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Abstract

Deep neural models often learn to use spurious
features in image datasets, which raises concerns
when the models are deployed to critical appli-
cations, such as medical imaging. Identifying
spurious features is essential to developing robust
models. Existing methods to find spurious fea-
tures do not give semantic meaning to the features
and rely on human interpretation to decide if they
are spurious or not. In this paper, we propose to
find spurious visual attributes in the dataset. We
first linearly transform the latent features into vi-
sual attributes and then learn correlations between
the attributes and object classes by training a sim-
ple linear classifier. Correlated visual attributes
are easily interpretable because they are in natu-
ral language having well defined meanings which
makes it easier to find if they are spurious or not.
Through visualizations and experiments, we show
how to find spurious visual attributes, their ex-
tent in existing dataset and failure mode examples
showing negative impact of learned spurious cor-
relations on out-of-distribution generalization.

1. Introduction
Existing image datasets contain both spurious and non-
spurious features. Due to spurious correlations present in
the training datasets, classification models learn to use the
spurious features for predictions. While using the spuri-
ous features may help in-distribution accuracy, the classifier
cannot generalize when the distribution shifts (Mao et al.,
2021). Reliance on non-spurious features becomes specially
important in critical applications, such as medical imag-
ing (Singh et al., 2020; Ancona et al., 2018; Eitel & Ritter,
2019; Pereira et al., 2018).
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Figure 1. Our framework. We first linearly transform the repre-
sentation in a neural network to the space of interpretable attributes,
and then we train the linear classifier using our interpretable con-
cepts in the latent space. The learned weights (highlighted in
bold in the figure) give global level explanation of the learned
attributes for an object class. For example, in this figure, the model
has learned that visual attributes like {handlebar, seat, wheel}
describe a bicycle.

Existing methods of finding spurious correlations in im-
age datasets (Singla et al., 2021; Mao et al., 2021; Wong
et al., 2021b; Singla & Feizi, 2022) do not give the se-
mantics of the discovered spurious features. Here, by fea-
ture semantics we mean natural language description like
color/material/object/scene/etc. corresponding to a feature.
Wong et al. (2021b) first learn sparse linear classifier to
find correlated neurons and then use images that activate
the correlated neuron the most to ask human annotators to
name the feature and say if it is spurious or not. Singla
et al. (2021) and Singla & Feizi (2022) develop a feature
visualization method and ask humans if the visualized fea-
ture seem spurious or not. While Mao et al. (2021) use
generative models to find correlations between class labels
and nuisance factors such as viewpoint and backgrounds.
All of these methods rely on humans interpretation of the
found correlated features and do not assign semantics to the
found features on their own.

In this paper, we develop an interpretable object classifi-
cation framework that we can use to find correlated visual
attributes in image datasets. Our key insight is that the rep-
resentations in deep models contains entangled spurious fea-
tures and non-spurious features and if we can linearly trans-
form the latent representation to the axis of interpretable
visual attributes, we can disentangle the spurious attributes
and access their association to the model output. To do
this, our framework first learns a linear transformation to
predict visual attributes present in the images and then uses
those predicted attributes to classify the objects in the im-
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Table 1. Spurious attributes. Showing % of images in the imagenet validation set with at least one of the spurious attributes.

Object class Spurious attributes Images with spurious attributes

Snowmobile tree, snow, mountain 96%
Rugby ball leg, torso, arm, person, hand 80%
Street sign windowpane, building, tree, sidewalk, road 92%
Tent mountain, tree, rock 86%
Cowboy hat head, torso, arm, fence 82%
Mountain bike tree, ground, leg, road 88%
Traffic light building, street, road, sky 94%
Airliner sky 86%

Figure 2. Training attribute prediction model on Broden
dataset: We use segmentation maps of visual concepts from the
Broden Dataset (Bau et al., 2017). We first use an Imagenet (Rus-
sakovsky et al., 2015) pretrained backbone (ResNet50 (He et al.,
2015)) to extract feature maps of an input image. Then a 1x1
convolution filter is learned for each visual concept which operates
on the feature penultimate layer resnet feature maps of input image
to get concept activation map. The concept activation map is then
upsampled to match the annotated segmentation map and used to
calculate cross-entropy loss.

ages. We can then analyze the learned attribute weights
of the classifier model to find “which visual attributes are
associated by the model to an object category?” Unlike ex-
isting methods (Singla et al., 2021; Wong et al., 2021b)
where humans need to interpret the meaning of a feature
through most activating images or heat maps to figure out
if the feature is spurious or not, our framework gives easily
interpretable visual attributes with defined natural language
meanings which makes it easier to decide if it is spurious
or not. For example, our framework gives snow attribute
to be correlated with “snowmobile” class, while existing
methods would highlight snowy regions of “snowmobile”
images and leave it on human to interpret its meaning.

