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ABSTRACT

Mechanistic interpretability seeks to understand the internal mechanisms of
machine learning models, where localization—identifying the important model
components—is a key step. Activation patching, also known as causal tracing or
interchange intervention, is a standard technique for this task (Vig et al., 2020), but
the literature contains many variants with little consensus on the choice of hyper-
parameters or methodology. In this work, we systematically examine the impact
of methodological details in activation patching, including evaluation metrics and
corruption methods. In several settings of localization and circuit discovery in lan-
guage models, we find that varying these hyperparameters could lead to disparate
interpretability results. Backed by empirical observations, we give conceptual ar-
guments for why certain metrics or methods may be preferred. Finally, we provide
recommendations for the best practices of activation patching going forwards.

1 INTRODUCTION

Mechanistic interpretability (MI) aims to unravel complex machine learning models by reverse en-
gineering their internal mechanisms down to human-understandable algorithms (Geiger et al., 2021;
Olah, 2022; Wang et al., 2023). With such understanding, we can better identify and fix model errors
(Vig et al., 2020; Hernandez et al., 2021; Meng et al., 2022; Hase et al., 2023), steer model outputs
(Li et al., 2023b) and explain emergent behaviors (Nanda et al., 2023a; Barak et al., 2022).

A basic goal in MI is localization: identify the specific model components responsible for partic-
ular functions. Activation patching, also known as causal tracing, interchange intervention, causal
mediation analysis or representation denoising, is a standard tool for localization in language mod-
els (Vig et al., 2020; Meng et al., 2022). The method attempts to pinpoint activations that causally
affect on the output. Specifically, it involves 3 forward passes of the model: (1) on a clean prompt
while caching the latent activations; (2) on a corrupted prompt; and (3) on the corrupted prompt but
replacing the activation of a specific model component by its clean cache. For instance, the clean
prompt can be “The Eiffel Tower is in” and the corrupted one with the subject replaced by “The
Colosseum”. If the model outputs “Paris” in step (3) but not in (2), then it suggests that the specific
component being patched is important for producing the answer (Vig et al., 2020; Pearl, 2001).

This technique has been widely applied for language model interpretability. For example, Meng
et al. (2022); Geva et al. (2023) seek to understand which model weights store and process factual
information. Wang et al. (2023); Hanna et al. (2023); Lieberum et al. (2023) perform circuit analysis:
identify the sub-network within a model’s computation graph that implements a specified behavior.
All these works leverage activation patching or its variants as a foundational technique.

Despite its broad applications across the literature, there is little consensus on the methodological
details of activation patching. In particular, each paper tends to use its own method of generating
corrupted prompts and the metric of evaluating patching effects. Concerningly, this lack of standard-
ization leaves open the possibility that prior interpretability results may be highly sensitive to the
hyperparameters they adopt. In this work, we study the impact of varying the metrics and methods
in activation patching, as a step towards understanding best practices. To our knowledge, this is the
first such systematic study of the technique.

Specifically, we identify three degrees of freedom in activation patching. First, we focus on the
approach of generating corrupted prompts and evaluate two prominent methods from the literature:
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Figure 1: The workflow of activation patching for localization: run the intervention procedure (a)
on every relevant component, such as all the attention heads, and plot the effects (b).

• Gaussian noising (GN) adds a large Gaussian noise to the token embeddings of the tokens that
contain the key information to completing a prompt, such as its subject (Meng et al., 2022).

• Symmetric token replacement (STR) swaps these key tokens with semantically related ones; for
example, “The Eiffel Tower”→“The Colosseum” (Vig et al., 2020; Wang et al., 2023).

Second, we examine the choice of metrics for measuring the effect of patching and compare prob-
ability and logit difference; both have found applications in the literature (Meng et al., 2022; Wang
et al., 2023; Conmy et al., 2023). Third, we study sliding window patching, which jointly restores
the activations of multiple MLP layers, a technique used by Meng et al. (2022); Geva et al. (2023).

We empirically examine the impact of these hyperparameters on several interpretability tasks, in-
cluding factual recall (Meng et al., 2022) and circuit discovery for indirect object identification (IOI)
(Wang et al., 2023), greater-than (Hanna et al., 2023), Python docstring completion (Heimersheim
& Janiak, 2023) and basic arithmetic (Stolfo et al., 2023). In each setting, we apply methods distinct
from the original studies and assess how different interpretability results arise from these variations.

Findings Our contributions uncover nuanced discrepancies within activation patching techniques
applied to language models. On corruption method, we show that GN and STR can lead to incon-
sistent localization and circuit discovery outcomes (Section 3.1). Towards explaining the gaps, we
posit that GN breaks model’s internal mechanisms by putting it off distribution. We give tentative
evidence for this claim in the setting of IOI circuit discovery (Section 3.2). We believe that this is a
fundamental concern in using GN corruption for activation patching. On evaluation metrics, we pro-
vide an analogous set of differences between logit difference and probability (Section 4), including
an observation that probability can overlook negative model components that hurt performance.

Finally, we compare sliding window patching with patching individual layers and summing up their
effects. We find the sliding window method produces more pronounced localization than single-
layer patching and discuss the conceptual differences between these two approaches (Section 5).

Recommendations for practice At a high-level, our findings highlight the sensitivity of activation
patching to methodological details. Backed by our analysis, we make several recommendations on
the application of activation patching in language model interpretability (Section 6). We advocate for
STR, as it supplies in-distribution corrupted prompts that help to preserve consistent model behavior.
On evaluation metric, we recommend logit difference, as we argue that it offers fine-grained control
over the localization outcomes and is capable of detecting negative modules.

2 BACKGROUND

2.1 ACTIVATION PATCHING

Activation patching identifies the important model components by intervening on their latent activa-
tions. The method involves a clean prompt (Xclean, e.g.,“The Eiffel Tower is in”) with an associated
answer r (“Paris”), a corrupted prompt (Xcorrupt, e.g., “The Colosseum is in”), and three model runs:

(1) Clean run: run the model on Xclean and cache activations of a set of given model components,
such as MLP or attention heads outputs.

(2) Corrupted run: run the model on Xcorrupt and record the model outputs.
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(3) Patched run: run the model on Xcorrupt with a specific model component’s activation restored
from the cached value of the clean run (Figure 1a).

Finally, we evaluate the patching effect, such as P(“Paris”) in the patched run (3) compared to
the corrupted run (2). Intuitively, corruption hurts model performance while patching restores it.
Patching effect measures how much the patching intervention restores performance, which indicates
the importance of the activation. We can iterate this procedure over a collection of components (e.g.,
all attention heads), resulting in a plot that highlights the important ones (Figure 1b).

Corruption methods To generate Xcorrupt, GN adds Gaussian noise N (0, ν) to the embeddings
of certain key tokens, where ν is 3 times the standard deviation of the token embeddings from
the textset. STR replaces the key tokens by similar ones with equal sequence length. In STR,
let r′ denote the answer of Xcorrupt (“Rome”). All implementations of STR in this paper yield in-
distribution prompts such that Xcorrupt is identically distributed as a fresh draw of a clean prompt.

