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Abstract
Fueled by the popularity of the transformer ar-
chitecture in deep learning, several works have
investigated what formal languages a transformer
can learn. Nonetheless, existing results remain
hard to compare and a fine-grained understand-
ing of the trainability of transformers on regular
languages is still lacking. We investigate trans-
formers trained on regular languages from a mech-
anistic interpretability perspective. Using an ex-
tension of the L∗ algorithm, we extract Moore
machines from transformers. We empirically find
tighter lower bounds on the trainability of trans-
formers, when a finite number of symbols de-
termine the state. Additionally, our mechanistic
insight allows us to characterise the regular lan-
guages a one-layer transformer can learn with
good length generalisation. However, we also
identify failure cases where the determining sym-
bols get misrecognised due to saturation of the
attention mechanism.

1. Introduction
Transformers (Vaswani et al., 2017) have become a main-
stay architecture in natural language processing and deep
learning more generally. There has hence been increasing
interest in characterising the expressive power of this archi-
tecture. Significant effort has been devoted to proving what
formal languages can or cannot be expressed by the trans-
former architecture (Ackerman & Cybenko, 2020; Merrill,
2021; Strobl et al., 2023). The trainability remains less well
understood, however. Indeed, the fact that a transformer can
express a formal language does not necessarily mean it can
also learn it from data.

As an example, consider the parity language, which consists
of all binary sequences with an odd number of ones. Chiang
& Cholak (2022) proved that soft attention transformers can
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express this language. However, empirical studies found that
transformers trained on the parity language fail to generalise
to longer sequences (Anil et al., 2022; Delétang et al., 2022;
Liu et al., 2023). Worryingly, Bhattamishra et al. (2020)
even found that transformers fail to learn the parity language
for sequences with in-distribution lengths.

How can we draw consistent conclusions from these seem-
ingly contradictory results? Strobl et al. (2023) show that
different underlying assumptions cause these inconsisten-
cies. Additionally, the specific setup of the training task
and evaluation metric are important. We argue that using
mechanistic interpretability, by unveiling exactly what the
transformers learn, allows us to draw more robust conclu-
sions on trainability, thus preventing future contradictions.

To achieve a mechanistic understanding of transformers
trained on regular languages we automatically reverse-
engineer the finite state machines they learned. This ap-
proach, originally proposed for recurrent neural networks
(RNN) (Weiss et al., 2018b), relies on the classical L∗ al-
gorithm (Angluin, 1987) to extract state machines using
queries and counterexamples. We further localise the states
of finite state machines in the transformer and investigate
how faithfully an extracted state machine models the trans-
former. We observe that when a transformer has effectively
generalised on a language, the states of the target finite state
machine are represented as directions in the transformer’s
output layer. Upon identifying these directions, we can
precisely determine what occurs in the instances where the
transformer fails.

2. Preliminaries
We will assume basic familiarity with transformers (Vaswani
et al., 2017). In this section, we briefly introduce two for-
malisms commonly used to characterise transformers: finite
state machines and Boolean circuits.

We write Σ or Γ for a finite set of symbols, also called
an alphabet. The Kleene closure Σ∗ of an alphabet Σ is
the set of all finite sequences using the symbols of Σ. For
example, the binary alphabet Σ = {0, 1} has as closure
Σ∗ = {ϵ, 0, 1, 00, 01, 10, 11, . . . }. We denote the empty
sequence with ϵ. A language L over the alphabet Σ is a
subset of Σ∗.
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2.1. Finite State Machines

Finite state machines are among the most well-known mod-
els to describe formal languages. Although several variants
exist, most can be reduced to deterministic finite automatons.
For a more thorough introduction, we refer to Hopcroft et al.
(2006).

Definition 2.1. A deterministic finite automaton (DFA) is a
tuple (Q,Σ,Γ, q0, δ), where

• Q is a finite set of states.
• Σ is the input alphabet.
• q0 ∈ Q is the starting state.
• δ : Q×Σ→ Q is the transition function, mapping the

current state and an input symbol to a new state.
• F ⊂ Q is the set of final states.

Given a sequence s ∈ Σ∗, a symbol σ ∈ Σ and a state
q ∈ Q, we define the repeated application of the transition
function δ̂ : Q×Σ∗ → Q as δ̂(q, σ.s) = δ̂(δ(q, σ), s), with
δ̂(q, ϵ) = q in the base case. We say that a DFA accepts
a sequence s if and only if δ̂(q0, s) ∈ F . Each DFA D
hence represents a language L(D) = {s | δ̂(q0, s) ∈ F}. A
language is regular if it can be represented by a DFA.

A Moore machine is a DFA without final states and with
an output function γ : Q → Γ, where Γ is the output
alphabet. On each transition, a Moore machine not only
takes an input symbol but also produces an output sym-
bol using γ. So while DFAs are sequence classification
models, Moore machines are sequence-to-sequence models,
aligning more closely with transformers. Note that DFAs
can be seen as a special case of Moore machines, where
Γ = {Reject,Accept}.

2.2. Circuit Complexity

A Boolean circuit Cn is a Boolean formula represented as
a directed acyclic graph. For a full introduction, we refer
to Arora & Barak (2006). A circuit Cn has n input nodes
and a single output node with no outgoing edges. Inner
nodes represent either the AND, OR, or NOT operations.
The NOT nodes have a single incoming edge, while AND
and OR nodes can have an arbitrary number of incoming
edges. A circuit computes a function Cn : {0, 1}n 7→
{0, 1}, accepting a sequence s ∈ {0, 1}n if Cn(s) = 1. The
depth of a circuit D(Cn) is the length of the longest path
between an input node and the output node. The size of a
circuit |Cn| is the number of nodes in Cn.

A circuit family C = {Cn}n∈N is a set containing a Boolean
circuit for each sequence length. The family C induces a
function C(s) = C|s|(s) and accepts the language L(C) =
{w | C(w) = 1}. The depth and size of C are now functions
n 7→ D(Cn) and n 7→ |Cn|.

We next present two relevant classes of languages in terms
of Boolean circuits.

Definition 2.2. A language is in AC0 if it can be recog-
nised by a family of circuits with constant depth and size
polynomial in n.

Definition 2.3. The class TC0 is defined the same as AC0,
but also allows MAJORITY nodes. These nodes output 1 if
and only if at least half of their inputs are 1.

It is well-known that AC0 ⊊ TC0 (Vollmer, 1999). No-
tably, the hierarchy of Boolean complexity classes does not
coincide with the Chomsky hierarchy. Indeed, the regular
languages span different circuit classes, that are known or
conjectured to be different. It has been conjectured that the
expressivity of transformers aligns with Boolean complexity,
and not the Chomsky hierarchy (Strobl et al., 2023).

The class of regular languages in AC0 can be further divided
in the star-free and non-star-free languages. The star-free
can in turn be subdivided according to their dot-depth.

Definition 2.4. (Barrington et al., 1992) The star-free reg-
ular languages are those subsets obtained by closing over
concatenation, complement and union beginning with the
letters of the alphabet and the empty sequence.

For example, the language containing no consecutive zeros
can be constructed as Σ∗00Σ∗ and is therefore star-free.

Definition 2.5. The dot-depth of a star-free language is
defined inductively. Closing the letters of the alphabet and
the empty sequence over complement and union yields the
languages of dot-depth zero. The dot-depth of a star-free
language is the smallest n, such that it can be constructed
from the closure of star-free languages of dot-depth n− 1
under concatenation, using complement and union.

2.3. Example Languages

We consider the following regular languages defined over
the binary alphabet Σ = {0, 1}. These languages are chosen
to cover the star-free languages, AC0 and TC0, all known
to be expressable by transformers (Merrill & Sabharwal,
2023).

