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Abstract

We show that across architecture (Transformer vs. Mamba vs. RWKV), training
dataset (OpenWebText vs. The Pile), and scale (14 million parameters to 12 billion
parameters), autoregressive language models exhibit highly consistent patterns of
change in their behavior over the course of pretraining. Based on our analysis of
over 1,400 language model checkpoints on over 110,000 tokens of English, we find
that up to 98% of the variance in language model behavior at the word level can be
explained by three simple heuristics: the unigram probability (frequency) of a given
word, the n-gram probability of the word, and the semantic similarity between
the word and its context. Furthermore, we see consistent behavioral phases in all
language models, with their predicted probabilities for words overfitting to those
words’ n-gram probabilities for increasing n over the course of training. Taken
together, these results suggest that learning in neural language models may follow
a similar trajectory irrespective of model details.

1 Introduction

Language models are complex systems that ostensibly exhibit emergent behaviors (Anderson, |1972;
Nicolis and Prigoginel [1977; [Laughlin and Pines| 2000; |0’ Connor, [2021}; [Wei et al., |2022a)). Trained
only to predict the next word in a sequence given a context, language models learn to generate
grammatical sentences, make predictions in line with real-world knowledge, and—given the right
prompt—answer questions and exhibit reasoning-like behavior, even without finetuning (Linzen et al.|
2016} |Wei et al.l [2022b.a; [Biderman et al., 2023b; [Hu and Frankl 2024; OLMo Team et al., [2025).
How do they get there?

While language model learning involves gradual change by some metrics (Schaeffer et al., 2023),
researchers have identified sudden shifts in model behavior (Du et al.| [2024), as well as precipitous
changes in model subnetworks that can drastically alter behavior (Olsson et al., [2022; |Chen et al.,
202442). However, these analyses generally focus on specific, targeted behaviors or sub-networks.
We focus more broadly on whether it is possible to characterize the overall behavior of models and
how this changes over the course of training. We draw on two main lines of research. The first
demonstrates that language model predictions are often sensitive to superficial properties of their
input and output, such as training data, frequency of tokens, token co-occurrences, grammatical
structures, tasks, and specific facts about the world; the baseline probability of input and output
sequences and subsequences; and the degree of semantic similarity between an output word and its
context (Forbes et al., 2019; [Wei et al.| 2021; [Michaelov and Bergen, 2022; McCoy et al., [2024;
Chang and Bergen, 2024). The second is previous work suggesting that language models overfit
to n-grams of increasing n over the course of training (Karpathy et al., 2016; |Chang et al.| [2024).
These two lines converge to suggest that much of language model behavior can be characterized by
relatively simple heuristics.
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We focus on three—frequency, n-gram probability, and semantic similarity. We ask to what extent
they explain language model behavior at any point in time over the course of training, and how this
changes. Our key contributions are the following:

1. We train and release the Parallel architecture (Parc) language models. These are made up of
1,314 language model checkpoints: 6 seeds each of models of the Pythia (Biderman et al.|
2023b)), Mamba-1 (Gu and Dao, [2024), and RWKV-4 (Peng et al., 2023)) architectures, with
each seed trained on the same OpenWebText (Gokaslan and Cohen, [2019) data, and each
with 73 checkpoints taken over the course of training. As far as we are aware, these are the
first available checkpointed Mamba and RWKYV models.

2. We construct and release the Natural Words in Context (NaWoCo) dataset, an evaluation
set of over 150,000 words in natural sentence contexts extracted from the FineWeb corpus
(Penedo et al .} [2024).

3. We show that three simple heuristics—frequency (i.e., unigram probability), n-gram prob-
ability, and semantic similarity to the context—explain up to 98% of the variance in the
probabilities assigned to words in this (decontaminated) dataset by our models, as well as
the Pythia (Biderman et al., 2023bj |van der Wal et al., 2024)) and Open-GPT2 (Karamcheti
et al.| [2021) language models.

4. We demonstrate that all the models tested (no matter the size, architecture, or training data)
overfit to n-grams of increasing n over the course of pretraining, and show a correlation
with semantic similarity after the first 10-100 steps.

2 Related Work

2.1 n-gram-like prediction in language models

Neural language models learn representations that enable them to predict the next word in the
sequence based on generalizations rather than simply storing counts of sequences like n-gram models
(Markov,, |1913; |Shannon, 1948}, Jelinek et al., {1975} [Baker, [1975)). However, there is evidence that
both RNNs and transformers do still calculate the n-gram probabilities of words. [Voita et al.| (2024),
for example, identify neurons in the OPT models (Zhang et al., [2022)) that appear to be sensitive to a
restricted number of specific n-gram—that is, they appear to be ‘dedicated’ (Voita et al.| 2024) to
these n-grams—which are more numerous in larger models. In addition, in contemporaneous work,
Chang and Bergen| (2025)) identify bigram circuits in the Pythia models (Biderman et al., [2023b)).

Behaviorally, the probabilities calculated by neural language models—both recurrent neural networks
and transformers—have been found to be highly correlated with n-gram probabilities, especially early
in training (Karpathy et al.||2016; |Sun and Lul |[2022; |Chang and Bergen| 2022; (Choshen et al., [2022;
Bietti et al., 20235 Voita et al., 2024; |Akytirek et al., [2024; Nguyenl 2024} (Chang et al., 2024} Belrose
et al.| 2024} Wang et al.,|2025)). A recent study by (Chang et al.| (2024), for example, found that over
the course of pretraining, the probabilities calculated by 5 random seeds of a 117M-parameter GPT-2
model become differentially correlated with n-gram probabilities (calculated on the same training
data) of increasing n over the course of training—that is, they initially become more correlated with
unigram probability (i.e. frequency) n-grams of n > 1, then become more strongly correlated with
bigram probability than other n-grams, and so on until at least n = 5. In a related line of research,
Nguyen| (2024) found that for a given token prediction in a test corpus, it is possible to construct a
rule based on a combination of n-grams in the training corpus of a language model that can make
the same top prediction as the model with an accuracy of up 68-79%, depending on dataset and the
procedure used to calculate the optimal rule for each token.

