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Open Images

Figure 1: Annotation noise found in both manually labeled data and weakly annotated data. These
errors include incomplete or over-extended masks, and ambiguous boundaries.

Abstract

We propose four noise-augmented benchmarks—COCO-N, CityScapes-N,
VIPER-N and the weak-annotation track COCO-WAN—that provide a unified
test-bed for studying annotation noise in instance segmentation. A parametric
engine stochastically perturbs mask boundaries, drifts spatial extents, flips cate-
gories and omits instances at three severity tiers, producing Monte-Carlo variants
of any COCO-style corpus. Evaluating popular segmentation models such as Mask
R-CNN, Mask2Former, YOLACT and SAM reveals up to 35 % drops in mask mAP
under moderate noise, underscoring the limits of current learning-from-noisy-labels
techniques when errors are spatial rather than purely categorical. All proposed
Benchmark-N suite establishes a reproducible baseline for noise-aware segmen-
tation and motivates future work on robust objectives, data-centric annotation
pipelines and noise-adaptive architectures.

1 Introduction

Deep learning—driven instance segmentation underpins safety-critical applications ranging from
autonomous driving to medical imaging. Its success hinges on precise pixel-level supervision, yet
large, rapidly curated datasets inevitably contain erroneous masks. In echocardiography, for example,
a modest 5% boundary error around the left-ventricular cavity can swing the ejection-fraction estimate
from 45% to 39-50%, potentially tipping a diagnosis from borderline normal to pathological. Such
high-stakes scenarios demand segmentation models that remain reliable when labels are imperfect.

Unfortunately, almost all noisy-label benchmarks—focuses on class noise for image classification.
Spatial distortions, instance omissions and prompt-induced biases that plague instance segmentation
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are far less explored, and there is no unified test bed for studying them at scale. Without realistic
benchmarks, it is unclear how fragile current models are or which learning strategies truly help.

We close this gap with Benchmark-N, a suite of four noise-augmented datasets that inject empirically
grounded spatial corruptions into both real (COCO-N, CityScapes-N) and synthetic (VIPER-N) data,
plus a weak-annotation track (COCO-WAN) built with foundation-model prompts. A parametric
generator produces controllable boundary imprecision, spatial drift, category confusion and instance
omission at three severity tiers, enabling Monte-Carlo stress tests of any segmentation pipeline.
Comprehensive experiments across Mask R-CNN, Mask2Former, YOLACT and SAM reveal sharp
performance drops even under mild noise, exposing limitations of current learning-from-noise
methods.

Our contributions are:

* A stochastic, task-agnostic noise model that synthesises diverse, realistic annotation errors
for instance segmentation.

* Four publicly released benchmarks—COCO-N, CityScapes-N, VIPER-N and
COCO-WAN—with reproducible “low/mid/high” noise presets.

* An extensive empirical study showing that popular CNN and transformer architectures lose
up to ~35% mAP under hard noise, underscoring the need for noise-aware training.

2 Related Work

Noisy-label benchmarks. Classification studies typically flip labels at random or via confusion
matrices (CIFAR-N Wei et al. [2022], Clothing 1M Xiao et al. [2015]); detection work jitters boxes or
drops objects Mao et al. [2021], Ryoo et al. [2023]. In dense prediction, mask opening/closing Lu
et al. [2014], Li et al. [2023] and class flips in medical data Nordstrém et al. [2022] leave object
extent mostly intact, missing boundary jaggedness, spatial drift and omissions observed in practice.

Weak or coarse labels. Polygon-level Cityscapes-Coarse and Mapillary Vistas Cordts et al. [2016],
click-based Openlmages Kuznetsova et al. [2020], and SAM-generated SA-1B Kirillov et al. [2023]
support weak-supervised training but are not designed as robustness tests. Our COCO-WAN turns
SAM masks—with controlled prompt noise—into such a benchmark.

Learning with noisy labels (LNL). Dense-task LNL adapts classification ideas: Adaptive Early-
Learning Correction Liu et al. [2022], spatial Markov refinement Yao et al. [2023], and federated
aggregation Wu et al. [2023]. Each uses bespoke or domain-specific corruptions, limiting comparabil-
ity. Spatial noise thus remains largely un-benchmarked; our datasets provide the first multi-domain,
reproducible test bed for boundary-level errors.

3 Annotation-Noise Generator

Accurate segmentation hinges on pixel-level agreement between an image and its ground-truth
mask. In practice, annotation pipelines introduce annotation noise—any mismatch between the ideal
(oracle) mask M* and the dataset mask M. We first catalogue common error modes, then formalise
a stochastic generator that injects them with tunable severity.

3.1 Empirical Taxonomy of Annotation Errors

A manual sweep of COCO Lin et al. [2014], Cityscapes Cordts et al. [2016], Openlmages Kuznetsova
et al. [2020] and LVIS Gupta et al. [2019] reveals four recurrent error families (illustrated in Fig. 1):
Boundary Imprecision — coarse or jagged outlines that over- or undershoot the true contour.

Spatial Drift — near-rigid shifts of an entire mask, typically caused by inattentive clicks or snapping
heuristics.

Category Confusion — visually similar classes swapped (e.g. bus—truck), reflecting annotator
ambiguity or taxonomy overlap.

Instance Omission — thin, occluded or low-contrast objects partially or fully omitted.
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Automated polygon simplifiers, box-to-mask converters and prompt-based foundation models can
exacerbate these patterns by eroding fine structures or hallucinating plausible yet wrong regions.

3.2 Parametric Noise Model

Let (M, ¢) denote a binary instance mask and its class label. We inject noise by composing five
independent perturbations; each perturbation is sampled i.i.d. per instance, so every invocation yields
a corrupted dataset.