• Ones: 1∗. Ones includes all sequences containing only
ones. Ones is star-free with dot-depth one.

• First: 1(0 | 1)∗. First contains all sequences that start
with a one. First is star-free with dot-depth one.

• Depth-bounded Dyck: Di. The depth-bounded Dyck
languages contain all sequences where the two sym-
bols are correctly balanced and the maximal nesting
depth is bounded. We denote the Dyck language with
maximum depth i as Di. For example, D1 = (01)∗

and D2 = (0(01)∗1)∗. The language Di is star-free
with dot-depth i.
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• Modulo length: Cq. The languages Cq have the unary
alphabet Σ = {0} and contain all sequences s with
length |s| modulo q = 0. All languages Cq are in AC0,
but not star-free.

• Parity. Parity contains all sequences with an odd num-
ber of ones. Parity is famously within TC0, but outside
of AC0.

3. Trainability of Transformers
In line with previous work, we distinguish between expres-
sivity and trainability (Strobl et al., 2023). Expressivity
asks whether a transformer can represent a language, while
trainability asks whether a transformer can learn a language
from data. Although we investigate trainability, expressivity
is still relevant as it is a prerequisite for trainability.

As opposed to expressivity, the study of trainability on trans-
formers has been mostly empirical. Unfortunately, these
studies can be hard to compare due to subtle variations in
the task. We argue that all tasks can be unified as learning
to simulate a Moore machine.

Our work focuses on the trainability of regular languages
and finite state machines. Although it is generally accepted
that transformers are not well aligned with the Chomsky
hierarchy (Delétang et al., 2022), the existing work on ex-
pressivity is often still structured along this hierarchy (Bhat-
tamishra et al., 2020; Merrill, 2021). Moreover, this allows
us to draw upon the methods and results for RNNs, which
are more closely related to regular languages (Giles et al.,
1991). Finally, Bricken et al. (2023) recently observed tran-
sition functions resembling state machines in transformers
trained on natural language, demonstrating the real-world
relevance of this formalism.

Next character prediction Bhattamishra et al. (2020)
conducted a large experimental study on the trainability
of transformers on different languages in the Chomsky hi-
erarchy. They trained on a multilabel classification task
where, given a sequence, the transformer predicts which
next symbols are a valid continuation. A symbol σ is a
valid continuation of a sequence w if there exists a w′ ∈ Σ∗

such that δ̂(w.σ.w′) ∈ F . The transformer accepts a se-
quence when it considers each symbol a valid continuation
and predicts the end-of-sequence symbol valid on the final
position. We call this setting next character prediction. We
can frame this as a Moore machine with the output alphabet
Γ = 2Σ∪{Accept} where Σ is the language alphabet.

Bhattamishra et al. (2020) presented the transformer only
with positive examples, resembling a language modelling
task. In their analysis, they hypothesised that transformers
only generalise well on star-free languages with dot-depth
1, and not for higher depths.

State prediction Liu et al. (2023) investigated transform-
ers learning semiautomata. Semiautomata are a DFA variant
without a notion of final or non-final states. Given an input
sequence s, the transformer is trained to predict the sequence
of states visited by the target semiautomaton. So when δ
is the transition function, the transformer must predict the
generalised transition function δ̂(q0, s1:i) for each position
1 ≤ i ≤ |s|. This is a multiclass classification task and can
be seen as a Moore machine with Γ = Q, meaning γ is the
identity function.

Liu et al. (2023) argue that transformers must use shortcut
solutions to compute the recurrent dynamics of these au-
tomata in their limited number of layers. They proved that
any semiautomaton can be simulated up to length T by a
transformer with O(log(T )) layers and a sufficiently large
embedding, attention and dense layer width. Furthermore,
a constant depth solution exists for solvable semiautomata,
with sufficiently large embedding and attention width, and a
dense layer width linear in T . Experimentally, they found
transformers can learn any semiautomaton with near-perfect
accuracy, including Parity (a non-star-free language), which
is seemingly at odds with the results of Bhattamishra et al.
(2020). However, the found solutions did not generalise
to longer sequence lengths. The authors did not conduct a
full mechanistic analysis, nor claim transformers find the
shortcuts they proposed.

Membership prediction Predicting membership of a lan-
guage can also be modelled as a Moore machine. The output
function is then binary, Γ = {Accept,Reject}, and the prob-
lem reduces to simulating a DFA as γ encodes the final
states (Weiss et al., 2018a;b).

We refer to the minimal DFA accepting a language as the
target DFA of that language. The target Moore machine
of a language is then equivalent to the target DFA with the
appropriate output function and alphabet.

The relationship between different training tasks is now
more explicit. Membership prediction is similar to state
prediction but with partial observability, as all accepting
states (and all non-accepting states) get the same label. For
the next character prediction task, the observability depends
on the specific machine, in particular, whether the sets of
next valid symbols are unique in each of the states.

4. Extracting State Machines
Assuming that a transformer faithfully implements a state
machine, it must be possible to extract said state machine.
Weiss et al. (2018b) proposed a method for extracting DFAs
from RNNs using the exact learning algorithm L∗ (Angluin,
1987). We briefly summarise their approach, before specify-
ing our changes.
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The L∗ algorithm learns a DFA by asking queries to a
teacher oracle. These queries are either 1) membership
queries, asking whether the target language accepts a given
sequence, or 2) equivalence queries, asking whether a given
DFA implements the target language and returning a coun-
terexample should they differ. For a full explanation of the
L∗ algorithm, we refer to Appendix A.

The method of Weiss et al. (2018b) boils down to imple-
menting these two queries using an RNN. A membership
query is straightforward as the RNNs are trained on member-
ship prediction. Answering equivalence queries is generally
intractable, however. For this reason, the hidden activation
space is partitioned, such that each partition represents a
state and state transitions are defined by a single sample in
that partition (Giles et al., 1991). In other words, Weiss et al.
(2018b) keep track of two DFAs: the DFAD being extracted
by L∗, and the DFA D′ specified by the partitioning of the
activation space.

To answer equivalence queries, the states of D and D′ are
traversed in parallel. Two types of conflicts may occur. The
first possibility is thatD is different from the target language
of the RNN, in which case we can return a counterexample.
The second possibility is that the partitioning D′ differs
from D, in which case the partitioning is refined.

Weiss et al. (2018b) employ three additional tactics to im-
prove practical performance. 1) They apply a time limit
after which the algorithm is stopped and the final proposed
DFA is returned. 2) They use an aggressive initial splitting
strategy on the first set of conflicting vectors, by splitting
along the dimensions where these vectors differ the most.
The number of dimensions d to initially split on is a hyper-
parameter called the initial split depth. 3) They sometimes
supply starting examples of at least one positive and one
negative example for the L∗ learner to get started. These
last two additions prevent the algorithm from terminating
prematurely on an automaton with a single state.

4.1. Extracting Moore Machines

With only minor changes, the above method can be adapted
to extract Moore machines from transformers instead of
DFAs from RNNs.

The method of Weiss et al. (2018b) is not specific to RNNs
but can be used on any neural acceptor as long as the chosen
state vectors are consistent, i.e., they can be partitioned such
that all vectors belonging to the same cluster are either re-
jecting or accepting. In a one-layer transformer, we propose
using the final activations of the residual stream after layer
normalisation. Layer normalisation projects the activations
on a d − 1 dimensional hypersphere of radius

√
d, with d

the dimension of the residual stream (Brody et al., 2023).

So at that point, all activation vectors are normalised*. From
these activation vectors, the output is computed with a final
affine transformation. As such, they are analogous to the
state vectors of the RNNs in the original study.

