DARA: Decomposition-Alignment-Reasoning Autonomous Language
Agent for Question Answering over Knowledge Graphs

Anonymous ACL submission

Abstract

Answering Questions over Knowledge Graphs
(KGQA) is key to well-functioning au-
tonomous language agents in various real-life
applications. To improve the neural-symbolic
reasoning capabilities of language agents pow-
ered by Large Language Models (LLMs)
in KGQA, we propose the Decomposition-
Alignment-Reasoning Agent (DARA) frame-
work. DARA effectively parses questions into
formal queries through a dual mechanism: high-
level iterative task decomposition and low-level
grounding coupled with logical form construc-
tion. Importantly, DARA can be efficiently
trained with a small number of high-quality rea-
soning trajectories. Our experimental results
demonstrate fine-tuning DARA on small LLMs
(e.g. Llama-2 7B) is not only cost-effective
but also yields better performance compared
to in-context learning-based agents utilizing
the most powerful LLMs available to date,
like Llama-2-chat (70B) and GPT-4, across
different benchmarks. In addition, DARA at-
tains performance comparable to state-of-the-
art enumerating-and-ranking-based methods.

1 Introduction

Autonomous agents building on large lan-
guage models (LLMs) such as AutoGPT !,
WebGPT (Nakano et al., 2021), and Tool-
Former (Schick et al., 2023) have exhibited strong
capability in planning and reasoning. They have
been used to solve complex tasks in various envi-
ronments involving web content, operating systems,
databases, or games, among others. In a wide vari-
ety of environments, knowledge graphs (KGs), e.g.,
Freebase (Bollacker et al., 2008), Wikidata (Vran-
decic and Krotzsch, 2014), and DBpedia (Auer
et al., 2007), are core to the functionalities of the
agents. Previous research, e.g., tool learning with

"mttps://github.com/
Significant-Gravitas/AutoGPT

foundation models (Qin et al., 2023) and Agent-
Bench (Liu et al., 2023), has equipped off-the-shelf
LLMs (e.g. GPT-4 (OpenAl, 2023)) with multi-
ple functions to conduct Knowledge Graph Ques-
tion Answering (KGQA) in the In-Context Learn-
ing (ICL) setup (Brown et al., 2020). However,
the performance of these agents falls significantly
short when compared to classical enumerating-and-
ranking-based methods (Shu et al., 2022; Gu et al.,
2023) in which all possible reasoning paths starting
from anchor entities in the question are enumerated
and ranked.

In general, ICL-based LLM agents have to
heavily rely on extremely large LLMs to attain
their performance (Brown et al., 2020; Chowdhery
et al., 2023; Ouyang et al., 2022; Touvron et al.,
2023a). However, those LLMs are not inherently
pre-trained for autonomous agent use cases, which
often require complex multi-step reasoning in dif-
ferent environments. Prior studies (Lightman et al.,
2023; Dziri et al., 2023) demonstrate that LLMs
are prone to produce hallucinations and logical
mistakes in multi-step reasoning. Other than that,
LLMs are oversensitive to prompting (Zhao et al.,
2021; Chen et al., 2022; Lu et al., 2023). Crafting
prompts that can guarantee LLM agents understand
environments and acquire the needed abilities (e.g.
planning or calling correct functions) for perform-
ing tasks is challenging (Liu et al., 2023). Beyond
technical limitations, the use of commercial LLMs
in ICL-based LLM agents, such as ChatGPT 2 and
GPT-4 (OpenAl, 2023), raises significant practical
concerns regarding privacy, costs, and flexibility of
model management. For example, in terms of cost,
running AgentBench with GPT-4 over a test set
with only ~4,500 examples incurs an expenditure
of 1,300 U.S. dollars in stark contrast to ~$30 of
the proposed model (see section 5.5 for details.).

To address these challenges, this paper fo-
cuses on fine-tuning small models by proposing

https://openai.com/blog/chatgpt

https://github.com/Significant-Gravitas/AutoGPT
https://github.com/Significant-Gravitas/AutoGPT
https://openai.com/blog/chatgpt