Approximation: Simplify the polygon via Douglas—Peucker with tolerance & ~ N ( tapprox, Tapprox )-
Localization: Displace each vertex by (Az, Ay) where Az, Ay ~ N (toc, Oloc) With random signs.

Scale:  With equal probability, dilate or erode M by a square kernel of size K ~
max{1l, | NV (scate; Tscate) | }- Class Confusion: With probability ps, replace c by a sibling inside the
same super-category, following empirical confusion matrices Northcutt et al. [2021].

Deletion: With probability pge;, drop the instance altogether, mimicking missed objects.

low mid high

localization approximation

scale
&

Figure 2: Tllustrating the effects of the spatial noise with varying intensity.

3.3 Severity Presets and Reproducibility

Our open-source tool Benchmark-N suite! applies the above process to any COCO-style dataset.
Three presets—Low, Mid, High—scale (1, 0, Deis, Pdel) as detailed in Table 1. Because the generator
is purely stochastic, one can draw multiple corrupted variants, enabling Monte-Carlo robustness
studies instead of a single “clean vs. noisy” split.

This formulation cleanly decouples the empirically grounded taxonomy (Sec. 3.1) from the synthetic
noise engine (Sec. 3.2), providing a rigorous basis for analysing segmentation robustness under
realistic annotation imperfections.

All variables are sampled i.i.d. across instances, yielding a truly stochastic benchmark—unlike
previous works that commit to a single “clean vs. noisy” split Nordstrom et al. [2022], Lad and
Mueller [2023], Yao et al. [2023], Liu et al. [2022]. Three presets (low/mid/high) correspond to
increasing (u, o) pairs (Table 1, Appx.). Our public tool Benchmark-N applies these transformations
with a single command, enabling reproducible stress-tests of segmentation pipelines.

'https://anonymous.4open.science/r/noisy_labels-0C70/README . md
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Intensity Low Medium High

(,uapprox, Uapprox) (5, 2.5) (10, 2.5) (15, 10)
(,ulocala alocal) (23 05) (37 05) (4a 2)

(Mscate Uscale) (3,1) (5,1) (7,4)
Pclass 0.05 0.05 0.05
Pdelete 0.05 0.05 0.05

Table 1: Noise parameters used to produce the noisy annotations that compose Benchmark-N.

4 Benchmark

4.1 Synthetic Dataset: VIPER

In order to validate our noise model under perfectly labeled conditions, we turn to the VIPER dataset
Richter et al. [2017], which is derived from the GTA V game engine. VIPER provides high-fidelity,
pixel-accurate annotations for every object and region in the scene, making it a “clean” baseline for
testing the pure effect of annotation noise.

Figure 3: Examples from VIPER-N benchmark. Top row shows the clean annotations, second row
the low noise regime, third present the midum annotation noise and last row the high annotation
noise.

Because VIPER’s segmentation maps are automatically rendered in a synthetic environment, the
ground-truth annotations exhibit none of the spatial inaccuracies common in human-labeled datasets.
This allows us to inject our prescribed noise types in a fully controlled way, without mixing in any
preexisting labeling errors.

Experimental Results We train and evaluate the popular Mask R-CNN on VIPER-N and compare
to the noise-free VIPER baseline. Figure 3 illustrates qualitative examples of clean vs. noisy labels,
and Table 2 quantifies performance drops by model and noise level. Notably, even low-level spatial
distortions can reduce precision significantly, confirming the sensitivity of modern architectures to
subtle label corruptions.
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Table 2: mAP on VIPER-N at four noise severities (higher is better)

Noise All S M L

Clean 15.8 6.0 44.3 60.6
Low 13.8 4.7 38.0 57.3
Mid 12.3 4.0 314 55.2
High 10.7 2.6 29.0 53.6

VIPER-N thus provides a controlled, synthetic test bed that highlights each model’s vulnerabilities to
annotation noise when all else—lighting, context, labeling scale—is held constant.

4.2 COCO-N & CityScapes-N

Finally, the noise integrated with the same noise strategies into widely used real-world datasets,
producing COCO-N and CityScapes-N. Unlike VIPER, these datasets already contain minor human
labeling errors, meaning our injected noise adds a further layer of realism. Below are the key steps
and summary results.

We apply the exact same noise operations (§3.2) to each instance in COCO Lin et al. [2014] and
Cityscapes Cordts et al. [2016] train splits. In line with VIPER-N, we create three tiers of severity
(low, mid, high) by increasing the morphological kernel size, polygon simplification tolerance, and
class confusion probabilities. Figure 7a illustrate the performance degradation on those, as well as
LVIS Gupta et al. [2019] dataset, more details in the supp. materials.

Results Across Popular Models. Table 3 shows how varius models Mask R-CNN (R-50/R-101),
Mask2Former (R-50/Swin), YOLACT fare on both COCO-N and CityScapes-N for all three noise
tiers, as well as HTC Chen et al. [2019b] and SOLO Wang et al. [2020] for COCO-N Across the
board, we see a notable dip in both standard mAP as well as boundary-focused metrics Cheng et al.
[2021a] in supp materials. For COCO-WAN, we report fewer architectures, as full report will be
released upon acceptance. Interestingly, transformer-based architectures (e.g., Swin in Mask2Former)
appear slightly more robust to misaligned boundaries, but no model is immune to severe disruptions.

