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Abstract

Can adaptive strategies outperform non-adaptive ones for quantum hypothesis selection?
We exhibit problems where adaptive strategies provably reduce the number of required
samples by a factor four in the worst case, and possibly more when the actual difficulty of
the problem makes it possible. In addition, we exhibit specific hypotheses classes for which
there is a provable polynomial separation between adaptive and non-adaptive strategies — a
specificity of the quantum framework that does not appear in classical testing.

1 Introduction

Testing properties of quantum states is an important question in quantum learning theory which generalizes
testing properties of discrete probability distributions (Nielsen & Chuang, |2002; [Montanaro & de Wolf,
2013; [Arunachalam & de Wolf, 2017; |Anshu & Arunachalam| 2023)). Indeed, a quantum state admits an
intrinsic probability description given by the list of its eigenvalues. Learning completely a quantum state
is expensive and requires a significant number of copies even at the presence of quantum memory (Haah
et al., [2016). Since quantum resources are costly, it is crucial to design procedures to efficiently test the
important properties of quantum systems. A simple way of reducing the sample complexity is to allow the
testing algorithm to update its stopping rule (sequential) and/or its way of acquiring new data (adaptive)
depending on the previously observed data. Here we focus on the question of the effect of sequential and
adaptive strategies on the sample efficiency. This is a very active area in statistics and machine learning
starting from the works of Wald (Wald, |1945) and in the learning literature under the name of bandit
problems (Lattimore & Szepesvari, [2020)).

Here, we consider this question for quantum testing problems. Specifically, we focus on the hypothesis
selection problem using incoherent measurements, where the tester is asked to determine the hypothesis set
containing the unknown quantum state p with high probability. This problem is ubiquitous in the quantum
learning theory literature, and several variants are considered: testing identity (O’Donnell & Wright|, [2015}
Bubeck et all 2020; |Chen et all 2022¢), testing closeness (Yu, 2020)), binary hypothesis testing (Hiai &
Petz, 1991)), (Audenaert et all 2007; [Nussbaum & Szkolal [2009), composite quantum hypothesis testing
(Bjelakovié et al., 2005)). If the tester is limited to incoherent measurements, the problem is very related to
classical testing problems. Indeed, on the one hand, every classical testing problem on discrete distributions
can be cast into a quantum testing problem by taking diagonal quantum states corresponding to the discrete
distributions. Measuring these quantum states is equivalent to sampling from the classical distributions. On
the other hand, the quantum hypothesis selection problem can be seen as a bandit problem (see e.g. (Garivier
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Table 2: Copy complexity for testing whether p = % or Hp - %H i = € where d is the dimension of quantum
states and ¢ is the error probability.

& Kaufmann, [2019; [Lumbreras et al., |2022; Brahmachari et al., [2023])). Born’s rule defines exactly the
classical distribution of the reward when pulling a particular arm (performing a measurement). Note that
these probability distributions are not arbitrary: they are governed by the unknown quantum state.

This connection leads to an important question: Can sequential strategies outperform non-sequential ones
for some hypothesis selection problem with incoherent measurements? In other words, if the tester is allowed
to choose the measurement device at a given step depending on the previous observations, would it require
fewer copies of the unknown quantum state?

Note that from a practical point of view in quantum experiments, adaptive and sequential strategies can
be implemented without much overhead. Thus, finding efficient adaptive/sequential strategies can lead to
practical savings for quantum experiments as shown by |Granade et al.| (2017).

Classically, sequential strategies prove to have an advantage over non-sequential ones for instance for binary
hypothesis testing problems (see (Wald, [1945)), testing continuous distributions (see (Zhao et al., 2016;
Balsubramani & Ramdas|, [2015)), testing identity and closeness problems with small alphabet size (see
(Fawzi et al., 2021} |2022))). This speedup comes, mainly, from the fact that a sequential algorithm can make
comparisons at each step and can respond earlier once it has the enough confidence. However, sequential
strategies in the quantum setting have not only the capacity to choose the stopping time, but also to change
the measurement devices adaptively. We expect then a larger gap between sequential and non-sequential
strategies. To avoid confusion, sequential strategies can choose the stopping time according to the previous
observations and thus they have random stopping times, while adaptive strategies are allowed to adapt their
measurement devices at each step according to past observations. With these definitions, a strategy can be
sequential and adaptive, sequential and non-adaptive, non-sequential and adaptive, or non-sequential and
non-adaptive. When we don’t specify whether the strategy is non-sequential or sequential (resp. non-adaptive
or adaptive), it can be both and the statement remains true.

On the other hand, non-adaptive strategies have been shown to be optimal for many interesting quantum
testing problems, including testing identity by (Chen et al.| |2022a)), purity testing and shadow tomography
by (Chen et al., [2021), tomography by (Chen et al 2022b). These works suggest that adaptive/sequential
strategies cannot outperform non-adaptive non-sequential ones. The goal of the article is to show the
contrary: there are some situations where sequential or adaptive strategies require fewer measurements than
non-adaptive non-sequential ones.

Contributions When the number of hypotheses m is equal to 2 and the hypotheses are simple (i.e., only
one possible state), we can precisely characterize the optimal worst case complexity for non-sequential and
sequential strategies. We show that sequential strategies outperform non-sequential ones by a factor 4. For
the lower bounds, we show how to reduce this problem to the classical testing identity problem, then apply
the lower bounds of [Fawzi et al.| (2022). For the sequential upper bound, we design stopping rules inspired
by time uniform concentration inequalities. We refer to Table. [I| for a summary of these bounds.
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Table 3: Copy complexity for the hypothesis selection problem (P) (4.1)) where d is the dimension of quantum
states, m is the number of hypotheses and ¢ is the precision parameter. There is a polynomial separation
between non adaptive and adaptive strategies when exp(O(d)) > m > Q(d).

Moreover, we show that sequential algorithms can adapt to the actual difficulty for the testing mixedness
and testing closeness problems. For this, we show a lower bound on the TV-distance between the prob-
ability distributions after measurement depending on the actual 1-norm between the quantum states (see
Lemma. This inequality helps to reduce quantum testing to classical testing at the cost of a factor 1/ Vd
(d is the dimension of the quantum states) and can be useful for other applications. We refer to Table. [2| for
a summary of these bounds.

For a number of hypotheses m > 2, we prove a separation between adaptive and non-adaptive strategies for
a specific problem. The learner has the information that the unknown quantum state can be diagonalised
in a basis amongst m known orthonormal bases and would like to approximate it. See Def. for a
formal definition of this problem. We show that this problem can be solved by adaptive algorithms using
O(dlog(m)/e?) copies of p. On the other hand, every non-adaptive algorithm solving this problem will
require Q(min{md/ log(m)e?,d?/e*}) copies of p. The upper bounds follows from the shadow tomography
algorithm of Huang et al| (2020). For the lower bounds, we construct an e-separated family of quantum
states close to the maximally mixed state (I/d) and use it to encode a message from [me(4)]. A learning
algorithm can be used to decode this message with the same success probability. Hence, the encoder and
decoder should share at least Q(log(m)+d) bits of information (Fano’s inequality (Fanol [1961))). On the other
hand, after each step, we show that the correlation between the encoder and decoder can only increase by at
most O(g%log(m)/m +e2/d) bits for non-adaptive strategies and it can only increase by at most O(¢?) bits
for adaptive strategies. We obtain an improvement by a factor d or m/log(m) for non-adaptive strategies by
exploiting the randomness in the construction and the independence of the observations at different steps.
We refer to Table. |3| for a summary of these bounds.

Related work Quantum testing identity using entangled measurements is well understood (O’Donnell &
Wrightl 2015} Badescu et al., 2019): it is known that ©(d/e?) copies are necessary and sufficient. For
incoherent measurements, it starts with the work of [Bubeck et al.| (2020) where we have two different lower
bounds for testing mixedness problem using independent adaptive and non-adaptive measurements. This
result is generalized for general testing identity to some quantum state o by [Chen et al. (2022c). Recently
Chen et al.| (2022a)) show that adaptive algorithms cannot significantly outperform non-adaptive ones neither
for testing mixedness nor testing identity.

If entangled measurements are allowed, the quantum hypothesis selection problem can be solved using
poly(log(m)) copies of p (see (Badescu & O’Donnell, 2021))). This poly-logarithmic complexity in m can
be explained by the fact that p®" can be reused after measurement. In contrast, this is not possible using
incoherent measurements for which the state collapses after performing the measurement. In general, the
quantum hypothesis selection problem, where each hypothesis contains only one quantum state, is highly
related to the shadow tomography problem where the learner is asked to uniformly approximate the expected
values {tr(pO;)}icmm) of m known observables {O;};c[,) by measuring the unknown quantum state p. A
popular algorithm for the shadow tomography problem is given by [Huang et al.| (2020) and uses at most
O(log(m)d/e?) non-sequential non-adaptive incoherent measurements. On the other hand, independent
adaptive strategies are shown to be useless for shadow tomography (and purity testing) by |Chen et al.
(2021)).

Moreover, sequential adaptive strategies have been used by |Li et al.[ (2022b)) (see (Li et al.,|2022a)) for quantum
channel discrimination) to achieve the optimal rates given by the quantum relative entropy for both type I
and type II errors at the same time for binary hypothesis testing problem using entangled measurements.
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Adaptive strategies have been considered for testing quantum channels in (Harrow et al., 2010 [Pirandolal
et al, 2019; [Salek et all |2022). In particular, [Harrow et al.| (2010|) and [Salek et al.| (2022) provide examples
for which adaptive strategies outperform non-adaptive ones for testing quantum channels. We note that for
channels, one has the possibility to adapt the input of the channel to the previous observations, but this is
not the case for testing states. As such, it is more challenging to find a separation between adaptive and
non-adaptive strategies for testing quantum states than it is for channels.

For the tomography problem, |(Chen et al.| (2022b)) shows that adaptive independent strategies cannot beat
non-sequential non-adaptive ones and thus need at least Q(d?/e?) copies to learn the quantum state p.
However, it is unclear whether adaptivity can help for learning restricted families of states such as graph
states (Ouyang & Tomamichel, 2022)). On the other hand, sequential strategies were used for online state
tomography by [Kueng & Ferrie| (2015); [Youssry et al.| (2019); [Stricker et al.| (2022)); Rambach et al.| (2022).
Note that the word “online learning” is usually used to refer to a learning task where the properties or the
state we want to estimate change on the fly. The problems we consider here are not of this type: the task is
fixed in advance. For this reason we use the words adaptive and sequential instead of online.

Finally, other works consider testing properties of quantum states/distributions with different access models.
For instance, (Acharya et al., 2020) studies the copy complexity of estimating entropies of a quantum
state, (Gilyén & Li, 2019) studies testing closeness between unknown distributions with coherent access and
(Belovs, [2019) studies the quantum query complexity of discriminating two probability distributions encoded
by quantum oracles.