2.2 Similarity-based prediction in language models

The extent to which a word is similar to words in its context has also been shown to have an impact on
the predictions of language models (Kassner and Schiitze, | 2020; Misra et al., 2020; Michaelov et al.,
2021, 2024). One example of this is the finding that lexical semantic priming occurs in language
models—Misra et al.|(2020) find that prepending the word ‘airplane’ to ‘I want to become a [MASK].’
to create ‘airplane. I want to become a [MASK].” increases the probability BERT assigns to ‘pilot’
being the masked token relative to both the original sentence and the sentence with a different



prepended word such as ‘table’. In a less targeted form of analysis, [Michaelov et al.|(2021)) find that
GPT-2 surprisal (negative log-probability) has a Pearson correlation of » = —0.48 with the cosine
similarity between the language model’s static embedding of the same word and the mean of the
embeddings of the words in the context; while Michaelov et al.|(2024) find that GPT-3 (Brown et al.,
2020) surprisal is correlated with the same similarity metric calculated using GloVe (Pennington
et al., 2014) (r = —0.46) and fastText (Grave et al [2018)) (r = —0.61) word embeddings. Thus,
while there is thus far no direct evidence that contextual semantic similarity plays an explicit causal
role in language model predictions, there is at least strong evidence that it correlates with them.

3 Experiment 1: Correlations Between Language Model Log-Probabilities
and Heuristics

In our first experiment, we investigate the extent to which language model probability correlates
with n-gram probability and contextual semantic similarity over the course of pretraining. Going
beyond previous work (e.g., (Chang and Bergenl 2022} |(Choshen et al., [2022; |(Chang and Bergen)
2024; Nguyen) 2024} Belrose et al.| 2024)), we characterize exactly to what extent each n-gram
log-probability for n € {1,2,3,4,5} is correlated with the log-probability assigned to a given word
by language models of different architectures over the course of training. We also carry out the same
analysis for semantic similarity as calculated using fastText word embeddings (Bojanowski et al.|
2017; |Grave et al.| 2018). We carry out our analyses on a range of language models, which vary
in architecture, size, and training dataset. All code, data, analyses, and models are provided in the
following repository: https://github.com/jmichaelov/lm-behavioral-phases!|

3.1 Method

3.1.1 Language Models

We carry out our analyses on two sets of pretrained language models with checkpoints taken over
the course of their training. The first set were the Pythia models (14M-12B parameters; Biderman
et al.l |2023b) including the additional PolyPythia seeds (9 of each of the 14M—410M parameter
models; [van der Wal et al., [2024), all of which were trained on The Pile (Gao et al., [2020). The
second were the GPT-2 models (5 seeds each with 117M and 345M parameters, of which we used 4;
see Appendix [A) trained as part of the Mistral project (Karamcheti et al.,[2021) on the OpenWebText
(Gokaslan and Cohen, [2019) corpus, henceforth the Open-GPT2 models.

We also trained an additional 18 language models. Following the approach taken for the Open-GPT2
models (Karamcheti et al.,[2021), we trained all models on 1024-token sequences of OpenWebText
with a batch size of 512; though we train each for only 4,000 steps. In order to expand our analyses
beyond transformers, we use the same 6 random seeds to train models with three architectures in
parallel (in the sense that they encounter the same sequences at the same steps), using the same
tokenizer for all models. The three architectures were the Pythia (Biderman et al.,|2023b)) transformer
architecture, the Mamba-1 state-space model architecture (Gu and Dao, 2024)), and the RWKV-4
architecture, which is a modern recurrent neural network architecture with parallelizable training
(Peng et al., [2023). We henceforth refer to these as the Parc-Pythia (160M), Parc-Mamba (130M),
and Parc-RWKYV (169M) models, respectively.

Considering all models, seeds, and checkpoints, our analysis encompasses a total of 1,418 model
instances. We provide the full code for training and running the models, and further details of all
models used in Appendix

3.1.2 n-gram Log-Probability

To investigate the extent to which each language models’ predictions match given n-grams, we
calculate the n-gram probability of the same words in context for n € {1, 2, 3,4,5}. We calculate
n-grams using the same data as the model itself was trained on—that is, for the Pythia models,
we calculate n-grams in The Pile, and for the OpenWebText models (Open-GPT2, Parc-Pythia,
Parc-RWKY, and Parc-Mamba), we calculate n-grams in OpenWebText. Because the pretrained
models have different tokenizers, we calculate all n-grams at the word (rather than token) level.
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Figure 1: Pearson correlation coefficient r between language model log-probability and heuristic
metrics (n-gram log-probability and word embedding cosine similarity). We show the mean values
for all models across seeds and their 95% confidence intervals.

To calculate n-gram probabilities, we use infini-gram (Liu et al.,|2024)), which allows a user to retrieve
the total counts c of a given sequence in a corpus. For The Pile, we use the infini-gram API to access
word counts; and for OpenWebText, we build our own infini-gram index locally. We estimate n-gram
probability based on these counts using Stupid Backoff as described by [Brants et al.[|(2007). We
provide the full code for building the index and calculating probabilities, and further details of our
implementation in Appendix [B]

3.1.3 Contextual Similarity

To calculate contextual similarity, we follow previous work investigating the relationship between
word embedding similarity and language model log-probability (Michaelov et al.|[2024). Specifically,
we use fastText (Bojanowski et al.| 2017} |Grave et al.,|2018)) to calculate the word embeddings of
each critical word and the words in their context, and take contextual similarity to be the cosine
similarity between the embedding of the critical word and the mean of the embeddings of all words
in the context. We calculate this for both the fastText embeddings trained on Wikipedia (Bojanowski
et al., |2017) and those trained on Common Crawl (Grave et al., 2018). Additionally, for each of
these, when calculating the context embedding, we calculate both the uniformly-weighted mean and
a weighted mean based on the SGPT approach (Muennighoff}, 2022). We provide further details of
our implementation in Appendix [C]

3.1.4 Evaluation Dataset

We carry out our analysis on a set of words in sentence contexts, which were all sampled from the
FineWeb corpus (Penedo et al.2024). Specifically, we constructed a set of words that were single
tokens for all models, and that occurred as the fifth or later word in (unique) sentences that began
with a capitalized word, had no other capitalized words, were assigned a probability of being toxic of
0.1 or less (using the model released by Logacheva et al.,|2022)), and, to avoid possible contamination,
are not in the training data of any of the language models tested (based on infini-gram counts as
described in Section @) Our final dataset of Natural Words in Context (NaWoCo) is made up of a
training set of 77,999 items, a validation set of 39,474 items, and a test set of 40,980 items. Further
details of dataset construction are provided in Appendix

3.1.5 Analysis

To investigate the relationship between the heuristics (n-gram log-probability and semantic similarity)
and the language models, we use each model at each training checkpoint to calculate the log-
probability of every word in our training set. We then calculate the correlation between the log-
probabilities of every transformer at every time step and each of the heuristics.