To assess the effect of label noise, we evaluate the performance of various instance segmentation
models using our newly developed benchmark. We apply the various levels of noise, presenting
COCO-N and CityScapes-N, providing insights into their robustness and adaptability. For more
details about the models and datasets refer to the implantation details in the supplementary materials.
Table 3 present the findings Mask-RCNN (M-RCNN) He et al. [2017], YOLACT Bolya et al.
[2019], SOLO Wang et al. [2020], HTC Chen et al. [2019a] and Mask2Former (M2F) Cheng et al.
[2021b]. Clean denote the performance of a model on the original annotations, where Easy, Mid
and Hard correspond to the definition in Table 1. The reported numbers in the table represent
mask mean average precision (AP) and boundary mask mean average precision (AP"), respectively.
More experiments involving LVIS dataset Gupta et al. [2019] and learning with noisy labels in sup.
materials. All models trained and evaluated by standard training procedure®. We obtained additional
experiments include cardiac unltrasound data in Appendix A, more evaluation metrics, models and
datasets in Appendix E, and most notably, evaluate both zero-shot and fine-tune SAM Kirillov et al.
[2023] on our proposed benchmark in Appendix F.

Our experiments demonstrate that label corruption leads to a degradation in model performance.
Specifically, Mask R-CNN with a ResNet50 backbone retains approximately 80.6%, 71.7%, and
64.4% of its performance under Easy, Medium, and Hard noise conditions, respectively, on the COCO-
N benchmark. The same model exhibits a more dramatic performance drop on the CityScapes-N
benchmark, managing to retain only 72.8%, 60.9%, and only 45% under the corresponding noise
levels. This trend is consistent across all tested models, suggesting that the impact is more crucial
when less data is available, but might be easier to mitigate when using more data, even with the same
portion of label noise.

This study demonstrates that all models are affected by labeling bias and exhibit diminished perfor-
mance to varying extents, highlighting differing sensitivities to label noise. Notably, transformers

2openmmlab/mmdetection/model_zoo



151
152
153
154
155

156
157
158
159
160

161

162
163
164
165
166
167
168

169
170

Table 3: Evaluation Results of Instance Segmentation Models under Different Benchmarks, reporting
mAP.

Dataset Model Backbone | Clean Easy Mid Hard
M-RCNN 34.6 279 248 223

YOLACT 28.5 264 233 208

SOLO R-50 359 252 17.1 124

COCO-N HTC 34.1 - 284 255
M2F 429 33,5 30.1 26.7

M-RCNN R-101 36.2 28.8 31.8 23.7

M2F Swin-S 46.1 396 379 336

M-RCNN R-50 36.1 264 22.0 16.3

CityScapes-N YOLACT 19.3 19.1 17.1 13.6
M-RCNN R-101 ‘ 37.0 337 30.7 27.0

M-RCNN 34.6 328 244 21.6

Cascade M-RCNN R-50 359 26.8 257 242

COCO-WAN M2F 42.9 392 319 262
M2F Swin-s ‘ 46.1 429 344 284

display greater resilience, retaining 73% on the Hard benchmark, effectively mitigating the adverse
effects of noisy labels compared to the convolution counterpart. This observation underscores the
potential of using transformer-based architectures in scenarios where robustness to label noise is cru-
cial. Our findings offer preliminary guidance for selecting or designing robust instance segmentation
models in practical applications where encountering label noise is inevitable.

Implications. Given their critical role as mainstream benchmarks, COCO-N and CityScapes-N
offer a practical measure of model reliability under imperfect labels. This can guide future research
in developing noise-aware training strategies, data-cleaning pipelines, or architectures that gracefully
handle label distortion. Our publicly released tool ensures that anyone can replicate these noisy
benchmarks, tune the noise parameters, or adapt them to new datasets.

4.3 COCO-WAN (Weakly ANnotated)

Modern annotation pipelines commonly employ Vision Foundation Models (VFMs) Zhang et al.
[2025] to reduce the dependence on fully manual labeling. While VFMs trained on large-scale data
can produce high-quality masks, they often introduce systematic biases, since they overlook fine
details. Due to the extend of tasks this models solves, for a specific context, they require some prompt
that provides a task-specific context, as illustrated in fig. 4a. Specifically, we examine Segment
Anything Model (SAM) Kirillov et al. [2023], prompting the model with either bounding-box, points,
partial masks or text queries, incorporating noises based on the model and queries biases.

Mask
Decoder
Image Prompt
Encoder Encoder

) B

coder. (b) Point Prompt (c) Box Prompt

(a) prompt-based VFM. Points,
boxes, and text guide the mask de-

Figure 4: prompt-based VFM (left) and example SAM masks using different prompts (middle and
right).

We have put into test three kinds of weak annotations as prompts, Points- one point per instance
in the middle of the object mask. Boxes- the bounding box from the annotations, and Text- we
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. . Table 5: Mask2Former fine-tune vs. Gounded-
Table 4: COCO-WAN prompt quality (mAP, b SAM Ren et al. [2024] text prompted noise. Re-

mAP Cheng et al. [2021a]) into Grounded-SAM. porting AP, and AP, as mask and box mAP

Prompt  Type Clean Noisy respectively.
AP APP AP APP P 2

Model Clean Noisy
Original labels 346 206 - - AP, AP, AP, AP,
Point  ~U 244 157 216 137 RS0 429 457 262 24.1
Box  +A(0,2) 328 197 253 159 RI01 434 461 267 251
—— s 20 al - . SwinS 46.1 493 284 31.4

Swin-B 482 515 303 332

fed the class label from the annotations into Grounded-DINO, and used the boxes output as a box
query, similar to Grounded-SAM Ren et al. [2024]. We examine the effect of noise on the prompts in
Table 4, incorporate noise into the points, by randomly sample one point from the mask, and to the
boxes by adding Gaussian noise (A (0, 2)) into one of the box corners.