2 Preliminaries

Throughout the paper, d is the dimension of the quantum states. A quantum state is a positive semi-definite
Hermitian matrix of trace 1. We use the bra-ket notation: a column vector is denoted |¢) and its adjoint
is denoted (¢| = |¢)T. With this notation, (¢|¢) is the dot product of the vectors ¢ and ¢ and, for a unit
vector |¢), [¢)¢] is the rank-1 projector on the space spanned by the vector ¢. The canonical basis {e;};c[q

is denoted {i) }icrq := {les) bicjay-
We define the trace norm or the 1-norm of a matrix M as ||M||y = %tr( MTM) and the 2-norm as

[|M|l2 = /tr (MTM). An observable is a Hermitian matrix O satisfying O = 0 and I — O %= 0 where I is the
identity matrix.

Given two quantum states p and o, we can compare them using the quantum relative entropy defined as:

D(pllo) = tr(p(log(p) — log()))

or the quantum Chernoff divergence defined as:

C(p,0) = —log <Oigf<ltr(pl_sas)) :

The total variation (TV) distance between two probability distributions P and @ on [d] is defined as:

d
TV(P,Q) = 2 SR - @

i=1

and the Kullback-Leibler (KL) divergence is defined as:

d P,
KL(P||Q) =) _ P;log (Q> .
i=1 g

Finally, for two numbers p, ¢ € [0, 1], we denote KL(p||q) = KL(Ber(p)|| Ber(q)).

All the problems discussed in this article are special cases of the general hypothesis selection problem. Given
an unknown quantum state p € C¢*¢ and m hypothesis classes {H;}iepm), the learner is asked to find one of
the hypothesis classes containing p with high probability. Formally:
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Definition 2.1 (Quantum hypothesis selection). Let p € C?*¢ be an unknown quantum state. Let {Hi}icpm
be m hypothesis classes. We have the promise that at least one of the following assertions is satisfied:

peEH,peHsy, ..., peHy.
An algorithm A is §-correct for this problem if it verifies the following property:

Vielml:pg H —P(A=1)<§.

The difference between quantum and classical testing is that in the quantum case we have the possibility
to choose a measurement (given by positive operators summing to the identity). If the quantum states are
restricted to be diagonal, we may assume the measurement is always the same and so the problem becomes
a classical testing problem (see Lemma |3.2)).

The quantum state p is unknown, but the learner can extract classical information from it by performing a
measurement. The way the unknown quantum state p is measured is important and can lead to different
results about the number of copies needed for this task.

Definition 2.2. A measurement is defined by a POVM (positive operator-valued measure) with a finite
number of elements: this is a set of positive semi-definite matrices M = {M, };cx acting on a Hilbert space
H and satisfying >, M; = I3;. Each element M; in the POVM M is associated with the outcome i € X
The tuple {tr(pM;)}icx is non-negative and sums to 1: it thus defines a probability denoted by p(M).
Born’s rule (Bornl [1926]) says that the probability that the measurement on a quantum state p using the
POVM M will output 7 is exactly tr(pM;).

We distinguish between two types of measurements depending on the considered Hilbert space:

Definition 2.3 (Entangled measurement). An entangled measurement is given by a POVM on the Hilbert
space H = (C)®N, where N is the number of copies available of the quantum state p. We can measure
the whole state p®V at once. An interesting POVM related to the observable O on C? is given by M(O) =
{Mp}o<k<n where My =3 o1y~ |pj=rp O ® -+ ® ON. Measuring p®N with the POVM M (O) outputs

a sample from the binomial distribution Bin(n, tr(p0)).

Definition 2.4 (Incoherent measurement). An incoherent measurement is given by a sequence of POVMs
{M}ieny, each of them acts on the Hilbert space H = C?. In this case, we measure at step ¢ the quantum
state p using the POVM M;. For instance, for an observable O, measuring p with the POVM M(O) =
(I — O, O) outputs a sample from the Bernoulli distribution Ber(tr(pO)).

In this article, we focus on algorithms using incoherent measurements. In this case, we can distinguish
between two four types of strategies depending whether the number of measurements and the POVMs
{M;}: are fixed in advance or not.

Definition 2.5 (Adaptive strategies). A strategy is called non-adaptive when the POVMs { M}, are fixed
in advance (i.e., do not depend on the outcomes of the previous measurements). When M; can be chosen
depending on the results of the previous measurements with the (M;)s<¢, we call it an adaptive strategy.

Definition 2.6 (Sequential strategies). If the number of measurements is not fixed beforehand and can
be chosen as a function of the previous measurement outcomes, the strategy is called sequential and has a
random stopping time N. In this case, the expected copy complexity of the procedure is IE (N). Otherwise,
the strategy has a fixed number of measurements N and is called non-sequential.

The goal of this article is to assess the potential improvement of sequential /adaptive algorithms over non-
adaptive non-sequential ones.

3 Sequential improvement for problems involving two hypotheses

In this section, we focus on sequential algorithms for problems having only two hypotheses (m = 2), which
can be simple or not. The results of this Section are true for either adaptive and non-adaptive settings.
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3.1 Provable constant improvement of sequential strategies

The simplest case for hypothesis selection problem with m = 2 corresponds to hypothesis sets containing
only one known quantum state. Formally, the learner would like to distinguish two hypothesis: H; = {01}
and Hy = {o2}. We want to characterize the exact number of copies the learner needs to solve this problem
using sequential and non-sequential independent measurements.

3.1.1 Non-sequential strategies

The tester knows the quantum states o; and o2 and can hence calculate the actual 1-norm between them,
denoted by ¢ = |lo1 — o2]lt. The optimal POVM to distinguish between o1 and oy is thus given by
M = (I - O,0) (Holevo-Helstrom theorem, see (Watrous, [2018)) where 0 < O < I satisfies

e = |lo1 = oaller = tr((o1 — 02)0) . (1)

Let X1,..., X be the outcomes of measuring p by the POVM M. By Born’s rule, they follow the Bernoulli
distribution of parameter tr(pO). Let S be the statistic given by the difference between the empirical mean
and the actual mean under Hy: S = 3 vazl X; — tr(020). Its expected value is tr((p — 02)O) which is €
under H; and 0 under Hy. The learner can measure p a sufficient number of times, compare the statistic .S
with £/2 and decide accordingly: If S > /2 it accepts Hy, otherwise it accepts Ha. Following the Chernoff-
Hoeffding inequality (Hoeffding, 1963)), a sufficient number of measurement for the learner to be §-correct
is

s log(1/4) log(1/4) _ 2log(1/6)
KL(tr((01 4 02)0)/2||tr(610)) " KL(tr((01 + 02)0)/2[[tr(020)) [ = &

The latter inequality follows from Pinsker’s inequality (Fedotov et al., [2003). Note that this previous upper
bound is optimal in the worst case setting where we fix € and take the infimum over all o; and o, satisfying
|lo1 — o2]|tr = &. This first result is summarized in the following proposition:

Proposition 3.1. There is a non-sequential non-adaptive algorithm for testing Hy : p =01 vs Hy : p = 09
using a number of measurements
21
N < 2los(1/0)
< =

Moreover, there exists two quantum states o1 and oy satisfying ||o1 — o2||tr = € so that every non-sequential
adaptive algorithm distinguishing between Hy : p = o1 and Hs : p = 09 needs a number of measurements
satisfying

N 1 1 2
liminf —~— > ~ 2
B0 Tog(1/0) = maX{KL(1/2+aa||1/2)’ KL(1/2—65||1/2)} Soz2’

where o € (0,1) and B € (0,1) are defined such that KL(1/2 4+ ae||1/2) = KL(1/2 + «ae||1/2 + €) and
KL(1/2 — Be||1/2) = KL(1/2 — Be||1/2 — ).

For the lower bound, construct two quantum states, o1 = I»/2 and o2 an € perturbation of it. For each
POVM, we show that the optimal sample complexity is at least 21%(21/6) (when e — 0), with equality iff the
POVM is the optimal one defined in Eq. . This reduction can be proven using the following lemma on
measurements of diagonal quantum states.

Lemma 3.2. Let Dy and Dy be two discrete distributions and p1 and ps their corresponding diagonal
quantum states. Let M be a POVM. Measuring the quantum state py (resp. p2) with the POVM M can be
seen as post-processing (independent of the quantum states) of samples from the distribution Dy (resp. Ds).

Hence, for each POVM, measuring the constructed quantum states o and o5 is a post-processing of samples
from D; = Ber(1/2) and Dy = Ber(1/2 + ¢). Note that this reduction (and the lower bound) works even for
entangled strategies. Once the reduction to classical testing identity is done, we can invoke the lower bound
of (Fawzi et al.l 2022)). The proof is deferred to App.
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3.1.2 Sequential strategies

If we allow the tester to adapt the measurements and choose its stopping time according to previous obser-
vations, it can outperform (in expectation) every non-sequential algorithms by a factor 4. Precisely, it can
be proven that an expected number of measurements asymptotically equivalent to % is sufficient to
distinguish between H; : p = 07 and Hs : p = 0o with probability at least 1 — . We use again the optimal
POVM M defined in Eq. to distinguish between o1 and o9. Let X1,..., X; ~ Ber(tr(pO)) the outcomes
of measuring p by the POVM M. Let S; = % 22:1 X, the empirical mean until the time ¢. Contrary to the
algorithm described in the previous subsection, a sequential algorithm can make comparisons at each time t
until the tester is confident enough to answer the correct answer Hy; or Hy. Under Hy, the statistic S; has an
expected value tr(g;0). On the other hand, under Hy, the statistic Sy has an expected value tr(o20). These

expected values are known to the tester, so it can compare at each time the statistic S; with two thresholds:
tr(010) — ¢(6,t) and tr(c20) + ¢(9,t) where ¢(3,t)? = 5 log (%) If S; < tr(o010) — ¢(6,t), the tester
can answer Hy confidently. Similarly, it would answer H; if S; > tr(020) + ¢(d,t). However if none of
these inequalities is verified it does not answer and makes a new measurement, and so forth until the regions
defined by the thresholds coincide. The idea of comparing the statistic with time dependent thresholds has
been previously used for classical sequential testing by Balsubramani & Ramdas| (2015); [Fawzi et al.| (2021}
2022). In these latter articles, it is proven that in expectation this algorithm outperform the non sequential
one by a factor 4. We adapt their result to the quantum setting in the following proposition.