the Decomposition-Alignment-Reasoning Agent
(DARA) framework (as illustrated in Figure 1). We
explore solutions to the above challenges from two
key components of autonomous LL.M agents. (1)
Question understanding: natural language ques-
tions show significant variability and diversity, and
their meaning may hinge on subtle nuances. In
alignment with leveraging the emerging capabil-
ity of LLMs, DARA is equipped with iterative
task decomposition (ITD) to dynamically decom-
pose the question into high-level tasks. Com-
pared to pre-decompositon (Wang et al., 2023c;
Sun et al., 2023b) and implicit decomposition (Yao
et al., 2023), our experiments show ITD superior-
ity. (2) Schema alignment: KGs feature complex
and extensive schemas describing entities and re-
lations. To ground the decomposed task in KGs,
the agent must align the intent with the correct re-
lation among massive candidates which may not
be seen during training. We propose a reading-to-
learn method by reading descriptions of relations to
select promising ones. This approach alleviates the
coverage and scalability issue of KG-augmented
pre-training methods (Liu et al., 2020; Yasunaga
et al., 2022). Unlike AgentBench which employs
ReAct (Yao et al., 2023), DARA adopts a two-level
reasoning structure. At the top level, iterative
task decomposition provides guidance, while at the
lower level, reading-to-learn relation selection facil-
itates task completion. This hierarchical structure
explicitly disentangles planning and downstream
grounding, leading to enhanced performance.

To create high-quality reasoning trajectories for
fine-tuning, we convert logical forms to natural lan-
guages using a semi-automatic method based on
GPT-4 and human verification. Without human ver-
ification, our experiments show GPT-4 encounters
difficulties in producing reasoning trajectories of
the desired quality. To assess the efficacy of DARA,
we conduct zero-shot evaluations on three popu-
lar benchmark datasets, i.e., WebQSP (Yih et al.,
2016), GraphQ (Su et al., 2016), and GrailQA (Gu
et al., 2021). Our findings confirm that DARA sub-
stantially outperforms ICL-based LLM agents. To
conclude, our contributions are:

* We propose a novel LLM-based agent frame-
work, Decomposition-Alignment-Reasoning
Agent (DARR), for leveraging KGs to answer
questions. Fine-tuned DARA proves to be both
more cost-effective and powerful than ICL-
based LLM agents utilizing GPT-4 and Llama-

2-chat (70B). For instance, on 4,559 test ex-
amples, DARA-7B takes $20.51 while the ICL-
based agent with GPT-4 incurs $1,208. In terms
of performance, on GrailQA, DARA-7B out-
performs ICL-based LLM agents with GPT-4
and Llama-2-chat (70B) by 11.82% and 42.1%
(F1-score).

* DARA demonstrates notable efficiency in learn-
ing from a limited dataset using iterative task
decomposition and reading-to-learn relation se-
lection. Training with 768 reasoning trajecto-
ries, we show that fine-tuned DARA can achieve
highly competitive performances comparable to
enumerating-and-ranking-based models trained
on larger data.

* Our experiments show that generating high-
quality sequential reasoning trajectories for
KGQA is still difficult for GPT-4, in contrast to
previous studies that show the success of Chat-
GPT or GPT-4 in automatic annotation for other
tasks (Gilardi et al., 2023; Xu et al., 2023). This
emphasizes that high-quality reasoning trajec-
tories are crucial for LLM agents in the KG
environment, shedding light on the design of
LLM agents in other digital environments such
as web browsing and operating systems.

2 Related work

KG-enhanced LLM Reasoning is a popular
paradigm to reduce hallucinations and unfaithful
reasoning chains of LLMs. In this approach, re-
trieved triplets from KGs and parametric knowl-
edge within LLMs (i.e. knowledge stored in their
parameters) (Petroni et al., 2019; Roberts et al.,
2020) work in tandem to derive the final answer to
a given question. The Knowledge-Driven Chain-of-
Thought framework by Wang et al. (2023a) refines
LLM reasoning using an external QA model based
on KGs. Meanwhile, Think-on-Graph (ToG) (Sun
et al., 2023a) and StructGPT (Jiang et al., 2023)
directly utilize off-the-shelf LLMs to traverse over
the graph to find the most relevant knowledge and
integrate them with parametric knowledge of LLMs
to produce the final answer. Despite their potential,
these methods face challenges when the parametric
knowledge in LLMs is incorrect or outdated. In
addition, in scenarios of conflict between paramet-
ric knowledge and external non-parametric knowl-
edge, recent research (Qian et al., 2023) reveals that
LLMs are susceptible to the distraction of external
knowledge, when the latter is irrelevant, leading to

Question: Sidney Crosby's team belongs to which conference for ice hockey? The linked

entity is Sidney Crosby (m.03bsht).