In Table 5, we examine how a transformer backbone (Swin-S Liu et al. [2021]) impacts the
Mask2Former Cheng et al. [2021b] model’s robustness to noise. This noise degrades the mod-
els (on both mask and bounding box) by approximately 48% in R-50 and 37.3% in Swin-S. Although
still notably affected by noise, this trend aligns with the results on COCO-N and CityScapes-N as
reflected from Table 3.

Figure 4 illustrates how different prompt types can lead to varying degrees of segmentation noise, as
for the given example bounding box captures the background instead of the actuall object, while a
point is sufficient to produce high quality mask.

Qualitatively, SAM generally captures coarse object boundaries well, but Figure 5 shows how color
and texture biases may cause missing or conflated parts, particularly in challenging scenes (e.g.
without noticeable approximation errors). For instance, certain darker regions or closely colored
objects can be merged or overlooked, signaling a lack of task oriented context. As a practical example,
the middle image pair shows the pants and face of the standing person are not included in the mask
due to the stark contrast in color from the light shirt. On the right image, we observe annotations
with shape (stove-top) and instances of conflating potential objects (stove and cabinet) due to color
biases. More qualitative results show in the supp. materials. In Figure 6 we see yet another example
for auto-annotations excel in masks fidelity and even finding missing annotations, such as the portrait
in the top-left pair, however, it commonly struggle with crowded annotations, as demonstrated in the
bottom image, where the text was crowd orange and the mask include mostly the basket. this reflect
the need to explore open vocabulary VFM that may overcome this annotation obstacle.

Figure 5: Annotation quality comparing COCO labels (left) and COCO-WAN labels using box
queries (right)

This emphasizes the importance of developing more robust annotation strategies—both in prompt
design and in subsequent label refinement—when relying on VFMs for real-world segmentation
tasks.

4.4 Qualitatively Analysis

To evaluate how each noise independently affects model performance, we conduct an ablation using
Mask R-CNN He et al. [2017] (ResNet-50 backbone) trained on the whole COCO with only one
noise type active at various severity levels. Table 7 summarizes the quantitative impact on standard
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Figure 6: Compared annotations between COCO (left) and text prompt weak annotations (right).

metrics like mAP and boundary-level mAP (B-mAP) Cheng et al. [2021a]. Figure 11 visualizes
performance declines for increasing noise severity.

Scale Noise (especially erosions) severely affects boundary fidelity, leading to the largest drop in
performance, yet easy to fix by a pre-process morphological counter operation that bring the masks
close to clean (e.g., opening or closing), thus, we chose to scale at random.

Localization and Approximation Noise subtly degrade object outlines, though moderate levels of
displacement do not drastically lower global mAP.

Class Confusion chiefly impacts recognition accuracy; the reduced classification confidence leads to
a measurable mAP drop, but less so on boundary metrics.

Deletion yields fewer total annotations, skews training and causes a performance loss.

== COCO 10
mmm CityScapes

VIS 09
0.8
0.7
I I I .
0.5
0
Hard

R-CNN

’J_‘ Mask2Former

mAP
= - N N w
w o w o w o

Clean Easy Medium Clean Easy Medium Hard
(a) Mask-RCNN performance on COCO, (b) Confidence scores (threshold > 0.5) of
CityScapes and LVIS across three noise lev- Mask-RCNN, Mask2Former and YOLACT
els. under increasing noise.

Figure 7: Effect of annotation noise on segmentation quality (left) and prediction confidence (right).

Our experiments indicate that various architectures and backbones exhibit notable sensitivity to label
noise, affecting both mask quality and prediction confidence. As shown in Figure 7b, higher noise
levels correlate with reduced confidence scores, underscoring the vulnerability of model predictions
to annotation accuracy. This effect is further illustrated in Figure 10, where increased noise leads to
misclassification, causing the model to generate multiple conflicting predictions for a single instance.

5 Limitations

One limitation is that Benchmark-N suit targets four dominant error families (boundary imprecision,
spatial drift, category confusion, instance omission). It does not yet cover multi-instance merge/split
mistakes, or temporal label noise in videos. Future iterations should extend the taxonomy and validate
it with larger human studies.

COCO-WAN perturbs point and box prompts with zero-mean Gaussian noise. Other real-world
biases—e.g. inconsistent text queries across annotators—are not modeled, and could alter the
observed failure modes of SAM or Grounded-SAM.
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This work measures robustness; it does not propose a noise-aware training algorithm. Consequently,
conclusions about “limitations of current LNL techniques” are empirical, not prescriptive.

Finally, because the benchmark re-uses publicly available images, we do not study privacy leakage or
disparate performance across demographic groups.

6 Discussion

Our experiments demonstrate that label noise—whether from imprecise human annotations, auto-
mated tools, or weak prompts—can substantially degrade the performance of instance segmentation
models. We introduced both synthetic and weakly annotated benchmarks that systematically capture
real-world noise patterns, ranging from boundary misalignments to class confusion and missing
instances. Even moderate levels of noise can erode confidence in model predictions and lead to
notable mAP reductions, highlighting the sensitivity of current architectures to spatial inaccuracies.

In particular, our results show that (1) models trained on large datasets like COCO and Cityscapes are
far from robust under moderate noise, exhibiting over 10% drops in mask mAP, (2) scale noise severely
mislead boundary-based metrics, and (3) while prompt-based foundation models reduce labeling
effort, they also introduce new biases, and themselves are not fully immune to noisy prompts. These
outcomes underscore the gap between current label-noise handling strategies—mostly devised for
image classification—and the complexities of segmentation tasks, where spatial quality is paramount.

6.1 Confidence and Loss Analysis

Our study reveals that various architectures and backbones exhibit sensitivity to noise, impacting not
only mask quality but also confidence in instance identification. As illustrated in Figure 7b, increased
label noise correlates with diminished confidence in model predictions, underscoring the vulnerability
of different model architectures to labeling accuracy.