3.2 Results and Discussion

We show the Pearson correlation between each heuristic and language model log-probability in
Figure [I] (for Spearman correlation, see Appendix [E). As can be seen, one pattern is remarkably
consistent across models—over the course of training, we see peaks in the correlation between
transformer log-probability and n-gram log-probability for increasing values of n. As in|Chang et al.
(2024)), we see that language models become more sensitive to higher-order n-grams as they continue
to train. Going beyond past work, we see that this observation applies not only to transformers, but
to autoregressive language models of non-transformer architectures as well. We also see that the
pattern observed by |Chang et al.| (2024)) can be is explained in our data by both an increase in the
correlation with the higher-order n-grams over the course of training and a simultaneous decrease in
the correlation with the lower-order n-grams—that is, the predictions move toward the former and
farther away from the latter. In addition, as can also be seen in Figure[l] larger models also see a
greater decrease in the correlation to smaller n-grams, suggesting that their probability distributions
shift farther from lower-order n-grams over the course of training. These last two findings align
with previous work showing that the Kullback-Leibler divergence (Kullback and Leibler, [1951)
between Pythia models’ output probability distributions and the probability distributions of unigram
and bigram models show a similar pattern (Belrose et al., [2024)).

Together with the idea that a greater number of parameters increases language models’ capacity (see,
e.g.,|Wang et al., 2017 |[Hestness et al.l 2017} Kaplan et al., [2020; |Allen-Zhu et al.,[2019; |Allen-Zhu
and Li, 2024)), these results may suggest that the smaller models may need to rely more on such
lower-order n-gram-like predictions, while larger models may be able to learn more complex relations
between words as they continue to train.

We see two clear patterns with semantic similarity. First, there is little difference between the
uniformly-weighted and SGPT-weighted versions of each similarity metric, though the SGPT-
weighted variant of the Wikipedia-based fastText word vectors does appear to be consistently more
correlated with language model log-probability than the uniformly-weighted variant. There does
appear to be a large difference between the two fastText versions, however. Specifically, we see
that similarities derived from the Common-Crawl-based vectors have a higher overall correlation to
log-probability which peaks at roughly the same time as unigram log-probability does; while the
Wikipedia-based metrics have a lower correlation overall which peaks more concurrently with that
of trigram log-probability. This likely relates to the correlation between the similarity metrics and
unigram log-probability—the Pearson correlation coefficient between the Common-Crawl-based sim-
ilarities and each metric of unigram log-probability is between 0.67 and 0.69, while the correlations
with Wikipedia-based similarities lie between 0.34 and 0.35 (see Appendix [H]).

Finally, we note that the patterns across random seeds are remarkably similar—the confidence
intervals are virtually invisible for the most part. Seed-level analyses (Appendix |F) reveal that the
larger confidence intervals in the first 10 steps of the Pythia models with PolyPythia seeds (i.e., the
14M—-410M models) are due to small differences between models in the early stages of training; while
the large confidence interval in the last steps of the Open-GPT2 345M models is driven by a single
outlying checkpoint (step 256,000 of the beren (seed 49) model). In fact, Parc-Pythia, Parc-Mamba,
and Parc-RWKYV show a Pearson correlation » > 0.93 overall at each step > 80; not only across
seeds of the same model, but also across architectures (see Appendix [G).

4 Experiment 2: Predicting Language Model Log-Probabilities with
Heuristics

Experiment 1 revealed patterns in the correlation between simple heuristics and language model
log-probability. But to what extent do these heuristics correspond to dissociable facets of language
model behavior? On the one hand, all the heuristics are at least weakly correlated (see Appendix [H),
presenting a possible confound to interpretation. As an example, Common-Crawl-derived semantic
similarity is highly correlated with unigram log-probability (r = 0.67 —0.69 depending on weighting)
and its correlation with language model log-probability follows the same trajectory. Thus, it is possible
that the correlation between Common-Crawl-derived contextual semantic similarity and language
model log-probability may be largely explained by the former simply capturing unigram probability
(i.e., frequency)—for example, it is plausible that lower-frequency words will have lower-quality
word embeddings and occur in fewer contexts, reducing their average similarity to other words. On



the other hand, this is clearly not the case for all heuristics—we see different patterns in the degree of
correlation between language model log-probabilities over the course of training and different n-gram
log-probabilities, as well as a unique pattern for Wikipedia-derived contextual semantic similarity.

Additionally, there are reasons to believe that language models may in fact learn to make predictions
that align with the n-gram and contextual similarity heuristics implicitly as part of autoregressive
language modeling, based on the nature of the task itself. For example, a word that is more common
(i.e., that has a higher unigram probability) is by definition more likely to occur again, and similarly,
a word that often follows a specific sequence of words (i.e., that has a high n-gram probability for
n > 1) is likely to do so again. In a similar way, in a coherent text, one should generally expect a given
word to be close in meaning (i.e., contextually semantically similar) to the words in its preceding
context (for discussion, see Michaelov and Bergen, [2022; Michaelov et al.| 2023} 2025). Indeed, a
sensitivity to contextual semantic similarity may at least partly explain how language models are
able to make predictions that align with real-world knowledge (as in, e.g., Zellers et al., 2018} 2019
Forbes et al., [2019; Bisk et al.l 2020; [Sakaguchi et al., [2020; Jones et al., [2022; Kauf et al., |2023]).
There is also mechanistic evidence of transformers directly implementing n-gram prediction (Bietti
et al., 2023} |Wang et al., 2025} |Chang and Bergen, |2025)); and the fact that transformers directly
learn associations between tokens (e.g.,Meng et al.l 2022} Bietti et al.| 2023} |[Nichani et al.| 2024)
and appear to be able to make predictions at the concept as well as token level (Feucht et al.| [2025)
suggests that prediction based on contextual semantic similarity is something that could in principle
be learned.

In this experiment, we focus on a precise characterization of language model behavior in terms of
how it relates to the aforementioned heuristics. First, we revisit the finding in Section E]that over the
course of training, language model log-probabilities correlate better with n-gram log-probabilities
of increasing order, and correspondingly correlate worse with the log-probabilities of lower-order
n-grams. We ask whether language model predictions are still biased toward lower-order n-gram
probabilities even as they begin to reflect higher-order n-grams. Specifically, we test whether language
model log-probability is sensitive to unigram log-probability above and beyond the extent to which
this is captured in 5-gram log-probability. Second, we ask whether language model predictions are
sensitive to contextual semantic similarity above and beyond that implicitly captured by unigram and
5-gram probability. This is crucial because, as previously stated, unigram probability may impact
contextual semantic similarity metrics due to its effect on the word vectors learned; and, as stated,
coherent sentences are likely to involve words that are semantically similar to their context, and thus,
if these sequences are learned, they may implicitly contain contextual semantic similarity information.

