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ABSTRACT

Continual learning has been challenged by the issue of catastrophic forgetting
(CF). Prompt-based methods have recently emerged as a promising approach to
alleviate this problem, capturing the previous knowledge by the group of prompts.
However, selecting an appropriate prompt during the inference stage can be chal-
lenging, and may limit the overall performance by the misaligned prompts. In this
paper, we propose a novel approach to prompt-based continual learning, which
accumulates the knowledge in a single prompt, which has not been explored pre-
viously. Specifically, inspired by contrastive learning, we treat the input with the
current and previous prompt as two different augmented views (i.e., positive pair).
We then pull the features of the positive pairs in the embedding space to accumu-
late knowledge. Our experimental results demonstrate the state-of-the-art perfor-
mance in continual learning even with a single prompt, highlighting the potential
of this approach towards a ‘holistic’ for the model.

1 INTRODUCTION

The primary objective of continual learning, also known as lifelong learning (Silver & Mercer,
2002; Rannen et al., 2017), is to learn the complete knowledge for a set of tasks when each task
is presented sequentially. This is particularly relevant in real-world applications where the tasks
to be adapted change over time. However, neural networks tend to forget the previously acquired
knowledge as the model parameters are optimized for the new tasks, leading to the problem of
catastrophic forgetting. To address this challenge, many researchers have focused on developing
approaches to alleviate the forgetting problem of the neural network during the continual learning.
Previously, three main approaches have been suggested. Regularization-based approaches restrict
parameter updates according to their relevance to previous tasks (Kirkpatrick et al., 2017; Zenke
et al., 2017; Lee et al., 2017; Li & Hoiem, 2017; Buzzega et al., 2020). Rehearsal-based approaches
repeatedly use previous task data during training for a new task, either through memory buffers or by
generating the previous data (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2019a; Saha et al., 2021;
Prabhu et al., 2020). Architecture-based approaches increase model capacity by adding new modules
for new tasks (Yoon et al., 2018; Yan et al., 2021). The rehearsal-based methods outperforms the
other approaches, however, the methods are not free from the data privacy issue as the training
procedure entails the exposure of the previous data.

Recently, the prompt-based methods for the continual learning have gained attention due to its su-
perior performance, without any concerns on the data privacy issue. The prompt is an additional
input texts or images, which adapts the model for specific tasks by the small number of parameters.
Inspired by the promising ablity of the prompt for the model adaptation, many researchers have
proposed the method to capture the previous knowledge by the prompt for the continual learning
(Wang et al., 2022c;b). Specifically, the methods utilize the prompt pool which stores the prompts
optimized by the previous tasks. During inference, a prompt is selected from the pool to instruct
the model, providing the previous knowledge. The prompt-based methods presents the effective
way to address the forgetting of the pretrained-large scaled model by the small number of learnable
parameters. Moreover, the methods are free from the data privacy issue, which is a limitation of
the rehearsal-based approach. However, the prediction for the task identity is required to select the
prompt for the inference, which can introduce misaligned prompts and limit the performance.
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Figure 1: When all tasks are given simulta-
neously, the obtained prompt p∗ guides the
model to adapt for all tasks.

Therefore, in this paper, we present a method for
continually accumulating knowledge into a single
prompt, which does not require a prompt pool or the
task identity prediction. Our work is motivated by
the existence of the upper-bound prompt for the se-
quence of the tasks, as illustrated in Figure 1. Specif-
ically, when all the tasks are presented simultane-
ously, the prompt p∗ is optimized to instruct the
model to adapt for all the tasks. As the existence
of the p∗ is ensured, the primary concern is to ap-
proach the p∗ effectively when the tasks are given
sequentially in the continual learning.

Accordingly, we propose the knowledge accumulat-
ing contrastive prompt which is the novel approach
for the prompt-based continual learning. Specifi-
cally, we propose to utilize the current and previous
prompts as two augmented views for the input (i.e.
positive pair) to increase the dependency between them. Inspired by contrastive learning without
negative pairs (Chen & He, 2021; Grill et al., 2020), we use a similarity-based loss to pull the pos-
itive pairs closer in the embedding space. We first investigate how the model’s features change by
the prompt during continual learning, and how this leads to forgetting of previous knowledge. Then,
we propose our method to accumulate knowledge in a single prompt by increasing the dependency
between the current and previous prompts, which helps to alleviate the forgetting problem.

Our contribution can be summarized as follows:

• We propose a novel approach for prompt-based continual learning, progressively approach-
ing the upper-bound prompt by the sequence of the tasks.

• We present a methodology for accumulating task knowledge in a single prompt, eliminating
the need for a prompt pool or task prediction during inference.

• We suggest a method that leverages the contrastive learning between the current and previ-
ous prompts, constructing a positive pair by the prompts.

• We demonstrate state-of-the-art results using the single prompt, highlighting the potential
of our approach to approach the upper-bound prompt for the sequence of the tasks.

