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Figure 1: Annotation noise found in both manually labeled data and weakly annotated data. These
errors include incomplete or over-extended masks, and ambiguous boundaries.

Abstract

We propose four noise-augmented benchmarks—COCO-N, CityScapes-N,1

VIPER-N and the weak-annotation track COCO-WAN—that provide a unified2

test-bed for studying annotation noise in instance segmentation. A parametric3

engine stochastically perturbs mask boundaries, drifts spatial extents, flips cate-4

gories and omits instances at three severity tiers, producing Monte-Carlo variants5

of any COCO-style corpus. Evaluating popular segmentation models such as Mask6

R-CNN, Mask2Former, YOLACT and SAM reveals up to 35 % drops in mask mAP7

under moderate noise, underscoring the limits of current learning-from-noisy-labels8

techniques when errors are spatial rather than purely categorical. All proposed9

Benchmark-N suite establishes a reproducible baseline for noise-aware segmen-10

tation and motivates future work on robust objectives, data-centric annotation11

pipelines and noise-adaptive architectures.12

1 Introduction13

Deep learning–driven instance segmentation underpins safety-critical applications ranging from14

autonomous driving to medical imaging. Its success hinges on precise pixel–level supervision, yet15

large, rapidly curated datasets inevitably contain erroneous masks. In echocardiography, for example,16

a modest 5% boundary error around the left-ventricular cavity can swing the ejection-fraction estimate17

from 45% to 39–50%, potentially tipping a diagnosis from borderline normal to pathological. Such18

high-stakes scenarios demand segmentation models that remain reliable when labels are imperfect.19

Unfortunately, almost all noisy-label benchmarks—focuses on class noise for image classification.20

Spatial distortions, instance omissions and prompt-induced biases that plague instance segmentation21
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are far less explored, and there is no unified test bed for studying them at scale. Without realistic22

benchmarks, it is unclear how fragile current models are or which learning strategies truly help.23

We close this gap with Benchmark-N, a suite of four noise-augmented datasets that inject empirically24

grounded spatial corruptions into both real (COCO-N, CityScapes-N) and synthetic (VIPER-N) data,25

plus a weak-annotation track (COCO-WAN) built with foundation-model prompts. A parametric26

generator produces controllable boundary imprecision, spatial drift, category confusion and instance27

omission at three severity tiers, enabling Monte-Carlo stress tests of any segmentation pipeline.28

Comprehensive experiments across Mask R-CNN, Mask2Former, YOLACT and SAM reveal sharp29

performance drops even under mild noise, exposing limitations of current learning-from-noise30

methods.31

Our contributions are:32

• A stochastic, task-agnostic noise model that synthesises diverse, realistic annotation errors33

for instance segmentation.34

• Four publicly released benchmarks—COCO-N, CityScapes-N, VIPER-N and35

COCO-WAN—with reproducible “low/mid/high” noise presets.36

• An extensive empirical study showing that popular CNN and transformer architectures lose37

up to ∼35% mAP under hard noise, underscoring the need for noise-aware training.38

2 Related Work39

Noisy-label benchmarks. Classification studies typically flip labels at random or via confusion40

matrices (CIFAR-N Wei et al. [2022], Clothing1M Xiao et al. [2015]); detection work jitters boxes or41

drops objects Mao et al. [2021], Ryoo et al. [2023]. In dense prediction, mask opening/closing Lu42

et al. [2014], Li et al. [2023] and class flips in medical data Nordström et al. [2022] leave object43

extent mostly intact, missing boundary jaggedness, spatial drift and omissions observed in practice.44

Weak or coarse labels. Polygon-level Cityscapes-Coarse and Mapillary Vistas Cordts et al. [2016],45

click-based OpenImages Kuznetsova et al. [2020], and SAM-generated SA-1B Kirillov et al. [2023]46

support weak-supervised training but are not designed as robustness tests. Our COCO-WAN turns47

SAM masks—with controlled prompt noise—into such a benchmark.48

Learning with noisy labels (LNL). Dense-task LNL adapts classification ideas: Adaptive Early-49

Learning Correction Liu et al. [2022], spatial Markov refinement Yao et al. [2023], and federated50

aggregation Wu et al. [2023]. Each uses bespoke or domain-specific corruptions, limiting comparabil-51

ity. Spatial noise thus remains largely un-benchmarked; our datasets provide the first multi-domain,52

reproducible test bed for boundary-level errors.53

3 Annotation-Noise Generator54

Accurate segmentation hinges on pixel–level agreement between an image and its ground-truth55

mask. In practice, annotation pipelines introduce annotation noise—any mismatch between the ideal56

(oracle) mask M∗ and the dataset mask M . We first catalogue common error modes, then formalise57

a stochastic generator that injects them with tunable severity.58

3.1 Empirical Taxonomy of Annotation Errors59

A manual sweep of COCO Lin et al. [2014], Cityscapes Cordts et al. [2016], OpenImages Kuznetsova60

et al. [2020] and LVIS Gupta et al. [2019] reveals four recurrent error families (illustrated in Fig. 1):61

Boundary Imprecision — coarse or jagged outlines that over- or undershoot the true contour.62

Spatial Drift — near-rigid shifts of an entire mask, typically caused by inattentive clicks or snapping63

heuristics.64

Category Confusion — visually similar classes swapped (e.g. bus→truck), reflecting annotator65

ambiguity or taxonomy overlap.66

Instance Omission — thin, occluded or low-contrast objects partially or fully omitted.67
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Automated polygon simplifiers, box-to-mask converters and prompt-based foundation models can68

exacerbate these patterns by eroding fine structures or hallucinating plausible yet wrong regions.69

3.2 Parametric Noise Model70

Let (M, c) denote a binary instance mask and its class label. We inject noise by composing five71

independent perturbations; each perturbation is sampled i.i.d. per instance, so every invocation yields72

a corrupted dataset.73

Approximation: Simplify the polygon via Douglas–Peucker with tolerance ε ∼ N+(µapprox, σapprox).74

Localization: Displace each vertex by (∆x,∆y) where ∆x,∆y ∼ N (µloc, σloc) with random signs.75

Scale: With equal probability, dilate or erode M by a square kernel of size K ∼76

max{1, ⌊N (µscale, σscale)⌋}. Class Confusion: With probability pcls, replace c by a sibling inside the77

same super-category, following empirical confusion matrices Northcutt et al. [2021].78

Deletion: With probability pdel, drop the instance altogether, mimicking missed objects.79
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Figure 2: Illustrating the effects of the spatial noise with varying intensity.

