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Abstract

Out-of-distribution (OOD) robustness is a de-
sired property of computer vision models. Im-
proving model robustness requires high-quality
signals from robustness benchmarks to quan-
tify progress. While various benchmark datasets
such as ImageNet-C were proposed in the Im-
ageNet era, most ImageNet-C corruption types
are no longer OOD relative to today’s large, web-
scraped datasets, which already contain common
corruptions such as blur or JPEG compression
artifacts. Consequently, these benchmarks are
no longer well-suited for evaluating OOD ro-
bustness in the era of web-scale datasets. In-
deed, recent models show saturating scores on
ImageNet-era OOD benchmarks, indicating that
it is unclear whether models trained on web-scale
datasets truly become better at OOD generaliza-
tion or whether they have simply been exposed
to the test distortions during training. To address
this, we introduce LAION-C as a benchmark al-
ternative for ImageNet-C. LAION-C consists of
six novel distortion types specifically designed
to be OOD, even for web-scale datasets such as
LAION. In a comprehensive evaluation of state-
of-the-art models, we find that the LAION-C
dataset poses significant challenges to contempo-
rary models, including MLLMs such as Gemini
and GPT-40. We additionally conducted a psy-
chophysical experiment to evaluate the difficulty
of our corruptions for human observers, enabling
a comparison of models to lab-quality human ro-
bustness data. We observe a paradigm shift in
OOD generalization: from humans outperform-
ing models, to the best models now matching or
outperforming the best human observers.
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1. Introduction

In recent years, large-scale vision models such as vision
transformers (Dosovitskiy et al., 2021) and ConvNeXt (Liu
et al., 2022), trained on expansive web-scale datasets like
LAION (Schuhmann et al., 2022), have pushed the bound-
aries of performance on standard benchmarks. However,
the continued advancement and reliable evaluation of these
models depends on the availability of datasets that effec-
tively challenge model robustness and generalization capa-
bilities.

In the era of training models on curated datasets like
ImageNet (Russakovsky et al., 2015), creating OOD-
benchmarks was relatively straight-forward: By introduc-
ing visual corruptions that were absent from the training
set, such as blur and noise, researchers could evaluate the
robustness of their models in a controlled manner. If a
model performs well on a corruption it has never seen, it
can be said to be robust to this corruption. For example,
ImageNet-C (Hendrycks & Dietterich, 2019), which intro-
duces different parametric corruptions to the ImageNet val-
idation set, has long stood as the de facto standard for OOD
evaluation. Models that were trained on the (uncorrupted)
ImageNet images must robustly generalize in order to per-
form well on ImageNet-C.

With the shift towards training models on vast, largely un-
filtered image datasets, it is much less clear how to obtain
test images that are truly OOD. Adding noise and blur to
images can no longer be considered a distribution shift, be-
cause such images are already present in the training set,
as demonstrated in Fig. 1. Models trained on LAION have
seen the types of corruption in ImageNet-C, and are likely
exposed to all realistic corruptions. Therefore, the fact that
models like CLIP (Radford et al., 2021) exhibit much bet-
ter performance on classic OOD datasets than ImageNet-
trained models might not be an indication of true OOD ro-
bustness, but rather a consequence of a smaller train-test
gap. For distribution shifts defined by the style of an image,
recent work empirically shows that such datasets are indeed
not OOD, but overlap with LAION-400M (Mayilvahanan
et al., 2023; 2024). Hence, to measure the OOD robustness
of modern models, a dataset containing truly new image
corruptions is needed—even if this means that the corrup-
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tions must be highly artificial.

Previous work (e.g., Hendrycks & Dietterich, 2019) found
that OOD generalization is not trivial to achieve: Many
vision models do indeed struggle with OOD datasets
like ImageNet-C, even if they perform well on ImageNet
itself. Hence, these types of unfamiliar inputs are crucial
for evaluating the robustness of machine learning models
since they are indicative of performance on unexpected in-
put; a challenge that many deployed models face.

Given the importance of OOD generalization in practice,
there is a pressing need for a new benchmark that more
effectively evaluates the OOD robustness of state-of-the-
art foundation models: an OOD dataset for the era of web-
scale vision models. Our contributions are as follows:

1. Given that existing OOD datasets are often no longer
OOD for models trained on web-scale datasets, we in-
troduce LAION-C, a novel benchmark dataset with six
manually designed corruption types and 16 superclasses
to evaluate the robustness of web-scale vision models.
This dataset serves as a proxy for unseen challenges, al-
lowing us to probe the limits of current models’ robust-
ness in a controlled but challenging environment.

2. We conduct a comprehensive performance analysis of
various models on LAION-C and report a robust human
OOD generalization baseline obtained through psy-
chophysical experiments with 19 participants, collect-
ing 11,400 trials in a highly controlled laboratory envi-
ronment.

3. The resulting data serves as an OOD benchmark for cur-
rent and future models, enabling not only an assessment
of their generalization ability on truly OOD data but also
providing insights into the discrepancies between hu-
man and machine perception, observing a paradigm
shift in OOD generalization: from humans outperform-
ing models to the best models now matching or outper-
forming the best human observers.

A detailed related work section can be found in Appx. A.1.

2. Methods
2.1. Constructing New OOD Distortions

As described in the introduction and depicted in Fig. 1,
ImageNet-C does no longer qualify as out-of-distribution
(OOD) for models trained on large-scale datasets and,
therefore, can no longer be employed for such test-
ing. Given the limitations of existing benchmarks like
ImageNet-C, we develop a novel dataset specifically de-
signed to challenge these foundation models more rigor-
ously. We do this by introducing a covariate shift, where

P(X) changes, while P(Y|X) remains the same (as op-
posed to concept drift or label shifts, commonly referred to
as “semantic” shifts (Yang et al., 2024)). Our dataset in-
troduces six carefully designed, fully synthetic distortions
that models have not encountered during training. These
distortions are designed to be OOD even for web-scale
datasets (as supported by quantitative evidence presented
later). Hence, models truly need to generalize beyond their
training distributions to perform well on this benchmark
which we term LAION-C.

Distortions The core idea behind our distortions is to cre-
ate highly synthetic, artificial corruptions that do not natu-
rally appear even in large-scale datasets and are therefore
OOD even for modern vision models. To achieve this goal,
we intentionally disrupt visual consistency and perceptual
cues that models might rely on for image classification. We
began with a diverse pool of potential distortions, each de-
signed to target different aspects of visual processing: tex-
ture handling (Geirhos et al., 2019), color perception, or
edge detection. Initial testing revealed that while contem-
porary models are adept at navigating simpler distortions,
their performance varies significantly with more complex
challenges. This insight prompted us to carefully choose
distortions that provide a sufficient challenge to the models
while also offering varied levels of perceptual difficulty for
humans.

Our final distortions are selected to fulfill two key desider-
ata: (1) they are exotic enough to have a low occurrence
probability even in web-scale datasets, and (2) they test fea-
ture extraction capabilities relevant to robust object recog-
nition. For instance, solving the Stickers and Mosaic dis-
tortions requires a model to holistically integrate the image,
rather than being misled by the local image cues introduced
by sub-images—a scenario deep neural networks notori-
ously struggle with (Geirhos et al., 2019). The Glitch and
Vertical Lines distortions are among the most exotic and
globally disruptive transformations we could construct, as
they effectively destroy the texture cues that many models
rely on (Geirhos et al., 2019). The Geometric Shapes dis-
tortion tests amodal completion, a fundamental aspect of
human visual processing observable even in infants (Kell-
man & Spelke, 1983; Nanay, 2018), and also alters the
image’s color distribution—something humans are robust
to, as we do not primarily depend on color for object
recognition (Biederman & Ju, 1988; Tanaka & Presnell,
1999). Lastly, the Luminance Checkerboard distortion tests
a model’s ability to adapt to local lighting conditions, an
essential ability of the human visual system (Carandini &
Heeger, 2012). This way, LAION-C complements exist-
ing benchmarks by including images that challenge human
perception, instead of limiting ourselves to visual domains
in which humans excel.
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Figure 1. ImageNet-C corruptions are not out-of-distribution (OOD) for web-scale datasets like LAION-400M. Exemplary cor-
rupted images from ImageNet-C (left) are similar to LAION-400M samples (right). Each row shows example corruptions and dataset
images for one ImageNet-C corruption category (Noise, Blur, Weather, Digital). The presence of these distortions in web-scale datasets
indicates the need for an OOD benchmark in the era of web-scale vision models.

As Al systems are increasingly deployed in complex and
high-stakes domains, it is crucial that benchmarks evolve
to robustly test these systems’ generalization capabilities.
Following ImageNet-C, each distortion consists of five dif-
ferent intensity levels. The distortions capture a range of vi-
sual challenges, as described below and illustrated in Fig. 2.

Mosaic: The original image is broken down into smaller
tiles, each replaced by a chromatically similar picture.
This patchwork creates a mosaic effect that disrupts
edges and textures while introducing contextually irrel-
evant information.

Glitched: The original image undergoes an artistic digi-
tal corruption with horizontal lines overlaying shifted im-
age segments and color channel shifts. This dislocates
the global contextual structure of the image. While the
concept of such glitchy images has been explored in ear-
lier work (Kaufmann et al., 2019), our transformation in-
troduces a more intense corruption.

Vertical Lines: The original image is deconstructed into
bent vertical line segments. This distortion retains the
original colors but strips away local information, disrupt-
ing the contours and edges of the image and introducing
visual discontinuity.

Geometric Shapes: The original image is overlaid with
overlapping geometric figures such as squares, circles,
and stars. This visual clutter introduces local noise that
obscures the main object, like the Kaleidoscope corrup-
tion from (Kaufmann et al., 2019).

Stickers: The original image is augmented with assorted
image patches. This addition of visual elements masks
features of the primary object.

Luminance Checkerboard: The original image is di-
vided into a grid, with the luminance of each cell altered
in a checkerboard pattern. The stark luminance con-
trast between adjacent tiles and artificial grid boundaries
makes this distortion challenging.