2 RELATED WORKS

Continual learning Continual learning aims to enable a network to adapt over time to a sequence
of tasks without forgetting previously acquired knowledge. However, the network often forgets pre-
viously learned knowledge as it is trained to perform well on new tasks, regardless of the degradation
of its previous performance. This problem is known as the catastrophic forgetting problem, which
is a major challenge in continual learning. The causes of the forgetting problem are attributed to the
changes in important parameters (Kirkpatrick et al., 2017; Zenke et al., 2017), interference by gradi-
ent direction (Lopez-Paz & Ranzato, 2017; Saha et al., 2021), or the change in the feature space (Zhu
et al., 2021). To alleviate the forgetting problem, many methods have been proposed and can be
categorized into three approaches. Firstly, regularization-based methods (Kirkpatrick et al., 2017;
Zenke et al., 2017; Lee et al., 2017; Buzzega et al., 2020) enforce the model to preserve previously
learned knowledge through additional regularization techniques. For example, EWC (Kirkpatrick
et al., 2017) and SI (Zenke et al., 2017) regularize the change of model parameters based on their
importance, while IMM (Lee et al., 2017) utilizes moment matching. Knowledge distillation loss
is also used to preserve previous knowledge (Li & Hoiem, 2017; Buzzega et al., 2020). Secondly,
rehearsal-based methods are presented, which repeatedly train the model using previous task data.
For instance, the replay buffer is utilized to memorize previous task data to compute gradients for the
previous task (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2019a) or previous eigenvectors (Saha
et al., 2021). Generative approaches are suggested to replay the generated previous task data (Shin
et al., 2017; Rao et al., 2019) to alleviate the forgetting problem. Thirdly, architecture-based meth-
ods are suggested to dynamically increase the model’s capacity as new tasks arrive (Yan et al., 2021;
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Yoon et al., 2018). Moreover, some recent works (Cha et al., 2021; Madaan et al., 2022) suggest
that unsupervised learning can learn unforgettable representations that may help alleviate the for-
getting problem. Lastly, the prompt-based methods (Wang et al., 2022b;c) are suggested to capture
task-specific knowledge by using a prompt pool to memorize previous task knowledge.

Contrastive learning Contrastive learning methods have proven effective in capturing useful
representations by utilizing positive and negative pairs. The widely used InfoNCE loss (Oord et al.,
2018; Tian et al., 2019) maximizes the mutual information between pairs by pulling and pushing
positive and negative pairs in the embedding space. However, InfoNCE loss requires a large num-
ber of negative pairs, which limits its effectiveness. As a result, positive-only methods that do not
require negative pairs have been proposed (Grill et al., 2020; Chen & He, 2021; Bardes et al., 2022),
which capture common features of positive pairs and increase their similarity. Some researchers
have claimed that these methods capture a low-rank space that represents commonalities between
pairs (Tian et al., 2021; Wang et al., 2021; Zhuo et al., 2023). More recently, researchers have
suggested using contrastive learning to alleviate forgetting in continual learning (Guo et al., 2022;
Madaan et al., 2022; Cha et al., 2021). Inspired by the recent approaches, the proposed method in-
volves constructing prompt-augmented input pairs as positive pairs. Similar to positive-only meth-
ods, our approach pulls newly defined positive pairs to increase their commonalities and results in
knowledge accumulation for the prompt.

3 MAIN CONTRIBUTION

3.1 MOTIVATION

In continual learning, a network is trained on a sequence of tasks T1:T = {T1, . . . , TT } with corre-
sponding datasets D1:T = {D1, . . . ,DT }. Each task Tt has its own dataset Dt = {(xi,t, yi,t)}nt

i=1
consisting of nt pairs of input images xi,t ∈ Xt and corresponding labels yi,t ∈ Yt. As illustrated in
Figure 1, our approach is motivated by the upper-bound prompt p∗ optimized by the merged dataset
for all tasks (i.e. Dall = D1 ∪ · · · ∪ DT ), as follows:

p∗ = argmin
p

E(x,y)∈Dall
[Ltask(f(x, p), y)] (1)

where Ltask is the loss for the given task, which is the classification task in this paper. We point
out that the p∗ is the solution for the continual learning, as the p∗ instructs the model to perform
well for all tasks. Moreover, we argue that the p∗ refers the redundancy of parameters in previous
approach based on the prompt pool, since the pool employs multiple prompts. Then, the primary
objective centers on approaching the p∗ by the continual learning with a sequence of tasks D1:T .
Accordingly, we propose the novel method that accumulates the task knowledge using the prompt,
enabling a progressive approach towards p∗.