As far as we are aware, these questions are novel in language model research. But they have
been studied in the context of human language processing. Specifically, a number of studies have
investigated whether there are dissociable effects of word frequency, contextual probability (derived
from n-grams or neural language models), and semantic similarity on neural and behavioral indices
of prediction in humans, with varying results (Lau et al.,|2013} [Frank and Willems), 2017; Nieuwland
et al.} 2020; [Shain} 2024; Michaelov et al., 2024; |Opedal et al., 2024). We follow the approach taken
in these studies, using the n-gram log-probabilities and similarity metrics to predict language model
log-probability with a linear regression, allowing us to estimate the extent to which language models
show a bias in prediction toward each heuristic while controlling for the possible influence of the
others.

4.1 Method and Analysis

The evaluation dataset, cosine similarities, and n-gram and language model log-probabilities were
all the same as in Experiment 1. Instead of computing raw correlations, we instead fit linear
regressions that predict the dependent variable—in this case, language model log-probability—based
on all predictors of interest, namely, unigram log-probability, 5-gram log-probability, and contextual
semantic similarity. Thus, as in human studies, we are able to investigate whether correlations
between unigram language model log probability and our predictor variables are dissociable.

We are also interested in the robustness of these patterns. Thus, in addition to using only n-grams
calculated from the same corpus the language model was trained on (i.e., either OpenWebText or
The Pile), we also carry out the same analysis with the n-grams based on the other corpus. For
the previously-discussed reasons, we are also interested in whether there is a difference between
the two similarity metrics, and so we also construct regressions with each. Thus, all regressions
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Figure 2: (A) Regression coefficients of the three heuristics over the course of training under different
conditions, specifically, whether the n-gram data is the same as that on which the language model was
trained (matched) or not (unmatched), and whether SGPT-weighted contextual semantic similarity
metric is calculated using Common-Crawl-based or Wikipedia-based fastText word vectors.

(B) Proportion of the variance in language model log-probability explained by the regressions in
Figure[2l We also report the R? values of the same regressions’ predictions on the validation set.

include 3 predictors: unigram log-probability (OpenWebText or The Pile), 5-gram log-probability
(OpenWebText or The Pile; the same corpus as unigram log-probability), and semantic similarity
(Wikipedia-based or Common-Crawl-based). In order to more easily compare the coefficients, we
z-transform all variables in the regression (we provide the coefficients for the same regressions with
un-normalized variables in Appendix [K).

4.2 Results and Discussion

We present our results for all regressions with SGPT-weighted contextual semantic similarity in
We find that as in Experiment 1, while the exact steps at which the phases themselves occur
differs somewhat across models, the phases themselves are remarkably clear and consistent.

In Phase 1, the coefficient of unigram log-probability on language model log-probability increases
sharply from zero (or near-zero). This increase peaks at the same time as the peak in Pearson
correlation seen in Figure [T] Concurrently, the coefficient of semantic similarity (both metrics)
increases. By contrast, there is no positive increase in the coefficient of the 5-gram log-probability—
in fact, it slightly decreases below zero during this phase.



In Phase 2, the coefficient of unigram log-probability decreases and the coefficient of 5-gram
probability increases. There is also a sharp increase in the coefficient of 5-gram log-probability. At
or soon after the beginning of this phase is a small trough in the coefficient of Wikipedia-derived
similarity, which is smaller (or nonexistent) for Common-Crawl-derived similarity.

In Phase 3, the change in coefficients slows down and begins to stabilize for all models.

These patterns are consistent across all models, with the main difference being in the timing of
the phases. In the Pythia models, phases generally occur earlier in the larger models than in the
smaller models, but in the two Open-GPT2 models, this pattern is reversed. It notably does not
appear that training tokens explain the timings of the phases better than training steps—in fact,
despite being trained on ~ 0.5M tokens per step, the models trained on OpenWebText (Open-GPT2,
Parc-Pythia, Parc-RWKYV, and Parc-Mamba) generally enter phases in fewer steps than the Pythia
models which are trained on ~ 2M tokens per step. Model size, however, does appear to impact
coefficient size—smaller models see a smaller drop in the coefficient of unigram log-probability and
a smller increase in the coefficient of 5-gram log-probability than larger models. There is also some
variability in the peaks and troughs of the coefficients of the semantic similarity metrics, though
they all appear to follow the general trajectory described above. To further verify the robustness of
these patterns, we also look at the seed-level results for regressions including both SGPT-weighted
and unweighted variants of the similarity metrics (provided in Appendix [[), which produce virtually
identical patterns of coefficients.

We next turn to the overall fit of the regressions to language model log-probability. The R? of
each regression provides an estimate of the proportion of the variance in language model log-
probability explained by the regression. Overall fit is largely shaped by the strength of the effect
of unigram log-probability—the regressions best predict language model log-probability (R? =
0.86 — 0.98 depending on the model) when the effect of unigram log-probability on language
model log-probability is at its peak, after which fit decreases sharply as the strength of the effect of
unigram log-probability decreases sharply, and levels off as the decrease in the strength of unigram
log-probability slows down. However, the overall fit still remains relatively high even after this
decrease—it stabilizes for the models with fewer than ~ 0.5B parameters and does not fall below
R? = 0.5, even for the largest models. In fact, except for the earliest steps of training (Pythia 14M:
step <128; Pythia 31M: step <64; all other models: step <32), the heuristics always explain at
least half of the variance in model log-probability. As can be seen, the choice of n-gram corpus and
fastText training corpus do not dramatically change any of these patterns, which are also relatively
consistent across seeds (see Appendix [I). This suggests that overall fit is robust to these factors. To
further evaluate the robustness of our regressions to overfitting, we calculate the R? on the held-out
validation set using predictions from the regressions. Again, we see almost no difference, suggesting
that these results are robust. We again see virtually identical patterns when we look at seed-level
results for both the SGPT-weighted and unweighted similarity variants (see Appendix[J).

5 General Discussion

In line with the results of previous work (Karpathy et al., 2016} (Choshen et al., |2022; |Chang and
Bergen|, 2022; |Chang et al.| [2024), we show in Experiment 1 that the extent to which language model
predictions correlate with n-gram predictions varies over time such that language models trained on
more data make predictions that correlate more strongly with higher-order n-grams. We show that for
n € {1,2,3,4,5}, this applies to transformers across 3 orders of magnitude (14M to 12B parameters),
as well as language models of both the RWKYV and Mamba architecture. We also find a predictable
impact of model scale: while smaller models eventually make predictions that are as correlated (or
almost as correlated) with higher-order n-grams as the larger models, they retain a higher correlation
with the lower-order n-grams than the larger models. As the larger models’ predictions increasingly
correlate with the higher-order n-grams, their correlation with the lower-order n-grams decreases.
This suggests that the larger models shift to predicting in line with higher-order n-grams, while the
predictions of the smaller models stay closer to those of the lower-order n-grams.