Proposition 3.3. There is a sequential non-adaptive algorithm for testing Hy : p = 01 vs Ha : p = 09 using
an expected number of measurements:

E(N) < log(1/6) N log(1/6)2/3 4 21og(1/6)/3 + log(log(1/68)/22) + 1
- 22 g2 '

Moreover, there are two quantum states oy and oo satisfying ||o1 — o2ty = € so that every sequential adaptive
algorithm distinguishing between Hy : p = 01 and Hy : p = 02 needs a number of measurements satisfying:

log(1/9) 1
E(N) = min {KL (1/2 £ ¢[[1/2)} <50 262 °

Note that the expected stopping time is the most natural figure of merit for the sample complexity of
sequential algorithms. Moreover, using the same analysis for the algorithm, one can also obtain similar
bounds on the number of measurements with high probability.

Observe that the upper bound admits the asymptotic limit limsup;_,, % < ﬁ hence % is
asymptotically the worst-case optimal complexity of discriminating between two quantum states at the
limit 6, — 0. The correctness of the algorithm presented here is proved using the following time uniform

concentration inequality which is an application of union bound and Hoeffding’s inequality (Hoeffding, [1963)):

PEt>1:[S—E(S)|>¢(,t) <0

where ¢(4,t) = % log (%)

The lower bound follows from the previous proof’s reduction and the lower bound on the expected number of
samples for testing uniform using sequential algorithms: Ber(1/2) vs Ber(1/2 £ ¢) (see (Fawzi et al., 2022))).
The detailed proof can be found in App. [ATT]

Note that [Li et al.| (2022b) have also established an advantage of sequential adaptive strategies over non-
adaptive non-sequential ones in terms of the error exponents. The type I error is the probability that the
testing algorithm answers the hypothesis H; while the hypothesis Hy is the correct one while the type II
error is the probability that the testing algorithm answers the hypothesis Hy while the hypothesis H; is the
correct one:

ay =Py, (Ay =1) and By =Py, (Ay =0)
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where N is the number of copies used. The error exponents (rates) are then given by

Ry = lim _IL(O‘N) and R; = lim _ILWN).

N—o0 N—oc0 N

Concretely, [Li et al.| (2022b) show that adaptive sequential strategies can achieve the best rates (at the same
time) given by the quantum relative entropy between two states for both type I and II errors. On the other
hand, it is known that non sequential non adaptive strategies can only achieve the quantum Chernoff rate
exponent when the error probabilities are equal (Nussbaum & Szkotal [2009; |Audenaert et al., 2007)). For the
particular states o1 = %‘ and oy = diag(% + e, é —¢), we can show that the quantum relative entropy and
the quantum Chernoff divergence between o1 and o9 are asymptotically equivalent to:
2 e

(01]lo2), D(o2llor) ~ 27 an (01,02) ~ 5
Therefore, we can recover the factor 4 improvement by comparing the quantum relative entropy and the
quantum Chernoff divergence:

D(oillos) D(o2llon)  2¢% _
C(o1,02)" C(01,02) e»0 £

We refer to App. for the detailed computations.

3.2 Sequential strategies adapt on the actual difficulty of the problem without prior knowledge

In this section, we change the previous setting by letting the second hypothesis be multiple. Precisely,
we consider the problem of testing identity with Hy = {I/d} and Hy = {p : ||p — I/d||tx > €} where ¢
is a positive parameter. (Chen et all 2022a)) has proved that the optimal non-sequential adaptive copy
complexity is 6(d3/ 2/e2). We show that while non-sequential adaptive algorithms cannot improve the copy
complexity, sequential non-adaptive algorithms can be used to adapt to the actual difficulty of the problem.

Mainly we show the following result:

Proposition 3.4. There is a sequential non adaptive algorithm for testing identity problem using a number
of measurements satisfying:

E(N) =0 (min{d3/2 12%(1/5)7 d|1|;2101?/((1iﬁg> }) .

In particular, the expected copy complexity can be reduced to O(rd*/?1log(1/5)) if the quantum state p has

low rank r < d/2 or O (W) if the trace-less matrix p — I/d has low rank r even if the algorithm

does not have any information about these ranks (see App. . The algorithm uses random measurements
and a time-dependent stopping rule. Since we have already sequential algorithms for the classical testing
identity problem, it is sufficient to show how to reduce the quantum problem to the classical one. For a
POVM M and a quantum state p, let p(M) denotes the classical probability distribution {tr(pM;)};. The
following lemma captures the main ingredient of the reduction:

Lemma 3.5. For all 0 > 0, let | = ilog(Q/é) and UL, U?,... Ut € C¥™? pe Haar-random unitary matrices

UG, >

with a probability at least 1 —6:

le=ollz _ llp =0l
> >

where 1 is the rank of (p — o).

It is, in general, difficult to compute the expected value of the 1-norm under Haar measure, but the 2 and
4-norms can be computed exactly with the Weingarten calculus (see Lemma and Lemma [D.2)); so we
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use Holder’s inequality to lower bound the 1-norm by an expression involving the 2 and 4-norms. Moreover,
this will only give a lower bound in expectation, so we sample more Haar-distributed unitaries and construct
a new measurement device by concatenating a fraction of the columns of each unitary. Then, we need to
show that the TV-distance is Lipschitz to be able to apply a concentration inequality for functions of Haar-
distributed unitaries (Theorem [D.3)). This is done by carefully applying the Cauchy Schwarz inequality. The
complete proof can be found at App. Sen| (2006) proved a slightly weaker (by a logarithmic factor)
lower bound on the TV distance using a POVM constructed with Gaussian random variables. Also, a
similar lower bound (in expectation) can be found in (Matthews et al. [2009) where the authors analyze the
uniform POVM and a POVM defined by a spherical 4-designs. However, for our reduction, it is important
to minimize the number of outcomes of the POVM.

Lemma gives a POVM for which our problem reduces to testing identity: P = U, vs TV(P,U,,) > 5 08\/8

with high probability, where n = *dlog(2/6) and P = M(p). Under the alternative hypothesis Hs, the TV
distance between P and U, can be lower bounded by TV(P,U,) > 5||p — I/d||2. Therefore we can apply
the sequential classical testing uniform result of (Fawzi et al.; |2022)) to obtain a copy complexity

d®/?log(1/6)
© <max{s2,d||p - ﬂ/dn%}) |

A matching lower bound can be obtained in the worst case setting where we are interested only in the
parameters d, € and ||p — I/d||t,. This can be done using Markov’s inequality to transform the algorithm to
a deterministic-time one then invoking the lower bound of (Chen et all |[2022a)): Any adaptive algorithm for
testing identity would require Q(d*/2/¢?) copies of p.

Note that, using Lemma and the sequential tester of (Fawzi et al. 2022)), we obtain the same copy
complexity for testing closeness (i.e., testing p = o vs ||p — ollt > € where we can measure the unknown
quantum states p and o) as for testing identity. This is different from the classical case where testing
identity (Diakonikolas et al., [2017) can be done with much less copies than testing closeness (Diakonikolas

et al., 2020).

4 Provable separation between adaptive and non-adaptive strategies

In this section, we fix the error probability to § = 1/3. We construct a problem for which we have a separation
between adaptive and non-adaptive algorithms.

Definition 4.1. [Hypothesis selection problem (P)] Let {o1, ..., 0, } be a set of e-separated known quantum
states. The unknown quantum state p is €/3-close to (at most) one of the quantum states o4« € {o1,...,0m}
and has the same diagonalisation basis than o;«. We aim to learn the quantum state p to within /10 with
high probability. Formally, the goal is to design an algorithm that measures a number of copies of p and
returns a quantum state g (an e/10-approximation of p) such that with probability (the randomness comes
from the measurements and possibly the algorithm) at least 1 — d:

g
0 — < —
16— plle < 0

The problem described above is not a hypothesis selection problem in the strict sense of the term. However it
is equivalent to the following hypothesis selection problem which has the same order of copy complexity. For
i € [m], let oy = 3 Ap|@iXok| and {05} je[ar) an €/10-covering of the set {p = >, pux|di X ok| : TV(A, p)
¢/3}. Our problem is equivalent to the hypothesis selection problem for {H; ; = {B(0; ;,¢/10)}N{p: po; ; =
04,jP} Yiem],je[m)- For simplicity, we use the first formulation of the problem and refer to it as (P).

IA

4.1 Upper bound

In this section, we present an adaptive algorithm for the problem (P) achieving a copy complexity strictly
less than the lower bound which holds for all non-adaptive algorithms. The first step is to determine with
high probability the closest quantum state o;+ to p, then it remains to approximate p by measuring it in its
basis of diagonalization.
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Algorithm 1 Hypothesis selection problem (P).

Input: N = O(dlog(m/§)/e?) incoherent measurements on p and m quantum states o1, ..., opm.
Output: Two quantum states o;« and p satisfying with a probability at least 1 — §: |0+ — pller < &/3 and
15— plls < /10
For all i # j € [m], let O; ; an observable satisfying ||o; — ojlle = tr O; ;(0; — 7).
For all i # j € [m], let p; ; an ¢/10 approximation of tr(pO; ;) given by classical shadow tomography of
(Huang et al., |2020).
Let k* = argmin, max; j it; ; — tr(o;0; ;).
Let M = {|¢i)(¢i|}ica) the POVM corresponding to the basis of diagonalisation of oy-.
Measure p independently M = 200 log(2972/§)/c? times using the POVM M and denote the outcomes

{E:hi<i<m- =
. R 1Ej:1‘,
return p = Zie[d] (%) | P )i

4.1.1 Adaptive strategies.

For all ¢ # j € [m], let O, ; an observable satisfying ||o; — 0j||t = tr O; j(0; — ;). In Sec. we have seen
that such observable O; ; can be used to distinguish between p = ¢; and p = o if one of the two hypotheses
is satisfied. The quantum state o« has the property to minimize the 1-norm between p and {o;};, so it is
natural to take the state minimizing the statistics of expected value roughly max; ; tr O; j(p—oy) for [ € [m].
To do this, we need to approximate tr pO; ; for all ¢ # j. We can use the classical shadow tomography
algorithm of (Huang et al., [2020) to predict all these events using a few number of copies of p:

Theorem 4.2. (Huang et al |2020) Let (O1,...,0.) be a tuple of observables. There is an algorithm using
non-adaptive incoherent measurements requiring:

N:O(m%mwv

22
copies of p to predict tr(pO;) to within e-error for all i =1,...,m with at most an error probability of 0.

Once we find the quantum state o;«, we know the basis of diagonalization of p. Hence we can learn the
eigenvalues of the unknown quantum state p by measuring it using the measurement device corresponding
to its basis of diagonalization. This requires O(d/c?) incoherent copies. The algorithm is summarized in
Alg. |1l This algorithm can be split in two phases. The first phase can be seen as an exploration phase, where
the algorithm looks for the optimal eigen-basis. It collects (non-adaptively) the information given by the
approximations p; ; of tr(pO; ;). Then it uses this information to choose k* = argmin; max; ; y; ; —tr(c;0; ;).
After this step, in the second exploitation phase, the algorithm adapts its measurement device M according
to the previous information k* and measures only with the POVM corresponding the the eigen-basis of op.

