RELIABLE THAN dFID .

Mathematical equivalence between dEig and dFID. For proof of principle, we conduct toy studies
with multivariate Gaussian data. Concretely, we construct non-negative diagonal entries of a p-
dim covariance matrix Σ with np.abs(np.random.randn(p)), while keeping the off-diagonal entries
zero. By multiplying Σ

1
2 and Xi = np.random.randn(p, ni), we obtain ni Gaussian data entries

Yi = Σ
1
2Xi that are drawn from (0,Σ). Then we compare S1 = 1

n1
Y1Y

T
1 to ground-truth Σ

(Fig. 2(a)) and to S2 = 1
n2

Y2Y
T
2 (Fig. 2(b)). Following above theoretical discussions, we instantiate

Eq. 6 of dEig with sqrtm(), schur() and eigvals(). Because Si is a symmetric SPD, we implement
Eq. 2 of dFID with svdvals() and eigvalsh(). Throughout our experiments, we notice that the results of
implementation variants are identical up to very small rounding errors. Therefore, we experimentally
confirm the validity of improved dFID and the equivalency between svdvals() and eigvalsh(). Because
identical (sample) covariances are simultaneously diagonalizable, we have dEig = dFID in theory.
Since S1 ≈ S2 ≈ Σ with sufficient amount of data, we expect dEig ≈ dFID ≈ 0 in practice.

Numerical difference between dEig and dFID. When comparing S1 to Σ, Fig. 2 (a) shows that
dEig and dFID have a comparable trend of decreasing scores with a growing number of data entries
(5k → 50k). This indicates that both dEig and dFID are meaningful metrics and can converge to their
theoretical limit. When comparing S1 to S2, Fig. 2 (b) illustrates that dEig is more resistant to the
data size difference. In contrast to dFID, it suffices to use a smaller amount of data to achieve a good
estimation for dEig. Arguably, dEig represents a more reliable score than dFID due to the fact that 1)
dEig demonstrates favorable convergence curves that are overall closer to 0, and 2) in comparison with
the standard dFID (Eq. 2), dEig (Eq. 6) is a more faithful routine to approximate Eq. 5 – the simplified
dFID for our toy setting.

Run time. When comparing different variants for implementing dEig and dFID, Fig. 2 (c) shows
18%− 32% reduction of run time by replacing sqrtm() with eigvals(), and we further reduce the run
time by 85%− 94% when utilizing eigvalsh(). As a result, it is beneficial to apply the improved dEig
and proposed dFID for computing distribution shifts, especially in the high dimensional cases such as
p = 16384. From now on, dEig and dFID are computed with eigvals() and eigvalsh() by default.
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3 THE PROPOSED dEig

(Probability) Notation: Sans serif lower case letters (e.g., x, y, z, λ) denote random variables, sans
serif bold lower case letters (e.g., x, y, z,µ) denote random vectors, and sans serif bold upper case
letters (e.g., X,Y,Z,Q,S) denote random matrices. ≍ denotes asymptotic equivalence, N+ is the set
of positive integers, E is expectation and P is probability distribution.

Following the computational analysis on deterministic eigenvalues, we here investigate the statis-
tical facets of dEig from the viewpoint of RMT. Given a SCM, researchers have a keen interest in
understanding the asymptotic behavior of the largest eigenvalues (spikes) (Izenman, 2021). This is
motivated by the observation that spikes reflect the direction of largest variance and reserve the most
critical information (Perry et al., 2018). Since spikes also dominate the computation of dEig, it is
important to analyze their asymptotic behavior in our study.

3.1 ASYMPTOTICALLY STABLE BEHAVIOR

In this section, eigenvalue, vector and matrix are non-deterministic and indicate random eigenvalue
(variable), random vector and random matrix unless stated otherwise. Firstly, we recall a canonical
case where X = (x1, . . . , xn) is a random matrix with IID entries. For j = 1, . . . , p and k = 1, . . . , n,
let n ≍ p and xjk be the IID entries of X satisfying E|xjk|2 = 1 and E|xjk|m ≤ cm for all fixedm ∈
N+. Similar to Sec. 2, we further assume Exjk = 0. As shown in one of the pioneer studies (Marčenko
& Pastur, 1967), the asymptotic eigenvalue density of 1

nXX
T can be well characterized with limiting

Stieltjes transform. However, the assumptions of IID entries and diagonal covariance structure
are very stringent and do not reflect real-world data statistics. Regarding GAN assessment as a
concrete example, samples drawn from xj are usually representations obtained with the penultimate
layer (pool3) of an Inception V3 model (Szegedy et al., 2016). Therefore, x1k, . . . xpk of xk can
be dependent and have a more general covariance structure Σ. To resolve the gap, we assume Σ
satisfies the stability condition as in (Bao et al., 2015, Condition 1.1 (iii)) and propose to investigate
Y = Σ

1
2X, a linear transformation of X.