3.2 KEY OBSERVATION

Figure 2: Colored regions indicate the forget-
ting of top eigenvectors. (a) ResNet model (b)
prompt learning with ViT

We first investigate the process of catastrophic for-
getting by prompt, analyzing the angle (Zhu et al.,
2021) between the feature spaces of the current and
previous models. Figure 2 illustrates the corre-
sponding angle, with the task gap representing the
difference between the current and previous task in-
dices. Our results show that the top eigenvectors
are forgotten during continual learning, as shown
in Figure 2(b). This is consistent with the behav-
ior of conventional training from scratch, as shown
in Figure 2(a). Specifically, we observed that the
top eigenvectors are transferred between consecu-
tive tasks (i.e., when the task gap is 1), consistent
with the prior work (Zhu et al., 2021). However,
as the task gap increases, we found that the corre-
sponding angle deviates, which is accompanied by
a decline in task performance. Thus, we focus on aligning the feature space to preserve previous
knowledge. The detailed settings for the observation is described in the Appendix A.
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Figure 3: (a) We maximize the shared knowledge I(Vt, Vt−1) using the prompt to alleviate the
forgetting problem. (b) Proposed concept to progressively accumulate the task knowledge, by in-
creasing the dependency between the current prompt pt and the previous prompt pt−1.

Figure 4: Main concepts of the proposed method. (a) The prompt-augmented pairs are pulled in
the embedding space to increase the dependency by the shared encoder Et, similar to the Sim-
Siam (Chen & He, 2021). (b) Transfer of top eigenvectors from the previous encoder Et−1.

3.3 KNOWLEDGE ACCUMULATION BY PROMPT

Information-theoretic view for continual learning We explore the method to accumulate the
task knowledge by the prompt for continual learning. We suggest the information-theoretic view for
the continual learning process, to clarify the motivation.

For the pretrained transformer f with input Xt and label Yt for the current task t, we denote Vt =
f(Xt, pt) as the feature by current prompt pt, and the Vt−1 = f(Xt, pt−1) as the feature by the
previous prompt pt−1. Then, we have the Markov chain Vt−1 ← Xt → Vt → Yt, which can be
visualize as Figure 3(a). Then, we optimize the prompt by:

max
pt

I(Yt;Vt) + I(Vt;Vt−1) (2)

= max
pt

H(Yt)–H(Yt|Vt) + I(Vt;Vt−1)

where H(Yt) is constant and the H(Yt|Vt) is minimized by the classification loss for current task.
Now we focus on the I(Vt;Vt−1). We propose to use the positive-only contrastive loss, regarding
X̄1 : (Xt, pt) and X̄2 : (Xt, pt−1) as the positive pair (X̄1, X̄2), as illustrated in Figure 3(b). We
pull the pairs (Vt, Vt−1) in the embedding space, to increase the dependency between the variables.
We reveal that the pulling the pairs enhances the alignment of the feature space, which leads to the
preservation of the previous knowledge.
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SimSiam for the prompt-augmented pair To enhance the interdependence between the prompt-
augmented pair (Vt, Vt−1), we adopt the contrastive loss which pulls the pairs in the embedding
space. Our approach is motivated by the resemblance between the recent positive-only contrastive
methods and the framework of continual learning, as shown in Fig. 4.

Specifically, we employ the loss function of SimSiam (Chen & He, 2021) with simple linear layers
W t,W t

q for the task t, as follows:

min
pt

Lctr := −Ex∼P (Xt)

[
qt

⊤zt−1

]
(3)

where P (Xt) is the distribution for the task t image, and qt, zt−1 are l2 normalized vectors. The
positive-only methods such as SimSiam captures the invariant characteristics of the positive pairs,
while discarding the features that shows higher variance than the certain threshold (Tian et al., 2021;
Wang et al., 2021). Likewise, the layer W t captures the embedding space that represents the com-
mon features between the positive pairs formed by the different prompts. Considering the obser-
vation in Fig. 2, the prompts for different tasks tends to have similar top eigenvectors, whereas
the similarity rapidly decreases for the remaining eigenvectors. Therefore, W t captures the shared
subspace across the tasks.

Additionally, the prompt pt is optimized to generate an embedding space aligned with the space by
the previous prompt pt−1. It guides the prompt pt to expand the shared subspace with the previous
task, thereby enhancing the preservation of the previous knowledge.

Knowledge transfer through embedding space

Figure 5: Eigenvalue and the eigenspace
alignment for the zt, qt feature spaces.

We transfer the knowledge through the embedding
space generated by the previous encoder Et−1, as
shown in Fig. 4. Similar to the Lctr, we pull the
feature qt and the z̃t−1 to increase the dependency
between the pair (vt, vt−1). Specifically, we opti-
mize the loss function as follows:

min
pt

Lprev = −Ex∼P (X)

[
qt

⊤z̃t−1

]
(4)

where

z̃t−1 = Et−1(x, pt−1) (5)

= W t−1 ◦ f(x, pt−1).

The authors in (Wang et al., 2021; Zhuo et al.,
2023) reveals that the qt and zt has aligned eigenspace with reduced rank for qt. As shown in
Fig. 5, we present the empirical evidence of the property satisfied also in our framework, following
Zhuo et al. (2023). Then, Lprev can be seen to enhances the transfer of the top eigenvectors. It is
similar to GPM (Saha et al., 2021) which utilize the top eigenvectors of the previous feature space
to alleviate the forgetting. However, our method differs from GPM in that we imposes the constraint
instead of using the memory buffer to collect the vectors.