Metrics The patching effect is defined as the gap of the model performance between the corrupted
and patched run, under an evaluation metric. Let cl, ∗, pt be the clean, corrupted and patched run.

• Probability: P(r); e.g., P(“Paris”). The patching effect is Ppt(r)− P∗(r);
• Logit difference: LD(r, r′) = Logit(r)− Logit(r′); e.g., Logit(“Paris”)− Logit(“Rome”).

The patching effect is given by LDpt(r, r
′)−LD∗(r, r

′). Following Wang et al. (2023), we always
normalize this by LDcl(r, r

′) − LD∗(r, r
′), so it typically lies in [0, 1], where 1 corresponds to

fully restored performance and 0 to the corrupted run performance.
• KL divergence: DKL(Pcl||P ), the Kullback-Leibler (KL) divergence from the probability distri-

bution of model outputs in the clean run. The patching effect is DKL(Pcl||P∗)−DKL(Pcl||Ppt).

GN does not provide a corrupted prompt with a well-defined answer r′ (“Rome”). To make a fair
comparison, the same r′ is used for evaluating the logit difference metric under GN.

2.2 PROBLEM SETTINGS

Factual recall In the setting of factual association, the model is prompted to fill in factual infor-
mation, e.g., “The Eiffel Tower is in”. Meng et al. (2022) posits that Transformer-based language
models complete factual recall (i) at middle MLP layers and (ii) specifically at the processing of the
subject’s last token. In this work, we do not treat the hypothesis as ground-truth but rather reevaluate
it using other approaches than what was attempted by Meng et al. (2022).

IOI An IOI sentence involves an initial dependent clause, e.g., “When John and Mary went to the
office”, followed by a main clause, e.g., “John gave a book to Mary.” In this case, the indirect object
(IO) is “Mary” and the subject (S) “John”. The IOI task is to predict the final token in the sentence
to be the IO. We use S1 and S2 to refer to the first and second occurrences of the subject (S).

We let pIOI denote the distribution of IOI sentences of Wang et al. (2023) containing single-token
names. GPT-2 small performs well on pIOI and Wang et al. (2023) discovers a circuit within the
model for this task. The circuit consists of attention heads. This is also the focus of our experiments,
where we uncover nuanced differences when using different techniques to replicate their result.

3 CORRUPTION METHODS

In this section, we evaluate GN and STR on localizing factual recall in GPT-2 XL and discovering
the IOI circuit in GPT-2 small.

Experiment setup For factual recall, we investigate Meng et al. (2022)’s hypothesis that model
computation is concentrated at early-middle MLP layers (by processing the last subject token).
Specifically, we corrupt the subject token(s) to generate Xcorrupt. In the patched run, we override
the MLP activations at the last subject token. Following Meng et al. (2022); Hase et al. (2023), at
each layer we restore a set of 5 adjacent MLP layers. (More results on other window sizes can be
found in Section H.1. We examine sliding window patching more closely in Section 5.)
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Figure 2: Disparate MLP patching effects for factual recall in GPT-2 XL. (a) We patch MLP
activations at the last subject token. (b)(c) The patching effects using different corruption methods
with a window size of 5. STR suggests much a weaker peak, regardless of the evaluation metric.1

For IOI circuit discovery, we follow Wang et al. (2023) and focus on the role of attention heads.
Corruption is applied to the S2 token. Then we patch a single attention head’s output (at all positions)
and iterate over all heads in this way. To avoid relying on visual inspection, we say that a head is
detected if its patching effect is 2 standard deviations (SD) away from the mean effect.

Dataset and corruption method STR requires pairs of Xclean and Xcorrupt that are semantically
similar. To perform STR, we construct PAIREDFACTS of 145 pairs of prompts on factual recall. All
the prompts are in-distribution, as they are selected from the original dataset of Meng et al. (2022);
see Appendix C for details. GPT-2 XL achieves an average of 49.0% accuracy on this dataset.

For the IOI circuit, we use the pIOI distribution to sample the clean prompts. For STR, we replace
S2 by IO to construct Xcorrupt such that Xcorrupt is still a valid in-distribution IOI sentence. For GN,
we add noise to the S2’s token embedding. The experiments are averaged over 500 prompts.

3.1 RESULTS ON CORRUPTION METHODS

Difference in MLP localization For patching MLPs in the factual association setting, Meng et al.
(2022) show that the effects concentrate at early-middle layers, where they apply GN as the corrup-
tion method. Our main finding is that the picture can be largely different by switching the corruption
method, regardless of the choice of metric. In Figure 2, we plot the patching effects for both metrics.
Notice that the clear peak around layer 16 under GN is not salient at all under STR.

This is a robust phenomenon: across window sizes, we find the peak value of GN to be 2×–5× higher
than STR; see Appendix H.1 for further plots on GPT-2 XL in this setting.

These findings illustrate potential discrepancies between the two corruption techniques in drawing
interpretability conclusions. We do not, though, claim that results from GN are illusory or overly
inflated. In fact, GN does not always yield sharper peaks than STR. For certain basic arithmetic
tasks in GPT-J, STR can show stronger concentration in patching MLP activations; see Appendix D.

Difference in circuit discovery We focus on discovering the main classes of attention heads in
the IOI circuit, including (Negative) Name Mover (NM), Duplicate Token (DT), S-Inhibition (SI),
and Induction Heads. The results are summarized in Table 1 and more details in Appendix I.

Most importantly, we observe that STR and GN produce inconsistent discovery results. In particular,
for any fixed metric, STR and GN detect different sets of heads as important, highlighted in Table 1.

We remark that all the detections are in the IOI circuit as found by Wang et al. (2023); see Ap-
pendix B for an overview. However, the discovery we achieved here appear far from complete, with
some critical misses such as NM. This suggests that the extensive manual inspection and the use of
path patching, a more surgical patching method, are both necessary to fully discover the IOI circuit.

We also validate our high-level conclusions on the Python docstring (Heimersheim & Janiak, 2023)
and the greater-than (Hanna et al., 2023) task. In particular, we find GN can produce highly noisy
localization outcomes in these settings; see Appendix E and Appendix F for details.

1The effects on the first 3 layers are large simply because MLP0 has significant influence on the model’s
outputs in GPT-2, regardless of the task (Wang et al., 2023; Hase et al., 2023), so it is not the focus here.
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Corruption Metric NM DT SI Negative NM Induction

STR Probability 1/3 0/2 3/4 1/2 1/2
GN † Probability 0/3 1/2 2/4 2/2 1/2

STR Logit difference 1/3 0/2 3/4 2/2 1/2
GN Logit difference 1/3 1/2 3/4 2/2 1/2

STR KL divergence 1/3 0/2 3/4 2/2 1/2
GN † KL divergence 0/3 0/2 2/4 2/2 1/2

Table 1: Inconsistency on the IOI task. We patch the attention heads outputs and list the detections
of each class; e.g., 1/3 NM indicates 1 out of 3 NMs is detected. †Also detect 0.10, a fuzzy Duplicate
Token Head, as negatively influencing model performance. We expect it to be positive (Wang et al., 2023).
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Figure 3: Attention of the Name Movers from the last token, in corrupted and patched runs.