Experiment 2 confirmed this through multiple linear regression—unigram log-probability maintains
a larger coefficient during the later phases in smaller than larger models, while the reverse is true
of 5-gram log-probability. This means that higher-order n-grams account more for the behavior of
larger models than they do for smaller models. This could be taken to suggest that the smaller models



may rely on lower-order n-gram relations—perhaps due to limited capacity—while larger models
may be able to more effectively make use of longer contexts. Additionally, the fact that the overall
fit of the heuristics decreases the most for the largest Pythia models in the last phase of pretraining
combined with the fact that they already begin to perform better than smaller models at standard
benchmarks during this phase (Appendix [[) suggests that the predictions of these models are likely
to reflect other more complex cues at this stage of training. Thus, our results seem to suggest that
while language model predictions will (and perhaps must) show a high degree of correlation with the
heuristics during training, it is only once they pass this stage that that they begin to perform well on
downstream tasks. Indeed, while the exact relationship between the two is not known, research has
shown that in-context n-gram heads only occur in a model after it has learned to predict n-grams in
the training data (Bietti et al., 2023} |Wang et al., [2025). Crucially, in-context n-gram heads such as
induction heads are thought to greatly contribute to language models’ in-context learning capabilities
(Elhage et al.| 2021} |Olsson et al., [2022; |Bietti et al., |2023; |Akyiirek et al., 2024} [Edelman et al.| |2024;
Chen et al.,|2024b; |(Crosbie and Shutova, |2025)), which in turn have been argued to be responsible for
a wide range of language model behaviors, including performance on downstream tasks (see, e.g.,
Lampinen et al.| [2025)). Despite this, there is also evidence that the tendency for language models to
make predictions that align with these heuristics persists throughout the course of training. In fact, it
has been shown that as language models get larger and are trained on more data, they continue to
(and may even increase the extent to which they do) predict high-probability n-grams (McKenzie
et al., | 2023; Michaelov and Bergen) |2023)) and words that are semantically related to their context
(Michaelov et al.| 2025 |Gonen et al.| 2025), even when they should not. An interesting line of future
work would be to investigate whether it is possible to predict the extent to which language models are
susceptible to these kinds of phenomena based on analyses such as those carried out in Experiment 2.

Are the predictions of larger models trained on more data biased toward lower-order n-grams above
and beyond the extent to which they are accounted for by higher-order n-grams? On the one hand,
decreases in the size of the 1-gram coefficient are usually matched by increases in the size of
the 5-gram coefficient, and vice-versa; suggesting some degree of competition or incompatibility
between the two. On the other hand, even as they become increasingly sensitive to higher-order
n-gram probabilities, lower-order n-gram probabilities (or at least, unigram probabilities) are still
overweighted in language model predictions; that is, the models over-predict words with high unigram
probability relative to their 5-gram probability. This is in line with work showing that lower-order
n-gram circuits—specifically, bigram circuits—persist over the course of training in transformer
models, though they appear to become less effective and less distinct in later stages (Chang and
Bergen, 2025). Whether this is also true for the RWKV and Mamba models is a question for future
work.

Previous work has demonstrated a relationship between the probabilities assigned by language models
to words in context and the semantic similarity between those words and their contexts (Michaelov
et al.;,2021,[2024)). In this paper, we provide what is, as far as we are aware, the first investigation of
both the extent to which this correlates with predictions above and beyond other factors thought to
impact them (in this case, n-gram probability), and the extent to which this varies over the course
of training. We find that while the direct correlation between semantic similarity and language
model log-probability varies depending on how semantic similarity is calculated, after accounting for
unigram and 5-gram log-probability, most of this difference disappears—we see the correlation with
similarity emerge relatively early, and remain throughout training.

Additionally, we find that while the weighting method used to create the context vector—uniform
vs. SGPT-weighting—does not appear to have much of an impact, there was a difference between
the two different sets of vectors we used. Specifically, the Common-Crawl-based fastText vectors
(Grave et al.,[2018)) are more closely correlated with unigram probability than the Wikipedia-based
vectors (Bojanowski et al.,[2017)), which could explain the differences we see in their relationship
to language model log-probability. What explains the difference between these embedding vectors?
One intuitive possibility is that the difference is due to differences in training corpus. However,
another plausible explanation is that it relates to how the embeddings were trained. Specifically, the
Wikipedia embeddings were trained using a skip-gram model (Bojanowski et al. [2017), and the
Common Crawl vectors were trained using a continuous bag-of-words (CBOW) model (Grave et al.,
2018). Previous work has suggested that skip-gram models learn higher-quality representations for
infrequent words (Mikolov et al., 2013), and thus, a likely reason for the higher correlation between



the CBOW-based embeddings and unigram frequency is simply that lower-frequency words have
lower-quality representations, and thus their similarity to the context is under-estimated.

Our results have several key implications. First, they provide evidence that across architectures and
scales, there is a consistent relationship between the predictions of language models and n-gram
probability. A strong interpretation of our results, combined with similar results on recurrent neural
networks by [Karpathy et al.|(2016), is that a system engaged in autoregressive language modeling will
inevitably go through phases of overfitting to n-grams of increasing n before learning more abstract
patterns. We also for the first time observe a consistent correlation between semantic similarity
and language model predictions over the course of training, something that can be detected even
after accounting for any implicit semantic similarity relations inherent in n-grams (i.e., based on
co-occurrence). Finally, while it has previously been demonstrated that it is possible to construct a
rule based on n-gram statistics that can explain a given language model prediction (Nguyen) 2024)),
we see that, except for in the very early stages of training, there is a specific weighting of three simple
heuristics (plus a constant) that can explain over half of the variance in the predictions made by any
seed of any language model tested at any point during training.

6 Limitations

While our results are consistent across our models, our analysis is limited to three architectures, and
in the case of Mamba and RWKY, only relatively small models (130—169M models trained on ~2B
tokens). Thus, it is possible that other models could show different training dynamics. We also limit
our analysis to n-grams inn € {1,2,3,4, 5} and static word embeddings, but language models may
be sensitive to higher-order n-grams and semantic similarity that is better reflected by contextual
word embeddings or text embeddings. Finally, our regressions still do not account for all the variance
in language model behavior—there is still a lot to be understood, even in the smallest models.