We intend to build a challenging dataset that has the po-
tential to guide the future development of vision models.
Our dataset incorporates these tougher and less common
distortions to simulate the difficulty of OOD scenarios that
models might encounter in real-world applications. In line
with established psychophysical experimental paradigms,
we calibrate the intensity levels of our distortions to range
from near-perfect to chance-level difficulties. We tune
these levels such that either humans or a contemporary
vision model (ViT-B) achieve chance performance on the
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Figure 2. LAION-C distortions, intended to be OOD even for web-scale datasets. This figure illustrates the six LAION-C distortions
at five intensity levels. Following the standard experimental paradigm from psychophysics, our dataset spans from near-perfect to
chance-level difficulties, thoroughly testing models and leaving room for future model improvements. Best viewed on screen.

highest intensity level, i.e. no model is expected to perform
well on the hardest levels. The other intensity levels are
chosen so that we can observe a gradual decline in accu-
racy, ensuring that the distortions are sufficiently challeng-
ing.

These distortions are then applied to a carefully curated
subset of images from the ImageNet validation dataset. To
contextualize model performance, we intend to compare it
to human performance. As human evaluations on datasets
with hundreds of classes cannot be scaled to sufficiently
many participants, we follow previous work (Geirhos et al.,
2018) and simplify the task to a 16-class classification
problem. We extract 285 ImageNet-classes to form 16 su-
perclasses, namely ball, bird, boat, bottle, butterfly, car &
truck, cat, chair, dog, fish, fruit, instrument, primate, snake,
timekeeping, and tool. For robust statistical analysis, our
dataset comprises 273 images for each superclass, each of
which is corrupted at 5 intensity levels for all 6 distortion

types, resulting in > 130k total images. This data size se-
lection allows us to ensure that a 3% difference in the per-
formance between models is statistically significant. Addi-
tionally, we manually filter the dataset to ensure that none
of the images in one superclass contain objects from an-
other class or require specific cultural knowledge for clas-
sification. This process helps to avoid ambiguous ground-
truth labels.

2.2. Measuring Model Performance

We use the generated datasets to evaluate the performance
of a suite of 58 vision models. Our selection includes mod-
els trained on large-scale web datasets and fine-tuned on
ImageNet-1k, such as Vision Transformers (ViT) (Doso-
vitskiy et al., 2021), ConvNeXt (Liu et al., 2022), and
EVA (Fang et al., 2023; 2024). For comparison, we also
evaluate the performance of smaller-scale model families
such as ResNet (He et al., 2016) and MobileNet (Howard,
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2017) and large-scale models trained only on ImageNet- 1k.
Additionally, we also evaluate GPT-40 (OpenAl, 2024) and
Gemini 1.5 Pro (Team et al., 2024) on a representative sub-
set of LAION images. See Tab. 11 for a complete list of all
models we evaluate. To address the imbalance caused by
distinct numbers of subclasses within each superclass, we
compute the average probability values across subclasses
for each superclass, a method first suggested by (Geirhos
et al., 2018). This adjustment mitigates biases introduced
by the varying subclass distributions, ensuring a more ac-
curate model performance evaluation.

2.3. Collecting Human Performance via Lab
Experiments

To explore the discrepancies between human and machine
perception, we design a psychophysical experiment to
gather human classification data on the augmented images.
This experiment builds on previous paradigms (Geirhos
et al., 2018; 2021) to ensure consistency and comparabil-
ity. In the experiment, 19 human subjects are briefly pre-
sented with a distorted image and are asked to classify it
into one of 16 classes, reminiscent of how a DNN might be
evaluated on a classification task (in contrast to e.g. open
response paradigms, where participants could give arbi-
trary textual responses). Participants were recruited from
the university student body, and screened for normal or
corrected-to-normal vision and absence of color blindness.
The experiment was conducted in a controlled dark envi-
ronment using a 22” VIEWPixx 3D light LCD monitor,
with stimuli presented centrally at a fixed viewing distance
to ensure foveal presentation. The classification task was
divided into two warm-up blocks and ten main experiment
blocks, with each block containing images from 16 super-
classes. Participants were given 2.5 s to view each image,
followed by a 2 s response window to classify the image by
clicking on a set of icons. To motivate high performance,
a monetary bonus was awarded for surpassing fixed, pre-
determined performance thresholds for each block. Further
methodological details are provided in Appx. A.2.

2.4. Quantifying Human-Machine Alignment via Error
Consistency

To quantify the alignment between human and machine vi-
sual perception, we adopt the error consistency metric pro-
posed in Geirhos et al. (2020b). Error consistency, denoted
as k € [—1, 1], measures the degree of agreement between
the classification mistakes of two observers. In brief, k
takes on a value of 1.0 if two observers are perfectly con-
sistent, i.e. if they make classification mistakes on exactly
the same images. Two independent binomial observers that
agree no more than expected by chance will result in a x
of 0, while two maximally inconsistent observers will have
a k of -1. See Appx. A.3 or Geirhos et al. (2020b) for a

detailed explanation of the metric.

3. Results
3.1. How OOD is LAION-C?

Next, we empirically evaluate whether our LAION-C
dataset is indeed OOD relative to the large-scale image
datasets used to train modern vision models. Rigorously
quantifying how OOD a test dataset is with respect to some
training dataset requires a precise definition of the test and
training domain (Mayilvahanan et al., 2024). As the dis-
tribution shifts introduced by the distortions of our pro-
posed LAION-C and ImageNet-C are fuzzy in nature, we
use three tools to compare the OOD-ness of our proposed
dataset to the OOD-ness of ImageNet-C. First, we use a
qualitative assessment. By searching for the name and re-
lated concepts of ImageNet-C corruptions, we easily find
LAION samples with visual distortions akin to those of
ImageNet-C samples (see Fig. 1).

Second, we use the difficulty of a test dataset (measured by
the performance that models trained on a reference dataset
yield on the test dataset) as a proxy for how much the test
dataset differs from the reference dataset. Here, the reason-
ing is that if a test dataset can be solved almost perfectly
by a model, it means that either the model has great gen-
eralization skills or the test dataset is not strictly OOD. If,
at the same time, another dataset has much greater diffi-
culty according to the same models, the second dataset is
likely more OOD than the first. For the sake of compa-
rability, we here use a version of ImageNet-C restricted
to the same 16 superclasses that were used for LAION-
C, where we implemented the ImageNet-C augmentations
through the code by Michaelis et al. (2019). Indeed, a com-
parison of the performance achieved by our suite of mod-
els (see Fig. 3) suggests that LAION-C is more OOD to
LAION than ImageNet-C is.
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Figure 3. Performance Divergence of Models on LAION-C
and ImageNet-C 16 class. Evaluating models on the 16-class
versions of ImageNet-C and LAION-C produces a plateaued per-
formance on ImageNet-C, while LAION-C still yields a high vari-
ance across models.
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Third, we use the FID (Heusel et al., 2017; Kynkddnniemi
et al., 2022) to quantify the difference between LAION and
ImageNet-C and LAION-C, respectively. Specifically, we
employ a CLIP-trained ViT-B as feature encoder and use
the implementation by Parmar et al. (2022) to calculate
FID-scores. In line with the previous evidence, we find a
FID of ~ 70 between LAION and LAION-C, which is sub-
stantially higher than that between LAION and ImageNet-
C (= 40). This means that features of LAION are closer to
those of ImageNet-C than those of LAION-C, again high-
lighting the greater OOD-ness of LAION-C. In summary,
we have presented three different kinds of evidence sug-
gesting that LAION-C is more OOD than ImageNet-C to
LAION.

3.2. Comparison to other OOD benchmarks

We conduct a direct comparison between LAION-C and
other well-established out-of-distribution (OOD) datasets.
As illustrated in Figure 4, LAION-C provides a more de-
tailed resolution of model performance variances. This
dataset captures a broader variance in model performance,
with a standard deviation of approximately ~27%, com-
pared to an average of ~10% in other common OOD
datasets. Notably, LAION-C is evaluated on a 16-class ba-
sis, which is significantly fewer than the 200-1000 classes
used in typical OOD datasets, making the results even more
remarkable.
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Figure 4. LAION-C offers better resolution of model differ-
ences. We tested 9 models pre-trained on LAION2B, evaluating
them across all intensity levels if applicable. LAION-C captures
a broader variance in model performance, with a standard devia-
tion of ~27%, compared to an average of ~10% in other common
OOD datasets. Notably, LAION-C is tested on a 16-class basis,
while other datasets typically use 200-1000 classes, making this
result even more remarkable.

3.3. Machine Performance

In Fig. 5, we compare model performance on ImageNet-C
against performance on LAION-C. Evidently, the average
model performance on ImageNet-C stays above or close to

60%, indicating that current models are increasingly adept
at handling the distortions in ImageNet-C. This observa-
tion reinforces our hypothesis that the challenge presented
by ImageNet-C may no longer be sufficiently difficult to
rigorously test the robustness of modern models.

In contrast, models achieve much lower accuracy on
LAION-C on average and exhibit more inter-model vari-
ability. This showcases our dataset’s ability to uncover nu-
ances that remain hidden on more saturated benchmarks.
These performance differences are particularly obvious at
higher intensity levels, illustrating LAION-C’s potential to
serve as a more challenging and insightful benchmark for
evaluating robustness.

We also provide a detailed breakdown of non-averaged,
dataset-specific results in Fig. 11. We observe significant
variability in the performance of different vision models
across various datasets and distortion levels, highlighting
the diversity in model robustness. These results further
highlight the effectiveness of our datasets in eliciting dif-
ferent responses from models of different architectures, pa-
rameter scales, and training data sizes. This diversity is par-
ticularly valuable for understanding which model designs
are more robust to specific types of distortions, offering in-
sights that are beneficial for advancing the state-of-the-art
model robustness.

In Tab. 10 in appendix, we present a comprehensive evalu-
ation of our suite of models on LAION-C. We report each
model’s top-1 accuracy on the (undistorted) ImageNet val-
idation set as a baseline (Clean Accuracy) and the aver-
age top-1 accuracy on LAION-C averaged across distor-
tion types and intensity levels (LAION-C). We then break
the latter down into the six distortion types. This enables a
thorough comparison of model performance, highlighting
which architectures generalize best.