3.3 Severity Presets and Reproducibility80

Our open-source tool Benchmark-N suite1 applies the above process to any COCO-style dataset.81

Three presets—Low, Mid, High—scale (µ, σ, pcls, pdel) as detailed in Table 1. Because the generator82

is purely stochastic, one can draw multiple corrupted variants, enabling Monte-Carlo robustness83

studies instead of a single “clean vs. noisy” split.84

This formulation cleanly decouples the empirically grounded taxonomy (Sec. 3.1) from the synthetic85

noise engine (Sec. 3.2), providing a rigorous basis for analysing segmentation robustness under86

realistic annotation imperfections.87

All variables are sampled i.i.d. across instances, yielding a truly stochastic benchmark—unlike88

previous works that commit to a single “clean vs. noisy” split Nordström et al. [2022], Lad and89

Mueller [2023], Yao et al. [2023], Liu et al. [2022]. Three presets (low/mid/high) correspond to90

increasing (µ, σ) pairs (Table 1, Appx.). Our public tool Benchmark-N applies these transformations91

with a single command, enabling reproducible stress-tests of segmentation pipelines.92

1https://anonymous.4open.science/r/noisy_labels-0C70/README.md
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Intensity Low Medium High
(µapprox, σapprox) (5, 2.5) (10, 2.5) (15, 10)
(µlocal, σlocal) (2, 0.5) (3, 0.5) (4, 2)
(µscale, σscale) (3, 1) (5, 1) (7, 4)
pclass 0.05 0.05 0.05
pdelete 0.05 0.05 0.05

Table 1: Noise parameters used to produce the noisy annotations that compose Benchmark-N.

4 Benchmark93

4.1 Synthetic Dataset: VIPER94

In order to validate our noise model under perfectly labeled conditions, we turn to the VIPER dataset95

Richter et al. [2017], which is derived from the GTA V game engine. VIPER provides high-fidelity,96

pixel-accurate annotations for every object and region in the scene, making it a “clean” baseline for97

testing the pure effect of annotation noise.98

Figure 3: Examples from VIPER-N benchmark. Top row shows the clean annotations, second row
the low noise regime, third present the midum annotation noise and last row the high annotation
noise.

Because VIPER’s segmentation maps are automatically rendered in a synthetic environment, the99

ground-truth annotations exhibit none of the spatial inaccuracies common in human-labeled datasets.100

This allows us to inject our prescribed noise types in a fully controlled way, without mixing in any101

preexisting labeling errors.102

Experimental Results We train and evaluate the popular Mask R-CNN on VIPER-N and compare103

to the noise-free VIPER baseline. Figure 3 illustrates qualitative examples of clean vs. noisy labels,104

and Table 2 quantifies performance drops by model and noise level. Notably, even low-level spatial105

distortions can reduce precision significantly, confirming the sensitivity of modern architectures to106

subtle label corruptions.107
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Table 2: mAP on VIPER-N at four noise severities (higher is better)
Noise All S M L

Clean 15.8 6.0 44.3 60.6
Low 13.8 4.7 38.0 57.3
Mid 12.3 4.0 31.4 55.2
High 10.7 2.6 29.0 53.6

VIPER-N thus provides a controlled, synthetic test bed that highlights each model’s vulnerabilities to108

annotation noise when all else—lighting, context, labeling scale—is held constant.109

4.2 COCO-N & CityScapes-N110

Finally, the noise integrated with the same noise strategies into widely used real-world datasets,111

producing COCO-N and CityScapes-N. Unlike VIPER, these datasets already contain minor human112

labeling errors, meaning our injected noise adds a further layer of realism. Below are the key steps113

and summary results.114

We apply the exact same noise operations (§3.2) to each instance in COCO Lin et al. [2014] and115

Cityscapes Cordts et al. [2016] train splits. In line with VIPER-N, we create three tiers of severity116

(low, mid, high) by increasing the morphological kernel size, polygon simplification tolerance, and117

class confusion probabilities. Figure 7a illustrate the performance degradation on those, as well as118

LVIS Gupta et al. [2019] dataset, more details in the supp. materials.119

Results Across Popular Models. Table 3 shows how varius models Mask R-CNN (R-50/R-101),120

Mask2Former (R-50/Swin), YOLACT fare on both COCO-N and CityScapes-N for all three noise121

tiers, as well as HTC Chen et al. [2019b] and SOLO Wang et al. [2020] for COCO-N Across the122

board, we see a notable dip in both standard mAP as well as boundary-focused metrics Cheng et al.123

[2021a] in supp materials. For COCO-WAN, we report fewer architectures, as full report will be124

released upon acceptance. Interestingly, transformer-based architectures (e.g., Swin in Mask2Former)125

appear slightly more robust to misaligned boundaries, but no model is immune to severe disruptions.126

To assess the effect of label noise, we evaluate the performance of various instance segmentation127

models using our newly developed benchmark. We apply the various levels of noise, presenting128

COCO-N and CityScapes-N, providing insights into their robustness and adaptability. For more129

details about the models and datasets refer to the implantation details in the supplementary materials.130

Table 3 present the findings Mask-RCNN (M-RCNN) He et al. [2017], YOLACT Bolya et al.131

[2019], SOLO Wang et al. [2020], HTC Chen et al. [2019a] and Mask2Former (M2F) Cheng et al.132

[2021b]. Clean denote the performance of a model on the original annotations, where Easy, Mid133

and Hard correspond to the definition in Table 1. The reported numbers in the table represent134

mask mean average precision (AP ) and boundary mask mean average precision (AP b), respectively.135

More experiments involving LVIS dataset Gupta et al. [2019] and learning with noisy labels in sup.136

materials. All models trained and evaluated by standard training procedure2. We obtained additional137

experiments include cardiac unltrasound data in Appendix A, more evaluation metrics, models and138

datasets in Appendix E, and most notably, evaluate both zero-shot and fine-tune SAM Kirillov et al.139

[2023] on our proposed benchmark in Appendix F.140

Our experiments demonstrate that label corruption leads to a degradation in model performance.141

Specifically, Mask R-CNN with a ResNet50 backbone retains approximately 80.6%, 71.7%, and142

64.4% of its performance under Easy, Medium, and Hard noise conditions, respectively, on the COCO-143

N benchmark. The same model exhibits a more dramatic performance drop on the CityScapes-N144

benchmark, managing to retain only 72.8%, 60.9%, and only 45% under the corresponding noise145

levels. This trend is consistent across all tested models, suggesting that the impact is more crucial146

when less data is available, but might be easier to mitigate when using more data, even with the same147

portion of label noise.148

This study demonstrates that all models are affected by labeling bias and exhibit diminished perfor-149

mance to varying extents, highlighting differing sensitivities to label noise. Notably, transformers150

2openmmlab/mmdetection/model_zoo
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Table 3: Evaluation Results of Instance Segmentation Models under Different Benchmarks, reporting
mAP.