7 Conclusions

Language model behavior throughout training can largely be accounted for by several simple heuris-
tics: word frequency, n-gram probability, and semantic similarity. The extent to which each of
these correlates with language model predictions has a consistent pattern across models of different
sizes, models trained on different data, and models with different architectures. Taken together, this
suggests that the autoregressive language modeling task itself may be the largest factor—and perhaps
the decisive one—in shaping the behavioral phases that language models pass through. It may be
that models cannot help but first crawl through n-gram predictions in their gradient descent toward
mature next-word prediction.
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A Language Model Details

A.1 Pretrained Models

We summarize the details of all models analyzed in Table|l| Further details of each set of models are
discussed in the relevant sections below. scc

Table 1: Details of the models used in our analyses.

Model Parameters Seeds Tok/Step Steps

14M 10

31M 10

70M 10

160M 10

410M 10 0,1,2,4,8, 16, 32, 64, 128, 256, 512,
Pythia 410M 10 2M 1000, 2000, 4000, 8000, 16000,

1B 1 32000, 64000, 128000, 143000

1.4B 1

2.8B 1

6.9B 1

12B 1

117M 4 0, 10, 20, 40, 80, 100, 200, 400, 800,
Open-GPT2 0.5M 1000, 2000, 4000, 8000, 16000, 32000,

345M 4 64000, 128000, 256000, 400000

Parc-Pythia  160M
Parc-RWKV  169M
Parc-Mamba  130M

10, 20, 40, 80, 160, 320, 640, 1280,

0.5M 2560, 4000

(o) e o)

Pythia The Pythia (Biderman et al.,2023b)) models are a set of autoregressive language models
based on the GPT-Neo models (Black et al.| 2021; |/Andonian et al.,[2021), which were created as an
attempt to train fully-open versions of the smaller GPT-3 language models (Brown et al.|[2020). Thus,
all models are trained on a 300B-token dataset (The Pile;|Gao et al.,[2020). Our analysis includes the
main (seed 1234) 14M, 31M, 70M, 160M, 410M, 1B, 1.4B, 2.8B, 6.9B, and 12B parameter models.
In addition, we use the recently-released 14M, 31M, 70M, 160M, 410M PolyPythia models (van der
‘Wal et al.,[2024) trained on a further 9 random seeds each (1, 2, 3, 4, 5, 6, 7, 8, 9); thus, we have 10
models for each of these parameter sizes. With all Pythia models, we calculated word probabilities
with model checkpoints at the following steps: 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1000, 2000,
4000, 8000, 16000, 32000, 64000, 128000, and 143000 (fully-trained). Note that models were trained
on 2M tokens at each step. Because of a known issue with the £p16 precision used during training
(see|Liangl 2024), we run all models at £p32 precision.

Open-GPT2 We also carry out our analyses on the GPT-2 models trained as part of the Mistral
project (Karamcheti et al.l [2021). These are a set of GPT-2 small (117M parameters) and GPT-2
medium (345M parameters) language models trained on the OpenWebText (OWT) corpus (Gokaslan
and Cohen, 2019), with training checkpoints released. For each size, models trained with 5 random
seeds were released. Due to a known issue with the GPT-2 Medium model with random seed 21 (see
Hawkins, [2023)), we used the 4 remaining random seeds of each model (namely, seeds 49, 81, 343,
and 777). For each of the models trained with each of these random seeds, we calculated language
model probabilities at checkpoints corresponding to the following steps: 0, 10, 20, 40, 80, 100, 200,
400, 800, 1000, 2000, 4000, 8000, 16000, 32000, 64000, 128000, 256000, and 400000 (fully trained).
Note that models were trained on 0.5M tokens at each step.

A.2 Parc Models

In order to investigate the effect of architecture, we also train our own models. Specifically, we train
Pythia (Biderman et al.,2023b), Mamba-1 (Gu and Dao, [2024)), RWKV-4 (Peng et al., 2023)) models.
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We selected one model of each architecture of comparable size—namely, Pythia 160M, RWKV
169M, and Mamba 130M. These models were adjusted these models to all use the Pythia tokenizer,
and then trained from scratch (i.e., random initialization) on the OpenWebText corpus for 4000 steps,
where each step consisted of a 1024-token length sequence with a batch size of 512, for a total of
0.5M tokens, following [Karamcheti et al.|(2021). All hyperparameters were chosen to match those of
the original model training where possible (Biderman et al., |2023b} [Peng et al.| 2023}, |Gu and Daol
2024). We provide the full training code.

For each of the three models selected, we trained six models with different random seeds (0, 1, 2, 3,
4, 5), each of which seed was applied both to the data collator and initialization. We analyze data
from steps 10, 20, 40, 80, 160, 320, 640, 1280, 2560, and 4000 (fully-trained).

B Estimating n-gram probabilities using infini-gram

We estimate the n-gram probability p of a word w; using the Stupid Backoff scheme (Brants et al.}
2007) as described in [Equation I where, following Brants et al.| (2007), we set o« = 0.4.

ﬁ(wz|w;:i+1) = c(wf;lwrl)"
Oéﬁ(wi|w§:,1l+1), otherwise

if c(wi_,.1) >0
( 7 +1) (1)

To calculate unigram probability, or in cases where the recursive process described in [Equation
reaches n = 1, also following Brants et al.|(2007)), we calculate p(w;) as described in Equation 2
where |C| describes the total number of tokens in a corpus, as provided by infini-gram (Liu et al.,
2024).

o max{l, c(w;)}

As Brants et al.| (2007) note, this approach does not provide true probabilities that sum to 1, but these
estimates perform similarly well to Kneser-Ney-smoothed (Kneser and Ney, [1995) true n-grams,
especially on datasets of the scale used in the present work. Additionally, we note that for the
unigram counts, we use the word-level counts in the numerator but the token-level counts in the
denominator, and thus, unigram probability may be systematically under-estimated relative to other
n-grams. Finally, because our larger n-grams are calculated at the word level rather than the token
level, we expect that our findings may slightly diverge from mechanistic interpretability work looking
at token-level relationships (Voita et al.} 2024} |(Chang and Bergen, 2025)). However, due to the large
size of all the datasets involved, it is unlikely that these factors would drastically impact any of the
overall patterns identified in this work.