3.2 EVIDENCE FOR OOD BEHAVIOR IN GAUSSIAN NOISE CORRUPTION

We suspect that the gaps between the corruption methods can be attributed partly to model’s OOD
behavior under GN corruption. In particular, the Gaussian noise may break model’s internal mech-
anisms by introducing OOD inputs to the layers. We now give some tentative evidence for this
hypothesis. Following the notation of Wang et al. (2023), a head is denoted by “layer.head”. We say
a detection is negative if the patching effect of the component is negative (under a given metric).

Negative detection of 0.10 under GN Although most localizations we obtain above seem aligned
with the findings of Wang et al. (2023), a major anomaly in the GN experiment is the “negative”
detection of head 0.10. In particular, probability and KL divergence suggest that it contributes
negatively to model performance. (Logit difference also assigns a negative effect, though to a lesser
degree; see Figure 29b.) This is not observed at all in the experiments with STR corruption.

The detection is in the wrong direction, given the evidence from Wang et al. (2023) that 0.10 helps
with IOI; on clean prompts, it is active at S2, attends to S1 and signals this duplication. However,
by visualizing the attention patterns, we find that this effect largely disappears under GN corruption.
We intuit that the Gaussian noise is strongest at influencing early layers, and 0.10’s behavior may be
broken here, since it directly receives the noised token embeddings from the residual stream.

Attention of Name Movers To exhibit the OOD behavior of the model internals under GN cor-
ruptions, we examine the Name Mover (NM) Heads, a class of attention heads that directly affects
the model’s logits in the IOI circuit (Wang et al., 2023). NMs are active at the last token and copy
what they attend to. We plot the attention of NMs in clean and corrupted runs in Figure 3a.

Indeed, on 500 clean IOI prompts, the NMs assign an average of 0.58 attention probability to IO.
In the corrupted runs, since STR simply exchanges IO by S1, the attention patterns of NMs are
preserved (with the role of IO and S1 switched). On the other hand, with GN corruption, we see that
the attention is shared between IO and S1 (0.26 and 0.21). This suggests that GN not only removes
the relevant information but also disrupts the internal mechanism of NMs on IOI sentences.

To take a deeper dive, Wang et al. (2023) shows that the output of NMs is determined largely by
the values of the S-Inhibition Heads. Indeed, we can fully recover model’s logit on IO in STR
(logit difference: 1.04) by restoring the values of the S-Inhibition Heads (Figure 3b). The same
intervention, however, is fairly unsuccessful under GN (logit difference: 0.49).
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Towards explaining this gap, we again examine the attention of NMs. Figure 3c shows that patching
nearly restores the NMs’ in-distribution attention pattern under STR, but fails under GN corruption.
We speculate that GN introduces further corrupted information flowing into the NMs such that
restoring the clean activations of S-Inhibition Heads cannot correct their behaviors.

4 EVALUATION METRICS

We now study the choice of evaluation metrics in activation patching. We perform two experiments
that highlight potential gaps between logit difference and probability. Along the way, we provide a
conceptual argument for why probability can overlook negative components in certain settings.

4.1 LOCALIZING FACTUAL RECALL WITH LOGIT DIFFERENCE

The prior work of Meng et al. (2022) hypothesizes that factual association is processed at the last
subject token. Motivated by this claim, we extend our previous experiments to patching the MLP
outputs at all token positions and consider the effect of changing evaluation metrics.

Experimental setup We apply the same setting as in Section 3. We extend our MLP patching
experiments to all token positions and again use logit difference and probability as the metric.

Experimental results For STR and window size of 5, we plot the patching effects across layers
and positions in Figure 4. The visualization shows that probability assigns stronger effects at the last
subject token than logit difference. Specifically, we calculate the ratio between the sum of effects
(over all layers) on the last subject token and those on the middle subject tokens. In both corruptions,
probability assigns more effects to the last subject token than logit difference:

• Using STR corruption, the ratio is 4.33× in probability > 1.22× in logit difference.
• Using GN corruption, the ratio is 1.74× in probability > 0.77× in logit difference.

This observation holds for other window sizes, too, for which we provide details in Appendix H.2.
We also validate our findings on GPT-J 6B (Wang & Komatsuzaki, 2021) in Appendix H.5. The
results show that the choice of evaluation metrics influences the patching effects across tokens.
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Figure 4: Activation patching on MLP across layers and token positions in GPT-2 XL, with a
sliding window patching of size 5. Note that probability (b) highlights the importance of the last
subject token, whereas logit difference (a) displays less effects.

4.2 CIRCUIT DISCOVERY WITH PROBABILITY

Wang et al. (2023) discovers two Negative Name Mover (NNM) heads, 10.7 and 11.10, that notice-
ably hurt model performance on IOI. In our previous experiments on STR, both are detected, except
when using probability as the metric where 11.10 is overlooked. In fact, the patching effect of 11.10
under STR in probability is well within 2 SD from the mean (mean 0.003, SD 0.015, and 11.10
receives −0.022). Looking closely, the reason is simple:
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Figure 5: Sliding window patching vs summing up individual patching effects; patching MLP
activation at the last subject token in GPT-2 XL on factual recall prompts. Sliding window patching
offers 1.40×, 1.75× and 1.59× peak value than summation of single-layer patchings. Single-layer
patching (a) suggests a weak peak.

• In the corrupted run of STR, the average probability of outputting the original IO is 0.03. Hence,
the patching effect in probability, Ppt(IO)− P∗(IO), is at least −0.03, as Ppt(IO) is non-negative.
This is already close to 2 SD below the mean (−0.027). Hence, for an NNM to be detected via
patching, its Ppt(IO) needs to be near 0, which may be hard to reach.

• By contrast, under GN corruption, the average probability of IO is 0.13. Intuitively, this makes a
lot more space for NNMs to demonstrate their effects.

In general, probability must fail to detect negative model components, if corruption reduces the
correct token probability to near zero. We now give a cleaner experimental demonstration of this
concern, using an original approach of Wang et al. (2023).

Experimental setup We revisit an alternative corruption method proposed by Wang et al. (2023),
where S1, S2 and IO are replaced by three unrelated random names2; for example, “John and Mary
[...], John” → “Alice and Bob [...], Carol.” We use probability of the original IO as the metric.
Intuitively, this replacement method would achieve much stronger corruption effect, since it removes
all the relevant information (S and IO) of the original IOI sentence.