Dataset Model Backbone Clean Easy Mid Hard

COCO-N

M-RCNN

R-50

34.6 27.9 24.8 22.3
YOLACT 28.5 26.4 23.3 20.8

SOLO 35.9 25.2 17.1 12.4
HTC 34.1 - 28.4 25.5
M2F 42.9 33.5 30.1 26.7

M-RCNN R-101 36.2 28.8 31.8 23.7
M2F Swin-S 46.1 39.6 37.9 33.6

CityScapes-N
M-RCNN R-50 36.1 26.4 22.0 16.3
YOLACT 19.3 19.1 17.1 13.6

M-RCNN R-101 37.0 33.7 30.7 27.0

COCO-WAN

M-RCNN
R-50

34.6 32.8 24.4 21.6
Cascade M-RCNN 35.9 26.8 25.7 24.2

M2F 42.9 39.2 31.9 26.2

M2F Swin-s 46.1 42.9 34.4 28.4

display greater resilience, retaining 73% on the Hard benchmark, effectively mitigating the adverse151

effects of noisy labels compared to the convolution counterpart. This observation underscores the152

potential of using transformer-based architectures in scenarios where robustness to label noise is cru-153

cial. Our findings offer preliminary guidance for selecting or designing robust instance segmentation154

models in practical applications where encountering label noise is inevitable.155

Implications. Given their critical role as mainstream benchmarks, COCO-N and CityScapes-N156

offer a practical measure of model reliability under imperfect labels. This can guide future research157

in developing noise-aware training strategies, data-cleaning pipelines, or architectures that gracefully158

handle label distortion. Our publicly released tool ensures that anyone can replicate these noisy159

benchmarks, tune the noise parameters, or adapt them to new datasets.160

4.3 COCO-WAN (Weakly ANnotated)161

Modern annotation pipelines commonly employ Vision Foundation Models (VFMs) Zhang et al.162

[2025] to reduce the dependence on fully manual labeling. While VFMs trained on large-scale data163

can produce high-quality masks, they often introduce systematic biases, since they overlook fine164

details. Due to the extend of tasks this models solves, for a specific context, they require some prompt165

that provides a task-specific context, as illustrated in fig. 4a. Specifically, we examine Segment166

Anything Model (SAM) Kirillov et al. [2023], prompting the model with either bounding-box, points,167

partial masks or text queries, incorporating noises based on the model and queries biases.168

Mask 
Decoder

Image 
Encoder

Prompt 
Encoder

(a) prompt-based VFM. Points,
boxes, and text guide the mask de-
coder. (b) Point Prompt (c) Box Prompt

Figure 4: prompt-based VFM (left) and example SAM masks using different prompts (middle and
right).

We have put into test three kinds of weak annotations as prompts, Points- one point per instance169

in the middle of the object mask. Boxes- the bounding box from the annotations, and Text- we170
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Table 4: COCO-WAN prompt quality (mAP, b-
mAP Cheng et al. [2021a]) into Grounded-SAM.

Prompt Type Clean Noisy
AP APB AP APB

Original labels 34.6 20.6 - -

Point ∼ U 24.4 15.7 21.6 13.7

Box +N (0, 2) 32.8 19.7 25.3 15.9

Text {cls} 22.0 14.1 - -

Table 5: Mask2Former fine-tune vs. Gounded-
SAM Ren et al. [2024] text prompted noise. Re-
porting APm and APb as mask and box mAP
respectively.

Model Clean Noisy
APm APb APm APb

R-50 42.9 45.7 26.2 24.1
R-101 43.4 46.1 26.7 25.1

Swin-S 46.1 49.3 28.4 31.4
Swin-B 48.2 51.5 30.3 33.2

fed the class label from the annotations into Grounded-DINO, and used the boxes output as a box171

query, similar to Grounded-SAM Ren et al. [2024]. We examine the effect of noise on the prompts in172

Table 4, incorporate noise into the points, by randomly sample one point from the mask, and to the173

boxes by adding Gaussian noise (N (0, 2)) into one of the box corners.174

In Table 5, we examine how a transformer backbone (Swin-S Liu et al. [2021]) impacts the175

Mask2Former Cheng et al. [2021b] model’s robustness to noise. This noise degrades the mod-176

els (on both mask and bounding box) by approximately 48% in R-50 and 37.3% in Swin-S. Although177

still notably affected by noise, this trend aligns with the results on COCO-N and CityScapes-N as178

reflected from Table 3.179

Figure 4 illustrates how different prompt types can lead to varying degrees of segmentation noise, as180

for the given example bounding box captures the background instead of the actuall object, while a181

point is sufficient to produce high quality mask.182

Qualitatively, SAM generally captures coarse object boundaries well, but Figure 5 shows how color183

and texture biases may cause missing or conflated parts, particularly in challenging scenes (e.g.184

without noticeable approximation errors). For instance, certain darker regions or closely colored185

objects can be merged or overlooked, signaling a lack of task oriented context. As a practical example,186

the middle image pair shows the pants and face of the standing person are not included in the mask187

due to the stark contrast in color from the light shirt. On the right image, we observe annotations188

with shape (stove-top) and instances of conflating potential objects (stove and cabinet) due to color189

biases. More qualitative results show in the supp. materials. In Figure 6 we see yet another example190

for auto-annotations excel in masks fidelity and even finding missing annotations, such as the portrait191

in the top-left pair, however, it commonly struggle with crowded annotations, as demonstrated in the192

bottom image, where the text was crowd orange and the mask include mostly the basket. this reflect193

the need to explore open vocabulary VFM that may overcome this annotation obstacle.194

Figure 5: Annotation quality comparing COCO labels (left) and COCO-WAN labels using box
queries (right)
This emphasizes the importance of developing more robust annotation strategies—both in prompt195

design and in subsequent label refinement—when relying on VFMs for real-world segmentation196

tasks.197

4.4 Qualitatively Analysis198

To evaluate how each noise independently affects model performance, we conduct an ablation using199

Mask R-CNN He et al. [2017] (ResNet-50 backbone) trained on the whole COCO with only one200

noise type active at various severity levels. Table 7 summarizes the quantitative impact on standard201
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Figure 6: Compared annotations between COCO (left) and text prompt weak annotations (right).

metrics like mAP and boundary-level mAP (B-mAP) Cheng et al. [2021a]. Figure 11 visualizes202

performance declines for increasing noise severity.203

Scale Noise (especially erosions) severely affects boundary fidelity, leading to the largest drop in204

performance, yet easy to fix by a pre-process morphological counter operation that bring the masks205

close to clean (e.g., opening or closing), thus, we chose to scale at random.206

Localization and Approximation Noise subtly degrade object outlines, though moderate levels of207

displacement do not drastically lower global mAP.208

Class Confusion chiefly impacts recognition accuracy; the reduced classification confidence leads to209

a measurable mAP drop, but less so on boundary metrics.210

Deletion yields fewer total annotations, skews training and causes a performance loss.211

Clean Easy Medium Hard0

5

10

15

20

25

30

35

m
AP

COCO
CityScapes
LVIS

(a) Mask-RCNN performance on COCO,
CityScapes and LVIS across three noise lev-
els.

Clean Easy Medium Hard
0.5

0.6

0.7

0.8

0.9

1.0 R-CNN
Mask2Former
YOLACT

(b) Confidence scores (threshold > 0.5) of
Mask-RCNN, Mask2Former and YOLACT
under increasing noise.

Figure 7: Effect of annotation noise on segmentation quality (left) and prediction confidence (right).