To find Moore machines instead of DFAs we use a general-
isation of L∗. More specifically, we learn a single Moore
machine, which is a special case of the Moore machine prod-
uct considered by Moerman (2019). As opposed to learning
DFAs, learning Moore machines allows us to consider trans-
formers with an arbitrary output alphabet.

5. Experiments
In this section, we analyse the performance of transformers
trained on regular languages. Furthermore, we apply our
extraction method to analyse the Moore machines learned by
transformers on the different settings discussed in Section 3.

5.1. Experiment Setup

We use the same training method and transformer architec-
ture throughout all experiments to ensure reproducibility
and comparability.

Datasets The training datasets contain 10,000 sequences
of length 32 labelled using the task-specific target Moore
machine. The validation sets contain 2,000 sequences of
length 100. To evaluate the transformers after training we
use one test set of length 100 and another of length 1,000,
both containing 1,000 sequences. The data is either sampled
uniformly at random or contains only positive examples,
i.e. examples in the target language. We call the latter
positive-only learning and employ it when reproducing the
results of Bhattamishra et al. (2020). The positive examples
are generated by traversing the target DFA at random after
removing the garbage state for efficiency.

We often use length ranges as for some languages the
sequence classification is identical for sequences of cer-
tain fixed lengths. For example, exactly the sequences of
even length are part of the language C2. Each example is
prepended with a unique beginning-of-sequence symbol,
allowing the transformer to learn an output for the starting
state.

Architecture We use one-layer transformers with soft at-
tention (Vaswani et al., 2017), pre-norm layer normalisation
(Nguyen & Salazar, 2019), and rotary positional encod-
ings (Su et al., 2024). The latter two techniques have been

*After centering and normalisation the resulting vectors are
typically recentered and rescaled by the scaling vector γ and bias
β. However, at inference time this is simply one more affine trans-
formation that can be folded into the final output transformation
(Elhage et al., 2021).
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demonstrated to enhance the original transformer architec-
ture in terms of training efficiency and length generalisa-
tion, respectively. We use a residual stream width of 16, a
single-layer MLP layer of width 64 and 4 attention heads.
This is a subset of the transformer configurations studied
in Bhattamishra et al. (2020). We do not compare differ-
ent transformer configurations as this has been extensively
done before and we instead aim to show transformers can
be mechanistically interpreted.

Training We use the Adam optimizer (Kingma & Ba,
2015) with a learning rate of 3 ·10−4, no learning rate sched-
ule, and a batch size of 32. We employ early stopping on
the validation loss, with a patience of 100 epochs, and select
the best-performing weights on the validation set. We run
each experiment three times with identical hyperparameters
and a different seed.

5.2. Positive-Only Character Prediction

First, we consider the next character prediction setting from
Bhattamishra et al. (2020). Remember that in this setting, a
sequence is accepted when the transformer considers each
symbol valid and predicts the end-of-sequence symbol as
valid on the final position. We refer to this evaluation mea-
sure as the sequence accuracy.

Table 1 shows the F1 scores and sequence accuracies on
the training and validation sets and the sequence accuracy
on two datasets containing positive-only data with lengths
ranging from 100 to 104 and 1000 to 1004. In Table 2, we
repeat the same evaluation on randomly sampled data. We
also include the F1 score of a trivial baseline that predicts
all symbols as valid. In both tables, results are averaged
over three runs. It is enough for a single experiment to learn
a language perfectly to demonstrate trainability. Therefore,
if at least one run achieved a perfect score, we indicate this
with an asterisk.

Only considering the evaluation on positive-only data, the
results in Table 1 indicate transformers generalise well on
the star-free languages (Ones, First,D1 andD2). On the non-
star-free languages in AC0 (C2 and C3), the transformers
perfectly fit the training set but fail to generalise. On Parity,
which lies outside AC0, they do not perfectly learn the
training set. However, the evaluation on random data in
Table 2 reveals that the transformers do worse or barely
outperform the baseline, although the sequence accuracy
stays high.

How can we explain this? The gradient update of a trans-
former is calculated based on the predictions made at all

† This dataset includes examples of up to four characters more
than specified to achieve more accurate results on languages where
classification depends on the sequence length.

Table 1. Support weighted F1 score on the train and validation set
and sequence accuracy on test sets ranging from 100 to 104 and
1000 to 1004. All datasets contain only positive examples. Three
transformers with identical hyperparameters were trained each
time and the average is reported. An asterisk is added in the table
if at least one of the transformers scores perfectly.

F1 Score Sequence accuracy

Train Validation Test

Language l=32 l=100 l=100† l=1000†

Ones 1.000∗ 1.000∗ 1.000∗ 1.000∗

First 1.000∗ 1.000∗ 1.000∗ 1.000∗

D1 1.000∗ 1.000∗ 1.000∗ 0.589
D2 1.000∗ 0.994∗ 0.856∗ 0.590
C2 1.000∗ 0.883 0.592 0.461
C3 1.000∗ 0.874 0.595 0.528
Parity 0.975 0.928 0.543 0.467

positions of the input sequence. Therefore, it is effectively
trained on all prefixes of the sequences in the training set.
When training on positive examples only, if the target DFA
contains a garbage state, the transformer is never trained on
any sequences that lead to that garbage state. Conversely,
when the target DFA does not contain a garbage state, the
transformer is trained on all sequences up to a length slightly
smaller than the training length. That is, also the sequences
ending in a rejecting states, as they are a prefix of an ac-
cepting sequence. If we then validate the performance of a
transformer only on positive data – in line with the original
study – the behaviour of the transformer on sequences for
which the target DFA ends in its garbage state is not taken
into account.

Furthermore, a transformer performs perfectly on the se-
quence accuracy measure, even when evaluated on randomly
sampled data, provided that it correctly identifies when the
target DFA transitions to the garbage state, i.e. when it iden-
tifies a symbol to be invalid. The transformer’s predictions
after an invalid symbol do not matter. When the sequence
accuracy is high, it is therefore entirely possible for a trans-
former to have learned a variation on the intended target
language with arbitrary behaviour on sequences ending in
the garbage state.

Extraction We now extract a Moore machine from each
of the transformers using the method described in Section
4. In accordance with Weiss et al. (2018b), we make use
of an initial split depth of 10 and supply a short positive
and negative example whenever the algorithm terminates on
the trivial one-state machine. Furthermore, the algorithm
times out after 30 seconds. The results are shown in Table 3.
Besides the number of states of the extracted machine and
target machine, we report the agreement metric.
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Table 2. Support weighted F1 score and sequence accuracy on randomly sampled test sets ranging from from 100 to 104 and 1000 to 1004.
All datasets contain random data. Three transformers with identical hyperparameters were trained each time and the average is reported.
An asterisk is added if at least one of the transformers scored perfectly. The baseline predicts all tokens as valid.

l=100† l=1000†

Language Baseline F1 Transformer F1 Sequence accuracy Baseline F1 Transformer F1 Sequence accuracy

Ones 0.040 0.042 1.000∗ 0.004 0.004 1.000∗

First 0.673 0.676 1.000∗ 0.684 0.684 1.000∗

D1 0.023 0.045 1.000∗ 0.002 0.005 1.000∗

D2 0.036 0.060 1.000∗ 0.004 0.007 1.000∗

C2 0.890 0.882 0.592 0.889 0.785 0.461
C3 0.875 0.875 0.667 0.875 0.809 0.603
Parity 0.933 0.928 0.492 0.933 0.892 0.498

Table 3. Results of extracting Moore machines from the transform-
ers trained under the positive only next character prediction task.
The results are averaged over the three identically trained trans-
formers unless this obscures important details. T/O indicates a
timeout.