Experimental results First, we observe that the probability of outputting the IO of the original
IOI sentence is negligible (5e−4) under this corruption. As a result, using probability detects neither
NNMs. On the other hand, we find that logit difference still can. See Appendix I.3 for the plots. In
Appendix G, we confirm the same finding when corruption is applied to S1 and IO only.

At a high-level, we believe that this is a pitfall of probability as an evaluation metric. Its non-negative
nature makes it incapable of discovering negative model components in certain settings.

5 SLIDING WINDOW PATCHING

In this section, we examine the technique of sliding window patching in localizing factual informa-
tion (Meng et al., 2022). For each layer, the method patches multiple adjacent layers simultaneously
and computes the joint effects. Hence, one should interpret the result of Meng et al. (2022) as
the effects being constrained within a window rather than at a single layer. We argue that such as
hypothesis can be tested by an alternative approach and we compare the results from these two.

Experimental setup Instead of restoring multiple layers simultaneously, we patch each individual
MLP layer one at a time. Then as an aggregation step, for each layer, sum up the single-layer
patching effects of its adjacent layers. For example, we add up the effect at layer 2 to layer 6 to get
an aggregated effect for layer 4. We patch the MLP output at the last subject token.

Experimental results For each window size, we compute the ratio of the maximum patching
effect at the middle MLP layers between sliding window patching and summation of single-layer
patching. Over the combinations of window sizes, metrics and corruption methods, we find sliding
window patching typically provides at least 20% more peak effect than the summation method.

2This corrupted distribution is denoted by pABC in the original paper of Wang et al. (2023)
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In Figure 5, for window sizes of 3, 5, 10, we plot the results using GN corruption and probability as
the metric, the original setting as in Meng et al. (2022). We observe significant gaps between the
sliding window and the summation method. Moreover, for single-layer patching, the peak at layer
15 is fairly weak (Figure 5a). Sliding window patching appears to generate more pronounced the
concentration, as we increase the window sizes.

The result suggests that sliding window patching tends to amplify weak localization from single-
layer patching (see Figure 12 for plots on single-layer MLP patching in GPT-2 XL). We believe this
may arise due to certain non-linear effects in joint patching and therefore results from which should
be carefully interpreted; see Section 6 for more discussions.

6 DISCUSSION AND RECOMMENDATIONS

We have observed a variety of gaps between corruption methods and evaluation metrics used in
activation patching on language models. In this section, we summarize our findings and provide
recommendations.

Corruption methods We are concerned that GN corruption puts the model off distribution by
introducing noise never seen during training. Indeed, in Section 3.2, we provide evidence that in
the corrupted run, model’s internal functioning is OOD relative to the clean distribution. This may
induce unexpected anomalies in the model behavior, interfering with our ability to localize behavior
to specific components. Conceivably, GN corruption could even lead to unreliable or illusory results.

More broadly, this presents a challenge to any intervention techniques that introduce OOD inputs
to the model or its internal layers, including ablations. In fact, similar concerns have been raised
earlier in the interpretability literature on feature attribution as well; see e.g. Hooker et al. (2019);
Janzing et al. (2020); Hase et al. (2021).

In contrast, STR uses counterfactual prompts (“The Eiffel Tower is in” vs “The Colosseum is in”)
that are in-distribution and thus induces in-distribution activations, avoiding the OOD issue. Thus,
we recommend STR whenever possible. GN, or simpler methods such as ablation, may be consid-
ered as an alternative when token alignment or lack of analogous tokens makes STR unsuitable.

Evaluation metrics We generally recommend avoiding using probability as the metric, given that
it may fail to detect negative model components.

We find logit difference a convincing metric for localization in language models. Consider an IOI
setting where a model contains an attention head that boosts the logits of all (single-token) names.
This head, though important, should not be viewed as part of the IOI circuit, but our interventions
may still affect it.3 By measuring Logit(IO) − Logit(S), logit difference controls for such com-
ponents and ensures they are not detected. This may not be achieved by other metrics, such as
probability or Logit(IO) alone.

KL divergence tracks the full model output distributions, rather than focused only on the correct or
incorrect answer, and can be a reasonable metric for circuit discovery as well (Conmy et al., 2023).

Sliding window patching We speculate that simultaneously patching multiple layers could cap-
ture the following non-linear effects and results in inflated localization plots:

• Joint patching may suppress the flow of corrupted information within the window of patched
layers, where single-layer patching offers no such control.

• A window of patched layers may jointly perform a crucial piece of computation, such as a major
boost to the logit of the correct token, which no individual layer can single-handedly achieve.

Generally, when examining the outcome from sliding window patching, one should be aware of
the possibility of multiple layers working together. Thus, the results from the technique are to
be interpreted as the joint effects of the full window, rather than of a single layer. In practice,
we recommend experimenting with single-layer patching first and only consider sliding window
patching when individual layers seem to induce small effects.

3We note that if our interventions do not affect the head, then it will not show up on any metric.
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Which tokens to corrupt? In some problem settings, a prompt contains multiple key tokens, all
relevant to completing the task. This would offer the flexibility to choose which tokens to corrupt.
This is another important dimension of activation patching. For instance, our experiments on IOI in
Section 3 corrupt the S2 token. An alternative is to corrupt the S1 and IO. While this may seem an
implementation detail, we find that this can greatly affect the localization outcomes.

Specifically, in Appendix G, we test corrupting S1 and IO in activation patching on IOI sentences,
by changing their values to random names or adding noise to the token embeddings . We find
that almost all techniques discover the 3 Name Mover (NM) Heads of the IOI circuit (Table 4 and
Figure 11). These are attention heads that directly contribute to Logit(IO) as shown by Wang et al.
(2023). In contrast, our prior experiments corrupting S2 miss most of them (Table 1).

We intuit that corrupting different tokens allows activation patching to trace different information
within the model, thereby suggesting varying localizations results. For instance, in our prior exper-
iments replacing S2 by IO, patching traces the value of IO or its position. On the other hand, in
changing the values of S1 and IO while fixing their positions, patching highlights exactly where the
model processes these values.

In practice, we recommend trying out different tokens to corrupt when the problem setting offers
such flexibility. This may lead to more exhaustive circuit discovery.

7 RELATED WORK

Activation patching Activation patching is a variant of causal mediation analysis (Vig et al., 2020;
Pearl, 2001), similar forms of which are used broadly in the interpretability literature (Soulos et al.,
2020; Geiger et al., 2020; Finlayson et al., 2021; Geiger et al., 2022). The specific one with GN
corruption was first proposed by Meng et al. (2022) under the name of causal tracing. Wang et al.
(2023); Goldowsky-Dill et al. (2023) generalize this to a more sophisticated version of path patching.