Our experiments indicate that various architectures and backbones exhibit notable sensitivity to label212

noise, affecting both mask quality and prediction confidence. As shown in Figure 7b, higher noise213

levels correlate with reduced confidence scores, underscoring the vulnerability of model predictions214

to annotation accuracy. This effect is further illustrated in Figure 10, where increased noise leads to215

misclassification, causing the model to generate multiple conflicting predictions for a single instance.216

5 Limitations217

One limitation is that Benchmark-N suit targets four dominant error families (boundary imprecision,218

spatial drift, category confusion, instance omission). It does not yet cover multi-instance merge/split219

mistakes, or temporal label noise in videos. Future iterations should extend the taxonomy and validate220

it with larger human studies.221

COCO-WAN perturbs point and box prompts with zero-mean Gaussian noise. Other real-world222

biases—e.g. inconsistent text queries across annotators—are not modeled, and could alter the223

observed failure modes of SAM or Grounded-SAM.224
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This work measures robustness; it does not propose a noise-aware training algorithm. Consequently,225

conclusions about “limitations of current LNL techniques” are empirical, not prescriptive.226

Finally, because the benchmark re-uses publicly available images, we do not study privacy leakage or227

disparate performance across demographic groups.228

6 Discussion229

Our experiments demonstrate that label noise—whether from imprecise human annotations, auto-230

mated tools, or weak prompts—can substantially degrade the performance of instance segmentation231

models. We introduced both synthetic and weakly annotated benchmarks that systematically capture232

real-world noise patterns, ranging from boundary misalignments to class confusion and missing233

instances. Even moderate levels of noise can erode confidence in model predictions and lead to234

notable mAP reductions, highlighting the sensitivity of current architectures to spatial inaccuracies.235

In particular, our results show that (1) models trained on large datasets like COCO and Cityscapes are236

far from robust under moderate noise, exhibiting over 10% drops in mask mAP, (2) scale noise severely237

mislead boundary-based metrics, and (3) while prompt-based foundation models reduce labeling238

effort, they also introduce new biases, and themselves are not fully immune to noisy prompts. These239

outcomes underscore the gap between current label-noise handling strategies—mostly devised for240

image classification—and the complexities of segmentation tasks, where spatial quality is paramount.241

6.1 Confidence and Loss Analysis242

Our study reveals that various architectures and backbones exhibit sensitivity to noise, impacting not243

only mask quality but also confidence in instance identification. As illustrated in Figure 7b, increased244

label noise correlates with diminished confidence in model predictions, underscoring the vulnerability245

of different model architectures to labeling accuracy.246

This reduction in confidence is further evidenced in Figure 10, where increased label noise results in247

poorer mask quality and reduced confidence in the classification head.248

We examine the model’s ability to distinguish noisy from clean annotations. Figure 8 shows two249

experiments: in the first, 40% of instances contain class noise; in the second, 40% have medium-level250

spatial noise. Under class noise, the model’s classification losses form two roughly distinct Gaussian251

distributions, suggesting partial separation of clean and noisy samples. By contrast, when spatial252

noise is introduced, the losses remain intermixed throughout training. This highlights the challenge253

of boundary-level label errors for methods relying on loss-based separation. Further experimental254

details and additional results on learning with noisy labels appear in the supplementary.255
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Figure 8: Class and Mask Loss Distribution of Mask-RCNN (R50) trained on COCO easy benchmark
at different epochs during training.
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A Ejection Fraction Analysis in the CAMUS Dataset362

The CAMUS dataset Leclerc et al. [2019] provides 2D echocardiographic images along with high-363

quality, expert-annotated labels of the left ventricle (LV). A critical clinical metric in these annotations364

is the left ventricle’s ejection fraction (EF), defined as:365

EF =
EDV − ESV

EDV
× 100%, (1)

where EDV is the end-diastolic volume (i.e., the LV volume at its most dilated state) and ESV is the366

end-systolic volume (the LV volume at maximal contraction). EF offers a succinct quantification of367

cardiac pump efficiency: a healthy range is typically considered to be above 50%, while borderline or368

reduced EF can indicate impaired cardiac function.369

Clinical Implications and Risks. Misestimations of the LV boundary—especially at the end-370

diastolic or end-systolic frames—can propagate into disproportionate errors in volume computations.371

Even small annotation noise around the boundary may shift the EF from borderline-normal (e.g.,372

45%) to a clearly abnormal (≈ 39%) or misleadingly normal (≈ 50%) reading. Such inaccuracies373

pose a risk for misdiagnosis or delayed therapeutic intervention, since EF underlies critical clini-374

cal decisions, including the prescription of certain medications, lifestyle interventions, or further375

diagnostic procedures.376

Noise-Induced Errors. Figure 9 (to be added) illustrates how a noisy annotation around the377

LV boundary at end-diastole can lead to an overestimation or underestimation of EDV. When378

combined with an equally skewed ESV, the net EF deviation can be clinically significant. We examine379

morphological dilation of the ESV boundary, along with moderate localization noise in both EDV380

and ESV, using the “low” noise setup described in the main text.381

Figure 9: Example of ESV (top) and EDV (bottom) from the CAMUS dataset (left) and their noisy
counterparts (right). Even modest boundary distortions can shift EF calculations significantly.

Evaluation Under Noisy Labels. We trained a simple convolution-based U-Net model, as described382

in Leclerc et al. [2019], on both clean and noisy CAMUS annotations, and compared the results in383

Table 6. Evaluation metrics are Dice Index for segmentation overlap of the left ventricle (LV) at384

end-systolic (ES) and end-diastolic (ED) frames,EF Error as mean absolute error compared to 2D385

compute of EF values from the labels in percentage points (p.p), as well as HD (Hausdorff Distance)386

for boundary alignment.387

As Table 6 indicates, the model trained on noisy labels tends to yield worse Dice overlap and a higher388

EF error than when trained on clean labels, underscoring the sensitivity of medical diagnostics to389
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Table 6: Comparing UNET results on clean vs noisy CAMUS data.
Training Dice (%) EF Error HD (mm)
Data ES ED (p.p.) (ED frame)

Clean 86.9 91.1 2.1 6.3
Noisy 82.1 87.5 4.5 11.25

Table 7: Ablate the performance evaluation of Mask R-CNN with Spatial label noise across all data
on COCO-N.

Severity Low Medium High
Metric mAP B-mAP mAP B-mAP mAP B-mAP

Clean 34.6 20.6 34.6 20.6 34.6 20.6

Dilation 32.8 18.5 29.1 14.2 26.4 10.3
Erosion 29 15.7 22 9.5 17.4 5.3
Opening 34.6 20.7 34.7 20.7 34.6 20.6
Random Scale 34.1 20.4 32.4 18.5 30.8 17.1

Shifting 28.2 15.4 26.6 14.0 21.1 8.6
Localization 34.4 20.4 34.2 20.1 33.5 19.4

Approximation 34.7 20.8 32.5 18.8 30 16.3

annotation precision. Crucially, this discrepancy demonstrates that even modest boundary errors390

can propagate into clinically important EF ranges, highlighting the urgency of robust noise-handling391

strategies in echocardiographic segmentation tasks.392

B Additional Experiments393

Figure 11 compare the mAP and boundary mAP of original vs. noisy annotations. The top row394

illustrates the morphological operations used for scale-based spatial distortion, while the bottom row395

shows the specific noise types we apply in our benchmark.396

Table 8: Evaluation results of instance segmentation models (Boundary mAPCheng et al. [2021a])
under various noise levels.