Theorem 10. (Case of zero expectation: Y = Σ
1
2X) Fix r and let λ̄1 ≥ · · · ≥ λ̄r be the r largest

eigenvalues of Q = 1
nYYT, then for any j = 1, . . . , r we can find deterministic θ̄j such that for any

(small) α > 0 and (big) β > 0, we have

P(|λ̄j − θ̄j | ≥ n− 2
3+α) ≤ cα,βn

−β (7)
for some constant cα,β independent of n, p.

Discussion. Here, Thm. 10 is a direct result of the local density law (Knowles & Yin, 2017).
Note that 1

nEYYT = Σ holds true and we impose linear dependency among x1k, . . . xpk of xk to
approximate real-world scenario. In the meantime, x1, . . . , xn remain identically distributed, which
reflects the key fact that data entries such as image representations of a GAN model are drawn from
the same probability distribution. As learned representations commonly have non-zero expectations
m ̸= 0, we further introduce a deterministic rank-1 matrix M = meT to model this scenario. Here,
e = (1, . . . , 1)T and m = dv satisfying d ≍ p ≍ n and ∥v∥ = 1. For Z = M +Σ

1
2X, we have

Lemma 11. (Case of non-zero expectation: Z = M +Σ
1
2X) Fix r and let λ1 ≥ · · · ≥ λr be the r

largest eigenvalues of S = 1
nZZ

T, then for any j = 1, . . . , r we can find deterministic θj such that
for any (small) α > 0 and (big) β > 0, we have

P(|λj − θj | ≥ n− 1
2+α) ≤ cα,βn

−β (8)
for some constant cα,β independent of n, p.

Discussion. As shown in (Bai, 1999, Lemma 2.2), the eigenvalue counting functions of Q and S
differ by at most 1

p . Thus, λ̄j+1 ≤ λj ≤ λ̄j−1 for j = 2, 3, ..., r. Then, the rigidity estimation of λj

for j = 2, 3, ..., r can be obtained by considering θj := θ̄j and applying Thm. 10. As to the case of
j = 1, we consider Eq. 8 for λ1(≥ λ̄1) as a conjecture and leave the proof for future work. Together
with discussions in Sec. 2, we illustrate both the numerical and asymptotic stability of dEig.
Remark 12. Similar to (Louart & Couillet, 2018, Remark 0.1), the above lemma suggests a (abusive)
definition of SCM S = 1

nZZ
T without subtracting the mean expectation. Taking S as the input of

dEig, we show that it is feasible for dEig to quantify the distribution shift in follow-up GAN studies.
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3.2 GAN STUDIES: dEig IS A SIMPLE ALTERNATIVE TO dFID .

Recently, Parmar et al. (2022) discovered surprising subtleties of image pre-processing steps for
downstream GAN evaluation. To faithfully benchmark the GAN performance of state-of-the-art
(sota) models, the authors published new APIs to reproduce the evaluation results. Hence, the
implementation of our GAN experiments is built on top of these APIs. Next, we summarize four key
aspects of GAN evaluation that we examine in this study.

4 Scores. Similar to Parmar et al. (2022), we take two widely-used scores dFID and dKID as baselines.
Then, we investigate two variants of the proposed metric: dEig(S1,S2)

2 =
∑p

j=1(
√
λ1
j −

√
λ2
j )

2

(Eq. 6) and d′Eig(S1,S2)
2 =

∑p
j=1(

√
λ̄1
j −

√
λ̄2
j )

2 + ∥m1 − m2∥2. The λi
j of the former are

eigenvalues of Si, and λ̄i
j of the latter are eigenvalues of Si − 1

ni
mim

T
i , where mi is the sample

mean. Differing from toy settings of Gaussian distribution (0,Σ) that lead to dEig ≈ dFID ≈ 0 with
sufficient data, we do not have such a theoretical limit or ground-truth score in GAN studies. As a
workaround, we consider dFID to be the ‘gold standard’ score for analyzing dEig. Without loss of
accuracy, we take dKID × 103 and dEig × 10 for clearer comparisons.