3.4. Can LAION-C Be Solved?

Given the low performance of current state-of-the-art mod-
els on LAION-C, one might wonder whether LAION-C
is simply impossible to solve because the distortions de-
stroy all information necessary for correct classification
of the images. To disprove this hypothesis and highlight
the validity of LAION-C as a benchmark for evaluating
model robustness, we conduct a fine-tuning experiment to
assess whether the challenges posed by LAION-C are solv-
able at all. Specifically, we fine-tune a ViT-Huge model,
which was originally pretrained with a CLIP-objective
on LAION-2B and then fine-tuned on ImageNet-22k and
ImageNet-1k. For this experiment, we use a custom dataset
sub-sampled from the ImageNet-1K training set and aug-
mented with the distortions introduced in LAION-C. This
dataset consists of over 336,000 images uniformly sampled
across the 16 superclasses defined for LAION-C.
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Figure 5. LAION-C poses a greater challenge to model robustness than ImageNet-C. We plot distortion intensity against each
model’s average accuracy. Visual foundation models evaluated on ImageNet-C maintain high accuracy, with minimal drop across
increasing intensity levels. On our LAION-C dataset, the models exhibit a sharper decline in accuracy, highlighting the benchmark’s

effectiveness in measuring model robustness.

Table 1. LAION-C is challenging but can be solved by fine-
tuning on the exact distortions. We compare the performance
of ViT-H-P14-336-CLIP-LAION-IN12K before and after fine-
tuning it on ImageNet- 1k training images with LAION-C corrup-
tions. As the performance after fine-tuning is high, this means
that LAION-C, although challenging, remains solvable as it re-
tains enough signal when applying distortions.

Accuracy [%] Mosaic  Vertical Lines ~ Glitched Luminance ~Geometric ~ Stickers ImageNet-Val (16 class)

Before 452 51.2 69.8 88.2 64.4 24.6 99.8
After 80.6 93.6 96.8 97.8 89.8 67.4 99.2

As shown in Tab. 1, fine-tuning the model results in sub-
stantial accuracy gains, which define an upper bound on
LAION-C accuracy that no normal model can be expected
to achieve. Notably, these accuracy gains are particularly
pronounced on higher-intensity distortions, as detailed in
Tab. 9, where accuracy is broken down by distortion in-
tensity. The fine-tuned model likely achieves such good
performance by employing un-human-like (or “spurious”)
features, but the purpose of this experiment is not to sug-
gest that fine-tuning on LAION is a sensible approach to
improve OOD robustness, but to quantify how much learn-
able signal is left. LAION-C provides meaningful robust-
ness tests without being intractable, making it a valuable
tool for a more comprehensive evaluation of model perfor-
mance under difficult conditions.

3.5. Human and Machine Vision Discrepancy

Accuracy Differences. In Fig. 6, we summarize how
our suite of models performs in terms of classification ac-
curacy, compared to the human participants in our psy-
chophysical experiment. We report the best performances,
since averages would be unfairly influenced by some older
models we included as points of comparison. In Fig. 11,
we provide a more detailed breakdown of performance by
model. While human observers still outperform most vi-
sion models on images with Mosaic or Glitched distortions,
the best models match (or even slightly surpass) human per-
formance. For distortions involving occlusion and lumi-
nance manipulations, the vision models typically achieve
higher accuracy than humans. Overall, current state-of-the-
art vision models now match or even outperform human ob-
servers in OOD scenarios, including on our synthetic dis-
tortions, which they likely have never encountered during
training—a stark contrast to just a few years ago, when
humans were still vastly outperforming models (Geirhos
etal., 2018; Dodge & Karam, 2019; Taori et al., 2020; Jang
& Tong, 2024).

Performance on Complex Distortions. When analyz-
ing more complex distortions such as Mosaic, Vertical
Lines, and Glitched images (first row of Fig. 6), we ob-
serve that human performance is generally on par with
the best-performing models. Especially at greater intensity
levels, humans perform competitively, e.g., outperforming
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Figure 6. Human vs. machine accuracy on all distortions. For each LAION-C distortion, we plot the distortion intensity against the
accuracy of the best human and the best model in this condition (for average human performance, see Fig. 11). The shaded regions
indicate the 95% confidence intervals around the means. On the Mosaic, Glitched and Vertical Lines distortions, humans and machines
perform similarly, whereas the best model vastly outperforms the best human observer on the Stickers, Geometric Shapes, and Luminance

Checkerboard distortions.

all models for the strongest Vertical Lines distortions. As
we show in Fig. 11, the gap between humans and older
models like the ResNet variants is particularly large on
these complex distortions. However, modern model classes
demonstrate substantial progress, approaching human-level
performance even at higher intensity levels. While some
margin for improvement remains, the narrowing gap sug-
gests that achieving human-level robustness on classifica-
tion tasks is no longer the primary challenge for state-of-
the-art architectures.

Human-Machine Error Consistency on LAION-C.
For a more fine-grained analysis of the behavioral agree-
ment between models and human observers, we calculate
error consistency as described in Sec. 2. As illustrated
in Fig. 8 in appendix, there is a high degree of variabil-
ity in error consistency between human observers and dif-
ferent vision models ranging from 0 to 0.4. This indicates
that while model families such as ViT and EVA rival or sur-
pass human performance, they are approaching the task uti-
lizing different strategies than humans, demonstrating less
human-like behaviors. The observed value range matches
the one found in previous work for older models and differ-
ent image data (Geirhos et al., 2021). This again suggests
that while recent developments have boosted model perfor-
mance, these models have not become more human-like, as
they follow alternative strategies.

4. Discussion

Summary. Given that existing OOD benchmarks are
often no longer OOD for models trained on web-scale
datasets like LAION since distortions like blur and digi-
tal corruptions are commonplace on the web, we here in-
troduce LAION-C. LAION-C is a benchmark designed to
evaluate the robustness and generalization capabilities of
modern vision models trained on web-scale datasets. Our
empirical results demonstrate that LAION-C is more chal-
lenging for a representative suite of vision models than the
existing ImageNet-C benchmark, particularly at higher dis-
tortion intensity levels. Our thorough human evaluation
in a highly controlled psychophysical laboratory totaling
11,400 trials shows that the best models often outperform
even the best human observers. While they do not al-
ways follow similar strategies (as indicated by error con-
sistency analysis), this reassuring finding indicates that the
best models have indeed substantially progressed in their
ability to handle unexpected input and are not just getting
better on in-distribution distortions. Given that the LAION-
C benchmark dataset, by virtue of its construction, serves
as a better proxy for a model’s ability to recognize objects
despite an unexpected distortion, we recommend it as an
OOD benchmark for current and future web-scale vision
models.

Limitations. While we have shown that LAION-C can
effectively reveal shortcomings in model robustness, we
have not yet fully explored why certain models underper-
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form on specific distortions. Although our empirical results
provide valuable insights, further investigation is required
to clarify which visual cues the models rely on under dif-
ferent conditions. Such an analysis could inform the devel-
opment of new inductive biases or architectural improve-
ments, since a better understanding of these mechanisms
could lead to improvements in both model interpretabil-
ity and robustness. Given our current focus on introducing
the dataset, this was not fully addressed here, but could be
an area for future exploration. Furthermore, it is an open
question what the performance limit on LAION-C looks
like. Since fine-tuning models on LAION-C results in sig-
nificant performance gains, particularly at higher distortion
levels, there clearly is potential for optimization through
advanced training techniques. However, how to further im-
prove generalization across OOD scenarios, especially to
enhance the models’ ability to handle the novel distortions
presented by LAION-C, remains an open question that war-
rants further exploration. To retain its value as an OOD
benchmark, LAION-C should not be used as a training or
fine-tuning dataset (except for analysis purposes).

Conclusion and outlook. Just a few years ago, early in-
vestigations into generalization abilities of deep neural net-
works showed humans vastly outperforming the best mod-
els (Geirhos et al., 2018; Dodge & Karam, 2019). Fast-
forwarding to today, LAION-C shows that the best models
either match or outperform human performance on chal-
lenging OOD distortions. This finding is reassuring in the
light of growing concerns about the quality of existing eval-
uation datasets, including the concern that OOD datasets
like ImageNet-C may no longer serve their original pur-
pose in the era of web-scale training datasets. Our find-
ings indicate that the often super-human performance of
modern models is achieved through super-human strate-
gies: Models use a variety of image cues—including, in
all likelihood, background pixels to perform well on some
of our challenging datasets. Given their high performance
across the board, they no longer rely on a single strategy
that fails when faced with a test case that distorts a partic-
ular image cue. This marks a paradigm shift in OOD gen-
eralization: From humans outperforming models to mod-
els outperforming humans, from relying on a single strat-
egy to a diverse set of multiple robust strategies, and from
OOD benchmarking measuring progress towards human-
like object recognition to better performance now indicat-
ing super-human (in other words, less human-like) vision
models.

Impact Statement

We confirm that all experimental procedures involving hu-
man subjects in our study had IRB approval. All partici-
pants gave informed consent prior to their inclusion in the

study. Detailed information was provided to each partici-
pant beforehand, outlining the study’s purpose, procedures
and benefits, ensuring they were fully informed before
agreeing to participate. Participants were also informed
that they could abort the study at any time, without in-
curring any negative consequences. Experimental data and
contact information for the participants was stored in ac-
cordance with GDPR. Participants were compensated with
an hourly base rate of 12 EUR and received bonus pay-
ments based on classification performance, as is custom-
ary in psychophysical experiments, so that the final reim-
bursements exceeded the local minimum wage. This paper
presents work whose goal is to advance the field of Ma-
chine Learning. While we do not foresee any immediate
negative societal consequences, the use of human partici-
pants highlights the importance of maintaining high ethical
standards. To enhance transparency and reproducibility, we
also provided a detailed datasheet outlining the dataset’s
characteristics, collection methods, and intended use cases.