Dataset Model Clean Easy Medium Hard

COCO-N

M-RCNN (R50) 20.6 18.9 17.5 16.3
M-RCNN (R101) 22.2 20.4 19.0 17.4
M2F (R50) 30.0 28.6 26.7 23.8
M2F (Swin-S) 32.6 30.9 29.3 26.2
YOLACT (R50) 15.7 14.4 13.5 12.4

Cityscapes-N
M-RCNN (R50) 33.4 28.4 24.7 22.8
M-RCNN (R101) 34.3 30.7 29.0 25.4
YOLACT (R50) 16.5 16.5 14.5 13.3

To further validate our noise design choices and their impact, we obtained additional experiments. As397

presented in Table 9, we evaluated the traditional symmetric and asymmetric class noise on instance398

segmentation using MASK-RCNN with two different backbones to assess the resulting performance399
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Figure 10: Visual results of Mask-RCNN using the COCO-N easy benchmark. Since the model is
uncertain it observe different objects (pizza and sandwich in the bottom image) fooling the NMS
operation.
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Figure 11: The mAP and boundary-mAP metrics between real annotations from COCO dataset and
their COCO-N annotations counterpart.

degradation. “Sym p%” refers to symmetric class confusion with probability p, while “Asym p%”400

denotes mislabeling concentrated in a smaller set of classes Natarajan et al. [2013], Xiao et al. [2015].401

Table 9: Class noise ablation reporting mAP box and mAPmask

Models/Labels Clean Sym 20% Sym 50% Sym 80% Asym 40%
M-RCNN (R50) 38/34.6 35.5/31.9 32.2/29.2 22.5/20.2 34.6/31.4
M-RCNN (R101) 40.1/36.2 37.5/33.6 34.5/31 25.2/22.7 36.8/33.2

Next, we examined the affects of label noise and the additional impact of spatial noise on mask quality,402

as shown in Table 10. We assessed the quality of all masks through the foreground-background403

segmentation task of a trained model. The results indicate that the mask quality deteriorates more404

significantly when spatial noise is incorporated along with traditional class noise.405

In addition to evaluating the benchmark itself, we extended our analysis to include the impact on406

object detection performance. Specifically, we examined the Boundary −mAP and mAP box scores,407

as presented in Tables 8 and11 respectively. This tables highlights the detrimental effects of spatial408

label noise on the boundaries of the masks, as well as bounding box quality, in addition to the409

previously discussed impacts on mask quality. By analyzing the mAP box, we aim to demonstrate410

the broader implications of our noise design choices, showing that spatial noise not only affects411

segmentation masks but also significantly degrades the performance of object detection tasks. This412
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Table 10: Foreground-background segmentation results under class and spatial noise. The symbol “+”
indicates an added spatial corruption using M-RCNN(R50).

Foregound noise bbox segm boundry
clean 42 35.8 22.4
20 % 40.7 34.9 21.7
20 % + Easy 40.4 34.2 21.2
30% + Medium 39.6 32.7 19.9
40% + Hard 38.7 30.6 18.3
50 % 38.7 32.7 20.7

comprehensive evaluation underscores the robustness of our benchmark in assessing the performance413

degradation across different aspects of instance segmentation and object detection.414

Table 11: Evaluation Results of Instance Segmentation Models under Different Benchmarks reporting
AP box.

Dataset Model Clean Easy Medium Hard

COCO-N

M-RCNN (R50) 38 35.4 34.3 33.4
M-RCNN (R101) 40.1 37.4 36.5 35.2
M2F (R50) 45.7 42.2 43.7 44.7
M2F (Swin-S) 49.3 47.9 47.1 45.7
YOLACT (R50) 30.8 29.2 28.2 27.7

Cityscapes-N M-RCNN (R50) 41.5 35.7 32.8 31.2
M-RCNN (R101) 39.8 32.8 29.6 26.8

COCO-WAN M-RCNN (R50) 36.3 34.1 25.5 22.4

Finally, we present results on the long-tailed segmentation dataset LVIS, as shown in Table 12. The415

findings reveal a significant impact, with a 50% reduction in boundary IoU under the hard benchmark416

conditions. This provides evidence of an exacerbated effect in long-tailed scenarios, highlighting the417

increased challenges posed by our noise design in datasets with imbalanced class distributions.418

Table 12: Performance on LVIS-N (Mask R-CNN R50-FPN). We report mAP / Boundary mAP under
various noise levels.

Dataset Clean Easy Medium Hard
AP APB AP APB AP APB AP APB

LVIS-N 22.8 22.1 15.5 14.3 17.7 13 13.3 11.2

C Additional Noise Visualizations419

Figure 12 presents additional samples from our benchmark under different intensities of spatial420

label noise. Each row highlights a specific set of distortions—such as boundary approximations or421

morphological operations—applied to one or more instances. As the noise severity increases from422

left to right, the object contours become visibly degraded, illustrating the range of realistic annotation423

errors our benchmark can simulate.424

Figure 15 provides a qualitative comparison of Mask R-CNN and Mask2Former under varying425

noise levels. The top row shows both models’ predictions on a clean COCO image: each accurately426

delineates the car and surrounding objects with sharp, well-aligned masks. In the middle row, Mask427

R-CNN is challenged by the Easy, Medium, and Hard variants of COCO-N—its masks become428
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Figure 12: Additional illustrating the effects of the spatial noises on one or two instances with various
scales, similar to fig. 2

progressively fragmented, with missing segments and increasingly jagged boundaries. The bottom429

row reveals that Mask2Former, while initially more robust, also suffers under stronger noise: its Easy430

predictions remain close to the clean baseline, but Medium and Hard noise lead to boundary bleed431

and partial omissions. Overall, this figure illustrates that spatial annotation errors systematically432

degrade mask quality in both CNN- and transformer-based architectures, with severity correlating433

with noise intensity.434

D Implementation Details435

This section elaborates on the architectures, datasets, noise definitions, and the levels of asymmetric436

noise used in our experiments. We also detail the noise intensity applied in the benchmark, along437

with the hardware configurations and convergence times.438

D.1 Architectures439

We explore the effects of label noise on various instance segmentation models, encompassing440

multi-stage (Mask R-CNN He et al. [2017]), single-stage (YOLACT Bolya et al. [2019]), and query-441

based (Mask2Former Cheng et al. [2021b]) architectures. To achieve a comprehensive analysis, we442

experimented with different feature extractors, we used convolutional backbones such as ResNet-443
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50 He et al. [2015] for all models and ResNet-101 for Mask R-CNN, alongside a transformer-444

based backbone (Swin-B Liu et al. [2021]) for Mask2Former. For the integration of multi-scale445

features, Feature Pyramid Networks (FPN) Lin et al. [2016] were employed across all models446

except Mask2Former, which utilizes Multi-Scale Deformable Attention (MSDeformAttn) Zhu et al.447

[2020], as multi-scale feature representation. All models and configurations implementations from448

MMDetection Chen et al. [2019c].449

D.2 Datasets450

COCO dataset for training and evaluating algorithms that segment individual objects within a451

scene. It contains about 330,000 images, annotated with over 1.5 million instances masked from 80452

categories that are also part of 12 super-categories.453

Cityscapes dataset is designed for training and evaluating algorithms in urban scene understanding,454

particularly for segmentation tasks. It comprises a collection of images captured in 50 different cities,455

featuring 5,000 annotated images with 19 classes for evaluation, covering a range of urban object456

categories such as vehicles, pedestrians, and buildings.457

VIPER VIPER Richter et al. [2017] is a synthetic dataset generated from the GTA V game engine.458