3 Models. To illustrate the strength of dEig for challenging cases, we investigate three sota GAN
models and probe their nuances when visual evaluations are non-trivial: StyleGAN2 with the
recommended Config (Style2) (Karras et al., 2020a), StyleGAN3 with translation equivariance
Config (Style3t) and with translation and rotation equivariance Config (Style3r) (Karras et al., 2021).

3 Interpolations. Following the practice of Parmar et al. (2022), we also present results that are
influenced by different image interpolations such as Clean (Clean), PyTorch_legacy (Py_legacy) and
TensorFlow_legacy (TF_legacy).

5 Datasets. Lastly, we run thorough comparisons on commonly-used datasets including FFHQ,
AFHQ, and LSUN (Horse, Church, Cat categories) for GAN model training. For each dataset, we
generate 100k fake images and repeat each experiment 4 times by randomly sampling a given number
of image entries from 100k fake images.
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d. (FFHQ dataset) The  and  scores computed with 50k - 5k GAN generated images.d𝖥𝖨𝖣 d𝖤𝗂𝗀

e. (AFHQ dataset) The  and  scores computed with 50k - 5k GAN generated images.d𝖥𝖨𝖣 d𝖤𝗂𝗀

f. (LSUN dataset) The  and  scores computed with 50k - 5k GAN generated images. 
Here, all the results are obtained with Style2 model under Clean Config.

d𝖥𝖨𝖣 d𝖤𝗂𝗀

d𝖤𝗂𝗀

d𝖥𝖨𝖣

d𝖤𝗂𝗀

d𝖥𝖨𝖣

0.5

2

3.5

Clean PY_legacy TF_legacy
0.5

2

3.5

Clean PY_legacy TF_legacy
0.5

2

3.5

Clean Py_legacy TF_legacy

0.5

2

3.5

5

Style3t Style3r Style2
0.5

2

3.5

5

Style3t Style3r Style2
0.5

2

3.5

5

Style3t Style3r Style2

0

2

4

6

8

Horse Church Cat

d𝖤𝗂𝗀d𝖥𝖨𝖣 d𝖪𝖨𝖣 d′￼𝖤𝗂𝗀

Horse Church Cat

3.614±0.031 4.096±0.029 7.560±0.018

0.572±0.008 1.135±0.018 1.859±0.007

0.780±0.010 1.277±0.054 4.251±0.028

d𝖤𝗂𝗀
d′￼𝖤𝗂𝗀

a. (FFHQ dataset) The quantitative scores computed with and 50k GAN generated images.

Style3t Style3r Style2

Clean PY_legacy TF_legacy

b. (AFHQ dataset) The quantitative scores computed with 50k GAN generated images.

c. (LSUN dataset) The quantitative scores computed with 50k GAN generated images.  
Here, all the results are obtained with Style2 model under Clean Config.
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Figure 3: The main results of GAN studies. Here, 70k, 15803 and 50k real images for FFHQ,
AFHQ and LSUN datasets resp. are applied to compute the reported scores.

In the following, we discuss the main results of our GAN studies. As displayed in Fig. 3 (a, b),
dEig and dFID show similar evaluation curves and correlate well with each other in terms of different
combinations of models and interpolations. When observing the convergence curve with an increasing
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amount of GAN generated images Fig. 3 (d, f), we observe an identical behavior as in the toy studies.
That is, dEig is more favorable than dFID in the sense that it suffices to use a small amount of image
entries to obtain a good estimation for dEig. Similar claims can be made for the LSUN dataset. As
shown in Fig. 3 (c), dEig illustrates comparably increasing scores from the Horse to the Cat category,
indicating less satisfying GAN generation results for the Cat images. Meanwhile, the convergence
speed remains faster for dEig compared to dFID (Fig. 3 (f)). With regard to d′Eig, the variant of sorted
eigenvalue comparison show less consistency with the gold standard dFID (See Fig. 3 (a, b)) and is
less desirable in our GAN studies. Based on the investigations of the four key aspects and theoretical
advantages of dEig discussed above, the proposed dEig represents a simple alternative to dFID. By
applying dEig in GAN model evaluation, we take a critical step towards a more comprehensive
analysis of high-dim distribution shift between two collections of image entries.