Alg.[1]is d-correct (detailed proof deferred to App. . It can be split in two parts for which we independently
upper bound the copy complexity. The first part relies on the shadow tomography algorithm of (Huang et al.
2020) and needs a number

N — O dlog(m(m —1)/6) _0 dlog(m/9d)
! (/10)2 e2
of copies of p. The second part requires a number N, = 2001%(25& of copies of p. Finally, since

N = N; + Ny and 6 = 1/3, we have proven the following proposition:
Proposition 4.3. Alg. [1] has a total copy complexity satisfying:

¥ o(Msm).

2

10
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4.1.2 Non-adaptive strategies.

We can slightly modify Alg. [1] to have a non-adaptive algorithm for the problem (P) with incoherent mea-
surements. It amounts to first measuring p in all the basis corresponding to the known quantum states
(04); and preparing m approximated quantum states (p;);. Then the tester can look for the closest quantum
state o;+ and finally returns the approximated quantum state p;«. This non-adaptive algorithm has a copy

complexity
o (md +mlog(1/9) + dlog(m/é))

mN2+N1: 52

This complexity is almost optimal for m < d (see Prop. [4.5). However, it is no longer optimal for m > d
since md/e? > d? /2. In that case, we can still design an almost optimal non-adaptive algorithm as follows:
for each k € [m], let {|¢¥)}; an orthonormal basis of diagonalization for oy. For each k € [m] and B C
[m], let O% = 3", 5 |6¥)}oF|. We use the classical shadow tomography of (Huang et al., |2020) to predict
(tr(pOi ;)i jeim) U (tr(pOg ) keim), Bcm) to within /40 simultaneously using

O(dlog(m? +m2%) /&%) = O((d* + log(m)) /%)

copies of p. We find the closest quantum state o;« to p the same way as the Alg. [I] does. Next, we look for
a probability distribution X satisfying for all B C | |)\ uiB*| < £/40, where ,U,g is the prediction of

shadow tomography algorithm for tr(pOZB ). Such )\ exists since the vector A of eigenvalues of p satisfies the
following property:

tr(pOf ) = Z)\ |65 X §*|Z|¢§*>< V) = Z Ail( ;ﬁ*|¢;‘_*>‘2:z)\i:)\(B

i€[d] i€B i€[d],jeB i€EB

and |A(B) — — piy| < €/40. We can thus return the quantum state p = Yicld) il ¢t Xl |
as an approximation of p. We can verify that it is indeed an £/10 approximation of p:

d
_ 5 < N — Y
o= Allur < 312 = Al =2 max A(B) — A(B)

< 2 max \(B) — ply + 2 5 —\(B

< 2 max (B) — 13 max 1 (B)
< 2e/40 + 2¢/40 < £/10.

The copy complexity of this algorithm is O((d? + log(m))/e? which matches (up to logarithmic factors) the

lower bound for m > d.

Proposition 4.4. There is a non-adaptive algorithm for the the hypothesis selection problem (P) with a

total copy complexity satisfying:
d2
N=0O <min {+ I(Q)g(m) ) m;l}) .
€ €

4.2 Lower bound

In this section, we derive lower bounds for the problem (P) both with adaptive and non-adaptive incoherent
measurements. Note that the same lower bounds (up to constants) could be proven for sequential strategies
as well. This is because if a sequential algorithm uses N copies in expectation, then by Markov’s inequality,
it uses at most 10E(N) copies with probability at least 9/10.

We start with a lower bound for non-adaptive algorithms that matches the copy complexity of the algorithm
presented in Sec. [£.1.2]

Proposition 4.5. There is a tuple of quantum states (o1,...,0.,) such that any learning algorithm with
non-adaptive incoherent measurements requires

. md d?
N=8 (mm { og(m)e?’ })

11
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copies of p to approximate p to at most /10 with at least a probability 2/3.

This result with m = d, together with the analysis of the adaptive Alg.[l| gives a nearly quadratic advantage
for adaptive algorithms over non-adaptive ones.

Sketch of the proof. We construct a large set of quantum states randomly as follows: for y € {1,...,m},
Oy = UyAUJ = 2% — Om41—y, Where Uy is a d x d unitary matrix Haar(d)-distributed and A is a diagonal
matrix with entries (1+£10¢)/d. Using the concentration inequality for Lipschitz functions of unitaries chosen
according to the Haar measure, we can prove that this family is e-separated with high probability:

Lemma 4.6. Suppose that m < exp(d?/3000). Fory € [m/2], let U, ~ Haar(d) and o, = U,AU}. We have
with at least a probability 9/10, for all y # z:

loy — ozl > €.

Then, for each y, we construct an ¢/10-separated family of quantum states on the sphere of center ¢, and
radius €/3 which have the same eigen-basis as o,. This can be done by taking random eigenvalues and
using Hoeffding’s inequality. This leads to a family of e® states (for some constant c) that we denote by
{px,y}ze[eCd]-

By definition of the problem (P), any d-correct non-adaptive algorithm for the problem (P) can be used to
distinguish between the states {pg 4}z, Wwith probability at least 1 — . Thus, we can use these quantum
states to encode a message in [e“)] x [m] to a quantum state p = p,, in the family constructed above. The
decoder receives this unknown quantum state, performs non-adaptive incoherent measurements, and learns
it. Therefore a d-correct algorithm can decode with a probability of failure at most §. By Fano’s inequality,
the encoder and decoder should share at least Q(log(m) + d) bits of information.

Lemma 4.7 ((Fano, [1961))). The mutual information between the encoder and the decoder is at least

I > 2/3log(me?) —log(2) > Q(log(m) + d).

The remaining and crucial part of the proof is to upper bound the mutual information for a non-adaptive
algorithm. After some manipulations, the use of Jensen’s inequality, and some elementary inequalities of the
logarithm function, we obtain an upper bound on the mutual information I of the form:

8N
I<sup | ——— > (d|(dpay —T)]e)%" | . (2)
lgy \ M xe cd
y€[m/2],z€[ec?]
The next step is to show that the right hand side of the previous inequality cannot be bigger than
@) ((N52 (% + é)) with a probability at least 9/10. This is the object of the following lemma.

Lemma 4.8. By writing pyy = % + %U‘UOWJU;r and M = ﬁ, we have with at least a probability 9/10,
for all unit vector |¢):

! Cl1 C 20,2
M > (6l(dpay —D)]0)* < Clog(m) —+ 209"

m m
welecd]yelm/2]

This lemma can be proven by considering a concentration inequality for the function
2
(Uy)y — od Z (o(dpz,y — ]I)|¢>2 )
mXxe
z€lec],y€[m/2]

then considering a 1/m-net on the unit sphere to deduce the required inequality for the previous function
uniformly on the sphere. The proof uses techniques similar to the ones of (Haah et al.l [2016) and (Chen
et al., |2021)). The detailed proof can be found in App.

A similar proof strategy allows to derive a lower bound on the copy complexity of adaptive strategies. The
result is stated in the next proposition.

12
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Proposition 4.9. There is a tuple of quantum states (o1,...,0.,) such that any learning algorithm with
possibly adaptive incoherent measurements requires

N=Q <d+1802g(m)>

copies of p to approximate p to at most /10 with at least a probability 2/3.

The proof is similar to the one for non-adaptive strategies, with the minor difference that the adaptivity
makes difficult to simplify some products, thus we cannot upper bound the mutual information as in Ineq.
We use instead a Cauchy Schwarz inequality to break the dependencies created by the adaptiveness of the
algorithm. We obtain then an upper bound on the mutual information I < O(Ne?). The detailed proof can
be found in App. [C:2]

This proposition along with the analysis of Alg. [I|show that the near optimal copy complexity of the problem
(P) using adaptive incoherent measurements is © (E%) This latter along with Prop. imply the separation
between adaptive and non-adaptive strategies for the problem (P) for m > 1. In other words, knowing that
the eigen-basis of the quantum state belongs to some family of bases gives an advantage to adaptive strategies
since they can find the eigen-basis, and then focus on measuring the quantum state with the corresponding
POVM. Up to our knowledge, this is the first example for which adaptive independent strategies outperform
non-adaptive ones for testing quantum states.

5 Conclusion

We have constructed hypothesis selection problems for which sequential adaptive strategies are more efficient
than non-sequential non-adaptive ones. The problem for which the advantage is the most significant is the
one presented in Sec. [d It would be interesting to see if there are other natural problems for which such
a separation exists. We conjecture the separation would be polynomial in m for the composite hypothesis
selection problem: distinguishing between p € {o1,...,0,} and p € {01, ..., 02m  With high probability.
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In this appendix, we give more details and the technical lemmas needed for the proofs of the article’s main
results.

» We start by stating general tools to reduce quantum testing to classical testing in App. [A] along
with the proofs for upper/lower bounds on the problem of discriminating two quantum states using
sequential /non adaptive strategies.

o Then we move to prove the correctness of Alg.[I]in App. B}
o Next, we prove the lower bounds for the hypothesis selection problem (P) in App.

e Finally, we group the technical lemmas we often need in App.

A Reduction to classical testing problems

One of the main difficulties in quantum testing is the freedom in the choice of measurement at each step. So,
to simplify the analysis of quantum testing problems, we provide some techniques permitting the reduction
to classical testing problems which are well understood.

A.1 Testing a single hypothesis vs a single hypothesis
A.1.1 Non-sequential strategies

We start by the simple remark that for diagonal quantum states, incoherent measurements can be seen as
a post-processing of samples from the distribution given by the diagonal elements of the quantum state.
Moreover, the stochastic map for this post-processing does not depend on the quantum state.

Lemma A.1. Let D be a discrete distribution and p its corresponding diagonal quantum state. Let M be a
POVM. Measuring the quantum state p with the POVM M can be seen as post-processing of samples from
the distribution D.

Proof. Let M = {M"};cpy;. For each i € [k], we can write

M :ZMZW
z,y

z)(yl.

By Born’s rule, the probability distribution of the outcomes of the measurement of p by the POVM M is:

M(p) = {tr(pM")}ica = {tr <Z Dy|z )| ZMi,ylxMyI) }
z .y i€d
- { > M;,sz} =PD,
& i€d

where P = (M}, ,)i» is a stochastic matrix. Indeed, M* = 0 implies M}, , = (z|M*|z) > 0 and ), M* =T
implies

S = 3 (el M ) = (o) = 1.

7

O

Note that the post-processing map is independent of the quantum state, hence we can generalize the state-
ment to any number of discrete distributions.