_ ~ N -~ ~N
- -~ Y N AN
7 ~
_ - —_———- - 7/ f Final S-expression
mm Task Decomposition # Final s-exp: (JOIN (R
4 # Task 1: Find Sidney Crosby's hockey tean. ice_hockey.hockey_team.conference) s-exp- | ~ N
Iq 1)
T \
Lm Ag7nt l \
| 1
\ e
prE—y Task Decomposition /
/| ### Action 1.1.1: get_relations(m.03bsht) # Task 2: Find the conference the team /'(\
e © Q /| ### Obs 1.1.1: m.03bsht has following relations. The outgoing relations are belongs to ; 7
[ice_hockey.hockey_player. hockey posltlon ice_hockey.hockey_player.: shoots, : \
. _’_, sports.pro_athlete.teams, ol pic_athlete. yl. The i \
relations are [ice_hockey. hockey team captain]. |
Thought 1.1.1: From the above relations, ice_hockey.hockey_team.captain Task-level S-expression
KRnowledge Graph \ (incoming), sports.pro_athlete.teams (outgoing) are the two most likely ## S-exp-1: (JOIN /
relations to finish Task 1. To select the correct one, | need to check their . N N /
N underlying meaning. ice_hockey.hockey_team.captain m.03bsht)
= 1 //
/ [s
[| ### Action 1.1.2: get_descriptions(ice_hockey.hockey_team.captain (incoming), -
| |sports.pro_ athlete.teams (outgoing)) ### S-exp-1.1: (JOIN
@D\ ### Obs 1.1.2: ice_hockey.hockey_team.captain m.03bsht,
@ @ \ 1 the incoming relation 'ice_hockey.hockey_team.captain', which describes f /
—) the captain of hockey team. The type of its head entities is
. ‘ice_hockey.hockey_team' (A hockey team is a group of hockey players that .
play the sport of ice hockey.). :W# T}.wught 1:1.2: From the explanations, use the
Knowledge Graph 2. the outgoing relation 'sports.pro_athlete.teams', which describes teams | incoming relation

that this athlete has played for. ...

that they have played for.).

entered separately.) The type of its tail
entities is 'sports.sports_team_roster' (This type connects players to teams

'ice_hockey.hockey_team.captain' of Sidney
Crosby (m.03bsht) with the operator JOIN to get
the team he belongs to.

e
-~

~ ~

~ —

Figure 1: In this illustration, (DARA) conducts Task Decomposition (green blocks), Grounding (orange blocks),

and Logical Form Construction (grey and blue blocks).
DARA uses the proposed reading-to-learn relation-selection method to select the relation

hockey team.”,

Starting with the task “Find Sidney Crosby’s

ice_hockey.hockey_team.captain, constructing a step-level s-expression (s-exp-1.1). As it is a single-step task,
the task-level s-expression is s-exp-1. This iterative process continues until the final s-expression is complete.

WwOrse performance.

LLM-based Autonomous Agents for KGQA.
LLM-based autonomous agents take LLMs as the
core controllers to plan, reason, and take actions
in different environments (Wang et al., 2023b).
Unlike KG-enhanced LLM reasoning which fo-
cuses on refining reasoning chains using KG, LLM
agents are able to conduct more complex tasks
such as constructing logical forms for a given
question by utilizing a set of human-like capa-
bilities (Sumers et al., 2023) including question
decomposition, logical reasoning. Tool learning
with foundation models (Qin et al., 2023) and
AgentBench (Liu et al., 2023) are the two most
relevant works; they design different actions that
LLM agents can take. Qin et al. (2023) asked
the LLM agent to directly write SPARQL (Stan-
dard Protocol and RDF Query Language). In con-
trast, AgentBench adopts intermediate represen-
tation, namely s-expression (Gu et al., 2021), to
represent SPARQL and construct the s-expression
step-by-step. However, both of them achieve poor
performance due to the limitations of ICL-based
agents as discussed in Section 1, and imperfect
framework design. DARA improves the reasoning
abilities of LLM agents in KGQA via fine-tuning

and hierarchical reasoning framework design.

Enumerating-and-Ranking-based Methods for
KGQA is a prevalent paradigm (Yih et al., 2015;
Lan and Jiang, 2020; Luo et al., 2018; Abujabal
et al.,, 2017). To narrow down the large search
space of KGs, it first enumerates all possible candi-
date logical forms from the 2-hop neighborhood of
given topic entities or retrieve similar logic forms
from training examples. Subsequently, a ranker
is applied to select the best one. However, this
brute-force approach can lead to exponential candi-
dates and thus suffer from scalability and coverage
issues. To alleviate these problems, generation-
augmented methods (Ye et al., 2022; Shu et al.,
2022) generate diverse logical forms based on re-
trieved candidates. Besides, dynamic bottom-up
semantic parsing approaches (Gu et al., 2023; Gu
and Su, 2022) construct the final logical form in-
crementally and prune the search space on the fly.
Although these methods can achieve high perfor-
mance, they are time-consuming and necessitate
expert-crafted rules for logical form construction.
In contrast, LLM agents use language as the carrier
for explicit planning, grounding, and reasoning,
offering enhanced explainability, efficiency, and
flexibility. Moreover, LLM agents automate the

entire process from task decomposition to relation
selection, to logical form construction, eliminat-
ing the need for extensive enumeration based on
expert-crafted rules.