AFHQ Eigenvalue Eigenvector

1 133.53±0.201 0.99

2 14.43±0.037 0.015

3 9.18±0.034 0.012

4 6.43±0.070 0.009

5 5.5±0.039 0.003

6 4.25±0.016 0.003

7 3.28±0.007 0.005

8 2.82±0.009 0.0003

9 2.44±0.004 0.002

10 2.3±0.015 0.002

FFHQ Eigenvalue Eigenvector

1 259.14±0.157 0.99

2 15.92±0.048 0.002

3 10.24±0.047 0.009

4 7.31±0.024 0.001

5 6.85±0.049 0.013

6 5.41±0.019 0.004

7 3.73±0.023 0.003

8 3.59±0.009 0.002

9 3.11±0.007 0.001

10 2.72±0.001 0.004

Horse Eigenvalue Eigenvector

1 237.81±0.197 0.99

2 16.46±0.025 0.011

3 6.06±0.012 0.002

4 4.14±0.013 0.006

5 4.04±0.015 0.003

6 3.10±0.013 0.0003

7 2.70±0.015 0.016

8 2.56±0.009 0.002

9 2.41±0.010 0.013

10 2.12±0.014 0.001

Church Eigenvalue Eigenvector

1 186.59±0.212 0.99

2 8.81±0.038 0.005

3 7.33±0.015 0.004

4 4.24±0.011 0.012

5 3.92±0.015 0.015

6 3.21±0.009 0.014

7 2.53±0.012 0.023

8 2.28±0.011 0.005

9 1.92±0.005 0.026

10 1.88±0.007 0.009

Cat Eigenvalue Eigenvector

1 291.90±0.094 0.99

2 11.21±0.025 0.012

3 6.27±0.022 0.010

4 4.39±0.014 0.002

5 4.12±0.009 0.001

6 3.29±0.013 0.007*

7 2.79±0.017 0.0005*

8 2.63±0.016 0.015

9 2.44±0.005 0.012*

10 2.15±0.004 0.016

Figure 4: The eigenvalue fluctuation and eigenvector similarity for 10 largest spikes of dEig. Here,
all the experiments are obtained with Style2 under Clean configuration. The eigenvalue fluctuation
(standard deviation) is obtained by repeating experiments with 4 random seeds. Also, we report the
largest cosine similarity between the i-th largest eigenvector of GAN images and its counterpart of
real images. The * indicates that the largest cosine similarity is not obtained between the the i-th
largest eigenvectors of GAN and real images.

As displayed in Fig. 4, we report the eigenvalue and eigenvector behaviors for the 10 largest spikes.
The reported cutoffs were determined by the dominant percentage (> 80%) taken by these spikes
compared to the complete spectrum. Notably, the 10 largest spikes present small fluctuations (std)
obtained with four random seeds, which serves as complementary evidence to support the theoretical
rigidity estimations discussed in Thm. 10 and Lem. 11. Except for the few cases marked with *,
the largest cosine similarity is mostly obtained with the i-th largest eigenvector for both GAN and
real images. If we decompose the distribution shift to scale shift (eigenvalue shift) and rotation shift
(eigenvector shift), such results suggest that the dominant eigenvector shift is only determined by the
cosine of the angle between them, and is not influenced by eigenvector permutation. By weighing the
estimation challenges of eigenvectors, dEig makes a meaningful trade-off that only takes eigenvalue
differences into account.

Clean PY_legacy TF_legacy
Style3t Style3r Style2 Style3t Style3r Style2 Style3t Style3r Style2

3.150±0.027 3.43±0.042 3.1±0.01 2.77±0.027 3.033±0.041 2.856±0.016 2.77±0.022 3.036±0.037 2.857±0.013

1.9±0.06 2.22±0.061 2.657±0.073 1.627±0.060 1.883±0.053 2.513±0.056 1.625±0.005 1.883±0.043 2.507±0.049d𝖤𝗂𝗀

d𝖥𝖨𝖣

Figure 5: The nuance between dFID and dEig. Here, all the experiments are conducted with the
FFHQ dataset.