Through experiments and visualizations we show that our
approach is effective in finding spuriously correlated fea-
tures in terms of easily interpretable visual attributes. We
use Broden (Bau et al., 2017) attributes to train our frame-
work to classify ImageNet (Russakovsky et al., 2015) ob-
jects. We analyze the learned weights of the classifier (Fig-

ure 3) to find spurious attributes and use the attribute predic-
tions to find that 80%-90% of the ImageNet validation set
images have spurious visual attributes (Table 1). We also
show a few failure model examples (Figure 4) to reinforce
the fact that the learned spurious correlations by deep neural
networks hurt their out-of-distribution generalization.

2. Framework
Deep models make predictions using the latent features.
However, the features are black-box and often do not corre-
spond to an interpretable concept. In this section, we present
a framework model which first learns to linearly transform
the representation in a neural network into the space of
interpretable attributes, and then trains a classifier using
the interpretable concepts. In the following section, we
show how we analyze the learned weights of our framework
model to find spuriously correlated attributes by training
it to classify Imagenet (Russakovsky et al., 2015) classes
using Broden (Bau et al., 2017) attributes. We show our
framework model pipeline in Figure 1.

Attribute prediction. We interpret the latent representa-
tion in a deep model with our specified attributes. Given
an image x, we first use the given CNN model F to extract
its features F (x) as f feature maps of size Hf × Wf . We
then learn to linearly transform the feature space F (x) to
find principal directions that correspond to interpretable vi-
sual attributes in the image. To do this, we learn a linear
transformation model R which has A pointwise convolu-
tion filters operating on image features F (x) to produce
(a1, a2, ..., aA) attribute maps of size Hf × Wf . Each
attribute map ai corresponds to an interpretable visual at-
tribute. Finally, we average pool the attribute maps to get
an A dimensional attribute feature vector R(F (x)) ∈ RA,
such that each dimension of the vector corresponds to a hu-
man interpretable visual attribute. A simple object classifier
could then be trained with these attribute features as inputs
to make its prediction interpretable.



Finding Spuriously Correlated Visual Attributes

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
learned attribute weights

leg
torso

pink-c
arm

person
hand
grass
neck
red-c

green-c
head

ceiling
foot

body
tree

campsite-s
bumper

aircraft carrier
lockers

courthouse-s

rugby ball - top weighted attributes

0 2 4 6 8 10 12
learned attribute weights

earth
tree
leg

road
ground

head
motorbike

snow
arm

mountain
blue-c

white-c
rock

wheel
mountain_snowy-s

fence
hand

person
purple-c

torso

snowmobile - top weighted attributes

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
learned attribute weights

head
fabric
torso
arm

fence
person

ear
building
brown-c

horse
hair

neck
freckled

motorbike
windowpane

pink-c
shoe_shop-s

pole
porous

tree

cowboy hat - top weighted attributes

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
learned attribute weights

signboard
windowpane

pole
building

tree
sidewalk

sky
street-s

road
blue-c

green-c
light

plant
railing
ceiling
flower

box
poster

streetlight
ear

street sign - top weighted attributes

Figure 3. Analyzing learned weights to find spurious attributes in Imagenet. By analyzing top weighted attributes in the learned
object classification weights, we find the spurious attributes in the Imagenet dataset. Here we find that attributes like {head, torso, leg,
arm} are in the top weighted attributes for “rugby ball”, {tree, snow, mountain} for “snowmobile”, {head, torso, arm} for “cowboy hat”
and {building, tree, sidewalk} for “street sign”. Though these attributes do not describe these objects, they are present in the training
images and are learned by the classifier because they are spuriously correlated with the object classes.