C Contextual Similarity

Given a sequence of words w; ...w;, the contextual semantic similarity between w; and its context
¢ = wy...w;_1 is defined as the cosine similarity between the ;, the word embedding vector of w;,
and ¢, the embedding of the context. A word embedding vector w; is simple the embedding of a
word as provided using the fastText package (Bojanowski et al.l2017). In our study, we use both
the Wikipedia-derived fastText vectors of [ Bojanowski et al.|(2017) and the Common-Crawl-derived
vectors of (Grave et al.[(2018). ¢'is calculated as in Equation :

c= Biwj 3

With uniform weighting, 5 = i With SGPT weighting (Muennighoff}2022), 5 = ﬁ
k=1
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D Evaluation dataset

In order to evaluate how well our heuristics predict language model behavior, we construct a dataset
made up of Natural Words in Context (NaWoCo), in sequences previously unseen by the models. We
describe the dataset construction process below.

First, we extracted 250,000 sentences from the FineWeb corpus (Penedo et al., [2024) that had
more than 5 words, began with a capitalized word, had no other capitalized words, were assigned
a probability of being toxic of 0.1 or less (using the model released by [Logacheva et al., [2022),
and are not in the training data of any of the language models tested—that is, they were not in the
OpenWebText (Gokaslan and Cohen, |2019) or Pile (Gao et al., [2020) corpora as determined using
infini-gram counts. This last step was to ensure no overlap between these sentences and the training
data of the models, which could impact model behavior.

From this sample, we then selected 100,000 unique sentences for the training set, and 50,000 each
for the validation and test sets. Because we are interested in the probabilities of words in context,
we then randomly selected one word (that occurred as the fifth word or later) in each sentence as
the critical word, that is, the word for which all metrics would be calculated. We then again filtered
all these truncated sentences such that they were unique, not toxic, and did not occur in either of
the training corpora using the same previously-described method. Finally, we filtered our dataset to
ensure that all words were single tokens in the vocabularies of all the language models.

The final NaWoCo dataset is thus made up of a training set of 77,999 items, a validation set of 39,474
items, and a test set of 40,980 items.

E Spearman Correlations Between Language Model Log-Probabilities and
Predictors

We provide the model-level Spearman correlations between the heuristics and language model
log-probability (Figure [3).(Figure[5).
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Figure 3: Spearman correlation coefficient p between language model log-probability and heuristic
metrics (n-gram log-probability and word embedding cosine similarity). We show the mean values
for all models across seeds and their 95% confidence intervals.

F Seed-Level Correlations Between Language Model Log-Probabilities and
Predictors

We provide the seed-level Pearson (Figure [d)) and Spearman (Figure [5)) correlations between the
heuristics and language model log-probability for all language models.
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Figure 4: Seed-level Pearson correlation coefficient r between language model log-probability and
heuristic metrics (n-gram log-probability and word embedding cosine similarity).
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Figure 5: Spearman correlation coefficient p between language model log-probability and heuristic
metrics (n-gram log-probability and word embedding cosine similarity) at the seed level.
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G Cross-Architecture Similarity

We provide the the Pearson correlation r between each seed of each of the models we train (i.e.,
Parc-Pythia, Parc-Mamba, and Parc-RWKYV) at each time step.
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Figure 6: Pearson correlation r between log-probabilities calculated between each model.
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H Correlations Between Predictors

Figure 7] shows the Pearson correlation coefficient r between all heuristics.
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Figure 7: Pearson correlation coefficient r between all predictor variables.

I Seed-level Coefficients

We provide the coefficents predicted for each seed of each model for each semantic similarity
configuration, namely, SGPT-weighted Wikipedia-based similarity (Figure[8), unweighted Wikipedia-
based similarity (Figure 0), SGPT-weighted Common-Crawl-based similarity (Figure [T0), and
unweighted Common-Crawl-based similarity (Figure [TT).
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Figure 8: Seed-level coefficients for SGPT-weighted Wikipedia-based similarity, with 95% confidence
intervals
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Figure 9: Seed-level coefficients for unweighted Wikipedia-based similarity, with 95% confidence
intervals
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Figure 10: Seed-level coefficients for SGPT-weighted Common-Crawl-based similarity, with 95%
confidence intervals
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Figure 11: Seed-level coefficients for unweighted Common-Crawl-based similarity, with 95% confi-
dence intervals
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J Further R? analyses

We provide plots illustrating the differences in regression R? across seeds for regressions including

SGPT-weighted (Figure[T2) and uniformly-weighted (Figure [I3)) similarity.

Figure 12: Proportion of the variance in language model log-probability explained by the regressions
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Figure 13: Proportion of the variance in language model log-probability explained by the regressions
including uniformly-weighted similarity.
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K Un-normalized Regression Coefficients

While the coefficients of the z-scored variables are easier to compare, they are less straightforward to
interpret than those of un-normalized variables. For this reason, we carry out the same analysis with
un-normalized variables. To allow the log-probabilities to be interpreted as bits, we convert them to
the form — log, (p). To ensure that all predictors share the same direction, we use cosine distance
(i.e., 1 — cosine similarity) rather than cosine similarity.

K.1 SGPT-Weighted contextual semantic distance

We provide the coefficients of the n-gram (Figure[I4) and contextual semantic distance (Figure [I3))
predictors for regressions with SGPT-weighted contextual semantic distance.
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Figure 14: Un-normalized regression coefficients of unigram and 5-gram log-probability over the
course of training under different conditions, specifically, whether the n-gram data is the same as that
on which the language model was trained (matched) or not (unmatched), and whether SGPT-weighted
contextual semantic similarity metric is calculated using Common-Crawl-based or Wikipedia-based
fastText word vectors.
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Figure 15: Un-normalized regression coefficients of contextual semantic similarity over the course
of training under different conditions, specifically, whether the n-gram data is the same as that on
which the language model was trained (matched) or not (unmatched), and whether SGPT-weighted
contextual semantic similarity metric is calculated using Common-Crawl-based or Wikipedia-based
fastText word vectors.
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K.2 Unweighted contextual semantic distance

We provide the coefficients of the n-gram (Figure[I6) and unweighted contextual semantic distance
(Figure [[7) predictors for regressions with unweighted contextual semantic distance.
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Figure 16: Un-normalized regression coefficients of unigram and 5-gram log-probability over the
course of training under different conditions, specifically, whether the n-gram data is the same as that
on which the language model was trained (matched) or not (unmatched), and whether unweighted
contextual semantic similarity metric is calculated using Common-Crawl-based or Wikipedia-based
fastText word vectors.
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Figure 17: Un-normalized regression coefficients of contextual semantic similarity over the course of
training under different conditions, specifically, whether the n-gram data is the same as that on which
the language model was trained (matched) or not (unmatched), and whether unweighted contextual
semantic similarity metric is calculated using Common-Crawl-based or Wikipedia-based fastText
word vectors.