3.4 OVERALL LOSS FUNCTION

Our method is to accumulate the knowledge in the prompt to alleviate the forgetting problem of the
continual learning. We use the single prompt, hence, the proposed method do not require the task
identification, which is essentially required for both the L2P and DualPrompt.

The overall diagram for the proposed method is shown in the Fig. 6(a). We employ the positive-
only contrastive method (i.e. SimSiam (Chen & He, 2021)) as shown in Fig. 6(b). We im-
pose the constraint on the prompt pt to pull the feature Vt = f(Xt, pt) and the previous feature
Vt−1 = f(Xt, pt−1) in the embedding space, to accumulate the knowledge for continual learning.
Specifically, the overall loss function is given as:

min
pt

L = Lcls + λctrLctr + λprevLprev (6)

where λctr, λprev are the hyperparameters. Lcls is the cross entropy loss for the current classification
task Dt. We clarify our method by providing the pseudo code in the Appendix D.
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Figure 6: The proposed method is visualized in the following diagrams, with yellow colored blocks
indicating the learnable components. (a) The overall framework is shown. (b) Two contrastive losses
are jointly optimized to accumulate knowledge through prompts for continual learning.

4 METHODS

Experimental settings We verified our method with the Split-CIFAR100, Split-ImageNet-R
datasets, Gaussian-scheduled CIFAR100, following the conventional prompt-based methods (Wang
et al., 2022c;b). Split-CIFAR100 and Split-ImageNet-R datasets are for the class incremental learn-
ing (CIL) setting, where the tasks have disjoint classes. Gaussian-scheduled CIFAR100 is the task-
agnositc continual setting, where the class shifts gradually during the training. It allows the over-
lapping classes between the tasks. We repeated the experiments 3 times with different seeds. More
experimental details are summarized in the Appendix B.

Weighted Projection Angle In the Section 3.2, we investigate the forgetting of the eigenvectors
by visualizing the corresponding angle (Zhu et al., 2021), where the value is averaged across the
tasks. This metric significantly fluctuates unless it is averaged, since it measures the similarity
between the vectors with the same index. Therefore, we propose the new metric, weighted projection
angle, to effectively investigate the relation between the feature space of the current and the previous
model, considering the eigenvalues of the previous space.

Specifically, we obtain the weighted projection matrix Mo by old model fo using the current data
xt ∈ Dt as follows:

Mo = Ext∈Dt

[
fo(xt)fo(xt)

⊤] = UΛU⊤ (7)

where U is the eigenvector matrix for the d-dimensional feature space Sold = span{u1, . . . , ud}
of the previous model, and the Λ is the eigenvalue matrix. Mo projects the arbitrary vector w to
w̃ ∈ Sold, allocating more weights for the direction of principal eigenvectors, as follows:

w̃ = Mow =

d∑
i=1

λi(u
⊤
i w)vi (8)

Using the matrix Mo, we calculate projected vectors {ṽi}di=1 of eigenvectors {vi}di=1 for current
model ft and current data Dt. Then, the weighted projection angle is defined as:

cos(ϕi) = ⟨vi, ṽi⟩/|ṽi| (9)

Baseline methods We compared our method with related continual learning methods.
ER (Chaudhry et al., 2019b), BiC (Wu et al., 2019), DER++ (Buzzega et al., 2020), Co2L (Cha
et al., 2021) are selected for rehearsal-based methods. The buffer size is set as 50 per class for
Split-CIFAR100 and 25 per class for Split-ImageNet-R. EWC (Kirkpatrick et al., 2017), LwF (Li &
Hoiem, 2017) are presented for the comparison with regularization methods. SupSup (Wortsman
et al., 2020), DualNet (Pham et al., 2021), RPSNet (Rajasegaran et al., 2019) and DynaER (Yan

6



Under review as a conference paper at ICLR 2024

Table 1: Quantitative comparison of prompt-based continual learning methods. G-CIFAR100 refers
the gaussian-scheduled CIFAR100 dataset.

Split-CIFAR100 (CIL) Split ImageNet-R (CIL) G-CIFAR100 (Task-agnostic)
Average Accuracy↑ Forgetting↓ Average Accuracy↑ Forgetting↓ Average Accuracy↑

Upper bound 90.85 ±0.12 - 79.13 ±0.18 - 90.85 ± 0.12
ER 82.53 ±0.17 16.46 ±0.25 65.18 ±0.40 23.31 ±0.89 83.86 ± 0.38
BiC 81.42 ±0.85 17.31 ±1.02 64.63 ±1.27 22.25 ±1.73 -

DER++ 83.94 ±0.34 14.55 ±0.73 66.73 ±0.87 20.67 ±1.24 85.57 ± 0.41
Co2L 82.49 ±0.89 17.48 ±1.80 65.90 ±0.14 23.36 ±0.71 -

FT-seq 33.61 ±0.85 86.87 ±0.20 11.14 ±0.58 79.91 ±0.64 38.94 ± 0.67
EWC 47.01 ±0.29 33.27 ±1.17 31.40 ±0.43 54.47 ±0.50 50.78 ± 0.60
LwF 60.69 ±0.63 27.77 ±2.17 14.93 ±0.13 63.29 ±0.23 -
L2P 84.50 ± 0.35 6.10 ± 0.22 62.49 ±0.49 11.45 ±0.51 84.17 ± 0.18

DualPrompt 85.18 ±0.49 5.48 ±0.25 69.44 ±0.31 5.23 ±0.13 -
Proposed 85.47 ±0.24 4.16 ±0.16 69.98 ±0.35 4.24 ±0.25 86.00 ± 0.17

Table 3: Quantitative comparison for varying the task number T . We present the results for 5 tasks
(40 classes per task), 10 tasks (20 classes per task) and 20 tasks (5 classes per task).