Code and dataset availability

The evaluation code for LAION-C is publicly available at:
https://github.com/Fanfeili/LATION-C. The
LAION-C dataset is published on Zenodo. A link to the
dataset is provided via the GitHub repository.
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A. Appendix
A.1. Related Work

OOD generalization ability of vision models. As deep learning has advanced to the point where models can reliably
generalize to data that matches their training distribution or even exceed the quality of the original labels (Beyer et al.,
2020), OOD-robustness, as measured by specifically designed OOD test sets, has moved to the center stage of computer
vision research. In particular, ImageNet-C (Hendrycks & Dietterich, 2019), a dataset containing images from the test-set of
ImageNet to which various fairly natural corruptions such as blurring and pixelation were applied, has long been the gold
standard for assessing OOD-performance, to the point where data augmentations proposed to increase OOD robustness
were found to only work well because they are similar to the ImageNet-C corruptions (Mintun et al., 2021). In contrast,
ImageNet-R (Hendrycks et al., 2021a) instead provides a more complex distribution shift by collecting different renditions
of the target classes such as sculptures and paintings, instead of photos. In a similar vein, (Wang et al., 2019) introduce a
dataset of black and white sketches matching the labels and scale of the ImageNet validation set, called ImageNet-Sketch.
A more subtle distribution shift which still caused considerable drops in model performance for ImageNet-trained models,
was proposed by Recht et al. (2019). They collected ImageNetV2, a new test set for ImageNet that should theoretically
not differ from the ImageNet test set at all, because it was collected with a very similar methodology, but revealed that
models do perform slightly worse on ImageNetV2 than on the original test set. Hendrycks et al. (2021b) proposed two
other OOD-test sets which do not rely on synthetic image manipulations but instead consist of natural images that are in
some sense OOD relative to ImageNet, either by virtue of displaying object classes not present in ImageNet (ImageNet-O)
or by showing an object of an ImageNet-class in a scene that is weird enough to fool most models (ImageNet-A). What all
of these datasets have in common is that, by design, they provide distribution shifts relative to ImageNet. But with the rapid
evolution of deep learning, these traditional benchmarks have become less challenging for state-of-the-art vision models
trained on expansive web-scale datasets (Radford et al., 2021). While it is to some degree possible to predict a model’s
OOD generalization from its training set performance (Taori et al., 2020), the only reliable measurements of this capability
stem from empirical evaluations of models on OOD datasets. Our work addresses this need by introducing LAION-C, a
dataset that incorporates novel and complex synthetic distortions tailored to challenge even advanced vision systems.

Advancement in visual foundation models The rise of visual foundation models such as Vision Transformers
(ViT) (Dosovitskiy et al., 2021), ConvNeXt (Liu et al., 2022) and BeiT (Bao et al., 2022) has redefined what constitutes
standard performance across many visual tasks. These improvements in performance partially stem from architectural
innovations and parameter optimization, but were mostly powered by the effective leveraging of unprecedented dataset
sizes (Zhai et al., 2022). However, because visual foundation models were trained on web-scale datasets, the extent of their
generalization capability remains underexplored.

Comparing human vs. machine perception. Deep Neural Networks were originally conceived as models of human
vision (Fukushima, 1975) and were found to be the best available models for neuronal activity in the primate visual cortex
(Yamins et al., 2014), even if not trained for this task. Today, there is a growing body of research dedicated to evaluating
the adequacy of neural networks as behavioral models of human core object recognition (Doerig et al., 2023; Schrimpf
et al., 2018; Wichmann & Geirhos, 2023; Muttenthaler et al., 2023). Building upon the findings of (Geirhos et al., 2021),
who illustrate the narrowing of the behavioral gap between humans and machines in terms of their error consistency, our
study further explores this dynamic utilizing LAION-C. We conducted a systematic analysis of differences in perception
between human and machine observers, and assessed if the behavioral gap is closing further, as well as highlighting the
persistent cognitive differences between humans and machines.

A.2. Experiment Procedure and Participant Incentives

Participant recruitment and setup. We recruited 20 participants (10 female) from the university student body via
mailing lists. All participants were screened to ensure normal or corrected vision and no color blindness, and gave informed
consent to participate. One participant was excluded post-hoc due to reporting extreme tiredness. Our experiments were
conducted in a darkened cabin, using a 22” VIEWPixx 3D light LCD monitor (VPixx Technologies, Saint-Bruno, Canada)
at a refresh rate of 120 Hz (scanning backlight mode on). The screen measures 484 x 302 mm, at a resolution of 1920 x 1200
pixels. Stimuli were presented foveally in the center of the screen, with a viewing distance of 65 cm, resulting in 5 © of
visual angle. In line with earlier experiments, the background was set to a grey value of 0.454 in the [0, 1] range. A chin
rest was used to maintain a fixed viewing distance and angle. The experiment was implemented using the Psychophysics
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Figure 7. Interface presented to participants. This figure illustrates the icon layout as displayed to participants during the study. The
grid is adapted from (Geirhos et al., 2018), while most of the categories and therefore symbols are different.

Toolbox (Kleiner et al., 2007, version 3.0.12) in MATLAB (Release 2016a, The MathWorks, Inc., Natick, Massachusetts,
United States) using a 12-core desktop computer (AMD HD7970 graphics card “Tahiti” by AMD, Sunnyvale, California,
United States) running Kubuntu 14.04 LTS.

The entire classification task, including both the warm-up and main experiment phases, was organized into 12 blocks. In
each block, participants were shown images from the 16 superclasses for 2.5 seconds—a duration empirically determined
to balance efficient overall experiment length with sufficient exposure time allowing for viewing and consideration time.
After each image, the 16 corresponding class icons were displayed on screen, allowing participants 2 seconds to classify
each image into one of these categories. The icons were organized in a layout that roughly grouped them by size and
general category (e.g., animals and objects), as illustrated in image Fig. 7. To encourage responses rather than leaving
selections blank, a message was displayed at the top of the screen 0.75 second before icon display time ended, prompting
participants to make a choice. At the end of each block, if a participant surpassed the 90% accuracy threshold calibrated
using internal baseline performance data, they received an encouraging on-screen message (“Congratulations! You just
earned some extra money!”) along with a $0.50 bonus per block to incentivize higher performance.

Warm-up session and main experiment. The experiment began with a 10-minute warm-up session, allowing partic-
ipants to familiarize themselves with the icon layouts and the classification task procedure through two practice blocks.
Each practice block contained 45 images, with one block consisting of clean images and the other of augmented images.
To avoid test-time adaptation, the augmentations used during the warm-up phase differed from those in the actual trials.
The images used for the practice trials were also a subsample of the ImageNet validation dataset, but did not overlap with
those used in the main experiment.

Following the warm-up, the main experiment proceeded consisting of 10 blocks, each block comprising 60 images. Each
set of 5 blocks was augmented using a consistent method, with a balanced distribution across different intensity levels
and superclasses. To avoid fatigue, participants were allowed an unlimited amount of time to rest between blocks and
encouraged to rest their eyes or accommodate elsewhere.

14



LAION-C: An Out-of-Distribution Benchmark for Web-Scale Vision Models

A.3. Error Consistency

Here, we provide a more detailed explanation of error consistency (EC), summarizing (Geirhos et al., 2020b). The EC
between two classifiers which both classified a sequence of samples is obtained by first using the necessary ground-truth
labels to assess which images each observer classified correctly. A trial increases the agreement if both classifiers solved it
correctly, or if they both failed (and decreases it if only one of them got the trial correct while the other one failed). One then
calculates how much more agreement was observed between the two classifiers than observers relative to the agreement
expected by chance, relative to the maximum possible delta. This is done by calculating Cohen’s Kappa (Cohen, 1960),
which is defined as k = pf::j, where p, is the (empirically measured) proportion of agreement-trials and p. is the
(theoretical) expected agreement when modeling both observers as independent binomial observers. « takes on values
between —1 and 1, with a higher x signifying higher levels of agreement, and a  of 0 indicating that a pair of observers
does not agree more frequently than one would expect by chance, given their marginal correctness probabilities.

In this work, we calculate the error consistency between model responses and human classification data. To do this, we first
collect all human responses. Since each human participant saw a fresh set of stimuli, we thus obtain exactly one human
response per image. We then calculate each model’s EC to this list of human responses.
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Figure 8. Humans and models make different mistakes. We analyze the agreement of error patterns between different families of
vision models (see Tab. 11 for a complete list) and human observers. The error consistency () could theoretically achieve a maximum
value of 1, but in line with earlier work (Geirhos et al., 2021), the EC values range between 0.15 and 0.45, indicating that behavioral
differences between humans and machines are still quite large. Marker colors encode model families.
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A.4. Augmentation Designs
A.4.1. MOSAIC

The image is divided into an n X n grid, where each tile is replaced by a patch from the ImageNet validation set whose
average color best matches that of the tile. This patchwork creates a mosaic effect that disrupts edges and textures while
introducing contextually irrelevant information.

Level 1 2 3 4 5
n 4 6 8 16 28

Table 2. Tile sizes at each level.

A.4.2. GLITCHED

The original image undergoes an artistic digital corruption, with horizontal lines overlaying shifted image segments and
color channel shifts. Here, a region refers to a randomly selected rectangular area of the image, and a shift denotes the
horizontal displacement (left or right) of that region by a certain percentage of the image width. In addition, color channels
are independently offset by a fixed number of pixels to further disrupt local spatial coherence. This dislocates the global
contextual structure of the image. While the concept of such glitchy images has been explored in earlier work (Kaufmann
et al., 2019), our transformation introduces a more intense corruption. Pixel shifts and color channel offsets are applied to
random regions as follows:

Level 1 2 3 4 5

Shift 8% width  32% width  50% width  128% width ~ 200% width
Regions 4 8 10 16 20

Offset +4 px £8 px +10 px +16 px +20 px

Table 3. Glitch parameters at each level.
The implementation is inspired by GitHub user “totallynotchase” (T, 2020).

A.4.3. VERTICAL LINES

The original image is transformed through a process of vertical deconstruction. It is first divided into multiple vertical
sections, which are further subdivided along the y-axis into small segments called y-steps. In each of these segments, a
short vertical line is drawn, where the direction of each line subtly reflects the local contour or edge orientation of the
image. The color of each line segment is set to the average color of its corresponding region. This distortion retains the
original colors but strips away local information, disrupting the contours and edges of the image and introducing visual
discontinuity.

Level 1 2 3 4 5
Vertical Sections 224 178 112 84 60

Y-Step Ipx 2px 4px 6px 8px

Table 4. Vertical sectioning and step sizes at each level.