3 The Approach

3.1 Overview

An overview of DARA is described in Algorithm 1.
Formally, given a knowledge graph G, a question
Q, and a set of actions A, the objective is to con-
struct a logical form L, i.e., s-expression (Gu et al.,
2021) that yields the final answer to the question
Q. To achieve this goal, DARA iteratively performs
task decomposition, grounding and logical form
construction until £ is completed®. During the
iteration ¢, for decomposed task 7; (line 3), multi-
ple steps S;1, Si2, ..S;; are conducted until 7; is
finished (line 4-13). In the step S;; (line 6-7),
DARA grounds the decomposed task 7; against G
(Section 3.3.2) and constructs the step-level logical
form L;; (Section 3.3.3). When DARA determines
that £;; can finish the Task 7;, it will assign £;; to
the task-level logical form L; (line 8-11).

3.2 The Action Space

The action space A of DARA consists of a set of
functions to interact with the KG. For Freebase, the
space of A is as follows:

* get_relations(entities, topk): This function
returns top-k 1-hop relations for given entities.
Returned relations include both incoming and
outgoing relations, unlike AgentBench which
only considers outgoing relations.

* get_relevant_relations(task, topk): When
there is no entity mentioned in the question, this
function returns top-k relevant relations based
on the decomposed task.

» get_classes(entities, topk): This function
provides the top-k classes associated with the
given entities.

* get_relevant_classes(task, topk): This func-
tion returns the top-k relevant classes deter-
mined by the decomposed task.

* get_descriptions(schema): For given rela-
tions or classes, this function retrieves its de-
scriptions.

3pARA will automatically terminate when it finishes the
construction of the final logical form L.

Algorithm 1: DARA
Input: knowledge graph G, question Q, a
set of actions A
Output: Grounded logical form L of the
input question Q
while True do

1
2 // upper-level guidance
3 T; + task_decomposition(7;_1);
4 while True do
5
6
7

// Lower-level grounding
Sij «— grounding(S;;_1) ;
,Cij —
construct_logical_form(S;;) ;
8 if 7; is finished then
9 ﬁl — ﬁij 5
10 break ;
1 end if
12 j—i+1;
13 end while
14 if No further Task is needed then
15 L+ L;;
16 break ;
17 end if

18 11+ 1;
19 end while

To alleviate the burden of schema selection, we
adopt the top-k filtering mechanism using a bi-
encoder retriever (Reimers and Gurevych, 2019),
fine-tuned on schemas in training data.

3.3 The Reasoning Framework

3.3.1 Iterative Task Decomposition

Iterative task decomposition serves as the high-
level planner in our framework. Decomposing
questions into executable tasks is a fundamental
ability in human cognition (Pelletier, 2004). By
breaking down complex questions into smaller,
more manageable tasks, agents can better grasp
the underlying intent and devise an executable plan
to find the answers.

When grounding in the KG, decomposing the
question upfront into multiple tasks that align well
with the KG structure can be challenging. DARA
hence incorporates and advocates iterative task de-
composition (as shown in the Task Decomposi-
tion block in Figure 1.). During the process, the
agent will dynamically decide if more tasks are
needed to finish the final goal. The ablation study
in Section 5.2 will emphasize the consistent su-

periority of iterative task decomposition over the
pre-decomposition approach (Wang et al., 2023c;
Sun et al., 2023b) for LLM agents in KGs.

3.3.2 Reading-to-learn Relation Selection

To ground the decomposed tasks against KGs, the
primary objective is to identify the most relevant re-
lation aligning with the task intent. To enhance the
schema understanding ability of foundation mod-
els, previous efforts (Liu et al., 2020; Yasunaga
et al., 2022) pre-train models on KG-augmented
data. However, such methods have limitations in
scalability and coverage. It can struggle to fully
capture the extensive and diverse topics, entities,
and relations present in large-scale KGs (e.g. Free-
base has around 44 million topics and 2.4 billion
facts.).

To alleviate this issue, DARA introduces
a two-stage reading-to-learn relation selection
method based on the recently emerging pow-
erful natural language understanding ability of
LLMs. DARA first invokes get_relations or
get_relevant_relations to obtain relations and
selects n most likely candidates among them (Step
1.1: Stage I in Figure 1). Subsequently, descrip-
tions of these selected candidates are obtained us-
ing the get_descriptions function (Step 1.1: Stage
2 in Figure 1). By reading these descriptions, DARA
selects the most suitable one (Step 1.1: Schema Se-
lection in Figure 1). Note that this approach elimi-
nates the need for LLM agents to extensively learn
the environment in advance, making it more adapt-
able and transferable across different scenarios.