Corollary A.2. Let Dy and Dy be two discrete distributions and py and ps their corresponding diagonal
quantum states. Let M be a POVM. Measuring the quantum state py (resp. p2) with the POVM M can be
seen as post-processing (independent of the quantum states) of samples from the distribution Dy (resp. Ds).
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We move now to the proof of the following upper and lower bound on discriminating two quantum states
using non sequential incoherent measurements:

Proposition A.3. There is a non-sequential algorithm for testing Hy : p = o1 vs Hy : p = 09 using a
number of measurements
2log(1/d
N < og;(2 /9)
€
Moreover, there exists two quantum states o1 and oy satisfying ||o1 — o2||tr = € so that every non-sequential

algorithm distinguishing between Hy : p = 01 and Hy : p = 03 needs a number of measurements satisfying

N 1 1 2
o - ~ 2
o /5y = maX{KL(l/Q tael[1/2) KL(1/2 - Be||1/2) } oz

where oo € (0,1) and 5 € (0,1) are defined such that KL(1/2 + ael|1/2) = KL(1/2 + ac||1/2 + €) and
KL(1/2 — Be||1/2) = KL(1/2 — B¢||1/2 — ¢).
Proof. The correctness of the batch algorithm presented in Sec. [3.1.1] can be done using Chernoff-Hoeffding

inequality, if p = o1 the error probability can be upper bounded as follows:

P (S —tr(o20) <e/2) =P (S —tr(01:0) <e/2 —¢)
<P (S —tr(c10) < —¢/2)
< exp(—N KL(tr(010) — €/2||tr(c10))).

On the other hand, if p = g9:
P (S — tr(o20) > ¢/2) < exp(—N KL(tr(020) + £/2||tr(c20))).

Therefore to ensure that the batch algorithm is d-correct we need N to satisfy

N = max log(1/4) log(1/6)
KL(tr(010) — €/2||tr(10)) " KL(tr(020) + €/2||tr(a20)) [

Moreover by Pinsker’s inequality (Fedotov et all, 2003, the right hand side is upper bounded by:

A log(1/4) log(1/4) _ 2log(1/6)
KL(tr(010) — £/2[[tr(010)) KL(tr(020) + £/2|tx(020)) [ = &2

For the lower bound, let d = 2, o7 = I/2 and oy = diag((1 + 2¢)/2,(1 — 2¢)/2) = I/2 + O where
O = diag(l,—1). Let A be a non sequential algorithm that distinguishes between H; and Hy using N
measurements. Let the ™ measurement be M; = (I — O0;,0;). Measuring p = oy (resp. 03) with the
POVM M, = (I — O;,0;) is equivalent to sampling from Ber(tr(0;)/2) (resp. Ber(tr(0;)/2 + etr(0,0)).
The optimal sample complexity of testing identity: Ho : p = tr(0;)/2 vs Hy : p = tr(0;)/2 + etr(0;0) is
asymptotically equivalent to (when ¢ — 0) (Fawzi et al., [2022):

8(t5(0:)/2)(1 — 1r(00)/2)loa(1/8)  4tr(00)(1 — tr(0;)/2) log(1/0)
e2tr(0;0)2 N e2tr(0;0)2 '

Let’s write O; = (/\Bl /\B) we have tr(0;0) = Ay — A2. Since 0 < O; < I, we have 0 < \; <1 fori=1,2.
2

Hence

4t(0,)(1— tr(01)/2) log(1/8) _ 200 + Aa)(2 — Ay — Aa)log(1/8) _ 2log(1/5)

e2tr(0;0)? e2(A1 — X\2)? - g2

This latter inequality is true since

()\1 + /\2)(2 — A — )\2) > (/\1 — )\2)2 <~ /\1(1 — )\1) + )\2(1 — /\2) >0,

18



Published in Transactions on Machine Learning Research (September/2023)

with equality iff A; = 0,1 for ¢ = 1,2. The cases A\; = A are eliminated because the sample complexity
has a denominator (A; — A2). It remains the cases Ay = 1 — Ay € {0,1} for which O; is a rank 1 projector.
Therefore, the optimal measurement reduces to testing uniform: Ber(1/2) vs Ber(1/2 £ ¢). This problem

requires a sample complexity asymptotically equivalent to 21%(21/6). Note that we can also use Lemma to

make the desired reduction. We show how this reduction works for entangled strategies. We have ¢?% = QLN
and o3 = & diag (1 + 2¢)l(1 - 25)N_‘i|)i€{0’1}N where |i| =4 4+ --- +iy. By Lemma measuring

the quantum states U?N (resp. 0§®N ) can be seen as post-processing of samples from the distribution D; =
{1/2V}icqon (resp. Dy = {(1/2—¢)ll(1/2 + €)N_|i‘}i6{071}N). Observe that a sample 4 = (41,...,in) ~
Dy is given by N iid. random variables {ix ~ Ber(1/2)}, .y} Similarly, a sample i = (iy,...,iy) ~ Dz is
given by N i.i.d. random variables {ix ~ Ber(1/2 —€)},c(y)- Therefore, distinguishing oy from o3 using N
entangled copies can be reduced to testing Ber(1/2) vs Ber(1/2 — ¢) using N samples. This latter requires
a number of samples (Fawzi et al., 2022):

N 1 1 2
liminf ———— > ~ —
N0 log(1/0) = maX{KL(1/2+a5||l/2)’ KL(1/2ﬂe||1/2)} 502’
where o € (0,1) and 8 € (0,1) are defined such that KL(1/2 + ae||1/2) = KL(1/2 4+ ae||1/2 + ¢) and
KL(1/2 — B¢||1/2) = KL(1/2 — B¢||1/2 — ¢).
O

A.1.2 Sequential strategies

Discriminating two quantum states using sequential strategies can be done with fewer measurements than
non-sequential strategies. Since the reduction to lower bound is similar, we give only the proof for the upper
bound.

Proposition A.4. There is a sequential algorithm for testing Hy : p = 01 vs Hy : p = 09 using an expected
number of measurements:

log(1/4) n log(1/6)%/% 4 21og(1/6)*/3 + log(log(1/8)/2e%) + 1'

E(N) <
(N) = 2e2 e?
Moreover, there are two quantum states oy and oo satisfying ||o1 — 02| = € so that every sequential algorithm
distinguishing between Hy : p = 01 and Hs : p = g9 with high probability needs in expectation a number
log(1/6
EOv) > 08(1/0)

< mnin {KL (1/2 £ ¢||1/2)}

of measurements.

Proof. The algorithm is presented in Sec. [3.1.2]

Correctness. Let’s start by showing that this algorithm is d-correct. To this end, we need a time uniform
concentration inequality which can be obtained by Hoeffding inequality along with the union bound, recall
that S; = (3°/_, X;)/t and X; ~ Ber(tr(pO)):

P (3> 1:]S, — E(S)] > 6(5,0) < Y P (S, —E(S)| > 6(5,1))

t>1

<Y exp(—2t(5,1)%)

t>1

5
<D

t>1
<.

19



Published in Transactions on Machine Learning Research (September/2023)

Complexity. To obtain an upper bound on the complexity, we use the following lemma:
Lemma A.5. N a random variable taking values in IN, we have for all k € IN*

E(N)<k+> P(N>t).
t>k

This inequality can be proved by writing E(N) = >",-P(N > t) then upper bounding the first k terms by
1. B

Let a € (0,1) and % the smallest integer so that for all ¢ > k : ¢(5,t) < ae. We focus only on the case p = o1
(the other being similar), the expected stopping time of the algorithm can be controlled as follows:

E(N)<k+» P(N=>t)

t>k

<k+ Y P(Si-1 < tr(020) + ¢(5, — 1))
t>k

<k+ Z P(S; — tr(010) < —e + ag)
t>k—1

<k+ Y P(S —tr(010) < —(1 - a)e)
t>k—1

<k+ Z 2exp(—2t(1 — a)?e?)
t>k—1
2exp(—2(k — 1)(1 — a)%e?)

Sk+ 1 —exp(—2(1 — a)%e?)

okt 2exp(—2(k — 1)(1 — oz)282).

- (1—a)2e?

On the other hand we have ¢(d, k) < ae and ¢(d,k — 1) > ae so

log ((k_dl)k> > 2(k — 1)a?e?.

Therefore:
log(1/d log(log(1/3)/(ae)?
1 2 9B lonlon(8)foc))
Hence:
E(N) o 1 210g(10g(1/5)/(a6)2) 1 2exp(—2(k — 1)(1 — a)?e?)
log(1/0) — 2a2e? log(1/0)a?e? log(1/9) log(1/6)(1 — )22 ’

and by taking § — 0, then @ — 1 we obtain:

lims E(N)
imsup ————
§—0 P log(1/4)

IN

1
262
A non asymptotic upper bound can be obtained by choosing o = (1 + log(1/6)~1/3)~1:

E(N) < log(1/6) N log(1/6)2/3 4 21og(1/8)/3 + log(log(1/8)/2¢?) 4+ 1
- 2e2 g2 ’

The lower bound follows from the previous reduction to testing Ber(1/2) vs Ber(1/2 £+ ¢) and (Fawzi et al.
2022). O

20



Published in Transactions on Machine Learning Research (September/2023)

A.1.3 Asymptotics of the quantum relative entropy and Chernoff divergence.

Recall that we consider the particular states o1 = 5"‘ and oy = diag(§ +¢,3 —€). An asymptotic (when

e — 0) of the quantum relative entropy between o1 and o5 is given by:

1 1 1 1
D(o1|jo2) = §log (1 n 26) +3 log (1 — 25) -~ 2¢?,
1 1
D(ozllo1) = (2 +€) log(1 + 2¢) + (2 - 5) log(1 — 2¢) ~ 2e2.

On the other hand, an asymptotic (when e — 0) of the quantum Chernoff divergence between the states o,
and oy can be upper bounded using the inequality log(z) > (z — 1) — (z — 1)? valid for z € (3, c0):

C(o1,02) = sup —log(tr(cios™®))
0<s<1
1 ;
= sup —log ((14—25)5—1— (1—25))
0<s<1 2 2
1 S 1 S 1 S 1 S 2
< sup [1—7(1+2s) —7(1—25)} {7(1+2€) Fo(1-2)° -1
0<s<1 2 2 2 2
2
< Q)2 2 4 L
7021;21[28(1 s)e® +o(e%)] + o(e )E_>0 5

Moreover, it can be lower bounded using the inequality log(z) < x — 1:

1 1
C(o1,02) = sup —log ((1 +2)°+-(1- 25)3>
0<s<1 2 2

> sup [1 %(1+28) —%(1—2&)5}

0<s<1

2 2 e
> sup [2s(1 — s)e” + o(e ~ —.
S 25— 5)e 4 0(e)] x5

2

Finally C(o1,02) ~ 5.
€

A.2 Testing a single hypothesis vs a multiple hypothesis

In this section, we relate the TV-distance between the distributions obtained after the measurements and
the 1-norm between the quantum states.