Object classification using attributes. To make our clas-
sification method interpretable, we learn a simple linear
model C that takes the predicted attribute vector R(F (x))
as input and predicts the object class among O object classes.
We also softmax the attribute vector with a learnable tem-
perature so that the input to the classification model could
be treated as a probability distribution over attributes. To
make the model weights more interpretable, we use Elastic-
Net (Wong et al., 2021a) regularization so that its learned
weights become sparse and only those attributes have some
non-zero significant weights that are essential to describe
the object class. The linear model C has learned weight
matrix W of shape A × O, such that the value of weight
Wi,o gives the importance of attribute ai for predicting the
object o. By combining the results of the attributes and
the linear layer, attribute weights can be used to explain
“what the model thinks about an object class?”. For example,
for “car” object class, the learned weights of concepts like-
wheel, metal, windshield, door, street - would have higher
values than concepts like - fabric, indoor, wood. Using this
information, we can say that the model thinks a car looks

like it is made of metal, has wheels, a windshield, doors,
and is usually found on the streets. As the feature attributes
are fully interpretable, we can interpret which attributes
contribute the most to the predicted category.

3. Finding spuriously correlated visual
concepts in ImageNet

Spurious correlations in datasets hurt the generalization abil-
ity of the learned models. As spuriously correlated attributes
are also associated with the final prediction, the model will
also learn to use these. The top weighted attributes in the
learned weights W of classifier C in our framework can be
analyzed to find spuriously correlated attributes.

We conduct our analysis with 40 object classes that are
common in both MS COCO (Lin et al., 2014) and Ima-
geNet (Russakovsky et al., 2015) dataset. We select these
object classes because they represent objects from our day-
to-day lives and have diverse set of attributes. We will intro-
duce how to train our pipeline on existing attribute dataset,
and show the spurious correlations used in classifying the
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Figure 4. Failure mode examples due to spurious correlations. These examples show how spuriously correlated attributes can cause
wrong object class prediction. Presence of mountains, trees and rocks causes the model to predict the top image of mountain bike as tent
because these attributes are spuriously correlated with tent class (see table1). Similarly, presence of tree, ground, leg and road in the
bottom image of snowmobile, combined with the absence of snow and mountain, causes the model to predict it as a mountain bike.

ImageNet.

Broden visual concepts to find spurious attributes. Bro-
den (Bau et al., 2017) dataset is an established large scale
dataset that provides supervision for attributes in the image.
Broden contains 63,305 images and 1197 attribute segmen-
tation maps per image. The attributes include different kinds
of colors, textures, materials, parts, objects and scenes. To
train the pointwise convolution filters of the attribute lin-
ear transformation model R, we first compute the attribute
maps (a1, a2, ..., aA) as described above in section 2. The
images in Broden (Bau et al., 2017) dataset are of size
224× 224 and the concept maps are of size 112× 112. We
use ResNet50 (He et al., 2015) to get image features maps
of size 7 × 7 for the images. Then we learn 1197 1 × 1
filters for concepts to produce 7×7 concept activation maps
which we then interpolate to 112 × 112 to match training
concept maps for loss calculation. Refer to Figure 2 for
details. We then use the predicted 1197 Broden attributes
to train the linear object classification model using training
images of the ImageNet dataset. We then manually probe
the learned attribute weights for some of the object classes
in the classifier to find their spurious attributes.

Visualizations and numerical results show that trained from
Broden attributes, the model’s predictions are often based
on spuriously visual attributes. For example, in Figure 3,
we can see that attributes that contribute to the prediction
of “snowmobile” are snow, tree and mountain. But none
of these attributes describe a snowmobile. These attributes
just happen to be present in the training images of snowmo-

bile. Similarly, we found such spurious attributes for a few
more object classes and used the attribute predictions to find
the number of images having such attributes. As seen in
Table 1, around 80-90% of images of the shown classes in
the ImageNet validation set have at least one of the probed
spurious attribute.

Relying on spurious attributes can harm model generaliza-
tion when the spurious correlations are changed in a new
environment. We show two example images from the Im-
ageNet validation set in Figure 4, one of bike over moun-
tains and the other of a snowmobile in a snow-less forest
track. The model makes wrong predictions on both because
the surrounding environments of the objects are slightly
changed and the spuriously correlated attributes with the
object classes are not presented in the images.

4. Conclusion
Existing computer vision datasets often contain undesired
spurious correlations. Deep neural networks trained on these
dataset will naturally learn those spurious correlations. Our
work proposes a simple framework that allows to interpret
the latent representation by transforming the representation
to directions that directly correspond to easily interpretable
visual attributes. Our results demonstrate rich spurious cor-
relations leveraging existing Broden dataset as inductive
bias for spurious correlations. Our findings highlight that
existing deep models learn rich spurious correlations that
are associated with the task output.
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