3.3.3 Logical Form Construction

As depicted in Figure 1, DARA automatically con-
structs the logical form of the current step based
on the selected schema item and the logical form
from the previous step. DARA learns logical forms
syntax and construction via fine-tuning while ICL-
based agents have to acquire it via explanation in
the prompt. This increases the learning difficulty
for some flexible and complex usage of logical
operations. For the syntax and complex usage of
logical forms (s-expression), please refer to Ap-
pendix A.3.

3.4 Constructing Reasoning Trajectory Data

As we will demonstrate in Section 5.4, creating
high-quality reasoning trajectory data is crucial for
training. Specifically, we achieve this by initially
filtering <question, s-expression> pairs based on

GrailQA GraphQ WebQSP Total number
426 193 149 768

Table 1: The size of curated training data from different
datasets with reasoning trajectories.

GrailQA GraphQ WebQSP
3,274 1,229 56

data size

Table 2: Test data with unseen schemas of each dataset

GraphQ, WebQSP, and GrailQA. The selection cri-
teria include ensuring relation diversity, removing
duplicates, and including complex questions with
at least two subtasks.

Golden decomposed tasks are obtained by break-
ing down s-expression based on logical operations
(refer to Appendix A.2). To convert these tasks into
natural language, they are fed into GPT-4, coupled
with the corresponding question using the prompt
in Appendix C.1. For the reasoning trajectories of
the reading-to-learn relation selection component,
we automatically create them using the schema
itmes in golden s-expression and functions in Sec-
tion 3.2.

After inspecting and rectifying the above <ques-
tion, s-expression> pairs, and corresponding rea-
soning trajectories, 768 instances are obtained (Ta-
ble 1). Further details on data construction are
available in Appendix A, with an exemplary rea-
soning trajectory of DARA in C.2.

4 Experiment Setup

One of the preliminary challenges of interacting
with KGs is the substantial volume of unseen re-
lations, classes, and entities during training. To
simulate the real-world unseen scenario and for a
fair comparison, we conduct zero-shot evaluation
where schemas in the test data do not appear in
training data. For GrailQA, the evaluation is per-
formed on the development data since the golden
entity linking results in the hidden test data are un-
available. The resulting statistics of the filtered test
data are presented in Table 2.

4.1 Evaluation metrics

We use two evaluation metrics: exact match which
evaluates if the predicted and gold logical forms
are semantically equivalent (Gu et al., 2021) and
F1 score based on the intersection of predicted and
gold answers.

4.2 Baselines

We compare DARA with ICL-based LLM agents
introduced in AgentBench, which provides seven
functions to operate KG interaction and logical
reasoning. Commercial GPT-4 and open-source
Llama-2-chat (70B) serve as backbone LLMs. To
have a comprehensive understanding of the per-
formance of LLM-based agents in KGQA, we
also include methods from the bottom-up semantic
parsing paradigm. We consider state-of-art mod-
els ArcaneQA (Gu and Su, 2022) and Pangu (Gu
et al., 2023) as baselines. ArcaneQA employs a
constraint decoding method to generate an exe-
cutable sub-program at each step. Pangu follows
the enumeration-then-rank paradigm. At each step,
it enumerates all possible subprograms and applies
a discriminator to select top-k candidates with the
highest scores.

4.3 Implementation Details

We fine-tuned DARA based on Llama 2 (Touvron
et al., 2023b) with 4 80GiB H100 and use one
40GiB A100 GPU for inference. The implementa-
tion details can be found in Appendix B.

S Experiment Results

5.1 Overall Performance

In a departure from the current trend of employ-
ing ICL-based LLM agents with advanced com-
mercial LLMs, we have observed that fine-tuned
DARA with smaller LLMs can achieve much better
performance (cf. Table 3). It underscores the effi-
cacy of fine-tuning smaller LLM agents, especially
in complex environments like KGs. In particular,
DARA-13B has exhibited superior performance
across all datasets, surpassing GPT-4 and Llama-2-
chat (70B). Notably, on GrailQA, DARA-7B and
DARA-13B have outperformed GPT-4 by 11.82%
and 14.46% (F1), respectively. In terms of ICL-
based agents themselves, GPT-4 demonstrates a
significant edge over Llama-2-chat (70B). Llama-
2-chat (70B) exhibits several shortcomings, such
as format errors, hallucinations, and the misun-
derstanding of instructions. This suggests that
if constraints such as cost, data privacy, control-
lability, and reproducibility preclude the use of
advanced commercial LLMs, fine-tuning smaller
open-source LLMs is a highly viable and effective
choice.