Lemma A.6. Let U € C¥*? be a Haar-random unitary matriz of columns {|U;) }1<i<a, M(U) = {|{U:XU;|}:
is a POVM and there exists a universal constant ¢ such that for all quantum states p and o we have:

E [TV (o(M), 0(M))] > ””;g”

Proof. Let £ = p — o, we have Ule;) = |U;) and we use Weingarten Calculus and to calculate

E [(Us|¢|U;)?] = E[(Us|¢|U;) (U3 |€1U3)]

[t (§|U X U3 €| Ui Usil)]

[tr(§Uei)e:|U™EU |e;)es|U™)]

[tr(U*EU |ei)e:|U"EU |e; el )]

Y We(Bat d)trg1 (€, €)trallesdesl [es)e])

a,BES,
1

T dd+1)

i
EEEE

tr(£%).
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Similarly

E [(U|¢|Us)*] (U |E|U:) (Ui €| U (Ui €U ) (U U)]

[t (&) Us XUs | Us XU | ) Us XU €| Us XU
[tr(§UeiXei|U™EU |e; XeilUEU |e; {ei|UEU |e; ei|U™)]
[tr(

tr(U"EU |ei)ei|U™EU |eiXei|U™EU |ei Xes|U™EU |ei el )]
Z We(Ba™t, d)trg—1(&,€, & E)tralles)es], les)es, les)esl, les)es])
a,Be

1
T dd+1)(d+2)(d+3)

S WA+ D(d+2)d+3)

E
E
E
E

(6tr(£2)% + 6tr(£h)).

tr(€2)2.

We can now conclude by Hoélder’s inequality:

d

E[TV(p(M),o(M))] = Z [(Uil§|U2) ]

d

(E [{U:[g|U:)3])” )
= ; B [(TiEU]
d “1(d + 1)~ 1tr(£2))3
ZZ d+1 (d+2)-1(d + 3) 1tr(€2)?

sH

v

>

i=1

> ey/tr(p — o).

This Lemma is about the expected TV distance. Actually, we can prove that we have the same inequality
with high probability.

Lemma A.7. Let = O (log(1/8)) and U, U?,...,U" € C¥4 be Haar-random unitary matrices of columns

{UN hei<an<ij<i, M = {%|U3><Ulj|}” is @ POVM and there exists a universal constant ¢ such that for all
quantum states p and o we have with a probability at least 1 — §:

TV(p(M), o(M)) > ”"j/g
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Proof. Let f(U) = TV(p(M),a(M)), we first show that f is Lipschitz by using the triangle and Cauchy
Schwarz inequalities:

A0~ =| S S eINU O] - [ (VX E)

1<i<d,1<j5<I

DO (L RV A

1<i<d,1<5<I1

> V@ U - VX))

1<i<d,1<j<I

NN I ST e

1<i<d,1<j<l

< ﬂ¢tr<s2> S (Ui - Vi)

1<5<1

< IR Vs,

IN

IN

hence f is L = \/%\/tr(SQ)—LipSChitZ, therefore by Theorem

_dc?er(e?)

P (1f0) - E(FO)] > SVal@) < e i = e =g,

for [ = 241og(2/d)/c?. Finally with high probability (at least 1 — §/2) we have

TV(p(M),a(M))

Y
=

(TV(p(M), 5 (M)) = | TV (p(M), 5(M)) ~ E(TV(p(M), 0 (M))|
eV/ir(€?) - 5 V(€
Vir(e)

lp = oll

SV

where r is the rank of (p — I/d). O

v IV IV
oo oo

Once we have the lower bound on the TV distance between the distributions obtained after performing the
measurements, we can deduce upper bounds on sequential algorithms for testing identity depending on the
rank of p or p —1I/d.

Dependence in the rank of p—1/d From the previous lower bound on the TV-distance, we can achieve
an upper bound using the sequential tester of (Fawzi et al., [2022]):

in n'/?log(1/6)'/? log(1/6) B d*/?1og(1/6)
© < { (max{e/Vd,||p —1/d||2})? (max{e/Vd,|p—1/d|2})? }> =© <max{52, dllp— ]I/d@})

3/2 1/2
_0 (min { d lo;g(l/é)’ rd log(l/j) }) ’
€ o —1/dlf5,

where 7 is the rank of (p — I/d) and we use Cauchy Schwarz to obtain the latter inequality.
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Dependence in the rank of p The proof of Lemma permits to deduce that with high probability:

”

1\*, d-
TV(P?U")ZCHP_]I/C”sz Z<A1—> +7T

i=1

where r is the rank of p supposed to be less than d/2 and we use Cauchy Schwarz inequality. Therefore we
can test whether p = o or ||p — ol|tr > € with probability at least 1 — ¢ using

d'/?log(1/6) B [ d*?log(1/0)
’ (max {e/va 1/var) ) =0 (s { = e 1/ )

copies of p.

B Analysis of Alg. [1]

In this section we prove the correctness of the Alg.[ll We need to show that with probability at least 1 —4/2,
Alg. [1] finds the closest quantum state o;« to p.

Lemma B.1. For all i # j € [m], let p; ; an €/10 approzimation of tr(pO; ;) given by classical shadow
tomography of (Huang et al., [2020). Let k* = argmin, max; ; i; ; — tr(0;0; ;). We have with at least a
probability 1 — §/2:

lp = ok ller < 2/3.

Proof. Classical shadow tomography of (Huang et al |2020]) permits to have the following approximations
Vi j € [m]:|pi; —tr(pOi;)| < e/10,
with a probability at least 1 — /2 using only N = O(dlog(m)/e?) copies of p.

Let 0y« the closest quantum state to p. We want to prove that with high probability k* = i*. We have for
all I # i*: ||oj« — oy|tr > € hence:

max fii,j — t1(01045) 2 pir 1 — t1(0103+ 1)

> tr(pOj+ 1) — tr(010;+ 1) — /10

> tr(0ix O 1) — tr(0704 ) + tr(pO;is 1) — tr(os O+ 1) — /10
> |lois — aillee — llp — o [ltr — /10

>e—¢/3—-¢/10

>e/2.

On the other hand
max ,U/i,j - tr(ak* Oi,j) S max ,U/i,j - tf(di* Oi,j)
,] 2,J
< maxtr(p0; ;) — tr(0i+ 0y 5) + /10
2,9

< lp = o [lex + /10
<e/3+¢/10
<eg/2.

Therefore, with high probability, k* cannot be different from ¢*. O
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Once we know, with high probability, the closest quantum state to p we can read its basis and use it to
to learn p. The following lemma indicates how to construct this approximation along with the number of
copies/measurements needed for this learning task.

Lemma B.2. Let p = Zf:l Xi|piXdi|. Let Aq, ..., An the outcomes of the measurement of p independently
by the POVM M = {|¢;X¢i|}i. The quantum state

d N 14
p=3 (Z—NA> 6ol
i=1

is £/10-close in 1-norm to p with a probability at least 1 — §/2 if N = 200log(29+2/4)/<2.

Proof. p is a quantum state so it is a Hermitian matrix positive semi definite of trace 1. Hence, we can write
p = Zf’zl il i) @i| where{)\;}; is a probability distribution and {¢;}; is an orthonormal basis. Therefore

25:1 |¢iX¢;| = T and M is a valid POVM. Measuring p via the POVM M is equivalent to sampling from
the distribution {tr(I6:)@:lo}: = {53, Astr(16a)oil 6565 }: = {Aik: hence

Ah e ,AN z;Vd {)\z}z

On the other hand p and p have the same basis of diagonalization so the 1 norm between them is simply

d d

D Xiloikeil = D Ailnoil
d

Z(/\i = Xi)|oiX il

i=1

o= pllee =

tr

tr

=2TV(\ ),

N
where {\;}; = {27:1%}1 It is well known that the TV distance can be written as:

TV(A\A) = glca[zi(]()\(B) — A\(B)).

Chernoff-Hoeffding((Hoeffding), [1963)) inequality implies for all B C [d] :

Z;’V—l lasen 5 £\2
Lg=1 78 S ) < _ = )
P (‘ 7 A(B)| > 50 | = 26Xp< 2N (20) >

Therefore by union bound we obtain

P (|lp— |l > €/10) =P (2TV()\, A) > £/10)

Z;Vzl ]'AjeB 13
2
<2 exp (-2 (o) ).
<2t (-8 (5
Finally for N = 2001log(2%+1/§) /2, we have with at least a probability 1 —6 : ||p — pllwr < /10. O

Grouping the two previous Lemmas, Alg. [1| finds the closest quantum state o;~ and returns an e/10-
approximation of p with a probability at least 1 — (/2 +/2) = 1 — 4. Finally, Alg. [1|is J-correct.
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C Lower bound for the problem (P)

In this section, we focus on proving lower bounds for hypothesis selection problem (P) for non-adaptive and
adaptive strategies.

C.1 Non-adaptive strategies

We recall the theorem we want to prove:

Theorem C.1. There is a tuple of quantum states (o1, ...,0m) such that any learning algorithm for problem
(P) with non-adaptive incoherent measurements requires

. md d?
=0 (mm{logm)ez’e?})

copies of p.

Construction For the construction, we choose m unitary matrices {U,}, chosen randomly from the
Haar(d) distribution, then we choose for each unitary (orthonormal basis) random eigenvalues:

Lemma C.2. Let m < exp(d?/3000). Let {Uy}yeim/2) m/2 unitaries Haar(d) distributed. Fory € [m/2],

let oy = 2I/d — Oypy1—y = UyAU] where A = L+ diag <{>‘i}ie[d]) = diag ({W} [d]>. We have
1€

with a probability at least 9/10, for all y # z € [m]:

loy —ozlle > e

Proof. Let vy # =z € [m/2] and 0 < O < I satisfying trdiag <{>‘i}ie[d])0 = —be. Let
flu) = tr(Udiag({)\i}ie[d}) Ut — diag ({)‘i}ie[d]> O where U ~ Haar(d), we have E(f(U)) =

—trdiag ({Ai}ie[d]) O = 5¢ (see Weingarten Calculus . The function f is %-Lipschitz:

Lf(U) = fF(V)]

— |tx(U diag ({)\i}ie[d]) Ut — diag ({)\i}ie[d]))O — tr(V diag ({Ai}iem) v — diag ({Ai}ie[d]))0|
< |te(U diag ({)\i}ie[d]) Ut — V diag ({/\i}ie[d]) vHo|

< U = V) diag ({Nikiera ) Ul + 1V diag ({\iicq) (U = V)Tl

< U = Vol diag (Ahiega ) UTll2 + 1V ding (Dibicgq ) 11 = V)

10e . i .