5 Tasks 10 Tasks 20 Tasks
Average Accuracy↑ Forgetting↓ Average Accuracy↑ Forgetting↓ Average Accuracy↑ Forgetting↓

FT-seq 19.01 ±0.85 75.92 ±0.08 11.14 ±0.58 79.91 ±0.64 6.73 ± 0.42 84.81 ± 0.92
LwF 25.83 ± 0.29 50.53 ± 0.46 14.93 ± 0.13 63.29 ± 0.23 7.52 ± 0.03 73.90 ± 0.27
L2P 65.50 ± 0.59 6.97±0.58 62.49±0.49 11.45 ±0.51 58.49 ± 0.49 16.28 ± 0.78

DualPrompt 71.09 ±0.53 4.25 ±0.07 69.44 ±0.31 5.23 ±0.13 68.03 ± 0.26 6.42 ± 0.31
:Oracle prompt 71.70 ±0.23 3.71 ±0.21 70.82 ±0.15 4.76 ±0.21 71.12 ± 0.30 5.02 ± 0.29

(Task ID Accuracy) (56.50 ± 0.35) (45.89 ± 0.23) (40.83 ± 0.42)
Proposed 71.11 ±0.22 3.74 ±0.17 69.98 ±0.35 4.24 ±0.25 68.13 ± 0.32 5.32±0.33

et al., 2021) are selected for the previous architecture-based approaches. We also provide the re-
sult for naive training by prompt (FT-seq) and the supervised learning with all data (Upper bound).
Lastly, we compared our method with prompt-based method, which are L2P (Wang et al., 2022c)
and DualPrompt (Wang et al., 2022b). For G-CIFAR100, the results for BiC (Wu et al., 2019),
Co2L (Cha et al., 2021), LwF (Li & Hoiem, 2017) and DualPrompt (Wang et al., 2022b) are not
presented, since the methods require the explicit task boundary, whereas the dataset provides the
smooth transition of the tasks.

5 EXPERIMENTAL RESULTS

Table 2: Result for Split-CIFAR100 data by
architecture-based approaches.

Method Backbone Buffer Avg. Acc.
Size Acc.↑ gap ↓

Upper-bound

ResNet18

- 80.41 -
SupSup 0 28.34 52.07
DualNet 1000 40.14 40.27
RPSNet 2000 68.60 11.81
DynaER 2000 74.64 5.77
Upper-bound ResNet152 - 88.54 -
DynaER 2000 71.01 17.53
Upper-bound

ViT-B/16

- 90.85 -
L2P 0 83.86 6.99
DualPrompt 0 85.18 5.67
Proposed 0 85.47 5.38

Results In Table 1, we present the results for CIL
datasets which provide the explicit task boundary, as
there is no overlap classes between the tasks. The
results verifies the outperformance of our method
compared to the previous methods. Specifically, it
is remarkable that our method outputs better results
without the memory buffer which is required for the
rehearsal methods. Moreover, our method shows
better result only with the single prompt, compared
to the previous prompt-based methods with multiple
prompts, such as L2P and DualPrompt. We addition-
ally compared our method with architecture-based
methods, as shown in Table 2. Our method out-
performs the previous methods and the other back-
bones. Especially, our method tightens the accuracy
gap without the memory buffer, which has advantage
of being free from the data-privacy issue.

Task-agnostic dataset (e.g. G-CIFAR100) presents the gradual transition of classes, where the task
boundary cannot be defined. Therefore, some previous works (BiC, Co2L, LwF, DualPrompt) are
not applicable, as the methods require the explicit task boundary. In contrast, our method maintains
its effectiveness also for the smooth transition of tasks, thanks to the accumulation of the knowledge
in the prompt. As presented in Table 1, our method outperforms the other methods.
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Figure 7: An analysis of the feature spaces is presented with the help of the following diagrams.
(a) The similarity of the eigenvectors for Vt feature spaces between tasks is visualized, with colored
regions for comparison. (b) The corresponding angle and the weighted projection angle on the
previous space for Zt are shown. The transfer of top eigenvectors is enhanced by Lprev .

Limitation of prompt pool We provide the additional results to clarify the limitation of the previ-
ous approach based on the prompt pool. We argue that the prompt pool has limitation due to its fixed
number of prompt, as the pool size is predefined in advance. Moreover, we claim the degradation
of performance by the misaligned prompt due to the inaccurate prediction of task identity in the
inference stage, which is exacerbated as the task number increases.