A.4.4. GEOMETRIC SHAPES

The original image is overlaid with overlapping geometric figures such as squares, circles, and stars. This visual clutter
introduces local noise that obscures the main object, like the Kaleidoscope corruption from (Kaufmann et al., 2019). The
number of shapes for each intensity level are shown as follows:
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Level 1 2 3 4 5
Shapes 150 300 600 800 1000

Table 5. Number of shapes at each level.

A.4.5. STICKERS

The original image is augmented by randomly placing 16 x 16 pixel image patches from the ImageNet validation set onto
the image, following a uniform distribution. This addition of visual elements masks features of the primary object and
introduces deceptive new features.

Level 1 2 3 4 5
Patches 100 200 400 600 1200

Table 6. Number of patches at each level.

For an estimate of the occlusion ration of the objects per intensity level for stickers and geometric shapes distortions, see
Tab. 8.

A.4.6. LUMINANCE CHECKERBOARD

The original image is divided into a 14 x 14 grid, with the luminance of each cell altered in a checkerboard pattern. The
stark luminance contrast between adjacent tiles and artificial grid boundaries makes this distortion challenging.

Level 1 2 3 4 5
Luminance Variation +50 £50-100 +£100-125 £125-150 +150-255

Table 7. Luminance Variation at each level.
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Table 8. Occlusion ratio of objects in Stickers and Geometric Shapes distortions. We calculated the object occlusion ratio for the
Stickers and Geometric Shapes corruptions as an additional quantitative measurement of the distortion strength.

Intensity Level =~ Geometric Shapes (%)  Stickers (%)

1 61.88 65.83
72.51 76.52
85.35 86.19
90.16 89.54
93.21 91.63

N B W

Mosaic Glitched Vertical Lines
1.0 1 1
&=
$IT0--- o R N
4 S ~ - SOSS B .
0.8 e ~\\ RS -
~ S SNe. - o——==="" ° e .
0.6 AN \ 1 ¢~ 1 o -e
’ > AN e~ _ ~< ~~o
S N e T .- ° Se. ~~o.
~ N S~ ~~
0.4 S p 1 1 TN, T
—@- Best Human L AN ~e. ~<e
~ S~
02 -@®- Pretrained ViT S~o \‘o-___ s L4
24 . . ~ —=-a b b ~
= Fine-tuned ViT N@=—————- ®
x
[®)
g Stickers Geometric Shapes Luminance Checkerboard
o 4 - - " -
g 10 o= LS Mgl SL BT o-__
o. S ~o ——=-e_
\\\ \\\ \\ \\
< < ~
\\\\ \\. e L) \\\
L] ~, So ~
N ~ ~ N,
- ~ ~ B So N
~ \\ ~o L ]
AN N o
~ ~
- \\ \\. 1 \\
AN “~ee Sso
N S e
b -~ So 4
_____ .- (]
T °
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Intensity Level

Figure 9. LAION-C can be solved. For every distortion, we plot the accuracy of our reference model (ViT-H-P14-336-CLIP-LAION-
IN12K) before and after fine-tuning, in comparison to the best human participant for reference. Most distortions can be learned perfectly,
only the Stickers and Mosaic distortions might have been too difficult at the highest intensity levels. Further performance gains might
be possible with more careful fine-tuning.
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Table 9. Model (ViT) Accuracy Before and After Fine-Tuning on LAION-C. The high accuracies after fine-tuning indicate that even
though the dataset is challenging, there is, in principle, enough signal left to perform well on LAION-C.

Intensity Level  Accuracy Before (%) Accuracy After (%)

1 89.0 96.3
2 71.9 93.0
Mosaic 3 35.8 88.7
4 14.3 69.6
5 14.7 47.7
1 79.9 95.9
2 70.1 94.9
Vertical Lines 3 50.8 94.1
4 36.1 92.4
5 19.4 90.0
1 95.9 98.6
2 86.2 97.5
Glitched 3 63.6 954
4 55.6 94.2
5 47.1 934
1 99.7 99.6
2 98.4 99.2
Luminance Checkerboard 3 95.1 98.8
4 90.7 98.5
5 56.6 92.5
1 30.9 994
2 11.2 98.6
Geometric Shapes 3 6.7 93.6
4 6.6 85.9
5 6.3 73.7
1 97.3 98.8
2 77.8 96.5
Sticker 3 28.7 63.7
4 14.9 31.8
5 8.1 14.3
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A.5. Breakdown of model performance

To demonstrate the value of LAION-C as a benchmark for evaluating model robustness, we analyze how model perfor-
mance on LAION-C correlates with that on ImageNet-C. Grounding our comparison in models that have demonstrated a
baseline level of robustness on well-established benchmarks, we apply a threshold to include 40 models that achieved at
least 60% accuracy on ImageNet-C.

As shown in Fig. 10, the majority of data points lie above the identity line representing performance alignment on LAION-
C and ImageNet-C. The gradual slope of the data points, combined with their positioning, indicates that models generally
perform better on ImageNet-C, while their performance on LAION-C is more dispersed and often substantially lower.
This broader distribution of performance highlights that LAION-C introduces more challenging distortions, prompting
models to exhibit greater variability in robustness. The moderate Kendall’s tau coefficient (7 = 0.66) between the models’
performances on LAION-C and ImageNet-C further underscores this, indicating notable pairwise differences in how mod-
els rank across these two benchmarks, unearthing vulnerabilities that are less pronounced on ImageNet-C. These results
demonstrate the necessity of LAION-C as a complementary benchmark for a more comprehensive evaluation of model
robustness.
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Figure 10. Performance Divergence of Models on LAION-C and ImageNet-C (1k classes). The figure illustrates the scattered perfor-
mance of models across the ImageNet-C and LAION-C dataset, where a Kendall’s 7 coefficient of 0.66 and the shallow slope indicate a
dispersed performance on LAION-C. To provide a clearer trend and to better visualize the dispersion, we supplement the suite of models
with additional top-performing models sourced from the timm leaderboard (Wightman, 2024), bringing the total number of models to
40 (see Tab. 11 for a complete list).

Occlusion and Luminance Manipulations. For distortions involving occlusions, such as Stickers and Geometric
Shapes, models usually match or exceed human performance (see second row of Fig. 11). One possible hypothesis is
that this can be attributed to the robustness that models develop after e.g., masked image modeling (MIM) (Fang et al.,
2023; 2024). The fact that models perform so much better than humans on partially occluded images implies that models
use different features than humans. For example, for the Stickers distortion, certain ViT models outperform humans, likely
due to their ability to focus on those parts of the image background that remain visible despite the occlusions. As shown in
Fig. 2, the stickers occlude nearly the entire image on higher intensity levels, and little to no meaningful object information
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is retained. Nevertheless, certain models are still able to correctly classify the image based on subtle background cues.
This indicates that while models are performing well, they may be doing so by leveraging unintended shortcuts (Geirhos
et al., 2020a), such as exploiting background information, when faced with severely occluded images. For the Luminance
Checkerboard distortion, we observe that models from the ViT and EVA families outperform humans by a large margin.
This advantage could potentially stem from their architectural features, such as self-attention mechanisms and patch-based
processing (Fang et al., 2023; Dosovitskiy et al., 2021), which enable them to extract meaningful information from both
light and dark regions independently, as well as handle subtle luminance variations. These capabilities give them a clear
edge over humans and older models.
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Figure 11. Model performance on LAION-C. Analogous to Fig. 6, we relate distortion intensity level to classification accuracy for the
different distortions, showing the different models individually. The shaded region around human performance corresponds to the 95%
confidence interval, which we omit for the models for better visibility.

21



LAION-C: An Out-of-Distribution Benchmark for Web-Scale Vision Models

Table 10. LAION-C benchmark results. Numbers show top-1 accuracy in percent. ImageNet refers to model accuracy on the (uncor-
rupted) ImageNet validation set (values sourced from the timm leaderboard (Wightman, 2024)). For each corruption, we report mean
top-1 accuracy across all intensity levels, with LAION-C as the overall benchmark metric (averaged across corruption types). GPT-40
and Gemini 1.5 Pro were evaluated on 48,000 images, 100 for each class. For full names and descriptions, see Tab. 11 in the Appendix.

Model ImageNet LAION-C Mosaic Vertical Glitched Luminance Geometric Stickers
EVA-G-P14-560-M30M-IN22K 89.8 67.5 48.8 53.6 70.8 97.2 81.0 53.4
EVA02-L-P14-448-MIM-M38M-IN22K 90.1 66.8 53.6 58.2 78.2 93.6 76.4 40.6
ViT-H-P14-336-CLIP-LAION-IN12K 88.6 57.3 452 51.2 69.8 88.2 64.4 24.6
ViT-L-P14-224-CLIP-OpenAI-IN12K 88.3 57.8 52.6 49.8 68.2 98.6 55.4 22.4
ViT-B-P32-384-CLIP-LAION-IN12K 85.4 36.4 36.8 35.2 35.8 54.0 37.6 19.2
ViT-B-P16-224-AugReg-IN21K 85.5 47.1 46.4 42.8 62.0 71.4 42.4 17.6
BEiT-v2-L-P16-224-IN1K 87.4 47.7 52.4 448 63.2 70.2 11.8 43.8
BEiT-v2-B-P16-224-IN1K 85.6 422 46.2 40.4 52.6 68.2 11.4 34.6
ConvNeXt-XXL-CLIP-LAION-IN1K 88.6 54.8 53.0 53.4 71.8 774 52.2 20.8
ConvNeXt-B-CLIP-LAION-AugReg-IN12K 87.6 423 37.6 43.8 44.4 54.2 50.4 23.2
WRNI101-2-TV-IN1K 78.8 21.4 30.4 28.4 22.0 22.8 18.2 6.8
WRN50-2-RACM-IN1K 81.5 24.0 26.8 214 17.0 45.0 24.6 9.4
RN50-A1-IN1K 81.2 19.9 28.0 18.8 20.8 23.4 21.2 7.0
EFF-B3-RA2-IN1K 82.3 33.2 324 31.8 40.2 452 37.6 12.2
DN201-TV-IN1K 71.3 19.2 28.6 26.2 13.2 23.2 16.8 7.2
DN161-TV-IN1K 77.3 20.0 31.0 26.8 15.2 25.2 15.4 6.6
GPT-40 - 54.1 42.8 454 65.1 80.1 54.2 36.5
Gemini 1.5 Pro - 50.2 34.9 37.0 46.2 84.4 60.9 38.1
Best human observer - 55.2 58.0 553 78.7 63.4 404 35.7
Average human observer - 47.0 50.8 43.6 71.0 53.1 34.3 29.1
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A.6. Evaluating VLMs

To evaluate GPT-40 (OpenAl, 2024) and Gemini 1.5 Pro (Team et al., 2024) on LAION-C, we decided to test a random
subsample of the full dataset, consisting of 100 images per category, which were then tested on all corruptions and intensity
levels, resulting in a total of 48,000 images. For ImageNet-C, we limited ourselves to only 10 images per class, to get an
initial ballpark estimate of performance.