< —(IU = Vol diag ({(=1)"}, i) UTll2 + IV diag ({(-1)"} i) D2 = V)T l2)
20

< —;HU — Vo,

where we have used Cauchy Schwarz inequality.

Using the fact that the Haar distribution is invariant under the multiplication by a unitary and the concen-
tration inequality for Lipschitz functions the probability that the states {0y },e[m/2) are not e-separated
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is upper bounded by

P (3y, 2 € [m/2] : [|oy = 02l < €) < %Muay — ol < e)
< mT]P (I, diag ({Aihieq) U — Us diag ({Nidicgq ) Ul <€)
< %w(nw diag ({\i}ic) USU- — diag (i) e <€)
< mﬂ’ (I diag ({Aikieq) U = ding ({Adicra) e < 2)
< mTIP (tr (v diag ({\ihieq) UF = ding ({Aidieq) ) O <€)
< %P(f( ) —E(f(U)) < & —5¢)
< "UP B(H(U) - F(U) = 49
= mT xp ( To % 4002 in)o;)

=T eXp( 1000)

which is smaller than 1/10 if m? < 2exp(d?/1000)/5.
For the case when y € [m/2] and z € [m] \ [m/2],let z =m + 1 — z € [m/2] we have
oy = o2 lls = lloy — 21/d + 7l
> |loz —2L/d + oz ltr — [loy — alltr

> 2\loy = L/d|ler + [ler — oy — 0ulltr
>e.

Finally, for the case when y € [m]\[m/2] and z € [m]\[m/2],let ¥ =m+1—y € [m/2]and 2’ =m+1—z €
[m/2] we have

HUy — 0.l = [[21/d - Oy’ — 2l/d + oo [|ir
> oy — ol
> €.

We have shown how to construct the unitaries, we move to prove the existence of the eigenvalues:

Lemma C.3. There exists family of quantum states {pzy}z|clecd],ycim] (Where c is a universal constant)
such that for each y € [m], {pzy}|z|clees) s €/5-separated and commute

Proof. We start by writing the eigen-decomposition of the known quantum states o, as

d
=U, (Z A?z‘><z'|> U}
=1

We claim that we can choose a¥ to construct an ¢ /5-separated family of me®? quantum states (c is a constant

to be chosen later) of the form
d
2e/3
pew = Uy (Z (ar+ 2EEL) ) u

=1
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for || € [e°!] and y € [m]. Note that for convenience of notation, the labels  can be positive and negative.
Moreover the distance between p, , and oy is exactly:

3

g.

102,y — oyller =

Concretely, we look for {af }1<ij<d,1<|z|<eed/2 such that

1. of = +1,

= _ oz
2. a; ¥ = —af,

3. af +aj, ;, =0 (we suppose d is even) and
4. Vo #£a': Z‘jfl la? — o] > d(1/2 —1/200).

The third point ensures that p has trace 1 while the fourth one implies ||pg.y — por yller > €/3 —€/100 > ¢/5.
Starting by the simple quantum states p1, = o, + Zfﬁ %UM@XHUJ - Z?:d/2+1 %Uﬂz)(zwj and
Pty = 2I/d — p1y = Omi1—y — Zfﬁ @%‘PUyh)(z\UJ + Z?:d/2+1 @UM@XHUJ and we suppose that
we have constructed Q an e-separated family of the form described above of cardinality M < e Let

a1,...,0q/2 ii.d. random variables taken values in {£1} with probability 1/2 each. We have by Hoeffding’s
inequality

d/2 d/2
P|3p,€Q: ) |af —a;| <d(1/2—1/200) OR Y |a; " — | < d(1/2 —1/200)
=1 =1
d/2 aj/2
=P (3p. € Q: > laf — eyl <d(1/2—1/200) OR > |af + | < d(1/2 — 1/200)
i=1 =1
u d/2 u d/2
< = —a — =ar < -
<P ;1%_% > d/4+d/400 | + P ;1%_% < d/4— d/400
< Me—d/2000

which is strictly less than 1 if M < e%/2909 So let’s take ¢ = 1/2000, we deduce that

d/2
P Vo, € Q: Y |af —a;| >d(1/2—1/200) | > 0.
i=1

therefore there exists some o € {41} verifying the desired conditions. We can repeat this construction until
Card(Q) > e,

O

We have constructed the e-separated family of quantum states {o,}, an the corresponding ¢/5-separated
{pz.y = for all y, we can use tools from communication theory to deduce the lower bound (see (Haah et al.,
2016))). Alice encodes a message (z,y) € {1,...,e“e} x [m] in p,, and sends it to Bob. To read the
message, Bob tries to approximate the quantum state that he received from Alice. We suppose that Bob
can approximate (up to €/10 in trace norm) a state £/3 close to one of {o,} and diagonalized in the same
basis of this quantum state with a probability at least 2/3. Bob uses N copies to decode Alice’s message
and returns (2/,y") € {1,...,e°?} x [m] , therefore by Fano’s inequality ((Fano,|1961)) we have the following
lower bound on the mutual information:

Lemma C.4 (Fano). The mutual information can be lower bounded:

I(X,Y : X', Y') > 2/3log(me?) —log(2) > Q(log(m) + d).
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On the other hand we can upper bound the mutual information between (X,Y) and (X',Y”). Let I1,...,Ix
be the outcomes of a non adaptive algorithm solving the problem (P). By using the data-processing inequality
for the Kullback-Leibler divergence and the fact that every non adaptive algorithm for the problem (P) can
be used as a 2/3-correct decoder we can upper bound the mutual information as follows:

Lemma C.5 (Data-processing). . The mutual information between (X,Y) and (X', Y") is smaller than the
mutual information between (X,Y) and (I,...,In):

I(X,)Y : X \Y)<IX,Y:L,... Iy).

The next step is to upper bound the mutual information between (X,Y) and (Iy,...,In). This latter
depends on the quantum states {o,},, therefore it is a random variable. We will show that with at least
a probability 9/10, it is upper bounded by an expression involving the parameters of the problem. First
we start by proving the following upper bound relating the mutual information with the unitaries {U,},
defining the quantum states {o,},.

Lemma C.6. For all unitaries {Uy},, we have:

1
I(X,)Y:I,....Iy) 4N sup — Y (¢|U,0.,Uf|¢)%
ollela<t M =

where for (z,y), Oyy = UJ(dpm,y -I)U,.

Proof. We suppose that the eigenvalues of o, have the form

1+108%e
1 d )

where 3¢ = +1 satisfying Y, 8Y = 0 (exactly half are equal to +1) and Y = —3™ 1~ (we suppose m even).
The diagonalizing matrices {U, }, are chosen randomly so as they satisfy Uy,+1—, = U, for all y < m/2 and
other conditions to be specified later.

Let us denote by M! the POVM used at step t. Without loss of generality, we can suppose that the
non-adaptive algorithm performs only measurements of the following form:

M = {|§iXdil}s.
where we have the condition Y. [¢!)¢!| = I implying for all i and t: ||¢}]]2 < 1.

Let M = 2me®?, we can write the mutual information as follows:

I(X,)Y:I,.... Iy ( Ztr (Pey) N @N | M )—ZH (tr((pa,y) N @1, M)
MZ Z H Pyl 07,) (1 Ht:1<1\fit|pz’y|¢it> >_21+22,

Y A1,..iN t=1 M Zz,y thl <¢§t |Pry|¢§t>

where Y1 and Y5 are defined as follows:

N

SRR OID i | AN (AT

T,y 1,..,0N T=1 t=1

N
Z Z H iy P2y ¢§t> log (]\14 Z H<¢ft dpx,y|¢§t>> .
T,Y i1,...,iN t=1 z,y t=1

Since

. 1+ (108¢ +2a%/3)e
y = Uy diag { ( 7 i/3) } UJ
1€[d]
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we can write

t,xy

I+wu;""e
(@ ettty = TS
where u;™ = (¢! |U, diag ({1055’ + 2af/3}i€[d}) Uylei,) € (=11,11). Denote by O, =
diag ({1065’ + 204'2—”/3}i€[d]>, we remark that
d d
Sl = 37 (gt U, diag ({1053 +2a° /3}i€[d]) U,|¢! ) = trU, diag ({1053 +2a7 /3}ie[d]) U,
i=1 i1

d
— tr diag ({1053 + 2a§/3}i€[dl) =" 108! + 207 /3 =0.
=1

Moreover, the couples of quantum states (pg.y, p—z,y) and (pz,y; Pz,m+1—y) are symmetric with respect to
I/d by the construction of (af); , and (8F); . hence

UZ:I iy <¢“ Upor , diag ({106lm+1y + 2a;$/3}ie[d]

= (64, |U, diag ({-108! — 207 /3},cq ) Ulol,)
~ (41U diag ({108 +207/3} () Uy 61,

_ tﬂv,y
= —u“

) Un+1—y|®%,)

Suppose that £ < 0.05. We can start by controlling ¥ using Jensen’s inequality:

:_72 3 H(““tw >log (&Zﬁ(l—&-uﬁf’ys))

T,y 11,...,0N t=1 T,y t=1

1+utmy 1 N Loy
<——ZH MZlog tl;[l(lJrui; Ye)

z,y,i t=1

N t,x,y
1 1+wu "¢ 1
- E I | b il E log (1 —&-uﬁf’ya))
z,y,i t=1 ( d ) < ,y,t
N t,x
1 14w ’y5> 1 t ¢
=—— E I | —— ) | = E log (14 u;"Ye) +log (1 — u;™Ye)
M i ( d (M jaly<m/2,t Z
N t,x
1 1+ ui7 1y€ 1 N
= 211 ( a ) a2 e (l- () )
@,y t=1 lz|,y<m/2,t
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Now, we can use the inequality —log(1 — x?) < 222 for |z| < 1/v/2:

t :L’,y
Yo < —— Z H (1 i, ) % Z log (1 — (uf;w’y)262)

z,y,it=1 |z|,y<m/2,t

1 L+up™e\ [ 1 :
T,y )2 2
<G S5 (3 X o
z,y,it=1 lzly<m/2,t
1 t:vy 1
<MZH< ) Do osw o Y 2A4[U,0.,Ufl0)E
z,y,it=1 t $lloll2<1 |z|,y<m/2
1
<N sup — Z 2(¢|U, OryU |6)%e
¢:”¢”2§1 \1\,y§m/2

Using the fact that ), uffy = 0 for all t, z, y along with the inequality (1+x)log(1+z)+(1—z)log(l—x) <
222 for |z| < 1/v/2 we can upper bound the first sum X;:

5 S S|

T,y,k ik 1, ik—1,0k41,00N T

k,xz,
SO (Hu : >1°g (1 ire)

z,y,k ik

1
m Z Z (1 + uk z, y€> log (1 + ufk’x’y€> + <1 _ u?];%yé_) log (1 o uf:k,z,yg)

|z|,y<m/2,k ik

1 k,x,y N2
<t 2 2wt

|z|,y<m/2,k,ik

IN

< 2(¢|Uy Oz, Uy|¢)?e
d§¢|m<1M|m|,yz<:m/2 B
1
<ON sup — Y (lU,0.,Uf|9)%
Slloll2 < gy <my2

Finally the upper bounds on ¥; and X5 imply the required upper bound on their sum ¥; + 3o = I(X,Y :
Ly,....IN). O

Note that we need to take a supremum over all possible vectors ¢ because the learner knows the quantum
states {0y}, and so it can choose measurements dependent on the unitaries {U,},. We can now show that
with high probability on the choice of the unitaries {U,},, the latter supremum can bounded and so the
mutual information too.