To verify the claim, we fixed the size of the prompt pool of the L2P, and observed how the perfor-
mance changes with the increase of the task number. For DualPrompt, we calculate the accuracy
for task prediction, and reveal the performance gap by the misprediction. Split ImageNet-R dataset
is used. As shown in Table 3, L2P shows the degradation as the task number increases. Likewise,
the task prediction is getting lowered for DualPrompt as claimed. We also present the result for
DualPrompt with ideal prompt selection for the given image (i.e. ‘Oracle prompt’ in Table 3). The
task gap is increased as the accuracy for task prediction is degraded. Compared to the previous
method, we observed the superiority of our approach, accumulating the knowledge in the prompt
for the continual learning.

Table 4: Comparison for the
computational costs

# Prompt Inference
Params. time (s)

L2P 0.92M 41.61
DualPrompt 0.94M 32.63

Ours 0.11M 25.04

Furthermore, Table 4 compares the computational cost between our
method and the previous methods. First, the proposed method re-
quires far less parameters for the prompt to instruct the model, as
our approach accumulate the knowledge in the single prompt. How-
ever, the previous approach captures the previous knowledge using a
set of prompts, which introduces the redundancy in the parameters.
Second, our method shows faster inference speed compared to the
previous approach, thanks to the elimination of the prompt selection
process. Specifically, our method simply employs the final prompt,
whereas the previous methods are required to get features from the
large frozen model to select the prompt from the prompt pool. We provide the details for the calcu-
lation of the computational costs in Appendix C.

Analysis on the feature space We analyze the change of the feature space for Vt, Zt during the
continual learning, and verify the effectiveness of the proposed accumulative prompt to alleviate the
forgetting problem. We visualize the corresponding angle (Zhu et al., 2021) of the eigenvectors,
similar to the Section 3.2. The results in Figure 7(a) shows the enhanced similarity of the top
eigenvectors by the proposed method. Specifically, as shown in the second graph, Lctr alone shows
the limited improvement for the forgetting problem, although it contributes to the alignment between
the intermediate tasks (i.e. Task gap 1 in the middle graph). The proposed method, which utilizes
both Lctr and Lprev , largely increased the similarity also for more task gaps.

Similarly, Figure 7(b) supports the alignment of Zt space. We calculate the angles between the fea-
ture spaces of the final model fT and the former model fT−1. The corresponding angle is enhanced
at the front part of the index by the Lprev , which verifies the transfer of the top eigenvectors in
the embedding space. Since the corresponding angle shows the large fluctuation, we additionally
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present the proposed metric, weigthed projection angle, to clarify the improvement. The weighted
projection angle clearly shows the high similarity by the Lprev with less fluctuation. This result
refers both the enhanced alignment of the space and the stability of the proposed metric. The re-
sults for both Vt and Zt spaces verifies that the proposed method accumulative prompt keeps the
alignment of the feature space across the tasks, which result the alleviation the forgetting problem.

6 DISCUSSIONS

Figure 8: Feature space alignment with the
upper-bound prompt. Our method shows the
best alignment.

Comparison with the upper-bound prompt p∗

We present the comparison for the feature space of
Vt between the prompt-based methods and the multi-
task model (i.e. the upper-bound model supervised
by i.i.d sampled data for all tasks). We utilized
the validation dataset of the first task. The dataset
for the comparison is Split ImageNet-R with 10 se-
quential tasks. For the wighted projection angle, we
project the eigenvectors of prompt-based method to
the space of the multi-task model.

As shown in Fig. 8, the corresponding angles are in-
creased for more indices of the eigenvector. More-
over, the weighted projection angle clearly shows the
enhanced alignment with less fluctuation. The result
supports our overall claim that the proposed accumu-
lative prompt can be a key to access the upper-bound
prompt p∗ for the sequence of the tasks.

Figure 9: Alignment of feature space for
Vt with varying Lprev .

Plasticity-Stability tradeoff For continual learning,
the model should be stable for previous task, while being
adaptable for the new tasks. However, there exists a trade-
off between the stability and the adaptability (Mirzadeh
et al., 2020; Wang et al., 2022a). We present the ablation
study on the λprev , to analyze the tradeoff in our method.

In Fig. 9, we visualize the alignment of the feature space
with varying λprev , using Split-ImageNet-R dataset. Av-
eraged values for task gap 1 are presented. As λprev

increases, the cosine similarity between the eigenvectors
also increases. The result demonstrates the improved sta-
bility of the model for the previous tasks, by the enhanced
alignment between the feature spaces. Table 5: Results for varying

λprev, showing the trade-off.

λprev Avg. Acc.↑ Forgetting↓
× 69.59 5.35
0.1 69.85 4.88
2 69.71 3.93
3 69.56 3.77

Ours 69.90 4.10

The result in Table 5 also verifies the improved stability by de-
creased forgetting. However the result also shows the lowered ac-
curacy by the reduced plasticity of the model, which presents the
plasticity-stability tradeoff. Still, our method has better tradeoff
compared to the previous methods, showing higher accuracy than
the other methods in Table 1.