L. Language Model Benchmark Performance

We evaluate the performance of all models used in the present study in two different ways. First, we
calculate perplexity on the seven ‘standard language modeling benchmarks’ of Paloma (Magnusson
et al.,|2024), constructed from each of the following pre-existing pretraining datasets: C4 (Raffel
et al., |2020), the English subset of mC4 (Chung et al., |2022), Dolma v1.5 (Soldaini et al., [2024),
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RefinedWeb (Penedo et al., 2023), Penn Treebank (Marcus et al., [1999), RedPajama
2024), and WikiText-103 (Merity et al., | 2017). We plot the each model’s perplexity on these text

datasets in Figure [T8]in bits-per-byte. All evaluations were carried out using the Language Model
Evaluation Harness (Gao et al., 2021}, [Biderman et al., 2024).
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Figure 18: Seed-level perplexities of all models on 7 subsets of the Paloma dataset.

We also evaluate their performance of all models five benchmarks. To calibrate benchmark difficulty—
if a benchmark is too difficult or too easy, it is not useful for comparing these models—we select
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three benchmarks based on[Biderman et al.| (2023al)), who find that clear differences based on model
size and training data can be observed in the performance of the Pythia models on the OpenAl version

of LAMBADA (Paperno et al.} 2016}, [Radford et al.},[2019), SCiQ (Welbl et al, 2017), and the Easy
Set of the AI2 Reasoning Challenge (ARC; |Clark et al.,[2018). We additionally evaluate the models

on SWAG (Zellers et al.| 2018) and BLiMP (Warstadt et aé.L 2020). The accuracy and standard error
ed in Figure

of each model on each benchmark is provid

Open-GPT2 117M
¥343 (darkmatter)

Open-GPT2 117M
49 (battlestar)

Open-GPT2 117M Open-GPT2 117M
X777 (expanse)

L e o i i el e e e o i e
050

x81 (captica)

025
0.00
Open-GPT2 345M Open-GPT2 345M Open-GPT2 345M Open-GPT2 345M
x343 (durin) 49 (beren) X777 (eowyn) x81 (celebrimbor)
o5 e = e
R
050 =
000 —
160M yihia 160M 160M 160M yihia 160M 160M
seed0 seedl seed2 seed3 seedd seeds
0k —— — ~— SEScrs == FEEEE
2'53 == T = S S LT
ba 130M ba 130M ba 130M lba 130M ba 130M ba 130M
seed0 seedl seed2 seed3 seedd seeds
075
0.50 / —\/ ‘/ / / —_—
025 = ——= —_ — —F —c —
000 — S====1 === ====m Pt ===
160M 160M 160M Parc-RWKV 169M Parc-RWKV 169M Parc-RWKV 169M
seed0 seedl seed2 seed3 seedd seeds
ok ——_ S==ce: e HEEE EEEe FHEE
025 —_— _— —_— —_— —_— —_—
0.00
9 10t 107 10° 10° 10°
Pythia 14M Pythia 14M Pythia 14M Pythia 14M Pythia 14M 10" 10° 10° 10° 10" 10
seedl seed1234 seed2 seed3 seedd
075
T T P e e e m e e —un e
050
025
0.00
Pythia 14M Pythia 14M Pythia 14M Pythia 14M Pythia 14M
seeds seeds seed? seeds seed9
075 EEEEFEECT e
050 — — —
0.25
0.00
Pythia 31M Pythia 31M Pythia 31M Pythia 31M Pythia 31M
seedl seed1234 seed2 seed3 seedd
Task
oL e e e e —— s e e e i i i i ——
g 050 — ARC-Easy
£ 025
§ 0.00 — BLIMP
< Pythia 31M Pythia 31M Pythia 31M Pythia 31M Pythia 31M
g seeds seeds seed? seeds seedo = LAMBADA (OpenAl version)
£
S 075 !
2 0% sciQ
&0 — <=
0.00 — swac
Pythia 70M Pythia 70M Pythia 70M Pythia 70M Pythia 70M
seedl seed1234 seed2 seed3 seedd
0.75 - - U/ e f J
0.50
0.25
0.00
Pythia 70M Pythia 70M Pythia 70M Pythia 70M Pythia 70M
seeds seeds seed? seeds seedo
05— == == R
0.50
025
0.00
Pythia 160M Pythia 160M Pythia 160M Pythia 160M Pythia 160M
seed1 seed1234 seed2 seed3 seedd
0.75 = ESE==sS——_
050 }
0.25
0.00
Pythia 160M Pythia 160M Pythia 160M Pythia 160M Pythia 160M
seeds seeds seed? seeds seedo
075 =
050
0.25
0.00
Pythia 410M Pythia 410M Pythia 410M Pythia 410M Pythia 410M
seed1 seed1234 seed2 seed3 seedd
0.75
050
025
0.00
Pythia 410M Pythia 410M Pythia 410M Pythia 410M Pythia 410M
seeds seeds seed? seeds seed9
075
050
0.25
0.00
Pythia 18 Pythia 1.48 Pythia 2.88 Pythia 6.98 Pythia 128
seed1234 seed1234 seed1234 seed1234 seed1234
075
0.50
025
0.00

10° 10" 107 10° 10* 10°

10° 10" 10° 10° 10° 10°  10° 10" 10° 10° 10°

10°  10° 10" 10° 10° 10°

10°  10° 10" 107 10° 10* 10°

Training Steps

Figure 19: Seed-level accuracies of all models on 5 benchmarks, with shading used to indicate
standard error.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We clearly mention our contributions in the abstract and introduction, and we
believe that they reflect our actual contributions in the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations in Section[6l
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: No theoretical proofs.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all the code and data necessary to reproduce our experiments
and analyses in the supplementary materials. We also release our trained models with
checkpoints.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide all the data and code necessary to carry out all experiments in the
supplementary materials, as well as instructions for using the code.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper itself (Section [3| and Section [ discusses the necessary details
to understand the results; and further details are provided in Appendix [A] Appendix
Appendix [C] Appendix D] as well as the supplementary materials.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide 95% confidence intervals for our main results in Section 3] For the
coefficient analysis in Section[d] we include a breakdown of the results with 95% confidence
intervals for each seed in Appendix [I}

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the details of computational resources used and required in the
documentation supplied in our supplementary materials.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: As far as we are aware, our research conforms to the guidelines.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We describe acceptable uses of our code, dataset, and trained models in the
documentation in our supplementary materials.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We describe acceptable uses of our code, dataset, and trained models in the
documentation in our supplementary materials.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the papers (where relevant) and list the licenses of all the assets used
in the supplementary materials.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide documentation of our code, data, and models, including limitations
and licensing information in our supplementary materials.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No human subjects experiments.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No human subjects experiments.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We do not use LLMs in any of the aforementioned ways.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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