In comparison to bottom-up parsers, DARA
showcases its prowess. DARA-13B outperforms

both AcraneQA and Pangu (T5-large) on GraphQ
and WebQSP. Notably, DARA-13B outperforms
AcraneQA by 19.84% on GraphQ. For GrailQA,
while DARA-13B lags behind Pangu (T5-large)
by 11.41% (F1-score), it is important to note that
Pangu utilized over 57 times more data (44,337 ex-
amples) for training, emphasizing the substantial ef-
ficiency of DARA in learning from a limited dataset
(768 examples). On WebQSP, DARA~-7B achieves
the best performance, outperforming Pangu (T5-
large) by 5.95%. However, an interesting obser-
vation is that the performance of all models is
much lower than that of the other two datasets.
Pangu (T5-large) can achieve a 78.9% F1 score on
the whole test data (Gu et al., 2023) while it only
achieves a 36.72% F1 score on zero-shot evalua-
tion. Shu and Yu (2023) has a similar observation
on cross-dataset evaluation. The main reason is
the different data construction methods and limited
expressivity of current s-expression. We provide
detailed analysis in Appendix D.

5.2 Deatailed Analysis on DARA Components

The effectiveness of Iterative Task Decomposi-
tion (ITD). We advocate the use of ITD for var-
ious environments. As shown in Table 4, when
DARA is equipped with pre-decomposition (PD),
the performance drops more than 6% on GraphQ,
GrailQA and 14.39% on WebQSP. After inspecting
the errors made by DARA with PD, we found tasks
it produced are often incorrect or redundant. For
the question: Which conference sponsor also spon-
sored the conference series with GridRepublic? In
the pre-decomposition approach, the decomposed
tasks are as follows: Task I - Find the conference
series with GridRepublic, Task 2 - Find the sponsor
of the conference series with GridRepublic, and
Task 3 - Find the conferences sponsored by the
same sponsor. in which Task 3 is unnecessary for
answering the question. The ITD method, on the
other hand, would stop the iteration at Task 2 and
return the answer. These results underscore the im-
portance of ITD for DARA, as it allows for dynamic
and context-aware task decomposition, leading to
improved performance across various datasets.

The role of the reading-to-learn relation selec-
tion method. The results presented in Table 4
demonstrate the significance of the reading-to-learn
relation selection strategy. When this strategy is
not employed, the performance experiences a de-
crease, especially in GraphQ (5.95% drop). To

Model GraphQ GrailQA WebQSP
EM F1 EM F1 EM F1

Off-the-shelf LLM Agent (in context learning)

AgentBench (Llama-2-chat-70B) 25.63 30.33 33.20 3572 893 10.18

AgentBench (GPT-4) 53.86 64.48 63.56 65.89 25.00 32.09
Fine-tuned LLM Agent (768 examples)

DARA-TB 51.51 6274 75.05 7771 30.36 42.67

DARA-13B 55.57 67.34 77.03 80.35 30.36 41.63
Bottom-up Parser (full train data)

AcraneQA 37.00 47.50 78.52 81.81 2321 37.80

Pangu (T5-base) 56.06 66.70 88.30 91.76 19.64 32.64

Pangu (T5-Large) 55.57 6721 —* —* 2321 36.72

Table 3: Overall zero-shot evaluation results in three different datasets. * indicates the trained T5-large on GrailQA
is not provided in the GitHub repository of Pangu. Trained T5-3B models are unavailable as well. All models use
the golden entity linker. The full train data size of each dataset can be found in Appendix 6.

GraphQ GrailQA WebQSP
DARA-7B 62.74 7771 42.67

w/ PD 56.50 (6.24) 71.22 (6.49 |) 28.28 (14.39)
w/o RTL 56.79 (5.95 1) 75.12 (2.59 |) 40.77 (1.90 })

w/o FT Retriever 61.29 (1.45]) 75.76 (1.95) 36.18 (6.49 |)

Table 4: Ablation study of different components of
DARA. The metric used is the F1 score. PD represents
task pre-decomposition. RTL represents the reading-to-
learn relation selection method. Without the FT (fine-
tuned) retriever, an off-the-shelf retriever all-mpnet-
base-v2 is used.

illustrate the impact, for the question: What vo-
cal range is Pavarotti? In the absence of the
reading-to-learn selection strategy, DARA selects
the incorrect relation, music.artist.track. However,
with the selection strategy in place, DARA chooses
the correct relation, music.opera_singer.voice_type,
whose description contains information about the
vocal range. These results highlight the critical role
that the reading-to-learn relation selection strategy
plays in enhancing DARA’s performance especially
when the literal meaning of relations cannot ex-
press the needed information.