We employed the following system prompt, in line with our human experiments, during which participants were also shown
examples:

System Prompt:

You are an image-recognition API.

You are always asked to classify the main object of images into one of 16 mutually exclusive
categories.

In some images, the distortion may be so strong that you might not recognize anything. If you’re
unsure, provide your best guess - you always have to pick exactly one of the 16 categories.

The 16 categories are: primate, dog, cat, bird, fish, snake, butterfly, fruit, boat, vehicle, chair, ball,
bottle, instrument, timekeeper, tool.

Here is a list of characterizations of every such category:

primate: a primate, like e.g. monkeys, chimpanzees, Orang-Utans etc.

dog: a dog, like e.g. german shepherd, labrador, golden retriever etc.

cat: a cat, like e.g. domestic cat, lion, cheetah etc.

bird: a bird, like e.g. songbird, eagle, chicken etc.

fish: a fish, like e.g. trout, shark, whale etc.

snake: a snake, like e.g. viper, cobra, seasnake etc.

butterfly: a butterfly, like e.g. monarch, cabbage butterfly, ringlet etc.

fruit: a fruit, like e.g. apple, orange, pineapple etc.

boat: a boat, like e.g. ship, gondola, fireboat etc.

vehicle: a vehicle, like e.g. truck, van, sports car etc.

chair: a chair, like e.g. bench, throne, couch etc.

ball: a ball (or a person playing with a ball), like e.g. soccer ball, football, tennis ball etc.

bottle: a bottle, like e.g. water bottle, jug, pill bottle etc.

instrument: a musical instrument (or a person playing an instrument), like e.g. sax, flute, harp etc.
timekeeper: a timekeeper, like e.g. clock, watch, sundial etc.

tool: a tool (or a person using a tool), like e.g. hammer, power drill, chainsaw etc.

Since you are an API, you always respond with minimal messages that contain exactly one word,
which is the category name.

User Prompt:

What is the main object in this image? Categories are: primate, dog, cat, bird, fish, snake, butterfly,
fruit, boat, vehicle, chair, ball, bottle, instrument, timekeeper, tool.
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The image is highly pixelated, but | can discern the
general shape of a dog, especially the head and front
legs. The color pattern also suggests a dog's fur.

The image seems to show a fruit, possibly an apple,
based on the red and green colors present in the
picture.

The distorted image appears to show the outline of a
bird with wings outstretched. The pointed shapes
resemble wings, and the overall posture suggests a
bird in flight.

| can see pliers in the center of the image. Pliers
are a tool.

The image appears to show a bird, potentially a
chicken, due to the presence of orange feathers and
what looks like a wattle. The distortion makes it
difficult to be certain, but the color and shape
suggest a bird more than any other category.

The round shape and the presence of what appears to be
a drumstick suggest that this image represents a drum,
which is a musical instrument.

Although the image is heavily distorted, it appears to
show the face of a primate. The discernible features,
such as the eyes and brow ridge, suggest a primate's
facial structure.

True label: fish
Predicted label: dog
mosaic (1)

True label: chair
Predicted label: fruit
mosaic (1)

True label: ball
Predicted label: bird
vertical_lines (2)

True label: tools
Predicted label: tools
stickers (2)

True label: dog
Predicted label: bird
glitched (1)

True label: tools

Predicted label: instruments

glitched (1)

True label: cat

Predicted label: primate

glitched (2)

Figure 12. Visual Reasoning in Gemini. We provide examples of visual reasoning in Gemini-1.5-Pro, consisting of a LAION-C sample,
the reasons for classification that Gemini provided and meta-information (like the final label, the ground-truth label and corruption
details). In line with our findings about Error Consistency (see Fig. 8), the model is frequently confused by visual impressions that are
trivial for humans to decode. Instead, it hallucinates unreasonable image properties.
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The image shows a shape that resembles the outline of
a bottle, with a neck and body typical of bottles,
despite the heavy distortion and colorful overlay.

The image shows a metallic object with a handle,

resembling a hammer, which is a common tool. The shape

and context suggest it is used for hitting or driving
nails.

The image appears to be a mosaic or collage that forms
the shape of a primate, likely a monkey or ape. The
overall structure and features resemble the face and
body of a primate, which is why this category is
chosen.

The image appears to depict a stylized or pixelated
representation of a primate, likely a monkey or ape,
based on the visible facial features and overall
shape.

The image shows a shape and texture that resembles a
fish, with a streamlined body and scales visible. The
colors and patterns are typical of fish, making it the
most likely category.

The image appears to have a distorted outline that
resembles the shape of a primate, such as a monkey or
ape. The contours suggest facial features and a
posture typical of primates.

The image contains multiple small images, many of
which depict butterflies. The presence of wings and
colorful patterns typical of butterflies is

noticeable, making 'butterfly' the most fitting
category.

True label: ball
Predicted label: bottle
geometric_shapes (3)

True label: chair
Predicted label: tools
glitched (1)

True label: fish
Predicted label: primate
mosaic (2)

True label: snakes
Predicted label: primate
mosaic (2)

True label: chair
Predicted label: fish
vertical_lines (1)

True label: bottle
Predicted label: primate
vertical_lines (5)

True label: fruit
Predicted label: butterfly
mosaic (4)

Figure 13. Visual Reasoning in GPT. Figure analogous to Fig. 12. Like Gemini, GPT has a tendency to hallucinate visual impressions.
Notably, when the model makes mistakes in the sticker-corruption, it is typically led astray by the contents of the sticker-images, ignoring
the background completely and failing to perceive the global structure of the image, a behavior that Gemini exhibits as well.
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A.7. Models

Table 11. Model overview. For each model used in our evaluation, we show the full model names, as used in timm, an abbreviated name
used in the main text and a description of the model. While the first 16 models were used in all analyses and figures, the rest was only
used for selective analyses such as Fig. 8.

Abbreviation

Full Model Name

Description

EVA-G-P14-560-M30M-IN22K

EVA02-L-P14-448-MIM-M38M-IN22K

VIT-H-P14-336-CLIP-LAION-IN12K

VIT-L-P14-224-CLIP-OPENAI-IN12K

VIT-B-P32-384-CLIP-LAION-IN12K

VIT-B-P16-224-AUGREG-IN21K

BEITV2-L-P16-224-IN1K

BEITV2-B-P16-224-IN1K

CONV-XXL-CLIP-LAION-IN1K

CONV-B-CLIP-LAION-AUGREG-IN12K

WRNI101-2-TV-INIK

‘WRN50-2-RACM-IN1K

RN50-A1-INIK

EFF-B3-RA2-INIK

DN201-TV-IN1K

DNI161-TV-INIK

eva_giant_patch14_560.m30m_ft_in22k_inlk

eva02_large_patch14_448.mim_m38m_ft in22k inlk

vit_huge_patch14 _clip_336.laion2b_ft_in12k_inlk

vit_large_patch14_clip_224.openai_ft_in12k_inlk

vit_base_patch32 clip_384.1aion2b_ft_in12k inlk

vit_base_patch16_224.augreg2_in21k_ft_inlk
beitv2_large_patch16_224.in1k ft inlk
beitv2_base_patch16_224.in1k_ft_inlk
convnext_xxlarge.clip_laion2b_soup_ft_in1k
convnext_base.clip_laion2b_augreg ft_in12k inlk 384

wide_resnet101_2.tv_inlk

wide_resnet50_2.racm_inlk
resnet50.al_inlk
efficientnet_b3.ra2_inlk
densenet201.tv_inlk

densenet161.tv_inlk

EVA giant model, patch size 14, pre-trained with masked image model-
ing (MIM) on a Merged-30M dataset, fine-tuned on ImageNet-22k and
ImageNet-1k (Fang et al., 2023).

EVAO2 large model, patch size 14, pre-trained with masked image mod-
eling (MIM) on a Merged-38M dataset, fine-tuned on ImageNet-22k
and ImageNet-1k (Fang et al., 2024).

Vision Transformer (VIT) huge model, patch size 14, pre-trained on
LAION-2B dataset using OpenCLIP, fine-tuned on ImageNet-12k and
ImageNet-1k (Dosovitskiy et al., 2021).

Vision Transformer large model, patch size 14, pre-trained on WIT-
400M using CLIP, fine-tuned on ImageNet-12k and ImageNet-1k
(Dosovitskiy et al., 2021).

Vision Transformer base model, patch size 32, pretrained on LAION-
2B using OpenCLIPfine-tuned on ImageNet-12k and ImageNet-1k
(Dosovitskiy et al., 2021).

Vision Transformer base model, patch size 16, trained on ImageNet-21k
and fine tuned on ImageNet-1k (Dosovitskiy et al., 2021).

BEIiTv2 large model, patch size 16, trained on ImageNet- 1k, fine-tuned
on ImageNet-22k and ImageNet-1k (Bao et al., 2022; Peng et al., 2022).
BEIiTv2 base model, patch size 16, trained on ImageNet-1k, fine-tuned
on ImageNet-22k and ImageNet-1k (Bao et al., 2022; Peng et al., 2022).
ConvNeXt xxlarge model, pre-trained using OpenCLIP on LAION-2B,
fine-tuned on ImageNet-1k (Liu et al., 2022).

ConvNeXt base model,pre-trained using OpenCLIP on LAION-2B,
fine-tuned on ImageNet-12k and ImageNet-1k (Liu et al., 2022).

Wide ResNet-101 model, trained on ImageNet-1k, with original
torchvision model weight (He et al., 2016; Zagoruyko & Komodakis,
2016).