Size Agreement F1

Language Extracted Target l=10† l=100† l=1000†

Ones 1 2 0.983 0.988 0.999
First 2 3 1.000 1.000 1.000
D1 2 3 0.999 1.000 0.927
D2 3,4,3 4 0.823 0.712 0.762
C2 2 2 1.000 0.882 0.785
C3 3 3 1.000 0.875 0.809
Parity 2,T/O,2 2 0.999 0.928 0.891

The agreement is the F1 score on random data using the
extracted Moore machine as ground truth, indicating how
well the extracted machine describes the transformer.

The extraction only timed out on one of the transformers
trained on Parity. For the machines without a garbage state
(C2,C3 and Parity), the extraction found the exact target
Moore machine. In that case, the F1 score is equivalent to
the agreement metric. For all languages with a garbage state
(Ones, First, D1 and D2), the algorithm extracted a Moore
machine with one state less than the target machine, except
for two transformers trained on D2. For all these languages
the agreement is much higher than the F1 score on random
data, which indicates that the extracted machine describes
the behaviour of the transformer much better than the target
machine.

Figure 1 compares the extracted Moore machines for D1

with the target machines. The same machine was extracted
from all three transformers. The labels of the states show
the output function of the Moore machine. Under this task,
the output function maps a state to three binary values indi-

Figure 1. Target Moore Machine (left) and extracted Moore ma-
chine (right) from a transformer trained on D1. The labels show
whether the 0, 1 and end-of-sequence symbols are considered valid
in that state.

cating whether the 0, 1, and end-of-sequence symbols are
considered valid in that state. The extraction results for the
other languages are similarly in Appendix B.

As hypothesised, the transformer learns a variation of the
target machine without the garbage state. Note that the
transformer could have rerouted the transitions ending in
the garbage state arbitrarily. Interestingly, the configuration
we have extracted was studied by Liu et al. (2023). They call
these languages gridworldi, so we will refer to them as Gi.
They are equivalent to Di with the garbage state removed
and the transitions rerouted to be self-loops. Liu et al. (2023)
showed that for these languages even shallower shortcuts
exist than the general logarithmic depth and constant depth
shortcuts they derived. The authors found that a two-layer
transformer with large enough dimensions can learn this
family of languages. Remarkably, our transformers can
learn this language with only a single layer, empirically
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setting an even tighter lower bound.

5.3. Positive-Negative State Prediction

From here on, we analyse transformers trained on randomly
sampled data under the state prediction task to avoid learn-
ing unintended target languages. We additionally study the
languages Gi as we have shown the former are the actual
languages transformers manage to generalise well on under
the positive-only character prediction setting.

We train three transformers on the studied languages, now
including G1 and G2, and extract Moore machines from
them. Both the training and extraction are performed as
before. The full results of this training and extraction are in
Appendix C.

The transformers learned perfectly on the training set for
all languages, except Parity. On C2 and C3 they did not
generalise well outside of the training set. At least one trans-
former had a perfect score even for sequences of length 1000
for Ones, G1 and D1. For First, G2 and D2, there was gen-
eralisation but not up to such a long length. The extraction
algorithm terminated and extracted the exact target Moore
machine for all transformers except for one trained on Parity
and two trained on D2, where it timed-out, returning a large
machine.

6. State Localisation
We next attempt to localise how the states of the extracted
finite state machines are represented in the final layer of our
transformers. For each language, we focus on the model
that generalised best. We summarise the main results here.
Appendix D contains the full analysis for each language.

As discussed before, the activations of the final layer all
have norm

√
d due to the layer normalisation, with d the

dimension of the residual stream. Therefore, only the direc-
tion of the activation vector matters. Within the activation
space, we can find inherently meaningful directions by look-
ing at those directions along which the probability of one
of the output labels is maximised. We will refer to them as
maximal probability directions. We observe that these direc-
tions are arranged opposingly when there are two outputs
and in a plane when there are three outputs. This makes
sense as, due to the softmax activation, making one output
large causes the others to be small. These arrangements
maximise the angles between the directions of the different
outputs.

The computation of the transformer can thus be decomposed
in two steps. Firstly, the transformer computes, for each
symbol, a fixed-norm activation vector in its final layer.
Next, this activation vector is transformed into the output.
The directions that maximise the output probabilities span a

subspace of the activation space of the final layer. Therefore,
the only part of the activation vector that influences the
output is the component in that subspace. If an activation
vector has a large perpendicular component, the component
in the subspace must be small and therefore the confidence
of the predictions drops.

When a transformer has learned to generalise well, we as-
sume the transformer has similar activations on input se-
quences for which the extracted machine is in the same state.
We therefore introduce the notion of returning suffixes.

Definition 6.1. A returning suffix associated with a state
q ∈ Q of a Moore machine M = (Q, q0, δ, γ,Σ,Γ) is a
sequence of symbols sq ∈ Σ∗, such that δ̂(q, sq) = q.

Notice that the empty sequence ϵ is a returning sequence
for all states. All returning suffixes for a state q up to length
L can be found by performing a breadth-first traversal of
depth L of the extracted Moore machine and adding all
paths returning to q to the set of returning suffixes. For
some states, the number of returning suffixes is exponential
in L. Therefore, we used a beam search to generate a dataset
of returning suffixes. We then look at the transformers
activation on pq.sq, with pq ∈ Σ∗ being a prefix, such that
δ(q0, pq) = q. We always choose the shortest such pq.
If the transformer has generalised well, we expect to find
the activations on the returning suffixes to lie in the same
direction.

Of the languages we study, our transformers managed to
generalise well on the languages Ones, First, G1, G2, D1

and D2. Indeed, we observe that they have, for each state,
a designated direction in their final layer along which they
orient the activation vector of a sequence ending in that state.
Moreover, these designated directions are well aligned with
the direction maximising the correct output probability. The
languages D1 and D2 are an exception to the rule, as for
these languages, transformers only seem to represent the
garbage state well.

For the languages C2 and C3, we observe that transformers
also can align the activation vectors along such a designated
direction, but only for lengths seen in training. For the
Parity language, our transformers never seem to align the
activation vectors at all.

Further analysis is necessary to explain exactly how this
alignment comes about. However, observing when a trans-
former is successful in representing a state and when it is
not conveys a great deal of information and allows for a
hypothesis on the trainability of one-layer transformers.

7. Characterising Trainability
Finally, we can propose a coherent characterisation of the
trainability of one-layer transformers on regular languages
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using our mechanistic insights. Concretely, we hypothesise
that regular languages are trainable when the state of their
minimal DFA is determined by a finite number of symbols.
To better understand this, we consider the concept of reset
sequences (Maler & Pnueli, 1994). A sequence of symbols
is a reset sequence for a DFA if it maps every state to a
single state under the generalised transition function.

Definition 7.1. We call s ∈ Σ∗ a reset sequence for state
qr of DFA D = (Q,F,Σ, q0, δ) if

∀q ∈ Q : δ̂(q, s) = qr (1)

For G1, all sequences of length one are reset sequences.
Therefore, the correct state can be determined by looking
only at the final symbol. For G2, the sequences 00 and 11 are
reset sequences, but 01 and 10 are not. For Ones, a single
zero always brings the target DFA to the garbage state and
is therefore a reset sequence. Moreover, when the sequence
contains a zero anywhere the target DFA is in the garbage
state. The occurrence of a zero thus determines the state.
Finally, for First, the correct state depends solely on the first
symbol.

ForD1 andD2, only the garbage states have reset sequences.
Therefore, the condition in our hypothesis is only met in
these garbage states. This is in line with our observation in
the previous section that our transformers only represent the
garbage state well for these languages.