Lemma C.7. Let {Uy}, m unitary matrices Haar(d) distributed. We have with a probability at least 9/10:

(N52 log(m) N52> |

m d

1
AN sup — Y (9|U,0.,Uf|¢)%e* =0

¢7”¢”2§1 |w\,y§m/2
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Proof. To upper bound the previous supremum, we use a similar approach to (Chen et al.l 2021)): For U ~
Haar(d), ¢ € B(0,1) and a trace-less Hermitian matrix O, let f(¢,U) = (¢|UOUT|¢), we have E (f(¢,U)) =
Ltr(O)tr(|o)|) = 0 (see Weingarten Calculus and f is 2||O||-Lipschitz:

1F(U) = FV)] < 2[(6l(U = V)OUT|)| < 2O[l[[U = V]2
Therefore by the concentration inequality
P (|f(U)] > t) < exp(—dt?/48).
Hence
P (|f(U)]* > t) < exp(—dt/48).
For m/2 unitaries Uy, ..., U, 2 and A = 2d/C for sufficiently large C. Denote by X = |f(U)|?, by Markov’s

inequality:

00 m/2
P 2 Z If (U >t ] <exp(—Amt/2)E (e’\X)m/2 < exp(—Amt/2) (1 +/ dx)\emedz/‘lg)
0

1<y<m/2
< exp(—dmt/2C) (C")™? < exp(—dmt/C + mlog(C")),

with C’ another constant. In order to prove an inequality valid for all ¢ € B(0,1), let’s take an n-net {¢; };
of size at most (1 +2/1)2?. For ¢ € B(0,1), there is ¢; such that ||¢ — &;|l2 < 1. Moreover |f(¢,U)| < ||O]|
SO

2N U 16U < 2 S 6.0, 160U,
1<y<m/2 1<y<m/2
<23 20061 - 6i)U,0U]16)] < 2ul0]*
1<y<m/2

Therefore

Pl3g:2 3 If6.0)F > t+2]0] §P<3¢i:;Z|f(¢i7Uk)I2>t>
k=1

1<y<m/2
< (14 2/n)** exp(—dmt/C + mlog(C")).
Taking n = 1/m yields:

P3¢ Z |f(6,U)* >t +2[|0]*/m | <1+ 2m)* exp(—dmt/C +mlog(C")).

1<y<m/2

2
m

Applying the union bound, we can obtain:

2 2|04 4|2
P [ 3¢, 3z, . Z <¢|Uy0$’yUJ\¢)2 >t+ Ty < 4e°4(1 4 2m)?? exp(—dmt/C 4 mlog(C")).
y<m/2
Let’s take t = (l0g(40)+ed+2d 103(1+2m)+m10g(C') in order to have
m
1 2(104.41?
P(vo 3 (010,0.,0810)7 <t + A0l
m
|z],y<m/2

1 2|04
>P | Vo, Vz, — U,0, ,Ul|lp)? < t + 228

y<m/2

> 9/10.
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Therefore we have the existence of {Uy}, such that for all y # =
loy = o=lle > e,

and

1 tr(02 ) 2(0g,4|I?
sup  — ($|U, 04, Uf|9)? < +t+ L
ollslz<t M $|7§m/2 K d(d +1) m

< 201 n Clog(40) + cd + 2d1og(1 + 2m) + mlog(C”) n &
d+1 dm m

Finally, we showed the existence of quantum states {0, 4}, such that:

11
IX,)Y :I,....Iy) =0 <+ Og(m)) Ne2.

d m

To sum up, we have shown the existence of quantum states {o; 4}, such that:

Qlog(m) +d) < I(X,Y : X', Y) < I(X,Y : I1,...,In) < O (; + log(m)) Ne2.
m

We conclude that N = Q) (min {mid d—z})

log(m)e?’ €2

C.2 Adaptive strategies

It is important to see why this proof doesn’t work for adaptive strategies. The lower bound on the mutual
information has nothing to do with the non-adaptive/adaptive option of the algorithm so it remains true.
However, upper bounding the mutual information cannot be done the same way since now the POVM used
at time ¢ depends on the previous outcomes. Let {u;}Y ; be a sequence constituted by the outcomes of
a correct adaptive algorithm. Let MY, _, = {|¢y~"}¢»="|}, the POVM used at time ¢ given the previous
outcomes u¢. Recall that the mutual information between (X,Y") and (I1,...,Iy) can be expressed as:

I(X,Y:Il,...,IN)221+22.

The second sum can be upper bounded by the same technique as before (using for example Jensen’s inequality
and the inequality —log(1 — 2?) < 22?) and yields the same upper bound. The first sum is more involved
because the product cannot be simplified due to the dependence between the POVMs and the previous
outcomes. To see this, we can try to simplify the first sum as far as possible:

N
Z > H¢“<t|pxy\¢“<f>log <H< “<tdpzy|¢"<f>>

T,y Ul,...,un t=1 t=1

=D H¢“<f|pmy\¢”<f Zlog (O [dpr | 017))

T,Y Ul,...,un t=1

7 DY H O poyl b ) log (00 dpay |01))

z,y,k u1,...,uny t=1

=17 Z Z H bt prylons) log ((Bus* dpe.y|dus®)) ,

z,y,k ut,...,up t=1
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where the last equality follows from the fact that

Z< Gurt |payldus) = tr(pey) = 1,

Ut

for t > k and log ((¢us" |dpm’y|¢u<’“)) is independent from wu;. But we are stuck at k, we cannot simplify the
sums on u for s < k since (¢us*|ps,yldus®) has common terms with (dus”|pz, y|¢u<k> which is inside the log
function.

In order to circumvent this difficulty, we can upper bound the k** term which poses the obstacle of simplifi-
cation. Using the inequality log(z) < x — 1 for all z > —1 we obtain:

Z > H¢>“<t|pzy|¢“<t>log(< < dpa g |Puc))

z,y,k u1,...,up t=1

I | (et

z,y,k u1,...,up t=1

M Z Z H ¢u<t|pz y|¢u<t>(< u<k|dpzy|¢“<k> 1)

z,y,k u1,...,up t=1

LT % Tt (5 20) ooz o,

z,y,k ut,...,up t=1

DD Hﬁf*

z,y,k u1,..., up—1 t=1

5 3 Tl

z,y,k U, up—1 t=1

S D S | (5

T,y kUL, up—1 t=1

(i
(i)
(i)
LY % et (5% Yo« eueon)
(G+e)
(%)

U<k>

I z, u 1 u u u u
42250 It 30 LU T + 204, 0124 0160 ot

Uk

\¢zft>Z (1[0, 4 Pl

Uk

|¢z:t>2 (B<k]e04 4| puk)?

wy,kul, SUE—1 t=1

I O,
DD T JHeat )10l x 5 x (€02 )
’Eykul ..... ug—1 t=1
Ut ]I Or,y U<t 1 2 2

SMZ > H¢< JHeTs ) |ous) x o x 11%de

z,y,k u1,.., up—1 t=1
< = len“

15117
< 11%2Ne?,

where we use again Y, (¢u;"|Oq y|du;") = tr(Oz ) = 0 for all ¢ and

U<k>< U<k D
U

Z< u<k|O u|¢u<k Ztr y|¢u<k< u<k|0 z,y

Uk

< Ztr usk)gu<r]) = tr(02,) < 11%d.

Uk
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Therefore the mutual information can be upper bounded by

1
I(X,)Y: X' Y')<12INE* +2N sup — > (9|U,0,,Uf|¢)%
ollelz<t M =

< 123Né&2.

Since the mutual information is always lower bounded by Q(log(m) + d) we conclude that N = Q((d +
log(m)/e?). Finally, we have proven the following lower bound on adaptive strategies for hypothesis selection
problem:

Proposition C.8. Any learning algorithm with adaptive incoherent measurements requires

copies of p to find the closest quantum state o+ to p and approzimate p to at most £/10 with at least a
probability 2/3.

This Proposition implies that Alg. [1] is almost optimal and ©(d/e?) is the optimal copy complexity of

hypothesis selection problem using adaptive incoherent measurements.

D Technical lemmas

In this section we group technical lemmas useful for the previous proofs of this article.

D.1 Weingarten Calculus

Since we use generally a uniform POVM, which consists in sampling a Haar-unitary matrix, we need some
facts from Weingarten calculus in order to compute Haar-unitary intergrals. If 7 a permutation of [n], let
Wg(7, d) denotes the Weingarten function of dimension d. The following lemma is crucial for our results.

Lemma D.1. (G4, |2015) Let U be a d x d Haar-distributed unitary matriz and {A;, B;}; a sequence of d x d
complex matrices. We have the following formula

E (tr(UBU*AU ... UB,U*A,,) Z We(Ba™t d)trg-1(Bi,. .., By)tray, (A1, ..., Ay),
7ﬂes7l

where v, = (12...n) and tro(My, ..., M,) = Hjtr(Ilicc, M;) for o =11;C; and C; are cycles.

We need also some values of Weingarten function:
Lemma D.2. o Wg((1),d) =1

L
(12).d) = .
(1)(2).d) = L.
(123).d) = qr=Z=
(12)(3),d) = gr=rite=g-

.« We(1)(2)(3).d) = gy

We(
We(
We(
We(

D.2 Concentration inequalities for Haar-random unitary matrices

Theorem D.3. (Meckes et al, |2013) Let M = U(d)* endowed by the Lo-norm of Hilbert-Schmidt metric.
If F: M — R is L-Lipschitz, then for anyt >0

P(|F(Uy,...,Us) —E(F(Uy,...,U))| > t) < e~ /1207

where Uy, ..., Uy are independent Haar-distributed unitary matrices.
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