It provides per-pixel annotations for a broad range of 31 categories in photorealistic urban scenes,459

making it ideal for benchmarking under controlled conditions. Because VIPER annotations are460

automatically rendered (rather than hand-labeled), they are virtually free from human annotation461

errors, allowing precise evaluation of how injected label noise affects segmentation performance.462

LVIS dataset is based on COCO images and curated to provide a comprehensive benchmark for463

instance segmentation, emphasizing rare object categories. It contains over 2 million high-quality464

instance annotations across 1,203 categories, making it one of the largest and most diverse datasets465

for instance segmentation. The LVIS dataset is particularly noted for its long-tail distribution of466

object categories, which poses significant challenges for segmentation algorithms and help us to asses467

the abilities of segmentation algorithms to deal with label noise in this scenario.468

.469

D.3 Hardware details470

MS-COCO based experiments (include both COCO and LVIS) and VIPER conducted on local471

machine with 4 Nvidia RTX A6000 or 4 Nvidia RTX 3090, ranging from 20 hours (Mask-RCNN472

with R50) to 7 days (Mask2Former with SWIN transformer beckbone), training for 12 epochs for473

all models except YOLACT that trained for 50 epochs. Cityscapes experiments conducted on local474

machine with one instance of Nvidia RTX 3090, training for 12 epocs for about 12 hours. All475

experiments use the default configs from MMDetection Chen et al. [2019c].476

E Learning with Noisy Labels477

As described in the paper, class noise is separable, allowing one to derive noisy instances from clean478

ones (refer to Figure 13a). However, dealing with mask losses is more challenging. The loss of noisy479

instances consists predominantly of correctly labeled pixels, with only a few noisy ones (refer to480

Figure 13b). Furthermore, since most spatial noise occurs at the boundaries, these areas are where481

the model exhibits the least confidence Kimhi et al. [2024]. This complexity makes it impossible to482

distinguish between pixel-level noisy and clean data, posing a significant challenge in developing a483

spatial noise solution to learn from noisy labels.484

Due to these difficulties, we compared a class noise method to handle noisy labels. Table 13 presents485

the results on the COCO-N benchmark, comparing standard Cross-Entropy with Symmetric Cross-486

Entropy Wang et al. [2019]. While there is a marginal improvement, the method still faces challenges487

as the noise level increases.488
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Table 13: Evaluation Results of Instance Segmentation with different losses learning with noisy labels
trained on COCO-N dataset (mAP / Boundary mAP).

Loss Clean Easy Mid Hard
AP APB AP APB AP APB AP APB

CE 34.6 20.6 31.8 18.9 30.3 17.5 28.4 16.3
SCE 32.5 19.5 32.1 18.9 30.8 17.8 28.8 16.4
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(a) Class Loss Separation. Average of the class
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(b) Mask Loss Separation. Average of the mask
loss of the Coco dataset, with the 25% and 75%
quantiles as margins - per epoch of training.

F SAM Finetune with label noise489

Since for weakly supervision annotations we heavly relay on SAM Kirillov et al. [2023], we exemine490

how noise in prompt effect the model itself in two setups, zero-shot, that corespond to the quality of491

the masks produced by sam, and fine-tuning, as a popular paradigm of using SAM for a downstream492

application. For the zero-shot, we prompt SAM with the grounded bounding boxes of the validation493

set of COCO as well as noisy boxes with the COCO-N hard type of noise on the validation494

annotations. For fine-tuned, we exemine fine tuning with both clean and noisy COCO-N hard495

annotations masks. Table 14, shows both mIoU and F1 scores of the masks produced by SAM,496

showing that the quality of masks can be increased when fine-tuned, compared with zero shot training497

with high quality prompts. Fine-tuning with noisy annotations however, is less sever, when prompting498

with cerfully designed prompts, compared to noisy prompts. Our findings suggest that the quality of499

prompts are fur more important then the qua500

Table 14: Evaluation of prompt Instance segmentation on SAM
Annotations Clean COCO-N Hard

Method IoU F1 IoU F1

Zero-shot 79.78 87.49 67.99 63.30

Fine-tune 79.91 78.6 77.47 76.18

G Biases of Self-annotating Datasets501

More visual results of the weakly supervised annotations created by SAM are presented in Figure502

14. A significant number of annotations were curated by this process (top row), reducing label noise,503

particularly in cases where the original annotations suffered from approximation noise. In other504

instances, where an object is surrounded by similar colors or illumination conditions, the annotations505

become noisier around the boundaries, exhibiting weak localization noise (middle row).506

The specific context of the dataset annotations can influence what the user is looking for. We observed507

cases where there is ambiguity in the definition of certain objects, such as stove-tops (bottom row).508
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Figure 14: Pairs of COCO annotations (left) and COCO-WAN easy annotations (right). Top pair
shows high fidelity annotations for COCO-WAN, compared to the original noisy counterparts. The
bottom example examine that when color changes by little, even with bounding box prompts, SAM
confuses due to color biases in segments and can not capture the desired segments such as stovetop
or sink.

While SAM is familiar with the concept of a stove-top, it lacks the contextual knowledge of what it509

should be within the specific context of the COCO dataset, leading to poor masking.510
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Figure 15: Comparison Mask RCNN and Mask2Foramer models predictions. Top row (left to right):
original image M-RCNN and M2F predictions on clean COCO. Middle: M-RCNN predictions on
Easy, Medium and Hard COCO-N. Bottom: M2F predictions on Easy, Medium and Hard COCO-N.

NeurIPS Paper Checklist511

1. Claims512

Question: Do the main claims made in the abstract and introduction accurately reflect the513

paper’s contributions and scope?514

Answer: [Yes]515

Justification: We have made sure the abstract and introduction capture the main contributions516

of this paper.517

Guidelines:518

• The answer NA means that the abstract and introduction do not include the claims519

made in the paper.520

• The abstract and/or introduction should clearly state the claims made, including the521

contributions made in the paper and important assumptions and limitations. A No or522

NA answer to this question will not be perceived well by the reviewers.523

• The claims made should match theoretical and experimental results, and reflect how524

much the results can be expected to generalize to other settings.525

• It is fine to include aspirational goals as motivation as long as it is clear that these goals526

are not attained by the paper.527

2. Limitations528

Question: Does the paper discuss the limitations of the work performed by the authors?529

Answer: [Yes]530

Justification: refer to Section 5.531

Guidelines:532

21



• The answer NA means that the paper has no limitation while the answer No means that533

the paper has limitations, but those are not discussed in the paper.534

• The authors are encouraged to create a separate "Limitations" section in their paper.535

• The paper should point out any strong assumptions and how robust the results are to536

violations of these assumptions (e.g., independence assumptions, noiseless settings,537

model well-specification, asymptotic approximations only holding locally). The authors538

should reflect on how these assumptions might be violated in practice and what the539

implications would be.540

• The authors should reflect on the scope of the claims made, e.g., if the approach was541

only tested on a few datasets or with a few runs. In general, empirical results often542

depend on implicit assumptions, which should be articulated.543

• The authors should reflect on the factors that influence the performance of the approach.544