These are thus three slightly different cases where a finite
number of symbols determines the automaton’s state. Either
there are reset sequences, the occurence of a particular sym-
bol anywhere in the sequence determines the state, or the
symbol at a certain position determines the state.

Our results in Appendix D.8 are in line with our hypothesis
that one-layer transformers use this property to generalise
well on these languages. Through inspection of the attention
patterns, we indeed observe that the transformer trained
on Ones pays strong attention to zero symbols. For the
language First, we observe that the transformer pays strong
attention to the symbol at the first position. The transformer
trained on G1 pays stronger attention to the current symbol.
The transformer trained on G2 pays stronger attention to the
current symbol and the two previous symbols, having one
head for each of these three positions.

7.1. Attention Saturation

Although we seem to have a clear understanding of how
the transformers represent states, it is still unclear why they
do not generalise perfectly. Hahn’s lemma provides an
explanation.

Theorem 7.2. (Hahn, 2020) Given a soft attention trans-
former on an input of n symbols. If we exchange one single

input symbol, then the change in the resulting activation
at the decoder layer is bounded as O( 1n ) with constants
depending on the parameter matrices.

As the one-layer transformers always use a finite number of
symbols to determine the correct output, they eventually fail
when these determining symbols are unable to sufficiently
influence the output due to the effect of the unimportant
symbols. In other words, the attention mechanism becomes
saturated.

We verified that this indeed happens in practice. A trans-
former trained on the language Ones fails on a long sequence
011. . . 11 when the effect of the zero which determines the
state becomes too small. A transformer trained on the lan-
guage First also fails on a sequence 011. . . 11 as the influ-
ence of the first symbol becomes insufficient. A transformer
trained on G1, fails on a sequence 00 . . . 001 because the
effect of the one is not sufficient.

Somewhat differently, a transformer trained on G2 fails on a
sequence 0101 . . . 0101 as there are no reset sequences for
the transformer to use. Transformers trained on D1 and D2

also quickly fail on a sequence 0101 . . . 0101. This again
shows that the transformer has difficulty representing the
non-garbage states for these two languages.

This further validates our hypothesis that one-layer trans-
formers depend on a finite number of symbols to recognise
these languages, as they fail when this property no longer
holds. Finally, we look at how the activation vector com-
puted by the transformer varies in these failure cases. We
find that the activation vectors start to deviate from the direc-
tion the correctly classified activation vectors were aligned
with, confirming that the wrong output is indeed caused by
the inability to detect which state the sequence should be
classified as.

8. Conclusion
We identified a general task setting in which the seemingly
contradictory results of previous studies regarding the train-
ability of transformers can be compared. As illustrated
on the positive-only next character prediction task, hav-
ing a deeper understanding of what is learned during train-
ing leads to more robust conclusions on trainability. We
showed that the extraction technique proposed by Weiss
et al. (2018b) can be used to extract Moore machines from
transformers with minimal adaptations. We showed that
mechanistic interpretability is a productive approach to em-
pirically investigate and verify the trainability of transform-
ers on formal languages. We successfully localised mean-
ingful directions in the output layer of the transformers
along which the transformers orient the activations on se-
quences that end in the same state. We empirically found
that one-layer transformers can find generalisable solutions
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for the languages Ones, First, G1 and G2 which implies that
for languages where a finite number of symbols determine
the automaton’s state, a stronger lower bound exists than
proposed by Liu et al. (2023). Finally, we showed failure
cases can be found by reasoning over the structure of the
target finite state machine.

9. Future Work
The languages studied in this paper are anecdotal evidence
of tighter lower bounds on the trainability of transformers
on some classes of regular languages. A more thorough
theoretical characterisation of this lower bound is necessary,
as well as further experimental validation of our trainabil-
ity hypothesis, for example, through ablations and causal
interventions.

Several other training tasks could be investigated. Most of
these can be framed as simulating a Moore machine with a
task-specific output function, such that our method works
without adaptations. We are particularly interested in direct
membership prediction. This might be more difficult as the
output function does not explicitly distinguish between two
accepting (or two non-accepting) states, as was the case
under the state prediction task. Additionally, other trans-
former variants could be studied, including transformers
with multiple layers.

In general, a transformer maps a sequence of input symbols
to a probability distribution over sequences of output sym-
bols. If the confidence of the predictions is high, this can
be seen as a sequence-to-sequence transformation from the
input to the output alphabet, as we have done. This does not
hold, however, when the model is less confident. By instead
looking at weighted finite automata, it might be possible to
model transformers more accurately. This might allow ex-
traction of small machines with high agreement even when
the transformers do not perform the original task perfectly.

The extraction of state machines from transformers could
also be applied as structure learning for neurosymbolic
frameworks which rely on weighted grammars (Winters
et al., 2022).

Our work is restricted to regular languages, although the
trainability of transformers is not well aligned with the
Chomsky hierarchy. Therefore, a mechanistic interpretabil-
ity approach looking at non-regular formal languages would
likely improve our current understanding.
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A. Angluin’s L∗ algorithm
The L* algorithm (Angluin, 1987) is an exact learning algorithm to learn a minimal DFA accepting the language L from a
minimally adequate teacher.

Definition A.1. An oracle is a minimally adequate teacher for language L if it answers two types of queries correctly:

• A membership query, consisting of a sequence s. The reply is yes if the sequence belongs to L and no otherwise.
• An equivalence query, consisting of a proposed regular language L′. The answer is yes if the proposal equals L and a

counterexample from the symmetric difference of L and L′ otherwise.

Internally, the learner keeps track of an observation table O, where answers to membership queries are stored and from
which proposals can be constructed.

Definition A.2. (Observation Table) An observation table over alphabet Σ is a triple O = (S,E, T ), with:

• S a non-empty finite set of sequences, where ∀w ∈ S, prefix(w) ∈ S. S is said to be prefix-closed.
• E a nonempty finite set of sequences, where ∀w ∈ E, suffix(w) ∈ E. E is said to be suffix-closed.
• T a function mapping ((S ∪ S.Σ).E) to {0, 1}.

It can be thought of as a table with the rows labelled with elements from (S ∪ S.Σ) and the columns with elements from E.
The entry for row s and column e is then T (s.e).

An observation table is called closed if for each t ∈ S.Σ, there is an s ∈ S such that row(t) = row(s). An observation
table is called consistent if for all s1, s2 ∈ S and σ ∈ Σ, row(s1) = row(s2)⇒ row(s1.σ) = row(s2.σ).

A DFA M(S,E, T ) can be defined from an observation table as follows.

• Q = {row(s) | s ∈ S}
• q0 = row(ϵ)
• F = {row(s) | s ∈ S ∧ T (s) = 1}
• δ(row(s), σ) = row(s.σ)

In the original paper, the following property is proven.

Theorem A.3. (Angluin, 1987) If (S,E, T ) is a closed, consistent observation table, the DFA M(S,E, T ) is consistent
with the finite function T.

It is then possible to describe Angluin’s L* algorithm, as shown in algorithm 1.