Wide ResNet-50 model, trained with RandAugment RACM recipe on
ImageNet-1k (He et al., 2016; Zagoruyko & Komodakis, 2016).
ResNet-50 model trained on ImageNet-1k (He et al., 2016; Wightman
etal., 2021).

EfficientNet-B3 model, trained with RandAugment RA2 recipe on
ImageNet-1k (Tan & Le, 2019).

DenseNet-201, DenseNet pre-trained on ImageNet-1k (Huang et al.,
2017).

DenseNet-161, DenseNet model pre-trained on ImageNet-1k (Huang
etal., 2017).

GPT-40

Gemini-1.5-Pro

2pt-40-2024-08-06

gemini-1.5-pro-002

At the time of writing, the most recent snapshot of OpenAI’s flagship
model (OpenAl, 2024). Only evaluated on 48,000 LAION-C samples
and 12,000 ImageNet-C samples.

At the time of writing, the most recent stable version of Google’s Gem-
ini model (Team et al., 2024). Only evaluated on 48,000 LAION-C
samples and 12,000 ImageNet-C samples.

convnextv2_pico.fcmae_ft_inlk
convnextv2_tiny.fcmae_ft_in22k_inlk
convnext_base.fb_in22k ft inlk
convnext_large_mlp.clip_laion2b_augreg ft in1k 384
convnext_large_mlp.clip_laion2b_soup_ft_in12k in1k 384
convnext_tiny.in12k_ft_inlk
convnext_small.fb_in22k_ft_in1k_384
convnext_xlarge.fb_in22k ft_inlk
convnext_small.in12k_ft_in1k_384
convnextv2_large.fcmae_ft_in22k_inlk 384
vit_betwixt_patch16_reg4_gap_256.sbb2_e200_in12k_ft_inlk
vit_mediumd_patch16_rope_regl_gap_256.sbb_inlk
vit_wee_patch16_regl_gap_256.sbb_inlk
vit-mediumd_patch16 reg4_gap 256.sbb2_e200_in12k ft_inlk
vit_mediumd _patch16 reg4_gap 256.sbb_in12k
vit_pwee_patch16_regl_gap_256.sbb_inlk
vit_betwixt_patch16_rope_reg4_gap_256.sbb_inlk
vit_betwixt_patch16_reg4_gap_256.sbb_in12k_ft_inlk
maxxvitv2_rmlp_base_rw_384.sw_in12k ft_inlk

vggl9 bn.tv_inlk

regnety_1280.swag_lc_inlk

regnety_1280.swag_ft_inlk

regnety_320.swag_ft_inlk

inception_v3.tf_adv_inlk
beit_base_patch16_224.in22k_ft_in22k_inlk
beit_large_patch16_512.in22k_ft_in22k in1k
deit3_large_patch16_384.fb_in22k ft_in1k
deit_base_distilled_patch16_224.fb_in1k
swin_base_patch4_window7_224.ms_in22k _ft_inlk
swinv2_base_window12t024_192t0384.ms_in22k ft_inlk
swinv2_large_window12t024_192t0384.ms_in22k ft_inlk
eva_large_patch14_336.in22k ft_inlk
convformer_b36.sail_in22k_ft_in1k_384
caformer_b36.sail_in22k_ft_in1k_384
efficientformerv2_s2.snap_dist_inlk
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A.8. Datasheet for LAION-C

We here include a Datasheet for LAION-C following the template proposed by (Gebru et al., 2021).

Motivation \

For what purpose was the dataset created? Was
there a specific task in mind? Was there a specific
gap that needed to be filled? Please provide a de-
scription.

The LAION-C dataset was created to serve as a bench-
mark for evaluating the robustness and Out-of-Distribution
(OOD) generalization of large-scale vision models. It can
also be used to study the difference between human and
model perception.

Who created this dataset (e.g., which team, re-
search group) and on behalf of which entity (e.g.,
company, institution, organization)?

The dataset is created by authors of this paper.
Who funded the creation of the dataset? If there is

an associated grant, please provide the name of the
grantor and the grant name and number.

Not applicable.

Any other comments?

None.

\ Composition ‘

What do the instances that comprise the dataset
represent (e.g., documents, photos, people, coun-
tries)? Are there multiple types of instances (e.g.,
movies, users, and ratings; people and interactions
between them; nodes and edges)? Please provide a
description.

The instances in the LAION-C dataset represent images
grouped into 16 superclasses with various synthetic distor-
tions applied to them at 5 severity levels. Each superclass
contains 273 images, and the distortions include mosaic
effects, glitched images, vertical lines, geometric shapes,
stickers, and luminance checkerboard patterns.

How many instances are there in total (of each
type, if appropriate)?

In total, LAION-C consists of 131,040 images. (16 classes
x 273 images x 6 corruptions x 5 severity levels.)
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Does the dataset contain all possible instances
or is it a sample (not necessarily random) of in-
stances from a larger set? If the dataset is a
sample, then what is the larger set? Is the sample
representative of the larger set (e.g., geographic cov-
erage)? If so, please describe how this representa-
tiveness was validated / verified. If it is not represen-
tative of the larger set, please describe why not (e.g.,
to cover a more diverse range of instances, because
instances were withheld or unavailable).

The dataset is a sample of the ImageNet validation set
and only contains 4,368 of the 50,000 images. As such,
LAION-C is not representative of ImageNet, because it
only consists of coarse superclasses. This decision was
made to facilitate measuring human classification perfor-
mance on LAION-C, which would not be possible with the
fine-grained classes of ImageNet.

What data does each instance consist of? “Raw”
data (e.g., unprocessed text or images) or fea-
tures? In either case, please provide a description.

Each instance consists of an RGB image, as well as meta-
data about the ground-truth class, corruption type, and
severity level, which are simply part of the filename.

Is there a label or target associated with each in-
stance? If so, please provide a description.

Each image is labeled with its superclass (one of 16) and
can be traced back to its original ImageNet class label.

Is any information missing from individual in-
stances? If so, please provide a description, explain-
ing why this information is missing (e.g., because it
was unavailable). This does not include intentionally
removed information, but might include, e.g., redacted
text.

No information is missing from individual instances as
each image in the dataset is synthetically altered and la-
beled with the type of distortion and its severity, ensuring
comprehensive data for evaluation purposes.

Are relationships between individual instances
made explicit (e.g., users’ movie ratings, social
network links)? If so, please describe how these re-
lationships are made explicit.

The dataset does not contain explicit relationships between
individual instances such as social links or ratings since it
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primarily focuses on image recognition and distortion type
evaluation without any relational context between the im-
ages.

Are there recommended data splits (e.g., training,
development / validation, testing)? If so, please
provide a description of these splits, explaining the
rationale behind them.

Since the dataset is primarily used for benchmarking pur-
poses, splitting specifics are not provided. Essentially, the
entire dataset is a validation set.

Are there any errors, sources of noise, or redun-
dancies in the dataset? If so, please provide a de-
scription.

The dataset is designed to introduce controlled noise
through synthetic distortions to test model robustness.
There are no unintentional errors or redundancies; all mod-
ifications serve the purpose of benchmark evaluation.

Is the dataset self-contained, or does it link to or
otherwise rely on external resources (e.g., web-
sites, tweets, other datasets)? If it links to or relies
on external resources, a) are there guarantees that
they will exist, and remain constant, over time; b) are
there official archival versions of the complete dataset
(i.e., including the external resources as they existed
at the time the dataset was created); c) are there any
restrictions (e.g., licenses, fees) associated with any
of the external resources that might apply to a future
user? Please provide descriptions of all external re-
sources and any restrictions associated with them, as
well as links or other access points, as appropriate.

The dataset is entirely self-contained.

Does the dataset contain data that might be con-
sidered confidential (e.g., data that is protected by
legal privilege or by doctor-patient confidentiality,
data that includes the content of individuals non-
public communications)? If so, please provide a
description.

The dataset does not contain confidential data as it is based
on publicly available ImageNet data.

Does the dataset contain data that, if viewed di-
rectly, might be offensive, insulting, threatening,
or might otherwise cause anxiety? If so, please
describe why.

The dataset does not contain offensive or disturbing con-
tent as it focuses on visual distortions applied to non-
sensitive images. Additionally, the images sourced from
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ImageNet are manually filtered to exclude any content that
could be considered disturbing.

Does the dataset relate to people? If not, you may
skip the remaining questions in this section.

Yes, the LAION-C dataset relates to people to some ex-
tent as it includes images from ImageNet, some of which
feature human faces and figures. While the primary focus
of the dataset is not on the individuals depicted or on ana-
lyzing human-specific data, the presence of human images
means that the dataset does relate to people indirectly.

Does the dataset identify any subpopulations
(e.g., by age, gender)? If so, please describe how
these subpopulations are identified and provide a de-
scription of their respective distributions within the
dataset.

The LAION-C dataset itself does not explicitly identify
subpopulations by age, gender, or other demographic char-
acteristics as part of its core design. However, since it in-
cludes images from ImageNet, which may contain human
faces, there is an implicit presence of such demographic
data.

Is it possible to identify individuals (i.e., one or
more natural persons), either directly or indirectly
(i.e., in combination with other data) from the
dataset? If so, please describe how.

While the primary intention of the LAION-C dataset is not
to facilitate the identification of individuals, it incorporates
images from ImageNet, which may include human faces.

Does the dataset contain data that might be con-
sidered sensitive in any way (e.g., data that re-
veals racial or ethnic origins, sexual orientations,
religious beliefs, political opinions or union mem-
berships, or locations; financial or health data;
biometric or genetic data; forms of government
identification, such as social security humbers;
criminal history)? |If so, please provide a descrip-
tion.

While the LAION-C dataset primarily features synthetic
distortions applied to images for technical analysis, it in-
cludes images sourced from ImageNet that may contain
human faces. These images can indirectly reveal racial or
ethnic origins due to the diversity of individuals depicted.
However, there is no explicit focus on collecting or ana-
lyzing data related to sexual orientations, religious beliefs,
political opinions, union memberships, specific locations,
financial or health data, biometric or genetic data, govern-
ment identification numbers, or criminal history. The in-
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clusion of human images is incidental and not intended for
any analysis related to these sensitive aspects.