This reduction in confidence is further evidenced in Figure 10, where increased label noise results in
poorer mask quality and reduced confidence in the classification head.

We examine the model’s ability to distinguish noisy from clean annotations. Figure 8 shows two
experiments: in the first, 40% of instances contain class noise; in the second, 40% have medium-level
spatial noise. Under class noise, the model’s classification losses form two roughly distinct Gaussian
distributions, suggesting partial separation of clean and noisy samples. By contrast, when spatial
noise is introduced, the losses remain intermixed throughout training. This highlights the challenge
of boundary-level label errors for methods relying on loss-based separation. Further experimental
details and additional results on learning with noisy labels appear in the supplementary.

[ Class Noise [ Class Noise [ Class Noise
>°-6 Clean 0.6 Clean 0.6 Clean
2
Lo4 0.4 0.4
9]
a)
0.2 0.2 0.2
00%%0 25 50 75 100 135 00%%0 25 50 75 100 125 00%5% 25 so0 75 100 125
Class Loss Class Loss Class Loss
2.5 [ Spatial Noise 2.5 [ Spatial Noise 2.5 [ Spatial Noise
2.0 Clean 2.0 Clean 2.0 Clean
215 15 1.5
[
Q10 1.0 1.0
0.5 05 0.5
_— - J —
00—%0 05 1o 15 20 25 °% 00 o5 1o 15 20 25 %% 00 o5 10 15 20 25
Mask Loss Mask Loss Mask Loss
(a) Epoch 2 (b) Epoch 6 (c) Epoch 10

Figure 8: Class and Mask Loss Distribution of Mask-RCNN (R50) trained on COCO easy benchmark
at different epochs during training.
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A Ejection Fraction Analysis in the CAMUS Dataset

The CAMUS dataset Leclerc et al. [2019] provides 2D echocardiographic images along with high-
quality, expert-annotated labels of the left ventricle (LV). A critical clinical metric in these annotations
is the left ventricle’s ejection fraction (EF), defined as:

EDV — ESV
EF = —==y— % 100%, ey

where EDV is the end-diastolic volume (i.e., the LV volume at its most dilated state) and ESV is the
end-systolic volume (the LV volume at maximal contraction). EF offers a succinct quantification of
cardiac pump efficiency: a healthy range is typically considered to be above 50%, while borderline or
reduced EF can indicate impaired cardiac function.

Clinical Implications and Risks. Misestimations of the LV boundary—especially at the end-
diastolic or end-systolic frames—can propagate into disproportionate errors in volume computations.
Even small annotation noise around the boundary may shift the EF from borderline-normal (e.g.,
45%) to a clearly abnormal (=~ 39%) or misleadingly normal (=~ 50%) reading. Such inaccuracies
pose a risk for misdiagnosis or delayed therapeutic intervention, since EF underlies critical clini-
cal decisions, including the prescription of certain medications, lifestyle interventions, or further
diagnostic procedures.

Noise-Induced Errors. Figure 9 (to be added) illustrates how a noisy annotation around the
LV boundary at end-diastole can lead to an overestimation or underestimation of EDV. When
combined with an equally skewed ESV, the net EF deviation can be clinically significant. We examine
morphological dilation of the ESV boundary, along with moderate localization noise in both EDV
and ESV, using the “low” noise setup described in the main text.

. 5 .x
- -

Figure 9: Example of ESV (top) and EDV (bottom) from the CAMUS dataset (left) and their noisy
counterparts (right). Even modest boundary distortions can shift EF calculations significantly.

Evaluation Under Noisy Labels. We trained a simple convolution-based U-Net model, as described
in Leclerc et al. [2019], on both clean and noisy CAMUS annotations, and compared the results in
Table 6. Evaluation metrics are Dice Index for segmentation overlap of the left ventricle (LV) at
end-systolic (ES) and end-diastolic (ED) frames,EF Error as mean absolute error compared to 2D
compute of EF values from the labels in percentage points (p.p), as well as HD (Hausdorff Distance)
for boundary alignment.

As Table 6 indicates, the model trained on noisy labels tends to yield worse Dice overlap and a higher
EF error than when trained on clean labels, underscoring the sensitivity of medical diagnostics to
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Table 6: Comparing UNET results on clean vs noisy CAMUS data.
Training  Dice (%) EF Error HD (mm)

Data ES ED (p-p.) (ED frame)
Clean 86.9 91.1 2.1 6.3
Noisy 82.1 875 4.5 11.25

Table 7: Ablate the performance evaluation of Mask R-CNN with Spatial label noise across all data
on COCO-N.

Severity Low Medium High
Metric mAP B-mAP mAP B-mAP mAP B-mAP
Clean 34.6 20.6 34.6 20.6 34.6 20.6
Dilation 32.8 18.5 29.1 14.2 264 10.3
Erosion 29 15.7 22 9.5 17.4 5.3
Opening 34.6 20.7 34.7 20.7 34.6 20.6
Random Scale 34.1 20.4 32.4 18.5 30.8 17.1
Shifting 28.2 154 26.6 14.0 21.1 8.6

Localization 34.4 204 34.2 20.1 33.5 19.4
Approximation  34.7 20.8 32.5 18.8 30 16.3

annotation precision. Crucially, this discrepancy demonstrates that even modest boundary errors
can propagate into clinically important EF ranges, highlighting the urgency of robust noise-handling
strategies in echocardiographic segmentation tasks.

B Additional Experiments

Figure 11 compare the mAP and boundary mAP of original vs. noisy annotations. The top row
illustrates the morphological operations used for scale-based spatial distortion, while the bottom row
shows the specific noise types we apply in our benchmark.