Algorithm 1 Angluin’s L* algorithm
S ← {ϵ}
E ← {ϵ}
repeat

while ¬isClosed((S,E, T )) ∨ ¬isConsistent((S,E, T )) do
if ¬isClosed(O) then

1. ∃s′ ∈ S, σ ∈ Σ : ∀s ∈ S : row(s′.σ) ̸= row(s)
2. Add s′.σ to S
3. Extend T to cover ((S ∪ S.Σ).E) using membership queries

if ¬isConsistent(O) then
1. ∃s1, s2 ∈ S, σ ∈ Σ, e ∈ E : row(s1) = row(s2) ∧ T (s1.σ.e) ̸= T (s2.σ.e)
2. Add σ.e to E
3. Extend T to cover ((S ∪ S.Σ).E) using membership queries

if EquivalenceQuery(M(S,E, T )) gives a counterexample c then
1. Add c and all its prefixes to S
2. Extend T to cover ((S ∪ S.Σ).E) using membership queries

else
return M(S,E, T )
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The L∗ algorithm can learn Moore machines with three simple changes. 1) The observation table O = (S,E, T ) remains
the same, but T now maps ((S ∪ S.Σ).E) to an output alphabet Γ instead of {0, 1}. 2) On a membership query, the teacher
returns a symbol from Γ instead of 0 or 1. 3) The proposal in an equivalence query takes the form of a Moore machine
M(S,E, T ).

A Moore machine M(S,E, T ) is constructed from the observation table as follows.

• Q = {row(s) | s ∈ S},
• q0 = row(ϵ),
• δ(row(s), σ) = row(s.σ),
• γ(s) = T (s)

The correctness of this extension follows directly from the variant of L∗ that learns product Moore machines (Moerman,
2019).

B. Extraction Results for Ones, First and D2 on Character Prediction
The extracted machines from the transformers on positive-only data under the next character prediction task trained for
languages Ones, First and D2 are included below. We also include the target machine for comparison. From the transformers
trained on Ones and First, the same machine was extracted every time. From the transformers trained on D2, the same
machine with three states was extracted from two of the transformers and the other machine from the third. For C2,C3 and
Parity the extracted machines were equal to the targets.

As mentioned in the main text, the transformers have learned a variant of the intended target language for all languages with
a garbage state. The behaviour of the transformer in the garbage state can be arbitrary but we often see that the garbage
state is not modelled and the transitions leading to the garbage state are rerouted to be self-loops. The only exception is D2,
where the transformer duplicates the last state.

(a) Ones (b) First

(c) D2 (d) C2,C3 and Parity

Figure 2. The extracted and target Moore machines for languages Ones, First and D2, C2,C3 and Parity. The target machine is always
shown on the left. For C2,C3 and Parity the target and extracted machines are the same. The labels show whether the zero, one and
end-of-sequence symbols are considered valid in that state.
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C. Training and Extraction Results on State Prediction

Table 4. Support weighted F1 score of transformers trained on all studied languages under the state prediction task. Three transformers
with identical hyperparameters were trained each time and the average is reported. An asterisk is added in the table if at least one of the
transformers scored perfectly. The baseline predicts the majority class.

F1 Score

Train l=10 l=100 l=1000

Language l=32 baseline model baseline model baseline model

Ones 1.000 0.744 1.000∗ 0.970 1.000∗ 0.997 1.000∗

First 1.000 0.287 1.000∗ 0.330 1.000∗ 0.338 0.525
G1 1.000 0.390 1.000∗ 0.341 1.000∗ 0.334 0.956∗

G2 1.000 0.254 1.000∗ 0.174 1.000∗ 0.169 0.503
D1 1.000 0.721 1.000∗ 0.970 1.000∗ 0.997 1.000∗

D2 0.999 0.625 1.000∗ 0.956 1.000 0.996 1.000
C2 1.000 0.385 1.000∗ 0.339 0.638 0.334 0.436
C3 1.000 0.194 1.000∗ 0.170 0.537 0.167 0.264
Parity 0.802 0.390 0.982 0.340 0.591 0.334 0.455

Table 5. Results of extracting Moore machines from the transformers trained under the state prediction task. The results are averaged over
the three identically trained transformers. T/O indicates a timeout.

Size Agreement

Language Extracted Target l=10 l=100 l=1000

Ones 2 2 1.000 1.000 1.000
First 3 3 1.000 1.000 0.525
G1 2 2 1.000 1.000 0.956
G2 3 3 1.000 1.000 0.503
D1 3 3 1.000 1.000 1.000
D2 T/O,T/O,4 4 1.000 1.000 1.000
C2 2 2 1.000 0.638 0.436
C3 3 3 1.000 0.537 0.264
Parity 2,T/O,2 2 0.982 0.610 0.551

D. Mechanistic Interpretability Analysis
In this appendix, we provide a detailed overview of the mechanistic analysis we have conducted on our transformers and
how we interpret the results.

For the extraction method to work, we assumed the transformer managed to learn some representation of the finite state
machine in its final layer. As the extractions were successful, this must hold true to a certain extent. We will now attempt
to interpret the final layer of the transformers trained on the state prediction task. For each language, we focus on the
transformer that generalises the best.

As discussed in Section 4.1, due to layer normalisation, the activation of the final layer all have a Euclidian norm of
√
d with

d the dimension of the residual stream. Therefore, only the direction of the activation vector matters. We first introduce the
concepts of maximal probability directions and returning suffixes.

D.1. Maximal Probability Direction

Within the activation space, we can find inherently meaningful directions by looking at those directions along which
the probability of one of the output labels is maximised. We call these directions the maximal probability directions or
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m-directions and denote them as m̂i, where 0 ≤ i ≤ |Γ| − 1. For the state prediction task, we have Q = Γ and we therefore
say m̂i is the direction along which the label for state qi is maximised.

The function mapping the activation vector, t, to the output probability for label i, p(t)i, is an affine transformation
fA : Rd 7→ R|Γ| followed by the softmax function.

p(t)i = softmax(fA(t))i (2)

We thus have a multivariate optimisation problem towards p(t)i under the restriction ∥t∥22 − 1 = 0. By introducing a
Lagrange multiplier we get the unconstraint objective function W (t, λ) = p(t)i + λ(∥t∥22 − 1). Solving the resulting set of
differential equations yields a solution for m̂i = maxt(W (t, λ)).

m̂i =
sgn∇tp(t)i
∥∇tp(t)i∥2

(3)

The sign sgn must be chosen such that the probability is maximal and not minimal, or p(m̂i)i ≥ p(−m̂i)i.

As both the affine transformation and the softmax function are monotone, for any activation vector with a fixed norm, the
probability of output i is maximised if it is aligned with direction m̂i.

For any activation vector with a fixed norm, the probability of output i is maximised if it is aligned with direction m̂i.

D.2. Returning Suffixes

When a transformer has learned to generalise well, we assume the transformer will have similar activations on input
sequences for which the extracted machine is in the same state. We therefore introduce the notion of returning suffixes:

Definition D.1. A returning suffix associated with a state q ∈ Q of a Moore machine M = (Q, q0, δ1, δ2,Σ,Γ) is a sequence
of symbols sq ∈ Σ∗, such that δ̂(q, sq) = q.

Notice that the empty sequence ϵ is a returning sequence for all states. All returning suffixes for a state q up to length L can
be found by performing a breadth-first traversal of depth L of the extracted Moore machine and adding all paths returning to
q to the set of returning suffixes. For some states, the number of returning suffixes is exponential in L. Therefore, we used a
beam search to generate a dataset of returning suffixes. We then look at the transformer’s activation on pq.sq , with pq ∈ Σ∗

being a prefix, such that δ(q0, pq) = q. We always choose the shortest such pq . If the transformer has generalised well, we
expect to find the activation vectors on the returning suffixes of a state to lie in the same direction. It can therefore be useful
to look at the average activation direction or a-direction on the returning suffixes of a state. We denote the average direction
for state qi as âi.

D.3. Ones

We start by investigating the language Ones. Initially, we investigate whether the activations on all returning suffixes for a
given state lie in the same direction. To accomplish this, we generated a dataset of returning suffixes with a beam traversal
of the machine extracted from one of the transformers trained on Ones with a width of 10, and a maximum suffix length of
100. The average cosine similarity between the activations on these suffixes and their mean is 0.960 for q0 and 0.990 for q1.
The variation of this similarity with increasing length is depicted by the solid lines in Figure 3. We observe that the cosine
similarity stays constant as the length increases.
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Figure 4. The extracted Moore machine and the similarity matrix for a transformer trained on Ones.