For example, a facial recognition algorithm may perform poorly when image resolution545

is low or images are taken in low lighting. Or a speech-to-text system might not be546

used reliably to provide closed captions for online lectures because it fails to handle547

technical jargon.548

• The authors should discuss the computational efficiency of the proposed algorithms549

and how they scale with dataset size.550

• If applicable, the authors should discuss possible limitations of their approach to551

address problems of privacy and fairness.552

• While the authors might fear that complete honesty about limitations might be used by553

reviewers as grounds for rejection, a worse outcome might be that reviewers discover554

limitations that aren’t acknowledged in the paper. The authors should use their best555

judgment and recognize that individual actions in favor of transparency play an impor-556

tant role in developing norms that preserve the integrity of the community. Reviewers557

will be specifically instructed to not penalize honesty concerning limitations.558

3. Theory assumptions and proofs559

Question: For each theoretical result, does the paper provide the full set of assumptions and560

a complete (and correct) proof?561

Answer: [No]562

Justification: No theoretical results or proofs.563

Guidelines:564

• The answer NA means that the paper does not include theoretical results.565

• All the theorems, formulas, and proofs in the paper should be numbered and cross-566

referenced.567

• All assumptions should be clearly stated or referenced in the statement of any theorems.568

• The proofs can either appear in the main paper or the supplemental material, but if569

they appear in the supplemental material, the authors are encouraged to provide a short570

proof sketch to provide intuition.571

• Inversely, any informal proof provided in the core of the paper should be complemented572

by formal proofs provided in appendix or supplemental material.573

• Theorems and Lemmas that the proof relies upon should be properly referenced.574

4. Experimental result reproducibility575

Question: Does the paper fully disclose all the information needed to reproduce the main ex-576

perimental results of the paper to the extent that it affects the main claims and/or conclusions577

of the paper (regardless of whether the code and data are provided or not)?578

Answer: [Yes]579

Justification: Yes, not only is the method reproducible (with code intended for release upon580

acceptance), but also the models evaluated are all publicly available from online repositories581

cited in the paper.582

Guidelines:583

• The answer NA means that the paper does not include experiments.584
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• If the paper includes experiments, a No answer to this question will not be perceived585

well by the reviewers: Making the paper reproducible is important, regardless of586

whether the code and data are provided or not.587

• If the contribution is a dataset and/or model, the authors should describe the steps taken588

to make their results reproducible or verifiable.589

• Depending on the contribution, reproducibility can be accomplished in various ways.590

For example, if the contribution is a novel architecture, describing the architecture fully591

might suffice, or if the contribution is a specific model and empirical evaluation, it may592

be necessary to either make it possible for others to replicate the model with the same593

dataset, or provide access to the model. In general. releasing code and data is often594

one good way to accomplish this, but reproducibility can also be provided via detailed595

instructions for how to replicate the results, access to a hosted model (e.g., in the case596

of a large language model), releasing of a model checkpoint, or other means that are597

appropriate to the research performed.598

• While NeurIPS does not require releasing code, the conference does require all submis-599

sions to provide some reasonable avenue for reproducibility, which may depend on the600

nature of the contribution. For example601

(a) If the contribution is primarily a new algorithm, the paper should make it clear how602

to reproduce that algorithm.603

(b) If the contribution is primarily a new model architecture, the paper should describe604

the architecture clearly and fully.605

(c) If the contribution is a new model (e.g., a large language model), then there should606

either be a way to access this model for reproducing the results or a way to reproduce607

the model (e.g., with an open-source dataset or instructions for how to construct608

the dataset).609

(d) We recognize that reproducibility may be tricky in some cases, in which case610

authors are welcome to describe the particular way they provide for reproducibility.611

In the case of closed-source models, it may be that access to the model is limited in612

some way (e.g., to registered users), but it should be possible for other researchers613

to have some path to reproducing or verifying the results.614

5. Open access to data and code615

Question: Does the paper provide open access to the data and code, with sufficient instruc-616

tions to faithfully reproduce the main experimental results, as described in supplemental617

material?618

Answer: [Yes]619

Justification: Code to reproduce all the benchmarks creation in https://anonymous.620

4open.science/r/noisy_labels-0C70/README.md while the models and training re-621

cepies from https://github.com/open-mmlab/mmdetection and https://github.622

com/facebookresearch/segment-anything.623

Guidelines:624

• The answer NA means that paper does not include experiments requiring code.625

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/626

public/guides/CodeSubmissionPolicy) for more details.627

• While we encourage the release of code and data, we understand that this might not be628

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not629

including code, unless this is central to the contribution (e.g., for a new open-source630

benchmark).631

• The instructions should contain the exact command and environment needed to run to632

reproduce the results. See the NeurIPS code and data submission guidelines (https:633

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.634

• The authors should provide instructions on data access and preparation, including how635

to access the raw data, preprocessed data, intermediate data, and generated data, etc.636

• The authors should provide scripts to reproduce all experimental results for the new637

proposed method and baselines. If only a subset of experiments are reproducible, they638

should state which ones are omitted from the script and why.639
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• At submission time, to preserve anonymity, the authors should release anonymized640

versions (if applicable).641

• Providing as much information as possible in supplemental material (appended to the642

paper) is recommended, but including URLs to data and code is permitted.643

6. Experimental setting/details644

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-645

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the646

results?647

Answer: [Yes]648

Justification: Please refer to last question and Appendix D for all implementation details.649

Guidelines:650

• The answer NA means that the paper does not include experiments.651

• The experimental setting should be presented in the core of the paper to a level of detail652

that is necessary to appreciate the results and make sense of them.653

• The full details can be provided either with the code, in appendix, or as supplemental654

material.655

7. Experiment statistical significance656

Question: Does the paper report error bars suitably and correctly defined or other appropriate657

information about the statistical significance of the experiments?658

Answer: [No]659

Justification: The error bars of multiple runs are not a common practice in segmentation.660

However, many of the ablations show significant of effects. note that we run all experiments661

with same random seed and data splits to validate any hypothesis.662

Guidelines:663

• The answer NA means that the paper does not include experiments.664

• The authors should answer "Yes" if the results are accompanied by error bars, confi-665

dence intervals, or statistical significance tests, at least for the experiments that support666

the main claims of the paper.667

• The factors of variability that the error bars are capturing should be clearly stated (for668

example, train/test split, initialization, random drawing of some parameter, or overall669

run with given experimental conditions).670

• The method for calculating the error bars should be explained (closed form formula,671

call to a library function, bootstrap, etc.)672

• The assumptions made should be given (e.g., Normally distributed errors).673

• It should be clear whether the error bar is the standard deviation or the standard error674

of the mean.675

• It is OK to report 1-sigma error bars, but one should state it. The authors should676

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis677

of Normality of errors is not verified.678

• For asymmetric distributions, the authors should be careful not to show in tables or679

figures symmetric error bars that would yield results that are out of range (e.g. negative680

error rates).681

• If error bars are reported in tables or plots, The authors should explain in the text how682

they were calculated and reference the corresponding figures or tables in the text.683