7 CONCLUSION

We suggested a novel approach for prompt-based continual learning to alleviate the forgetting prob-
lem by the knowledge accumulation in the prompt. We first observed the misalignment of the feature
space by the prompt leads to the catastrophic forgetting. Inspired from the recent success of the con-
trastive learning, we proposed a novel approach based on the obervation that the current model and
previous model provides two different view of the given data, which can be regarded as the positive
pair. Specifically, our method employed the positive-only contrastive learning, and experimental
results verified that the method alleviates the forgetting by the transfer of the top eigenvectors.
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ETHICS STATEMENT

Training large-scaled models often requires massive computational cost, which can contribute to
environmental concerns, including increased carbon emissions. Moreover, the forgetting of the pre-
viously acquired knowledge is a significant loss, considering the extensive computational resources
consumed to train the model. In this context, the prompt-based approach for the continual learning
is a promising solution by preventing the forgetting problem using only a few learnable parameters.
The prompt learning offers the reduced computational burden. Moreover, the continual learning
technique optimizes the prompt to preserve the previously obtained knowledge of the large pre-
trained model. Additionally, the use of prompt mitigates the data privacy issues. By eliminating
the need for a memory buffer, prompt-based methods prevent the exposure of the previous data.
We believe that our work would be a meaningful step towards the efficient utilization of large-scale
models.

REPRODUCIBILITY

We describe the experimental settings and details to reproduce our results in Appendix A, B. We
also provide the pseudo code to clarify our method in Appendix D. We will release our code upon
publication,
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Appendix

A SETTINGS FOR THE OBSERVATION

In the Section 3.1 of the main paper, we investigate the forgetting process by analyzing the corre-
sponding angleZhu et al. (2021) between the feature spaces. For the tasks t and t′, we define the
task gap τ as the difference between the task indices(i.e. τ = |t′− t|), and investigate how the angle
changes as the task gap increases.

We extract the features by the models ft, ft′ which are trained until the tasks t, t′. The input is fixed
as the validation dataset of the first task,D1 = {(xi,1, yi,1)}n1

i=1. From the output features, we obtain
the eigenvectors of the feature spaces St = span{u1, ..., ud} and St′ = span{v1, ..., vd}
The corresponding angle between the spaces is the cosine similarity between the eigenvectors with
the same index, given as below:

cos(ϕi; t, t
′) =

⟨ui, vi⟩
∥ui∥2 ∥vi∥2

(10)

where i is the index of the eigenvectors. However, the corresponding anlge shows significant fluctu-
ation, since the minor change of the order of the vectors results large change in the value. Therefore,
we present the averaged value for the given task gap τ as follows:

cos(ϕi)avg,τ =
1

T − τ

T−τ∑
t=1

cos(ϕi; t, t+ τ) (11)

where T is the total number of the tasks.

We investigate the forgetting problem in the both of the CNN model and the vision transformer
model. For CNN model, we used the ResNet18He et al. (2016) network, and trained it from the
scratch by 10 tasks of Split-CIFAR100Krizhevsky et al. (2009) dataset. For the transformer model,
we employed ViT-B/16Dosovitskiy et al. (2020) model and trained it using the 10 tasks of Split-
ImageNet-RHendrycks et al. (2021) dataset.

B EXPERIMENTAL DETAILS

Table 6: Hyperparameters for
each dataset.

λctr λprev

Split CIFAR100 0.5 0.5
Split ImageNet-R 1 1

G-CIFAR100 1 1

We summarize the hyperparameters in the Table. 6. For the exper-
iments by the varying task number T with Split ImageNet-R, the
identical hyperparameters are used (i.e.λctr = 1, λprev = 1).

We used ViT-B/16 (Dosovitskiy et al., 2020) model with pretrained
on ImageNet (Deng et al., 2009), with simple linear layers for the
projector W t ∈ R786×384 and the predictor W t

q ∈ R384×384. W t

has the batch normalization layer at the end, following the Sim-
SiamChen & He (2021). The prompt length and the layers to input
the prompt is identical with the single prompt of the prompt pool in DualPrompt, for fair compar-
ison with recent methods DualPrompt (Wang et al., 2022b) and L2P (Wang et al., 2022c). Our
implementation is based on the official source code with Jax1, and its pytorch version2.

C CALCULATION OF COMPUTATIONAL COSTS

Number of prompt parameters We calculate the number of the prompt parameters to clarify the
advantage of our approach. We argue that the proposed method effectively instructs the model using
fewer parameters, compared to the previous approach based on the prompt pool.

We introduce the calculation for the number of parameters for each methods. We clarify that the
prompt size are identical to the single prompt in Dualprompt, for the fair comparison with the pre-
vious approach. We calculate the size of prompt for dataset of 10-task split-CIFAR100.