Figure 3. The cosine similarities between the activations on the returning suffixes and their average as well as the m-directions for the
language Ones.

Next, we examine the similarity matrix between the a-direction and the m-direction, shown in Figure 4. The m-directions are
exactly opposite, which is expected since maximising one output probability minimises the other. In this light, we consider
the dashed lines in 3, which are the similarities between the activation vectors on the returning suffixes and the m-directions.
We observe that for q1, the activations are consistently closely aligned with m̂1, whereas for q0 there is a slight decrease in
alignment as the sequence length increases.

To understand what is happening, we introduce the concept of reset sequences, as described in Maler & Pnueli (1994).

Definition D.2. We call w ∈ Σ∗ a reset sequence for state qr of DFA S = (Q,F,Σ, q0, δ) if

∀q ∈ Q : δ̂(q, w) = qr (4)

For Ones, the occurrence of a zero symbol acts as a reset sequence. Whenever it is seen, the machine always transitions to
state q1. Moreover, in this language, if a zero occurs anywhere in the sequence up to the current position, the machine must
be in state q1; otherwise it is in state q0. We indeed observed that the transformer pays strong attention to zero symbols.

We interpret the slight decrease in similarity for state q0 as follows: for long sequences of consecutive ones, the component
of the activation vector perpendicular to the line on which both m-directions lie increases. Intuitively, we can understand
why for a one-layer transformer this perpendicular component must be there. A sequence of consecutive ones ends in q1,
while the same sequence prepended by a zero ends in q0. But, due to the same phenomenon underlying Hahn’s lemma, see
7.2, the transformer must represent them similarly. When using soft-attention, a single symbol can only influence the output
with a factor bounded by O( 1

T ), with T the sequence length.
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Based on this reasoning, we can find a case in which this transformer will fail. Surprisingly, it will fail to represent q1 before
q0. The returning suffixes for q1 are randomly sampled and therefore often contain additional zeros, which the transformer
can use to align the activation vector with m̂1. When presented with a long sequence of ones prepended by a zero, the
transformer should find it difficult to differentiate between the two states. This, however, rarely occurs in a randomly
sampled dataset. We show in Figure 5 the probabilities the transformer assigns to each position of the sequence 011..11 of
length 100.

Figure 5. Probabilities assigned to each position of the sequence 011..11 of length 100 by a transformer trained on Ones.

Indeed, the transformer confuses state q1 with state q0 starting at position 54. We observe that the transformer is unable to
recognise the symbol that is of importance due to the compounded effect of the other symbols. We can say the attention
mechanism has been saturated.

Random sampling also explains the apparent perfect F1 score of the transformers trained on Ones for sequences with lengths
up to 1000. The test set rarely contains an example with more than 53 consecutive ones and therefore the failure case is
seldom encountered.

D.4. First

The language First is interesting as it is another simple language that suffers from the implications of Hahn’s Lemma, which
is the reason why Chiang & Cholak (2022) has studied it before. For this language, however, no reset sequences exist. The
only symbol determining the correct label is the first symbol. We show the extracted machine and the similarity matrix in
Figure 6 and the similarities between the activations on the returning suffixes and their mean in Figure 7.

Figure 6. The extracted Moore machine and the similarity matrix for a transformer trained on First.
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Figure 7. The cosine similarities between the activations on the returning suffixes and their average as well as the m-directions for the
language First.

From the similarity matrix, we see the m-directions lie almost exactly in the same plane, which we call M . Indeed, the
angles between the three vectors sum to 360 degrees, with a relative error of only 0.005. Between the activations on
the returning suffixes and their means, we find a cosine similarity of 0.999+ for both states, which justifies calling these
common directions â1 and â2. As the target machine never returns to q0, we take the activation of the transformer on the
beginning-of-sequence symbol as â0. However, as seen in the similarity matrix, all three a-directions are very similar to
each other. To understand this better, we show the a-directions projected on the plane M in Figure 8a.

(a) The projection of the a-directions on the plane M
spanned by the m-directions for a transformer trained
on First.

(b) Probabilities assigned to each position of the se-
quence 011..11 of length 200 by a transformer trained
on First.

The components of the a-directions in M are roughly evenly spaced. While they do not align well with the m-directions,
each a-direction has a large component along the corresponding m-direction and a smaller or negative component along
the other two m-directions. The correct label will thus be assigned a high probability. As the projected components are
small, there must be a large component perpendicular to the plane. Although this perpendicular component does not alter
the most probable symbol, it indirectly reduces the transformer’s prediction confidence as the component in the plane is
smaller. Similar to Ones, this component must exist. Input sequences that only differ in the first symbol and therefore end in
different states must be represented similarly by a one-layer soft-attention transformer.

Again, we identify a sequence of consecutive ones prepended by a zero must be a failure case for this transformer. We show
the probabilities assigned by the transformer at each position of the sequence 011. . . 11 of length 200 in Figure 8b. The
transformer confuses q2 for q1 starting from position 132, as the attention mechanism gets saturated.
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D.5. G1 and G2

The gridworld languages are important as they have been studied before by Liu et al. (2023). They found that transformers
can learn particularly shallow solutions for them. Furthermore, we have shown that it are these languages that transformers
learn under the task setting of Bhattamishra et al. (2020) instead of the intended depth-bounded Dyck languages.

We first look at G1. Figure 9 shows the extracted Moore machine and the similarity matrix and Figure 10 shows the
similarities of the activations on the returning suffixes compared to their mean and the maximal probability directions.

Figure 9. The extracted Moore machine and the similarity matrix for a transformer trained on G1.

Figure 10. The cosine similarities between the activations on the returning suffixes and their average as well as
the m-directions for the language G1.

Again, we see that the m-directions are exact opposites. We also observe that the activations on the returning suffixes for
both states always lie in the same direction. The average cosine similarity is +0.999 for both states and does not diminish
with longer sequence lengths.

The machine for G1 has the property that there is a finite n ∈ N, where in this case n = 1, such that all sequences s ∈ Σn

are reset sequences. This abundance of reset sequences allows for the great alignment we observe. However, a failure case
can be found again. We look at sequences containing only zeros but ending in one. We show in Figure 11 the probabilities
the transformer assigns to q0 and q1 on the final position of such sequences of increasing length. We observe that when the
sequence length increases, the transformer confuses q1 with q0. Again, this is because the symbol that matters is unable to
change the output of the transformer sufficiently.

Next, we look at G2. The similarities between the activations on the returning suffixes, their average and the m-directions are
shown in Figure 12. The target machine and similarity matrix are shown in Figure 13.

The average cosine similarity for q0 is 0.98, for q1 it is 0.977 and for q2 it is 0.960. We can see some fluctuations in the
orientation of the activations on returning suffixes of the same state. However, as there is no apparent decrease in similarity
when the sequence length increases, speaking of common a-directions for each state is justified. The similarity matrix shows
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Figure 11. The probabilities assigned by a transformer trained on G1 at the final position of increasingly long sequences of zeros with a
single one at the end.

Figure 12. The cosine similarities between the activations on the returning suffixes and their average as well as the m-directions for the
language G2.

both the m-directions and a-directions lie in a plane as the angles between them sum to 360 degrees with a relative error of
less than 0.003. This is also the case for any triplet of m- and a-directions; therefore, they lie in the same plane. We show the
projection of the a-directions on the plane spanned by the m-directions in Figure 14a.