Table 8: Evaluation results of instance segmentation models (Boundary mAPCheng et al. [2021a])
under various noise levels.

Dataset Model | Clean Easy Medium Hard

M-RCNN (R50) 206 189 17.5 16.3
M-RCNN (R101) | 222 204 19.0 17.4
M2F (R50) 30.0 28.6 26.7 23.8
M2F (Swin-S) 326 309 29.3 26.2
YOLACT (R50) 1577 144 13.5 12.4

M-RCNN (R50) 334 284 24.7 22.8
Cityscapes-N  M-RCNN (R101) | 343  30.7 29.0 25.4
YOLACT (R50) 16.5 16.5 14.5 13.3

COCO-N

To further validate our noise design choices and their impact, we obtained additional experiments. As
presented in Table 9, we evaluated the traditional symmetric and asymmetric class noise on instance
segmentation using MASK-RCNN with two different backbones to assess the resulting performance
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Figure 10: Visual results of Mask-RCNN using the COCO-N easy benchmark. Since the model is
uncertain it observe different objects (pizza and sandwich in the bottom image) fooling the NMS
operation.
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Figure 11: The mAP and boundary-mAP metrics between real annotations from COCO dataset and
their COCO-N annotations counterpart.

IL)

degradation. “Sym p%" refers to symmetric class confusion with probability p, while “Asym p%
denotes mislabeling concentrated in a smaller set of classes Natarajan et al. [2013], Xiao et al. [2015].

Table 9: Class noise ablation reporting m A P** and m A P™*k

Models/Labels Clean Sym20% Sym50% Sym80% Asym 40%

M-RCNN (R50) 38/34.6  35.5/31.9  32.2/29.2  22.5/20.2 34.6/31.4
M-RCNN (R101) 40.1/36.2  37.5/33.6 34.5/31 25.2/22.7 36.8/33.2

Next, we examined the affects of label noise and the additional impact of spatial noise on mask quality,
as shown in Table 10. We assessed the quality of all masks through the foreground-background
segmentation task of a trained model. The results indicate that the mask quality deteriorates more
significantly when spatial noise is incorporated along with traditional class noise.

In addition to evaluating the benchmark itself, we extended our analysis to include the impact on
object detection performance. Specifically, we examined the Boundary — m AP and m AP scores,
as presented in Tables 8 and11 respectively. This tables highlights the detrimental effects of spatial
label noise on the boundaries of the masks, as well as bounding box quality, in addition to the
previously discussed impacts on mask quality. By analyzing the m AP, we aim to demonstrate
the broader implications of our noise design choices, showing that spatial noise not only affects
segmentation masks but also significantly degrades the performance of object detection tasks. This
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Table 10: Foreground-background segmentation results under class and spatial noise. The symbol “+”
indicates an added spatial corruption using M-RCNN(R50).
Foregound noise bbox segm boundry

clean 42 35.8 22.4
20 % 40.7 34.9 21.7
20 % + Easy 404 342 21.2
30% + Medium 39.6 327 19.9
40% + Hard 38.7 30.6 18.3
50 % 387 327 20.7

comprehensive evaluation underscores the robustness of our benchmark in assessing the performance
degradation across different aspects of instance segmentation and object detection.

Table 11: Evaluation Results of Instance Segmentation Models under Different Benchmarks reporting
A Pboz .

Dataset Model Clean Easy Medium Hard

M-RCNN (R50) 38 35.4 34.3 33.4
M-RCNN (R101) 40.1 374 36.5 35.2
COCO-N M2F (R50) 4577 422 43.7 44.7
M2F (Swin-S) 493 479 47.1 45.7
YOLACT (R50) 30.8 29.2 28.2 27.7

M-RCNN (R50) 415 357 32.8 31.2
M-RCNN (R101) 39.8 328 29.6 26.8

COCO-WAN M-RCNN (R50) 36.3 34.1 25.5 22.4

Cityscapes-N

Finally, we present results on the long-tailed segmentation dataset LVIS, as shown in Table 12. The
findings reveal a significant impact, with a 50% reduction in boundary IoU under the hard benchmark
conditions. This provides evidence of an exacerbated effect in long-tailed scenarios, highlighting the
increased challenges posed by our noise design in datasets with imbalanced class distributions.

Table 12: Performance on LVIS-N (Mask R-CNN R50-FPN). We report mAP / Boundary mAP under
various noise levels.

Dataset Clean Easy Medium Hard
AP APB AP APB AP APB AP APB

LVIS-N 228 221 155 143 17.7 13 133 11.2

C Additional Noise Visualizations

Figure 12 presents additional samples from our benchmark under different intensities of spatial
label noise. Each row highlights a specific set of distortions—such as boundary approximations or
morphological operations—applied to one or more instances. As the noise severity increases from
left to right, the object contours become visibly degraded, illustrating the range of realistic annotation
errors our benchmark can simulate.

Figure 15 provides a qualitative comparison of Mask R-CNN and Mask2Former under varying
noise levels. The top row shows both models’ predictions on a clean COCO image: each accurately
delineates the car and surrounding objects with sharp, well-aligned masks. In the middle row, Mask
R-CNN is challenged by the Easy, Medium, and Hard variants of COCO-N—its masks become
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Figure 12: Additional illustrating the effects of the spatial noises on one or two instances with various
scales, similar to fig. 2

progressively fragmented, with missing segments and increasingly jagged boundaries. The bottom
row reveals that Mask2Former, while initially more robust, also suffers under stronger noise: its Easy
predictions remain close to the clean baseline, but Medium and Hard noise lead to boundary bleed
and partial omissions. Overall, this figure illustrates that spatial annotation errors systematically
degrade mask quality in both CNN- and transformer-based architectures, with severity correlating
with noise intensity.