The fine-tuned retriever for relation filtering.
To help DARA better select the relations, we lever-
age a fine-tuned retriever to filter the top five can-
didate relations for the DARA (Section 3.2). As
shown in Table 4, the fined-tuned retriever con-
tributes to the improvement in model performance.
On WebQSP, without the trained retriever, the per-
formance drops by 6.49%.

5.3 Error Analysis

To have a concrete understanding of the utility of
DARA, we compare its reasoning trajectories with
those of ICL-based LLLM agents. For ICL-based
LLM agents, the majority of errors happen dur-
ing grounding. Without accessing descriptions
of schemas, ICL-based agents are prone to mis-
understand relations or prematurely conclude the
task especially when it reaches a compound value
type (CVT) node with n-ary relations*. In contrast,
DARA effectively identifies the CVT node through
its reading-to-learn relation selection component.
Apart from this, limitations in the design of ICL-
based agents within AgentBench become apparent
in addressing complex tasks. These agents lack
functionalities for questions involving class infor-
mation or incoming relations of given entities, and
they struggle with questions lacking explicit enti-
ties. A thoughtful design of action space is crucial
for LLM agents to solve various complex questions.
The third major issue of ICL-based LLM agents
is related to the instruction following. Llama-2-
chat (70B) encounters challenges in following the
reasoning pipeline provided in the demonstration,
leading to failure function calls. While GPT-4 per-
forms better in demonstration understanding, it
struggles to halt automatically even when it reaches
the trigger phrase for the final answer. This leads to
continued generation beyond the necessary point,

*CVT is the mediator in Freebase so the agent needs a
further step to get the final answer.

80
60- T T T g T
g
O |l e e e ————
9 40+
—
L
204 =@= GraphQ
GrailQA
0- =@-= WebQSP
T T T T
0 1k 2k 3k

Data size

Figure 2: The performance of DARA-7B on three
datasets trained with reasoning trajectories generated by
GPT-4. - - - (dashed line) represents the performance of
768 human-rectified examples.

often resulting in repetitive or hallucinatory content.
Comparison examples between the three agents are
provided in Appendix E.

5.4 The Quality of Reasoning Trajectories

The utilization of the GPT series for data genera-
tion or annotation has gained popularity in recent
research (Gilardi et al., 2023; Wang et al., 2023d;
Xu et al., 2023). Gilardi et al. (2023) show Chat-
GPT outperforms crowd-workers for several classi-
fication tasks. We investigate if reasoning trajecto-
ries generated by GPT-4 could effectively serve as
training data for our model without human verifi-
cation. We generate trajectories from GPT-4 using
the prompt in C.1 and retain 3,000 trajectories after
filtering the wrong formats.

As illustrated in Figure 2, the performance of
DARA-7B trained on GPT-4 generated data on
three datasets lags behind that of 768 human-
rectified examples. Upon closer inspection of the
generated data, we identified the following issues.
GPT-4 struggles to follow the output format, i.e.,
confusing ‘step’ and ‘task’. Second, it misinter-
prets the intent of the given sequential logical form,
generating tasks that deviate from the specified
goal. Furthermore, the special schema design of
Freebase (e.g. CVT) increases the difficulty of
comprehension. This aligns with the findings of
LIMA (Zhou et al., 2023), and Platypus (Lee et al.,
2023), both of which emphasize that the quality
and diversity of datasets outweigh data size when
fine-tuning LLMs.

Cost

Model

Money Time
AgentBench
(Llama-2-chat (70B)) $1,208 120.07 hours
AgentBench (GPT-4) $1,276 32.07 hours
DARA-7B $20.51 5.01 hours
DARA-13B $31.90 7.72 hours

Table 5: The total cost of different models on 4,559
examples during inference.

5.5 The Running Expense of Models

In Table 5, we calculate the cost of different models
on 4,559 test examples during inference in terms of
expenses and time. Overall, DARA is significantly
cheaper and faster than ICL-based LLM agents
with GPT-4 and Llama-2-Chat (70B). GPT-4 is the
most expensive among them with a cost that is sixty
times higher and a speed four times slower than
that of DARA~-7B. The pricing of the GPT-4 exper-
iment is available on the Auzre OpenAl service
webpage . To assess the price of GPUs used for
Llama-2, we refer to Replicate.com ®. While the
cost may be affected by different factors (e.g. GPU
service providers, inference optimization methods),
the distinct advantage of DARA in terms of afford-
ability and efficiency remains evident.