Circuit analysis Circuit analysis provides post-hoc model interpretability (Casper et al., 2022).
This line of work is inspired by Cammarata et al. (2020); Elhage et al. (2021). Other works include
Geva et al. (2022); Li et al. (2023a); Nanda et al. (2023a); Chughtai et al. (2023); Zhong et al. (2023);
Nanda et al. (2023b); Varma et al. (2023); Wen et al. (2023); Hanna et al. (2023); Lieberum et al.
(2023). Circuit analysis often requires manual effort by researchers, motivating recent work to scale
or automate parts of the workflow (Chan et al., 2022; Bills et al., 2023; Conmy et al., 2023; Geiger
et al., 2023; Wu et al., 2023; Lepori et al., 2023).

Mechanistic interpretability (MI) MI aims to explain the internal computations and representa-
tions of a model. While circuit analysis is a major direction under this broad theme, other recent
case studies of MI in language model include Mu & Andreas (2020); Geva et al. (2021); Yun et al.
(2021); Olsson et al. (2022); Scherlis et al. (2022); Dai et al. (2022); Gurnee et al. (2023); Merullo
et al. (2023); McGrath et al. (2023); Bansal et al. (2023); Dar et al. (2023); Li et al. (2023c); Brown
et al. (2023); Katz & Belinkov (2023); Cunningham et al. (2023).

8 CONCLUSION

We examine the role of metrics and methods in activation patching in language models. We find
that variations in these techniques could lead to different interpretability results. We provide several
recommendations towards the best practice, including the use of STR as the corruption method.

In terms of limitations, our experiments are on decoder-only language models of size up to 6B. We
leave it as a future direction to study other architectures and even larger models. Our work tests
overriding corrupted activations by clean activations. The other direction—patching corrupted to
clean—has also been used for circuit discovery, and it is interesting to compare these two. In addi-
tion, we provide tentative evidence that certain corruption methods lead to OOD model behaviors
and suspect that this can make the resulting interpretability claims unreliable. Future work should
examine this hypothesis closely and furnish further demonstrations. Finally, it is interesting to de-
velop more principled techniques for activation patching or propose other methods for localization.
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A REVIEW OF THE TRANSFORMER ARCHITECTURE

We follow the notation of Elhage et al. (2021) and give a review of the Transformer architecture
(Vaswani et al., 2017). The input x0 ∈ RN×d to a transformer model is a sum of position and
token embeddings, where N is the sequence length and d is the dimension of the model’s internal
states. The input is the initial value of the residual stream which subsequently gets updated by the
transformer blocks.

Each transformer block consists of a multi-head self-attention sublayer and an MLP sublayer. (For
GPT-J, these two sublayers are parallelized.) The MLP sublayer is a two-layer feedforward network
that processes each token position independently in parallel. Following Elhage et al. (2021), the
output of the attention sublayer can be decomposed into individual heads. For the ith layer, the
attention output can be written as yi =

∑H
j=1 hi,j (xi), where hi,j denotes the jth attention head of

the layer. Each head has four weight matrices, W i,j
Q ,W i,j

K ,W i,j
V ∈ Rd× d

H and WO ∈ R d
H ×d. For
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a residual stream x, we refer to Qi,j = xW i,j
Q ,Ki,j = xW i,j

K , V i,j = xW i,j
V as the query, key and

value of the head. The attention pattern is given by

Ai,j = softmax

(
(xW i,j

Q )(xW i,j
K )T√

d/H
+M

)
∈ RN×N ,

where M is the attention mask. In auto-regressive language models, the attention pattern is masked
to a lower triangular matrix. The output of the attention sublayer is given by

x+ Concat
[
Ai,1V i,1, . . . , Ai,jV i,j , . . . , Ai,HV i,H

]
WO. (1)

B REVIEW OF THE ATTENTION HEADS IN IOI CIRCUIT

We provide an overview of the attention heads and their functionalities of the IOI circuit in GPT-2
small, as found in Wang et al. (2023). Our exposition here follows Section 3 of Wang et al. (2023).

• Name Mover (NM) Heads are active at the END position, attend to previous names, and copy the
names they attend to. On IOI sentences, they directly copy the correct name and thus contribute
positively to model performance.

• Negative Name Mover Heads writes in the opposite direction of the Name Mover Heads, decreas-
ing the model’s logit on the correct name.

• Duplicate Token (DT) Heads identify tokens that previously appeared in the sentence. On IOI
sentences, they are active at S2 and attend primarily to S1, contributing positively to model per-
formance.

• Induction Heads play the same role as the Duplicate Token Heads, though via a different
induction-like mechanism.

• S-Inhibition (SI) Heads remove duplicate tokens from Name Mover Heads’ attention. On IOI
sentences, they inhibit Name Mover Heads’ attention to S1 and S2.

Aside from Negative Name Mover Heads, all the model components above contribute positively to
the model performance on pIOI, as shown in Wang et al. (2023).

Head 0.10 Head 0.10 is found to be a fuzzy Duplicate Token Head by Wang et al. (2023). It pays
attention to S1 from S2, but the pattern is fuzzy, as other tokens also receive non-negligible attention
mass. Nonetheless, it is expected that it helps with the model on the IOI task. We give a detailed
study on the effect of patching head 0.10 in Section 3.2 under GN corruption.

C DETAILS ON EXPERIMENTAL SETTINGS

For Gaussian noise (GN) corruption, we corrupt the embeddings of the crucial tokens by adding
a Gaussian noise ε ∼ N (0; ν), where ν is set to be 3 times the standard deviation of the token
embeddings from the dataset (Meng et al., 2022).

We always perform GN and STR experiments in parallel. For STR, there is a natural the incorrect
token r′, since Xcorrupt is also a valid in-distribution prompt. This allows for a well-defined metric
of logit difference LD(r, r′) = Logit(r)−Logit(r′). To make a fair comparison, the same r′ is used
for evaluating the logit difference metric under GN.

Throughout the paper, layers are zero-indexed, numbered from 0 to L− 1 rather than 1 to L.

Factual recall To perform STR in the factual association setting, we construct PAIREDFACTS,
a dataset of 145 pairs of prompts. Within each pair, the two prompts have the same sequence
length (under the GPT-2 tokenizer) but distinct answers. All the prompts are selected from the
COUNTERFACT and KNOWN1000 datasets of Meng et al. (2022). On these prompts,

• GPT-2 XL achieves an average of 49.0% probability on the correct token and 6.85 logit difference.
• GPT-2 large achieves 41.1% and 5.88 logit difference.
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• GPT-J achieves 50.1% and 7.36 logit difference.

A few samples of the PAIREDFACTS dataset are listed in Figure 31 of Appendix J.

Since the prompts are perfectly symmetric and all of them are in-distribution, our STR experiments
consist of both ways, where a prompt within a pair play the role of both Xcorrupt and Xclean.

Our experiments with GN corruption is performed in the same manner as in Meng et al. (2022);
Hase et al. (2023), with noise applied to all subject tokens’ embeddings.

The experiments here are implemented via the TransformerLens library (Nanda & Bloom, 2022).