D Implementation Details

This section elaborates on the architectures, datasets, noise definitions, and the levels of asymmetric
noise used in our experiments. We also detail the noise intensity applied in the benchmark, along
with the hardware configurations and convergence times.

D.1 Architectures

We explore the effects of label noise on various instance segmentation models, encompassing
multi-stage (Mask R-CNN He et al. [2017]), single-stage (YOLACT Bolya et al. [2019]), and query-
based (Mask2Former Cheng et al. [2021b]) architectures. To achieve a comprehensive analysis, we
experimented with different feature extractors, we used convolutional backbones such as ResNet-
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50 He et al. [2015] for all models and ResNet-101 for Mask R-CNN, alongside a transformer-
based backbone (Swin-B Liu et al. [2021]) for Mask2Former. For the integration of multi-scale
features, Feature Pyramid Networks (FPN) Lin et al. [2016] were employed across all models
except Mask2Former, which utilizes Multi-Scale Deformable Attention (MSDeformAttn) Zhu et al.
[2020], as multi-scale feature representation. All models and configurations implementations from
MMDetection Chen et al. [2019c¢].

D.2 Datasets

COCO dataset for training and evaluating algorithms that segment individual objects within a
scene. It contains about 330,000 images, annotated with over 1.5 million instances masked from 80
categories that are also part of 12 super-categories.

Cityscapes dataset is designed for training and evaluating algorithms in urban scene understanding,
particularly for segmentation tasks. It comprises a collection of images captured in 50 different cities,
featuring 5,000 annotated images with 19 classes for evaluation, covering a range of urban object
categories such as vehicles, pedestrians, and buildings.

VIPER VIPER Richter et al. [2017] is a synthetic dataset generated from the GTA V game engine.
It provides per-pixel annotations for a broad range of 31 categories in photorealistic urban scenes,
making it ideal for benchmarking under controlled conditions. Because VIPER annotations are
automatically rendered (rather than hand-labeled), they are virtually free from human annotation
errors, allowing precise evaluation of how injected label noise affects segmentation performance.

LVIS dataset is based on COCO images and curated to provide a comprehensive benchmark for
instance segmentation, emphasizing rare object categories. It contains over 2 million high-quality
instance annotations across 1,203 categories, making it one of the largest and most diverse datasets
for instance segmentation. The LVIS dataset is particularly noted for its long-tail distribution of
object categories, which poses significant challenges for segmentation algorithms and help us to asses
the abilities of segmentation algorithms to deal with label noise in this scenario.

D.3 Hardware details

MS-COCO based experiments (include both COCO and LVIS) and VIPER conducted on local
machine with 4 Nvidia RTX A6000 or 4 Nvidia RTX 3090, ranging from 20 hours (Mask-RCNN
with R50) to 7 days (Mask2Former with SWIN transformer beckbone), training for 12 epochs for
all models except YOLACT that trained for 50 epochs. Cityscapes experiments conducted on local
machine with one instance of Nvidia RTX 3090, training for 12 epocs for about 12 hours. All
experiments use the default configs from MMDetection Chen et al. [2019c].

E Learning with Noisy Labels

As described in the paper, class noise is separable, allowing one to derive noisy instances from clean
ones (refer to Figure 13a). However, dealing with mask losses is more challenging. The loss of noisy
instances consists predominantly of correctly labeled pixels, with only a few noisy ones (refer to
Figure 13b). Furthermore, since most spatial noise occurs at the boundaries, these areas are where
the model exhibits the least confidence Kimhi et al. [2024]. This complexity makes it impossible to
distinguish between pixel-level noisy and clean data, posing a significant challenge in developing a
spatial noise solution to learn from noisy labels.

Due to these difficulties, we compared a class noise method to handle noisy labels. Table 13 presents
the results on the COCO-N benchmark, comparing standard Cross-Entropy with Symmetric Cross-
Entropy Wang et al. [2019]. While there is a marginal improvement, the method still faces challenges
as the noise level increases.
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Table 13: Evaluation Results of Instance Segmentation with different losses learning with noisy labels
trained on COCO-N dataset (mAP / Boundary mAP).

Loss Clean Easy Mid Hard
AP APB AP APB AP APP AP APP

CE 346 206 318 189 303 175 284 163
SCE 325 195 321 189 308 17.8 288 164

8
1.0 —— Mask Noise = True
n’ 0w .
§ 6 L | L § Mask Noise = False
m 208
05 N w0
o —— Class Noise = True o
O4 ) =06
o Class Noise = False o
013 (o))
o o
o © 0.4
z’ z -
! 0.2
0 2 4 8 10 0 2 4 8 10

6 6
Epoch Epoch

(a) Class Loss Separation. Average of the class (b) Mask Loss Separation. Average of the mask
loss of the Coco dataset, with the 25% and 75% loss of the Coco dataset, with the 25% and 75%
quantiles as margins - per epoch of training. quantiles as margins - per epoch of training.