Lastly, we report a nuanced case when comparing dFID and dEig. Fig. 5 shows that the face general-
ization performance w.r.t. dEig tends to be improved from Style2 to Style3r and Style3t, which is not
compatible with dFID. By imposing the translation and rotation equivariance in StyleGAN3, Karras
et al. (2021) reported anti-aliasing improvements over StyleGAN2 by resolving the ‘texture sticking’
issue. Such clear visual improvements are supported by the decreasing dEig scores. However, due to
the lack of ground-truth, whether such a correlation between visual improvements and dEig supports
the effectiveness of dEig remains inconclusive.
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4 RELATED WORK

Fast dFID. The role of eigenvalues played in dFID has been firstly noticed in the study of Fast Fréchet
Inception Distance (Mathiasen & Hvilshøj, 2020). When n1 ≪ p, the researchers suggested to
compute the eigenvalues of n1×n1 matrix ZT

1 Z2Z
T
2 Z1 to supervise the model training. Accordingly,

the differences between our study and Fast dFID lie in the fact that we do not assume n1 ≪ p and
we compute S1S2 = 1

n1n2
Z1Z

T
1 Z2Z

T
2 instead. Since a more precise justification w.r.t. eigenvalues

was not present in Mathiasen & Hvilshøj (2020), the key contributions of our theoretical analysis on
dFID come from articulating the unique principal square root, diagonalizable S1S2 with non-negative
eigenvalues and proposing a tight asymptotic error bound.

Seddik et al. (2020). From a RMT viewpoint, Seddik et al. (2020) studied the SCM of GAN image
representations and argued that such representations behave asymptotically as if they are drawn from
a Gaussian mixture. Following this insight, we further show that comparing sorted eigenvalues of
SCMs is useful and efficient for measuring high-dimensional distribution shift, which is a novel and
distinct contribution by our theoretical study.

5 LIMITATIONS AND FUTURE WORK

5.1 EIGENVECTOR

In contrast to the improved dFID that implicitly takes eigenvectors of Si into account via the matrix
multiplication S1S2, the proposed dEig only measures the eigenvalue difference. Admittedly, the
exclusion of eigenvectors in dEig is mainly due to the disencouraging properties such as more
loose numerical error bound (Anderson et al., 1999) and more strict conditions for distribution
estimation (Knowles & Yin, 2013). Nevertheless, eigenvectors carry plausibly critical information
and should be carefully examined in subsequent work.

5.2 FUTURE STUDIES: dEig MAY BE MORE COMPREHENSIVE AND INFORMATIVE THAN dFID .

Similar to existing measurements, dEig remains a scalar-valued score for measuring high-dimensional
distribution shifts. A more comprehensive quantification is still missing for applications in both
the natural and medical image domains. Due to the inherent data heterogeneity and critical im-
plications for real-world application, facilitating in-depth analysis of distribution shifts underlying
high-dimensional images (or representations) is of key importance to support the development and
application of high-quality data science approaches, e.g., in the medical domain (Yue et al., 2020;
Cios & Moore, 2002). In such a scenario where inaccurate analysis can have severe consequences,
existing scalar-valued scores including dEig is not sufficient. To resolve this issue, a direct follow-up
on dEig is to individually compare the eigenvalue difference along each dimension. Naturally, the
scalar-valued dEig is decomposed to a multi-dimensional vector-valued measurement and enables
a more complete overview of data heterogeneity. In addition, the dEig builds the bridge between
the classical principal component analysis (PCA) (Abdi & Williams, 2010) and latent semantic
understanding (Shen & Zhou, 2021; Härkönen et al., 2020).

Taking cancer studies as an example(Fremond et al., 2022; Wu et al., 2022a), the fine-grained multi-
dimensional analysis with dEig could pave a promising way towards precise risk stratification by
validating well-established and proposing novel features with prognostic importance in complex
medical images. This can be concretely supported with biologically interpretable visualization
examples generated by perturbing the largest eigenvalue(s)/eigenvector(s) in a given dataset of
interest. This approach could thus be used to control for inherent variance in existing data repositories
and generate prototypical examples of disease states such as highly aggressive tumors in radiological
or pathological time series.

In combination of comprehensive quantification and biologically meaningful visualization, dEig thus
adds a valuable tool for future work in the natural and medical image domains.
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