The alignment between the a-directions and m-directions is not perfect, but the component of every a-direction is the largest
along its corresponding m-direction and will therefore cause the probability of the correct output to be large.
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s

Figure 13. The extracted Moore machine and the similarity matrix for a transformer trained on G2.

(a) The projection of the a-directions on the plane
spanned by the m-directions for G2.

(b) Probabilities assigned to each position of the se-
quence 0101. . . 0101 of length 100 by a transformer
trained on G2.

We try to explain the observed fluctuations in the similarity. The machine for G2 no longer has a finite n ∈ N, such that all
sequences of that length are reset sequences. For n = 2 the sequences 00 and 11 are reset sequences, but the sequences 01
and 10 are not. We again reason that a returning suffix containing no consecutive zeros or ones could end in any of the three
states, depending on which symbols are prepended to it. For example, 010101 ends in q0, 0010101 ends in q1 and 00010101
ends in q2, yet the one-layer soft-attention transformer must represent these sequences similarly, due to the implications of
Hahn’s lemma. These are the fluctuations we observe: some of the randomly sampled returning suffixes contain no reset
sequences, which necessarily results in an activation vector that is less well aligned with the correct m-direction. Whenever
a reset sequence occurs, the transformer can again align the activation vector with the correct m-direction.

To illustrate this, we show that our transformer eventually confuses the states if it does not encounter a reset sequence.
Figure 14a shows the activation of the transformer on the sequence 0101..0101 of length 40, projected in the plane M
spanned by the m-directions. The transformer orients the activation with a significant component perpendicular to the plane
M . Again, this component does not contribute to the output probabilities but makes the component in the plane smaller,
which results in less confident predictions. The component of the activation in the plane lies between m̂0 and m̂1 and thus
the transformer will give both a high probability. We also show the predictions that the transformer assigns to each position
on input sequence 0101..0101 in Figure 14b. Again, we observe the transformer confuses q0 for q1 before position 40.
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D.6. D1 and D2

We now look at the depth-bounded Dyck languages. These languages are very similar to the gridworld languages studied
before, but they have a garbage state.

First, we look at D1. Figure 16 shows the extracted Moore machine and the similarity matrix and Figure 15 shows the cosine
similarities of the activations on the returning suffixes compared to their mean and the maximal probability directions.

Figure 15. The cosine similarities between the activations on the returning suffixes and their average as well as the m-directions for the
language D1.

As before, we see that the m-directions lie in a plane. The angles sum to 360 with a relative error of less than 0.001. The
average cosine similarity between the activations on the returning suffixes and their mean is 0.774 for q0, 0.845 for q1 and
0.992 for q2. For q0 and q1, this is significantly lower than what we have seen on the previous languages.

Using the plots, we can interpret what is going on. The transformers orient the activations on returning suffixes for q0 and
q1 correctly, roughly until length 10. Indeed, until then, the similarity with m̂0 and m̂1 is high. Beyond this point, the
transformer aligns the activations on the returning suffixes of both of these states along m̂2. We can again explain this
by reasoning over reset sequences. The transformer easily models q2 as it has both 00 and 11 as reset sequences. It has
difficulty with the other two states, which have no reset sequences. However, differently than before, there are no transitions
from the state with reset sequences to the other states. Therefore, a sequence that ends in q0 or q1, never contains any reset
sequences, resulting in the misalignment we observe.

Next, we look at D2. The similarities between the activations on the returning suffixes, their mean and the m-directions are
shown in Figure 17. The target machine and similarity matrix are shown in Figure 18.

The four m-directions again seem to be geometrically arranged in such a way that the angle between any two directions is
large. Indeed, the cosine similarity between the two most similar directions is 0.3. The average cosine similarity between
the activations on the returning suffixes and their means is 0.905 for q0, 0.890 for q1, 0.911 for q2 and 0.991 for q3. This is
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(a) Extracted Automaton (b) Similarity matrix

Figure 16. The extracted Moore machine and the similarity matrix for a transformer trained on D1.

Figure 17. The cosine similarities between the activations on the returning suffixes and their average as well as the m-directions for the
language D2.

rather low for q0, q1 and q2 to speak of a common direction and we see from the plot that the transformer again confuses the
correct states for the garbage state except for the early positions. This seems to be similar to what we have seen for D1 and
we propose the same explanation.

We show in Figure 19 the probabilities transformers trained on D1 and D2 assigned to the different positions of a sequence
0101. . . 0101 of length 24.
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We observe that the transformer trained on D2 suddenly confuses the correct states, starting from position 13. This again
confirms that transformers fail when reset sequences are absent. We note that for this language, a large number of sequences
in the training data are labelled with the garbage state in later positions. This imbalance might explain why these transformers
fail even before the training length.

(a) Extracted Automaton
(b) Similarity matrix

Figure 18. The extracted Moore machine and the similarity matrix for a transformer trained on D2.

(a) D1 (b) D2

Figure 19. The probabilities assigned by a transformer trained on D1 and D2 on sequences on all positions of a sequence of alternating 0’s
and 1’s of length 24.
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D.7. C2, C3, and Parity

Finally, we look at the non-star-free languages. First, we focus on C2 and C3, which are both in AC0. They are unary
languages and the transformer must therefore rely entirely on the beginning-of-sequence symbol and rotary positional
encodings. We show the similarities between the activations on the returning suffixes, their mean and the m-states in Figures
20 and 21. We again observed the m-states to be opposed to each other for C2 and to lie in the same plane for C3.

Figure 20. Cosine similarities of activations on returning suffixes for C2.

Figure 21. Cosine similarities of activations on returning suffixes for C3.

For these languages, the transformer still finds a common direction to represent the states of the extracted machine. However,
beyond the length seen in training, it quickly loses this ability.

Finally, for the language Parity, we show the similarities between the activations on the returning suffixes, their mean and
the m-directions in Figure 22.

The transformer trained on this language fails to align the activations on sequences ending in the same state along a common
direction. As the sequences become longer, the activations lie in a direction almost completely perpendicular to the line the
two m-directions are aligned with. At this point, the transformer does not differentiate between the two states at all.
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Figure 22. Cosine similarities of activations on returning suffixes for Parity.

D.8. Inspecting Attention Heads

Here we investigate for the languages Ones, First, G1 and G2 the attention patterns that the transformers learned. For
each language, we show the attention patterns of the four attention heads on the sequence B010101, where B is the
beginning-of-sentence symbol. The results are shown in Figures 23,24,25 and 26. A darker shade of blue indicates a higher
attention score.

(a) Attention head 1. (b) Attention head 2. (c) Attention head 3. (d) Attention head 4.

Figure 23. The attention patterns of a transformer trained on Ones on the sequence B010101.

(a) Attention head 1. (b) Attention head 2. (c) Attention head 3. (d) Attention head 4.

Figure 24. The attention patterns of a transformer trained on First on the sequence B010101.
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(a) Attention head 1. (b) Attention head 2. (c) Attention head 3. (d) Attention head 4.

Figure 25. The attention patterns of a transformer trained on G1 on the sequence B010101.

(a) Attention head 1. (b) Attention head 2. (c) Attention head 3. (d) Attention head 4.

Figure 26. The attention patterns of a transformer trained on G2 on the sequence B010101.

We observe that head 3 and 4 of the transformer trained on Ones pay strong attention to zero symbols. The same is true
for head 1, whenever the current symbol is a one. We observe that head 4 of the transformer trained on First pays almost
exclusive attention to the symbol at the first position. All heads of the transformer trained on G1 pay strong attention to the
position corresponding to the current symbol. The transformer trained on G2 pays stronger attention to the current symbol
and the two previous symbols, having one head for each of these three positions.

These observations support the hypothesis proposed in Section 7.
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