8. Experiments compute resources684

Question: For each experiment, does the paper provide sufficient information on the com-685

puter resources (type of compute workers, memory, time of execution) needed to reproduce686

the experiments?687

Answer: [Yes]688

Justification: Refer to Hardware details in Appendix D.689

Guidelines:690
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• The answer NA means that the paper does not include experiments.691

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,692

or cloud provider, including relevant memory and storage.693

• The paper should provide the amount of compute required for each of the individual694

experimental runs as well as estimate the total compute.695

• The paper should disclose whether the full research project required more compute696

than the experiments reported in the paper (e.g., preliminary or failed experiments that697

didn’t make it into the paper).698

9. Code of ethics699

Question: Does the research conducted in the paper conform, in every respect, with the700

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?701

Answer: [Yes]702

Justification: We have read the NeurIPS Code of Ethics, and our research conforms to it in703

every respect.704

Guidelines:705

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.706

• If the authors answer No, they should explain the special circumstances that require a707

deviation from the Code of Ethics.708

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-709

eration due to laws or regulations in their jurisdiction).710

10. Broader impacts711

Question: Does the paper discuss both potential positive societal impacts and negative712

societal impacts of the work performed?713

Answer: [Yes]714

Justification: Yes, we discussed it in the introduction and final discussion.715

Guidelines:716

• The answer NA means that there is no societal impact of the work performed.717

• If the authors answer NA or No, they should explain why their work has no societal718

impact or why the paper does not address societal impact.719

• Examples of negative societal impacts include potential malicious or unintended uses720

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations721

(e.g., deployment of technologies that could make decisions that unfairly impact specific722

groups), privacy considerations, and security considerations.723

• The conference expects that many papers will be foundational research and not tied724

to particular applications, let alone deployments. However, if there is a direct path to725

any negative applications, the authors should point it out. For example, it is legitimate726

to point out that an improvement in the quality of generative models could be used to727

generate deepfakes for disinformation. On the other hand, it is not needed to point out728

that a generic algorithm for optimizing neural networks could enable people to train729

models that generate Deepfakes faster.730

• The authors should consider possible harms that could arise when the technology is731

being used as intended and functioning correctly, harms that could arise when the732

technology is being used as intended but gives incorrect results, and harms following733

from (intentional or unintentional) misuse of the technology.734

• If there are negative societal impacts, the authors could also discuss possible mitigation735

strategies (e.g., gated release of models, providing defenses in addition to attacks,736

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from737

feedback over time, improving the efficiency and accessibility of ML).738

11. Safeguards739

Question: Does the paper describe safeguards that have been put in place for responsible740

release of data or models that have a high risk for misuse (e.g., pretrained language models,741

image generators, or scraped datasets)?742

25

https://neurips.cc/public/EthicsGuidelines


Answer: [No]743

Justification: All masks retained from publically avalible datasets. We refer to it in the744

limitations Section 5.745

Guidelines:746

• The answer NA means that the paper poses no such risks.747

• Released models that have a high risk for misuse or dual-use should be released with748

necessary safeguards to allow for controlled use of the model, for example by requiring749

that users adhere to usage guidelines or restrictions to access the model or implementing750

safety filters.751

• Datasets that have been scraped from the Internet could pose safety risks. The authors752

should describe how they avoided releasing unsafe images.753

• We recognize that providing effective safeguards is challenging, and many papers do754

not require this, but we encourage authors to take this into account and make a best755

faith effort.756

12. Licenses for existing assets757

Question: Are the creators or original owners of assets (e.g., code, data, models), used in758

the paper, properly credited and are the license and terms of use explicitly mentioned and759

properly respected?760

Answer: [Yes]761

Justification: All code and resources not created by the authors was properly credited in the762

paper.763

Guidelines:764

• The answer NA means that the paper does not use existing assets.765

• The authors should cite the original paper that produced the code package or dataset.766

• The authors should state which version of the asset is used and, if possible, include a767

URL.768

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.769

• For scraped data from a particular source (e.g., website), the copyright and terms of770

service of that source should be provided.771

• If assets are released, the license, copyright information, and terms of use in the772

package should be provided. For popular datasets, paperswithcode.com/datasets773

has curated licenses for some datasets. Their licensing guide can help determine the774

license of a dataset.775

• For existing datasets that are re-packaged, both the original license and the license of776

the derived asset (if it has changed) should be provided.777

• If this information is not available online, the authors are encouraged to reach out to778

the asset’s creators.779

13. New assets780

Question: Are new assets introduced in the paper well documented and is the documentation781

provided alongside the assets?782

Answer: [No]783

Justification: We made publicly available the code that create the benchmark suit, yet784

a dataset, including the synthetic data will be release upon acceptance (with the proper785

documentation).786

Guidelines:787

• The answer NA means that the paper does not release new assets.788

• Researchers should communicate the details of the dataset/code/model as part of their789

submissions via structured templates. This includes details about training, license,790

limitations, etc.791

• The paper should discuss whether and how consent was obtained from people whose792

asset is used.793
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• At submission time, remember to anonymize your assets (if applicable). You can either794

create an anonymized URL or include an anonymized zip file.795

14. Crowdsourcing and research with human subjects796

Question: For crowdsourcing experiments and research with human subjects, does the paper797

include the full text of instructions given to participants and screenshots, if applicable, as798

well as details about compensation (if any)?799

Answer: [NA]800

Justification: NA: No human subjects.801

Guidelines:802

• The answer NA means that the paper does not involve crowdsourcing nor research with803

human subjects.804

• Including this information in the supplemental material is fine, but if the main contribu-805

tion of the paper involves human subjects, then as much detail as possible should be806

included in the main paper.807

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,808

or other labor should be paid at least the minimum wage in the country of the data809

collector.810

15. Institutional review board (IRB) approvals or equivalent for research with human811

subjects812

Question: Does the paper describe potential risks incurred by study participants, whether813

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)814

approvals (or an equivalent approval/review based on the requirements of your country or815

institution) were obtained?816

Answer: [NA]817

Justification: The paper does not involve crowdsourcing nor research with human subjects.818

Guidelines:819

• The answer NA means that the paper does not involve crowdsourcing nor research with820

human subjects.821

• Depending on the country in which research is conducted, IRB approval (or equivalent)822

may be required for any human subjects research. If you obtained IRB approval, you823

should clearly state this in the paper.824

• We recognize that the procedures for this may vary significantly between institutions825

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the826

guidelines for their institution.827

• For initial submissions, do not include any information that would break anonymity (if828

applicable), such as the institution conducting the review.829

16. Declaration of LLM usage830

Question: Does the paper describe the usage of LLMs if it is an important, original, or831

non-standard component of the core methods in this research? Note that if the LLM is used832

only for writing, editing, or formatting purposes and does not impact the core methodology,833

scientific rigorousness, or originality of the research, declaration is not required.834

Answer: [NA]835

Justification: The core method does not involve LLMs.836

Guidelines:837

• The answer NA means that the core method development in this research does not838

involve LLMs as any important, original, or non-standard components.839

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)840

for what should or should not be described.841
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