IOI Unless specified otherwise, GN applies Gaussian noise to the S2 token embedding. Over 500
prompts, the probability of outputting IO is P∗(r) = 0.129 under GN corruption (with r being IO),
whereas it is 0.481 under the clean distribution pIOI.

All our experiments are performed using the original codebase of Wang et al. (2023), available at
https://github.com/redwoodresearch/Easy-Transformer. The code provides the functionality of
constructing Xcorrupt under various definitions of corruptions, including STR.

D RESULTS ON ARITHMETIC REASONING IN GPT-J

Experimental setup We follow the setting of Stolfo et al. (2023) and perform localization analysis
on the task of basic arithmetic in GPT-J (Wang & Komatsuzaki, 2021), a decoder-only model with
6B parameters. For simplicity, we consider addition, subtraction and multiplication up to 3 digits.
We provide the model with a 2-shot prompts of the format

X1 + Y1 = Z1

X2 + Y2 = Z3

X3 + Y3 =

where the numbers Xi, Yi are random integers and the operator can be +,−,×. Stolfo et al. (2023)
finds that this leads to improved accuracy. Since large integers get split into multiple tokens, we draw
Xi, Yi from {1, 2, · · · , 250} for addition and subtraction and from {1, 2, · · · , 23} for multiplication.
To obtain a dataset for activation patching, we first draw 200 prompts and discard those on which
the model’s top-ranked output token is incorrect.

We set GN corruption to add noise to the token embeddings at the positions of X3, Y3. Similarly,
STR replaces X3, Y3 by two random integers drawn from the same set, which ensures that the
corrupted prompt is still in-distribution. We remark that Stolfo et al. (2023) applies the same STR
corruption in their patching experiments.

Stolfo et al. (2023) devises a new metric to evaluate the patching effects. More precisely, they report:

1

2

[
Ppt(r)− P∗(r)

P∗(r)
+

P∗(r
′)− Ppt(r

′)

Ppt(r′)

]
(2)

from patching the MLP activation at last token of the prompt.4 We compute the patching effect given
by the metric, as well as probability and logit difference.

Following Stolfo et al. (2023), we narrow our focus on localization of MLP layers. All the experi-
ments patch a single MLP layer’s activation at the last token of the prompt.

Experimental results Focused on the logit difference and probability metric, we observe gaps
between GN and STR for addition and subtraction. In particular, STR is found to provide sharper
concentration, up to a magnitude of 4×. This in contrast with our results on factual association
(Section 3.1), where GN appears to induce stronger peak. For multiplication, GN and STR pro-
vides nearly matching results. This highlights that activation patching can be sensitive to corruption
methods in a rather unpredictable way. See Figure 6, Figure 7 and Figure 8 for plots.

For the metric (2) of Stolfo et al. (2023), we qualitatively replicate their results, similar to Figure 2 of
their paper, and find extremely pronounced peak with STR corruption. Towards understanding this

4Note that our notations here are different from Stolfo et al. (2023).
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observation, we examine the quantity (2) closely and discover that its first term typically dominates
the second. This, in turn, is because the denominator term P∗(r), the probability of outputting the
correct answer in the corrupted run, is usually tiny under STR corruption. The small denominator,
therefore, acts as a large multiplier that amplifies the absolute gap between patching different layers.
We note that this effect is much smaller under GN since P∗(r) is usually not negligible.
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Figure 6: The effects of patching MLP layers in GPT-J on addition prompts.
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Figure 7: The effects of patching MLP layers in GPT-J on subtraction prompts.
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Figure 8: The effects of patching MLP layers in GPT-J on multiplication prompts.

E RESULTS ON PYTHON DOCSTRING CIRCUIT

Heimersheim & Janiak (2023) studies a circuit for Python docstring completion in a pre-trained 4-
layer attention-only Transformer.5 We do not aim to fully replicate their results. Rather, we perform
patching experiments to localize the important attention heads for the purpose of evaluating variants
of activation patching.

Experimental setup In Heimersheim & Janiak (2023), a Python docstring completion instance
consists of the following prompt:

5The model is available in the TransformerLens library under the name attn-only-4l (Nanda & Bloom,
2022).
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def rand0(self , rand1 , rand2 , A_def , B_def , C_def , rand3):
""" rand4 rand5 rand6

:param A_def: rand7 rand8
:param B_def: rand9 rand10
:param

where rand’s are random single-token English words and the goal is to complete the prompt with
C def. Heimersheim & Janiak (2023) finds that the 4-layer model solves the docstring task with an
accuracy of 56% and the logit difference is 0.5.

Following their approach, we run activation patching on all attention heads, across all token posi-
tions. This is more fine-grained than what we did for the IOI circuit, since the outcome would also
highlight the token positions that matter for the important heads.

We apply corruption to the C def token. For STR, it is replaced randomly by a single-token English
word in the same way specified in Heimersheim & Janiak (2023).

Experimental results We take 200 instances of the docstring completion task, perform activation
patching by positions and compute the patching effects. We report all position-head pairs with
patching effect 2 standard deviations away from the mean. We find that the detections are mostly at
the position of C def and the last token of the prompt. The details are given in Table 2.

Corruption Metric At the position of C def At the last position

STR Logit difference 0.0, 0.1, 0.5 2.3, 3.0, 3.5, 3.6
STR Probability 3.0, 3.6
STR KL divergence 0.0, 0.1, 0.5, 2.2 2.3, 3.0, 3.6

GN † Logit difference 0.5 1.4, 1.5, 2.2, 2.3, 3.0, 3.6, 3.7
GN Probability 3.0, 3.6
GN KL divergence 2.2, 2.3, 3.0, 3.5, 3.6

Table 2: Detections from activation patching of attention heads by position on the Python doc-
string completion task. † Also detects two early-layer heads active at other positions and four negative heads
active at the last position, which we omit here.

We again find that the localization outcomes are sensitive to the choice of corruption method and
evaluation metric. The results of GN appear quite noisy, except when using probability as the
metric. On the other hand, we remark that 3.0 and 3.6 are consistently highlighted across metrics
and methods. In fact, they are typically assigned the largest patching effects (at the last position).
This appears consistent with the result of Heimersheim & Janiak (2023), where 3.0 and 3.6 are found
to be directly responsible for moving the C def token.

F RESULTS ON THE GREATER-THAN CIRCUIT IN GPT-2 SMALL

Hanna et al. (2023) In this section, we study the greater-tan task, specified below, and perform
activation patching on the attention heads in GPT-2 small. In this setting, the prior work by Hanna
et al. (2023); Conmy et al. (2023) show that model computation is fairly localized in this setting
and provide a set of circuit discovery results. We remark that we do not attempt to replicate the
circuit discovery results here, but rather to evaluate whether activation helps with localizing certain
important model components.