1https://github.com/google-research/l2p
2https://github.com/JH-LEE-KR/dualprompt-pytorch
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First, our method input the prompts in 5 layers, with the length 5 for first two layers and length 20
for the rest of the layers. The prompts have 768 dimensions and separately defined for the query and
key for the transformer layers. Therefore, the number of parameters for the prompt is calculated as:

# param. in total = 2 ∗ 5 ∗ 768 ∗ 2 + 3 ∗ 20 ∗ 768 ∗ 2 = 107, 520 (12)

Second, DualPrompt has two different prompts, g-prompt and e-prompt. Prompts are input to 5
layers of the ViT. g-prompts are input to the first two layers, with the length of 5. e-prompts are
input to the rest three layers, with the length of 20. Moreover, the prompt pool collects 10 e-prompts
to memorize the previous knowledge. Similarly, the prompts have 768 embedding, and defined
separately for the query and key in ViT layers. Then, the number of parameters for the prompt is
calculated as:

# param. of g-prompts = 2 ∗ 5 ∗ 768 ∗ 2 = 15, 360 (13)
# param. of e-prompts = 3 ∗ 20 ∗ 768 ∗ 2 = 92, 160 (14)
# param. in total = 15, 360 + 10 ∗ 92, 160 = 936, 960 (15)

Lastly, L2P collects 30 prompts in the prompt pool, where the length of all the prompts are idential
as 20. Then, the number of the parameters is calculated as:

# param. of single prompt = 2 ∗ 20 ∗ 768 = 30, 720 (16)
# param. in total = 30, 720 ∗ 30 = 921, 600 (17)

Our method utilizes significantly fewer parameters for the prompts, to guide the model for continual
learning. The result demonstrates the efficiency of the proposed approach, accumulating knowledge
by the single prompt.

Inference time We use the dataset for 10 tasks of split-ImageNet-R to estimate the inference time.
We merged the validation datasets of all tasks. Then, we measure the time to generate the predictions
for all data within the merged datasets.

D PSEUDO CODE

Algorithm 1 Training procedure for the prompt
Input: Learnable {p,W,Wq,Wcls} with fixed ViT
Output: {p, Wcls}

1: Initialize {p̃, W̃} w/o gradient
2: for t = 1, 2, . . . T do
3: if t = 1 then
4: Set λctr = 0;λprev = 0 ▷ {Lctr, Lprev} are not used
5: Train {p,Wcls} by Ltotal

6: Replace parameters p̃← p
7: else if t = 2 then
8: Set λprev = 0 ▷ {Lprev} is not used
9: Train {p,W,Wq,Wcls} by Ltotal

10: Replace parameters p̃← p; W̃ ←W
11: else if t > 2 then
12: Train {p,W,Wq,Wcls} by Ltotal

13: Replace parameters p̃← p; W̃ ←W

We summarize the training stages in Algorithm 1. To clarify the process, we introduce the
learnable modules {p,W,Wq,Wcls} and the accumulative modules {p̃, W̃}, which corresponds to
{pt,W t,W t

q ,Wcls} and {pt−1,W
t−1}. After the end of each task, the parameters of {p̃, W̃} are

replaced by the newly obtained {p,W} to prepare the next task

In the algorithm, we made division for t = 1, t = 2, t > 2 for the training, as the loss function
changes for each step. For the first task (i.e. t=1), Lctr is not applicable since the previous prompt
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{pt−1} is not provided. Moreover, Lprev is not used for the first and second task (i.e. t=1,2), as it
requires the previous module {W t−1}.

E ADDITIONAL ABLATION STUDY

Table 7: Comparison for re-
lated works.

Avg. Acc. Forgetting
PODNet 81.53 6.66

VID 84.20 7.10
AFC 82.12 6.46

InfoNCE 85.48 4.85
Barlow 81.09 6.76
VICReg 82.53 5.71

Ours 85.47 4.16

Ablation for related methods We conduct the ablation study for
the related methods, specifically focusing on the contrastive learning
and the knowledge distillation (KD) techniques. First, we compare
our method with KD methods, including PODNet (Douillard et al.,
2020), VID (Ahn et al., 2019) and AFC (Kang et al., 2022). More-
over, we conduct the comparison with other contrastive losses such as
InfoNCE (Oord et al., 2018), Barlow Twins (Zbontar et al., 2021) and
VICReg (Bardes et al., 2022). We used 10 tasks of split-CIFAR100
dataset. As shown in Table 7, the proposed method outperforms the
related methods.

Table 8: Ablation study for lp.

lp Avg. Acc.↑ Forgetting↓
5 69.51 3.79

20 69.67 4.41
10 69.88 4.34
40 69.31 4.23

Proposed 69.90 4.10

Ablation on prompt length lp We additionally provide the
ablation study on the length of prompt. We set the prompt
length to be identical with the recent SoTA, DualPrompt
(Wang et al., 2022b), for fair comparison. The length of the
prompts are 5 for the first two layers, and 20 for the rest of the
layers. For the ablation study, we set all the prompts to have
same length, and change the length. We used 10 tasks of split-
ImageNet-R dataset. As shown in Table 8, the prompt length
with 5 shows the improved forgetting on the previous task with
the lowered accuracy which indicates the lowered plasticity of
the model. The performance is consistent with the increase of the prompt length, which demon-
strates the robustness of the method to the prompt length.
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