F SAM Finetune with label noise

Since for weakly supervision annotations we heavly relay on SAM Kirillov et al. [2023], we exemine
how noise in prompt effect the model itself in two setups, zero-shot, that corespond to the quality of
the masks produced by sam, and fine-tuning, as a popular paradigm of using SAM for a downstream
application. For the zero-shot, we prompt SAM with the grounded bounding boxes of the validation
set of COCO as well as noisy boxes with the COCO-N hard type of noise on the validation
annotations. For fine-tuned, we exemine fine tuning with both clean and noisy COCO-N hard
annotations masks. Table 14, shows both mIoU and F1 scores of the masks produced by SAM,
showing that the quality of masks can be increased when fine-tuned, compared with zero shot training
with high quality prompts. Fine-tuning with noisy annotations however, is less sever, when prompting
with cerfully designed prompts, compared to noisy prompts. Our findings suggest that the quality of
prompts are fur more important then the qua

Table 14: Evaluation of prompt Instance segmentation on SAM
Annotations Clean COCO-N Hard
Method LoU F1 LoU F1

Zero-shot | 79.78 8749 | 67.99 6330 |
Fine-tune | 7991 78.6 | 77.47 76.18 |

G Biases of Self-annotating Datasets

More visual results of the weakly supervised annotations created by SAM are presented in Figure
14. A significant number of annotations were curated by this process (top row), reducing label noise,
particularly in cases where the original annotations suffered from approximation noise. In other
instances, where an object is surrounded by similar colors or illumination conditions, the annotations
become noisier around the boundaries, exhibiting weak localization noise (middle row).

The specific context of the dataset annotations can influence what the user is looking for. We observed
cases where there is ambiguity in the definition of certain objects, such as stove-tops (bottom row).
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Figure 14: Pairs of COCO annotations (left) and COCO-WAN easy annotations (right). Top pair
shows high fidelity annotations for COCO-WAN, compared to the original noisy counterparts. The
bottom example examine that when color changes by little, even with bounding box prompts, SAM
confuses due to color biases in segments and can not capture the desired segments such as stovetop
or sink.

s09  While SAM is familiar with the concept of a stove-top, it lacks the contextual knowledge of what it
510 should be within the specific context of the COCO dataset, leading to poor masking.
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Figure 15: Comparison Mask RCNN and Mask2Foramer models predictions. Top row (left to right):
original image M-RCNN and M2F predictions on clean COCO. Middle: M-RCNN predictions on
Easy, Medium and Hard COCO-N. Bottom: M2F predictions on Easy, Medium and Hard COCO-N.
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NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: refer to Section 5.

Guidelines:
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The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer:
Justification: No theoretical results or proofs.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, not only is the method reproducible (with code intended for release upon
acceptance), but also the models evaluated are all publicly available from online repositories
cited in the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

22



585
586
587

588
589

591
592
593
594
595
596

598

599
600
601

602
603
604
605
606
607
608
609
610
611
612

614

615

616
617
618

619

620
621
622
623

624

625

626
627

628
629
630

632
633
634

635
636

638
639

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code to reproduce all the benchmarks creation in https://anonymous.
4open.science/r/noisy_labels-0C70/README.md while the models and training re-
cepies from https://github.com/open-mmlab/mmdetection and https://github.
com/facebookresearch/segment-anything.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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640 * At submission time, to preserve anonymity, the authors should release anonymized
641 versions (if applicable).

642 * Providing as much information as possible in supplemental material (appended to the
643 paper) is recommended, but including URLSs to data and code is permitted.

644 6. Experimental setting/details

645 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
646 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
647 results?

648 Answer: [Yes]

649 Justification: Please refer to last question and Appendix D for all implementation details.
650 Guidelines:

651 * The answer NA means that the paper does not include experiments.

652 » The experimental setting should be presented in the core of the paper to a level of detail
653 that is necessary to appreciate the results and make sense of them.

654 * The full details can be provided either with the code, in appendix, or as supplemental
655 material.

656 7. Experiment statistical significance

657 Question: Does the paper report error bars suitably and correctly defined or other appropriate
658 information about the statistical significance of the experiments?

659 Answer:

660 Justification: The error bars of multiple runs are not a common practice in segmentation.
661 However, many of the ablations show significant of effects. note that we run all experiments
662 with same random seed and data splits to validate any hypothesis.

663 Guidelines:

664 * The answer NA means that the paper does not include experiments.

665 * The authors should answer "Yes" if the results are accompanied by error bars, confi-
666 dence intervals, or statistical significance tests, at least for the experiments that support
667 the main claims of the paper.

668 * The factors of variability that the error bars are capturing should be clearly stated (for
669 example, train/test split, initialization, random drawing of some parameter, or overall
670 run with given experimental conditions).

671 * The method for calculating the error bars should be explained (closed form formula,
672 call to a library function, bootstrap, etc.)

673 * The assumptions made should be given (e.g., Normally distributed errors).

674 * It should be clear whether the error bar is the standard deviation or the standard error
675 of the mean.

676 It is OK to report 1-sigma error bars, but one should state it. The authors should
677 preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
678 of Normality of errors is not verified.

679  For asymmetric distributions, the authors should be careful not to show in tables or
680 figures symmetric error bars that would yield results that are out of range (e.g. negative
681 error rates).

682 e If error bars are reported in tables or plots, The authors should explain in the text how
683 they were calculated and reference the corresponding figures or tables in the text.

684 8. Experiments compute resources

685 Question: For each experiment, does the paper provide sufficient information on the com-
686 puter resources (type of compute workers, memory, time of execution) needed to reproduce
687 the experiments?

688 Answer: [Yes]

689 Justification: Refer to Hardware details in Appendix D.

690 Guidelines:
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9.

10.

11.

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the NeurIPS Code of Ethics, and our research conforms to it in
every respect.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Yes, we discussed it in the introduction and final discussion.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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12.

13.

Answer:

Justification: All masks retained from publically avalible datasets. We refer to it in the
limitations Section 5.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All code and resources not created by the authors was properly credited in the
paper.
Guidelines:

¢ The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:

Justification: We made publicly available the code that create the benchmark suit, yet
a dataset, including the synthetic data will be release upon acceptance (with the proper
documentation).

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
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* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: NA: No human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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