Experimental setup Following Hanna et al. (2023), an instance of the greater-than task consists
of an incomplete sentence of the template: “The <noun> lasted from the year XXYY to the year
XX”, where <noun> is a single-token word and XX and YY are two-digit numbers. For example,
“The war lasted from year 1745 to 17”. The goal is to complete the prompt with an integer greater
than XX (in this case, 45). Across several metrics, Hanna et al. (2023) shows that GPT-2 small
performs well on this task.
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We focus on the role of attention heads in our study. To perform corruption, we ensure that the year
XXYY are tokenized as [XX][YY] by filtering out years and numbers that do not conform to the
constraint. GN corruption adds noise to the token embedding of YY. Following Hanna et al. (2023);
Conmy et al. (2023), STR corruption replaces YY by 01. The probability metric, in this setting,
is defined as the sum of probabilities of the years greater than YY. The logit difference metric is
defined as the sum of logits of the years greater than YY minus the sum of logits of the years less
than YY.

We perform activation patching on the attention heads outputs over all token positions.

Experimental results We find significant difference between the results achieved by GN and STR.
In fact, the set of heads that are localized by the methods are mostly disjoint. Specifically, GN
appears to give extremely noisy results that are not in line with the findings of Hanna et al. (2023);
Conmy et al. (2023). The details are given in Table 3

Corruption Metric Positive Negative

STR Logit difference 6.9, 7.10, 8.11, 9.1, 10.4
STR Probability 7.10, 8.11, 9.1
STR KL divergence 6.9, 7.10, 8.11, 9.1 10.7

GN Logit difference 0.9, 7.10, 8.10, 9.1, 10.4 6.1, 8.6, 9.5
GN Probability 5.5, 6.1, 6.9, 7.10, 7.11, 8.8, 9.1
GN KL divergence 5.5, 6.1, 6.9, 7.10, 7.11, 8.8, 9.1 5.9, 7.6

Table 3: Detections from activation patching on attention heads for the greater-than task in
GPT-2 small, averaged across 300 prompts.

The results from STR are fairly reasonable as the heads 6.9, 7.10, 8.11, 9.1 are also discovered by
Hanna et al. (2023); Conmy et al. (2023), using more sophisticated methods. In contrast, the heads
discovered by GN corruption share little overlap with STR, except 7.10 and 9.1. From visualizations,
we also see that the plots for GN experiments are fairly noisy and do not yield much localization at
all (Figure 9). On the other hand, the plots from STR are easily interpretable (Figure 10).
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Figure 9: The effects of patching attention heads in GPT-2 small on the greater-than task, using
GN corruption. We see that the results are fairly noisy and do not appear to be localized.

G WHICH TOKENS TO CORRUPT MATTERS

In this section, we revisit the implementation of corruption methods in the setting of IOI (Wang
et al., 2023).

Previously in our STR experiments in Section 3 and Section 4, the S2 token was corrupted by
exchanging with IO. Similarly, in GN, we add noise to the token embedding of IO. We notice that
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Figure 10: The effects of patching attention heads in GPT-2 small on the greater-than task, using
STR corruption. This gives clearly localized results.

the localization results from this approach miss at least 2 out of the 3 Name Mover (NM) Heads
(Table 1); they directly contribute to the logit of IO as found by Wang et al. (2023). In particular, all
combinations of metric and method would miss out on 9.6 and 10.0 (Table 5).

We show that by varying exactly which tokens to corrupt, the NMs can be discovered, too

Experimental setup We consider the IOI setting (Wang et al., 2023) using STR and GN corruption
for localizing attention heads. Here, we corrupt the S1 and IO tokens. For STR, we simply replace
S1 and IO by two random unrelated names. In both STR and GN experiments, the S2 token remains
the same as in Xclean.

We perform activation patching across all attention heads. We apply logit difference, probability and
KL divergence as the metric. All the results are averaged across 500 sampled IOI sentences.

Experimental results We find that most combinations of metrics and methods are able to notice all
the NMs, when corruption applies to S1 and IO. We give the exact detections below and categorize
them into positive and negative for simplicity.

Corruption Metric Positive Negative

STR Logit difference 9.6, 9.9, 10.0 10.7, 11.10
STR Probability 9.9
STR KL divergence 9.6, 9.9, 10.0 10.7, 11.10

GN Logit difference 9.6, 9.9, 10.0 10.7, 11.10
GN Probability 9.6, 9.9, 10.0
GN KL divergence 9.6, 9.9, 10.0 10.7, 11.10

Table 4: Detections from activation patching by corrupting S1 and IO in IOI. The Name Mover
Heads are 9.6, 9.9, 10.0 and the Negative Name Mover Heads are 10.7 and 11.10, based on Wang
et al. (2023). No other heads, including the S-Inhibition Heads, are noticed with this approach.

First, we observe that this corruption seems to precisely target the NMs and their Negative counter-
parts. Intuitively, this is natural. Wang et al. (2023) finds that NMs write in the direction of the logit
of the name (IO or S), whereas the Negative NMs do the opposite. Patching the clean activations of
NMs recover such behavior.

Second, we confirm our finding that probability will miss out on the Negative NM; see Figure 11 for
the plots.

Overall, the experiment suggests that exactly which token is corrupted affects the localization out-
comes. Intuitively, varying the corrupted token(s) allows activation patching to trace different infor-
mation within the model’s computation paths; see Section 6 for a discussion.
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Figure 11: The effects of patching attention heads in GPT-2 small on IOI sentences, using STR
corruption on S1 and IO.

H FURTHER DETAILS ON FACTUAL ASSOCIATION

The plots of subsection Appendix H.1 to H.3 are produced on GPT-2 XL and with the PARIEDFACTS
as dataset. Following that, we also experiment with the GPT-2 large (Radford et al., 2019) and GPT-J
(Wang & Komatsuzaki, 2021) model in Appendix H.4 and H.5.

H.1 PLOTS ON MLP PATCHING AT THE LAST SUBJECT TOKEN IN GPT-2 XL

First, we perform single-layer patching of MLP activation at the last subject token and examine the
effects in Figure 12. We observe that the experiment suggests weak or no peak at middle MLP
layers, across metrics and corruption methods.
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Figure 12: Patching single MLP layers at the last subject token in GPT-2 XL on factual recall
prompts. None of them suggest a strong peak at the middle MLP layers.

Also, see Figure 13 and Figure 14 for plots with sliding window size of 3 and 10. Again, activation
patching is applied to the MLP activations at the last subject token. We find again that GN yields
significantly more pronounced peak.

H.2 PLOTS ON MLP PATCHING AT ALL TOKEN POSITIONS IN GPT-2 XL

See Figure 15–Figure 19 to plots on MLP patching at all token positions in GPT-2 XL, across win-
dow sizes of 3, 5, 10. We observe that the right-side plots, using probability as the metric, highlights
the last subject token as important. In contrast, the left-side figure using logit different does it to
lesser degree.

H.3 PLOTS ON SLIDING WINDOW PATCHING IN GPT2-XL

We provide further plots from our experiment that compares the sliding window patching with indi-
vidual patching aggregated via summation over windows. See Figure 20–Figure 23.
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Figure 13: MLP patching effects at the last subject token position in GPT-2 XL on factual recall
prompts, with window size of 3.
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Figure 14: MLP patching effects for factual recall at the last subject token position in GPT-2 XL
on factual recall prompts, with window size of 10.