Any other comments?

None.

Collection Process \

How was the data associated with each instance
acquired? Was the data directly observable (e.g.,
raw text, movie ratings), reported by subjects (e.g.,
survey responses), or indirectly inferred / derived from
other data (e.g., part-of-speech tags, model-based
guesses for age or language)? If data was reported
by subjects or indirectly inferred / derived from other
data, was the data validated / verified? If so, please
describe how.

The data for each instance in the LAION-C dataset is de-
rived from ImageNet, where images are directly observable
and not reported by subjects or inferred.

What mechanisms or procedures were used to
collect the data (e.g., hardware apparatus or sen-
sor, manual human curation, software program,
software API)? How were these mechanisms or pro-
cedures validated?

First, 16 sensible high-level classes were selected that the
authors deemed suitable for humans to recognize in psy-
chophysical experiments. These classes are: ball, bird,
boat, bottle, butterfly, car & truck, cat, chair, dog, fish, fruit,
instrument, primate, snake, timekeeping, and tool. Then,
200 classes from the original ImageNet-1k set were se-
lected that can constitute these high-level classes. From the
pools of validation set images, 500 images were randomly
selected per superclass. These images were then manually
filtered to include only images that fall clearly into one of
the 16 superclasses (i.e. an image showing both a ball and
a dog would have been filtered out to ensure clean class
labels).

If the dataset is a sample from a larger set,
what was the sampling strategy (e.g., determinis-
tic, probabilistic with specific sampling probabili-
ties)?

See previous question. Candidate images from the con-
stituent classes were sampled randomly with uniform prob-
ability.

Who was involved in the data collection process
(e.g., students, crowdworkers, contractors) and
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how were they compensated (e.g., how much
were crowdworkers paid)?

Details are managed by the original collector for Ima-
geNet.

Over what timeframe was the data collected?
Does this timeframe match the creation timeframe
of the data associated with the instances (e.g., re-
cent crawl of old news articles)? If not, please de-
scribe the timeframe in which the data associated with
the instances was created.

The source dataset for the creation of LAION-C was
the 2012 ILSVRC validation set (“ImageNet”) which was
collected over several years. The distortions applied in
LAION-C were created specifically for benchmarking pur-
poses at the time of dataset development (2023 / 2024),
which do not coincide directly with the original image col-
lection periods.

Were any ethical review processes conducted
(e.g., by an institutional review board)? If so,
please provide a description of these review pro-
cesses, including the outcomes, as well as a link or
other access point to any supporting documentation.

The original ImageNet dataset underwent various ethical
and review processes during its development, details are
managed by the original collector for ImageNet.

Does the dataset relate to people? If not, you may
skip the remaining questions in this section.

Only indirectly. LAION-C includes images from Ima-
geNet that feature human faces and figures.

Did you collect the data from the individuals in
question directly, or obtain it via third parties or
other sources (e.g., websites)?

Not applicable.

Were the individuals in question notified about
the data collection? If so, please describe (or show
with screenshots or other information) how notice was
provided, and provide a link or other access point to,
or otherwise reproduce, the exact language of the no-
tification itself.

Not applicable.

Did the individuals in question consent to the col-
lection and use of their data? If so, please de-
scribe (or show with screenshots or other information)
how consent was requested and provided, and pro-
vide a link or other access point to, or otherwise re-
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produce, the exact language to which the individuals
consented.

Not applicable.

If consent was obtained, were the consenting in-
dividuals provided with a mechanism to revoke
their consent in the future or for certain uses? If
so, please provide a description, as well as a link or
other access point to the mechanism (if appropriate).

Not applicable.

Has an analysis of the potential impact of the
dataset and its use on data subjects (e.g., a data
protection impact analysis) been conducted? If
s0, please provide a description of this analysis, in-
cluding the outcomes, as well as a link or other access
point to any supporting documentation.

No specific data protection impact analysis has been con-
ducted for the LAION-C dataset as its primary modifica-
tions involve applying synthetic distortions like glitches to
the images for technical benchmarking purposes. These al-
terations do not fundamentally change the nature of the data
regarding privacy or ethical concerns beyond their original
use in ImageNet.

Any other comments?

None.

Preprocessing / cleaning / labeling |

Was any preprocessing / cleaning / labeling of the
data done (e.g., discretization or bucketing, to-
kenization, part-of-speech tagging, SIFT feature
extraction, removal of instances, processing of
missing values)? If so, please provide a description.
If not, you may skip the remainder of the questions in
this section.

Images were resized to 256x256 pixels and center-cropped

to 224x224 pixels, as is common for ImageNet. Images
were filtered manually to ensure clean labels as described
above.

Was the “raw” data saved in addition to the pre-
processed / cleaned / labeled data (e.g., to sup-
port unanticipated future uses)? If so, please pro-
vide a link or other access point to the “raw” data.

No, LAION-C only consists of the modified images,
but every filename can be uniquely traced back to the
parent image from the ImageNet validation set, which
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can be found here: https://www.image-net.org/
download.php

Is the software used to preprocess / clean / label
the instances available? If so, please provide a link
or other access point.

Yes, the preprocessing, cleaning, and labeling of the
dataset instances were conducted using Python. The code
used for these processes is accessible via https://
github.com/Fanfeil.i/LAION-C.

Any other comments?

None.

Uses

Has the dataset been used for any tasks already?
If so, please provide a description.

Yes, the LAION-C dataset has been utilized to evaluate
the robustness and out-of-distribution (OOD) generaliza-
tion capabilities of large-scale vision models.

Is there a repository that links to any or all papers
or systems that use the dataset? If so, please pro-
vide a link or other access point.

https://github.com/Fanfeili/LAION-C

What (other) tasks could the dataset be used for?

Beyond benchmarking vision model robustness, LAION-
C could be used in studies investigating the effects of image
distortions on human perception.

Is there anything about the composition of the
dataset or the way it was collected and prepro-
cessed / cleaned / labeled that might impact future
uses? For example, is there anything that a future
user might need to know to avoid uses that could re-
sult in unfair treatment of individuals or groups (e.g.,
stereotyping, quality of service issues) or other un-
desirable harms (e.g., financial harms, legal risks) If
s0, please provide a description. Is there anything
a future user could do to mitigate these undesirable
harms?

Given that the base images in the LAION-C dataset are
sourced from ImageNet, which is already publicly avail-
able, the additional risk for harm is negligible.

Are there tasks for which the dataset should not
be used? If so, please provide a description.
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We would not recommend using the LAION-C dataset for
fine-tuning machine learning models, due to dataset size.

Any other comments?

None.

Distribution \

Will the dataset be distributed to third parties out-
side of the entity (e.g., company, institution, orga-
nization) on behalf of which the dataset was cre-
ated? If so, please provide a description.

The LAION-C dataset will be made publicly available, al-
lowing for distribution to third parties outside of the origi-
nating entity.

How will the dataset will be distributed (e.g., tar-
ball on website, API, GitHub) Does the dataset have
a digital object identifier (DOI)?

The dataset is accessible via Zenodo:
zenodo.org/records/14051887

https://

When will the dataset be distributed?
The dataset is already distributed.

Will the dataset be distributed under a copyright
or other intellectual property (IP) license, and / or
under applicable terms of use (ToU)? If so, please
describe this license and / or ToU, and provide a link
or other access point to, or otherwise reproduce, any
relevant licensing terms or ToU, as well as any fees
associated with these restrictions.

LAION-C will be available under a CC BY-NC 4.0 license,
allowing non-commercial use with proper attribution only,
to ensure compliance with the original ImageNet license.

Have any third parties imposed IP-based or other
restrictions on the data associated with the in-
stances? If so, please describe these restrictions,
and provide a link or other access point to, or other-
wise reproduce, any relevant licensing terms, as well
as any fees associated with these restrictions.

The original ImageNet data is subject to terms of access
that limit its use to non-commercial research and educa-
tional purposes only. The full terms of access can be found
here: https://www.image—-net.org/download.

php

Do any export controls or other regulatory re-
strictions apply to the dataset or to individual in-
stances? If so, please describe these restrictions,
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and provide a link or other access point to, or other-
wise reproduce, any supporting documentation.

Since the images are modified ImageNet images, the re-
strictions of the ImageNet license apply.

Any other comments?

None

\ Maintenance

Who will be supporting / hosting / maintaining the
dataset?

The dataset is maintained by the authors of the associated
paper.

How can the owner / curator / manager of the
dataset be contacted (e.g., email address)?

For questions regarding the dataset, please contact Fanfei
Liat<first.last@tuebingen.mpg.de>.

Is there an erratum? |If so, please provide a link or
other access point.

There is not an explicit erratum as for now.

Will the dataset be updated (e.g., to correct label-
ing errors, add new instances, delete instances)?
If so, please describe how often, by whom, and how
updates will be communicated to users (e.g., mailing
list, GitHub)?

Information will be provided upon publication.

If the dataset relates to people, are there appli-
cable limits on the retention of the data associ-
ated with the instances (e.g., were individuals in
question told that their data would be retained for
a fixed period of time and then deleted)? If so,
please describe these limits and explain how they will
be enforced.

Not applicable (beyond agreements made for ImageNet).

Will older versions of the dataset continue to be
supported / hosted / maintained? If so, please de-
scribe how. If not, please describe how its obsoles-
cence will be communicated to users.

Should newer versions of the dataset be created, older ver-
sions will continue to be available via Zenodo.

If others want to extend / augment / build on / con-
tribute to the dataset, is there a mechanism for


https://zenodo.org/records/14051887
https://zenodo.org/records/14051887
https://www.image-net.org/download.php
https://www.image-net.org/download.php

LAION-C: An Out-of-Distribution Benchmark for Web-Scale Vision Models

them to do so? If so, please provide a description.
Will these contributions be validated / verified? If so,
please describe how. If not, why not? Is there a pro-
cess for communicating / distributing these contribu-
tions to other users? If so, please provide a descrip-
tion.

We encourage other researchers to build on LAION-C,
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for example by contributing their own corruptions. While
there is no automatic mechanism (such as publicly accessi-
ble version control, e.g. via Github) for this, we encourage
interested parties to reach out to the authors.

Any other comments?

None.
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