H.4 PLOTS ON ACTIVATION PATCHING OF MLP LAYERS ON GPT-2 LARGE

We perform activation patching on MLP layers of GPT-2 large in the factual association setting.
Following our experiments in Section 3.1, we focus the effects at patching the MLP activation of the
last subject token. We validate the high-level finding of Section 3.1, where we observe the disparity
of GN and STR applied to MLP activation in the factual prediction setting. In particular, GN gives
more pronounced concentration at early-middle MLP layers. We apply sliding window patching of
size 3 and 5; see Figure 24 and Figure 25 for the resulting plots.

H.5 PLOTS ON ACTIVATION PATCHING OF MLP LAYERS IN GPT-J

We perform activation patching on MLP layers of GPT-J (Wang & Komatsuzaki, 2021) in the factual
association setting. We patch the MLP activations across all token positions and verify that proba-
bility tends to highlight the importance of the last subject token than logit difference. We focus on
a sliding window patching of size 5 and the plots are given in Figure 27 (GN) and Figure 26 (STR).
This complements our results in Section 4.

I FURTHER DETAILS ON IOI CIRCUIT DISCOVERY

I.1 DETAILED PLOTS ON ACTIVATION PATCHING

We now provide the detailed plots from the activation patching experiments on the IOI circuit dis-
covery task (Wang et al., 2023); see Figure 28 and Figure 29.
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Figure 15: Activation patching on MLP across layers and token positions in GPT-2 XL on factual
recall prompts. Apply GN corruption and a sliding window of size 3.
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Figure 16: Activation patching on MLP across layers and token positions in GPT-2 XL on factual
recall prompts. Apply STR corruption and a sliding window of size 3.

I.2 DETAILS ON DETECTIONS

We provide a detailed list of detection from attention heads patching in the IOI circuit setting (Sec-
tion 3); see Table 5.

Corruption Metric Negative heads Positive heads

STR Logit difference 10.7, 11.10 5.5, 7.9, 8.6, 8.10, 9.9
STR Probability 10.7 5.5, 7.9, 8.6, 8.10, 9.9
STR KL divergence 10.7, 11.10 5.5, 7.9, 8.6, 8.10, 9.9

GN Logit difference 10.7, 11.10 3.0, 5.5, 7.9, 8.6, 8.10, 9.9
GN Probability 0.10, 10.7, 11.10 3.0, 5.5, 7.9, 8.6
GN KL divergence 0.10, 10.7, 11.10 5.5, 7.9, 8.6

Table 5: Detailed results from attention heads patching in GPT-2 small on IOI sentences. A head
is detected if the patching effect is two standard deviation from the mean effect. Negative heads are
heads with negative patching effects, suggesting they hurt model performance.

I.3 DETAILED PLOTS ON FULLY RANDOM CORRUPTION

We provide the plots on fully random corruption, termed pABC in Wang et al. (2023). We perform
activation patching on all attention heads, using both probability and logit difference as the metric
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Figure 17: Activation patching on MLP across layers and token positions in GPT-2 XL on factual
recall prompts. Apply GN corruption and a sliding window of size 5.
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Figure 18: Activation patching on MLP across layers and token positions in GPT-2 XL on factual
recall prompts. Apply GN corruption and a sliding window of size 10.

in order to draw contrasts between them. See Figure 30. In particular, we notice that there is no
negative head in the plot. This is natural and totally expected, as we explained in Section 4.

J DATASET SAMPLES

Factual data We list a few dataset examples from the PAIREDFACTS dataset used in the factual
recall experiments in Figure 31.6 All the prompts are known true facts.

IOI circuit The detailed templates of constructing the pIOI data distribution can be found in Ap-
pendix A of Wang et al. (2023). We perform the same procedure of generating the IOI data by
simply reusing their original code.

6The full dataset is available at https://www.jsonkeeper.com/b/P1GL.
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Figure 19: Activation patching on MLP across layers and token positions in GPT-2 XL. Apply
STR corruption and a sliding window of size 10.
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Figure 20: MLP patching effects, sliding window vs summing up single-layer patching at last
token position in GPT-2 XL on factual recall prompts, with window size of 5. Apply probability as
the metric.
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Figure 21: MLP patching effects, sliding window vs summing up single-layer patching at last
token position in GPT-2 XL on factual recall prompts, with window size of 5. Apply logit difference
as the metric.
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Figure 22: MLP patching effects, sliding window vs summing up single-layer patching at last
token position in GPT-2 XL on factual recall prompts, with window size of 10. Apply probability as
the metric.
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Figure 23: MLP patching effects, sliding window vs summing up single-layer patching at last
token position in GPT-2 XL on factual recall prompts, with window size of 10. Apply logit differ-
ence as the metric.
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Figure 24: MLP patching effects at the last subject token position in GPT-2 large on factual recall
prompts, with window size of 3.
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Figure 25: MLP patching effects at the last subject token position in GPT-2 large on factual recall
prompts, with window size of 5.
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Figure 26: Activation patching on MLP across layers and token positions in GPT-J on factual
recall prompts. Apply STR corruption and a sliding window of size 5.
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Figure 27: Activation patching on MLP across layers and token positions in GPT-J on factual
recall prompts. Apply GN corruption and a sliding window of size 5.
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Figure 28: The effects of patching attention heads in GPT-2 small using STR corruption on IOI
sentences.
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Figure 29: The effects of patching attention heads in GPT-2 small using GN corruption on IOI
sentences.

(a) Probability as the metric (b) Logit difference as the metric

Figure 30: The effects of patching attention heads in GPT-2 small using fully random corruption
on IOI sentences, with S1, S2 and IO replaced by three random names (denoted by pABC in Wang
et al. (2023)).
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{
"pair": [

"Honus Wagner professionally plays the sport of",
"Don Shula professionally plays the sport of"

],
"answer ": [

" baseball",
" football"

],
"length ": 9,
"category ": "athletes"

}

{
"pair": [

"Wii MotionPlus is developed by",
"Chromebook Pixel is developed by"

],
"answer ": [

" Nintendo",
" Google"

],
"length ": 8,
"category ": "developers"

}

{
"pair": [

"Schreckhorn belongs to the continent of",
"Afghanistan belongs to the continent of"

],
"answer ": [

" Europe",
" Asia"

],
"length ": 9,
"category ": "continents"

}

{
"pair": [

"The Eiffel Tower is in the city of",
"Kinkakuji Temple is in the city of"

],
"answer ": [

" Paris",
" Kyoto"

],
"category ": "city_landmarks",
"length ": 11

}

Figure 31: Sample text prompts from the PAIREDFACTS dataset. The length field refers to the
sequence length of the prompt under GPT-2 tokenizer.
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