6 Conclusion

In this paper, we present DARA, a fine-tuned LLM
agent designed for question answering over knowl-
edge graphs. DARA autonomously translates a
given question into an executable query through
iterative task decomposition and a reading-to-learn-
based grounding. Experimental results highlight
the superior performance of DARA, even when fine-
tuned on a smaller LLM and a limited number of
examples, compared to in-context learning LLM
agents with GPT-4 and Llama-2-chat-70B. Addi-
tionally, DARA proves to be more cost-effective and
time-efficient. However, automatically generating
high-quality reasoning trajectories is still difficult.
In the future, we will center on developing methods
to generate high-quality reasoning trajectories for
LLM agent fine-tuning in KG and other symbolic
environments.

Shttps://azure.microsoft.com/en-us/
pricing/details/cognitive-services/
openai-service/

®https://replicate.com/pricing

https://azure.microsoft.com/en-us/pricing/details/cognitive-services/openai-service/
https://azure.microsoft.com/en-us/pricing/details/cognitive-services/openai-service/
https://azure.microsoft.com/en-us/pricing/details/cognitive-services/openai-service/
https://replicate.com/pricing

7 Limitations

Although DARA shows superiority over ICL-based
LLM agents, there are several limitations that call
for further improvement. First, the process of
training DARA relies on acquiring high-quality rea-
soning trajectories. This is currently achieved by
prompting GPT-4 and subsequently verifying the
trajectories through human validation. How to get
trajectories automatically and scalably for LLM
agents in various environments is a promising di-
rection for future research.

Second, DARA lacks the error-correcting abil-
ity, which means it cannot correct itself when er-
roneously decomposing the question or selecting
incorrect relations. Humans excel in fixing errors
based on the current observation and the final goal.
Exploring approaches like Reflextion (Shinn et al.,
2023) could enhance error-correcting capabilities,
although it is important to note that such methods
currently work effectively only with very powerful
LLMs, such as GPT-4.

Third, while DARA is a generic framework for
different knowledge graphs, we only evaluate it
on popular datasets using Freebase as the backend.
For other KGs like Wikidata, there is a scarcity of
high-quality data which contains both questions
and golden logical forms. Therefore, how to em-
ploy weak supervision (only the final answer is
available) for LLM agents reasoning in KG is an
interesting direction.

References

Abdalghani Abujabal, Mohamed Yahya, Mirek Riede-
wald, and Gerhard Weikum. 2017. Automated tem-
plate generation for question answering over knowl-
edge graphs. In Proceedings of the 26th International
Conference on World Wide Web, WWW 17, page
1191-1200, Republic and Canton of Geneva, CHE.
International World Wide Web Conferences Steering
Committee.

Soren Auer, Christian Bizer, Georgi Kobilarov, Jens
Lehmann, Richard Cyganiak, and Zachary G. Ives.
2007. Dbpedia: A nucleus for a web of open data. In
The Semantic Web, 6th International Semantic Web
Conference, 2nd Asian Semantic Web Conference,
ISWC 2007 + ASWC 2007, Busan, Korea, Novem-
ber 11-15, 2007, volume 4825 of Lecture Notes in
Computer Science, pages 722-735. Springer.

Kurt D. Bollacker, Colin Evans, Praveen K. Paritosh,
Tim Sturge, and Jamie Taylor. 2008. Freebase: a
collaboratively created graph database for structuring
human knowledge. In Proceedings of the ACM SIG-
MOD International Conference on Management of

Data, SIGMOD 2008, Vancouver, BC, Canada, June
10-12, 2008, pages 1247-1250. ACM.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurlPS 2020, December 6-12,
2020, virtual.

Yanda Chen, Chen Zhao, Zhou Yu, Kathleen R. McKe-
own, and He He. 2022. On the relation between sen-
sitivity and accuracy in in-context learning. CoRR,
abs/2209.07661.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2023. Palm: Scaling language mod-
eling with pathways. J. Mach. Learn. Res., 24:240:1-
240:113.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine
Li, Liwei Jiang, Bill Yuchen Lin, Peter West, Chan-
dra Bhagavatula, Ronan Le Bras, Jena D. Hwang,
Soumya Sanyal, Sean Welleck, Xiang Ren, Allyson
Ettinger, Zaid Harchaoui, and Yejin Choi. 2023.
Faith and fate: Limits of transformers on compo-
sitionality. CoRR, abs/2305.18654.

F. Gilardi, M. Alizadeh, and M. Kubli. 2023. Chatgpt
outperforms crowd workers for text-annotation tasks.
Proceedings of the National Academy of Sciences,
120.

Yu Gu, Xiang Deng, and Yu Su. 2023. Don’t generate,
discriminate: A proposal for grounding language
models to real-world environments. In Proceedings

https://doi.org/10.1145/3038912.3052583
https://doi.org/10.1145/3038912.3052583
https://doi.org/10.1145/3038912.3052583
https://doi.org/10.1145/3038912.3052583
https://doi.org/10.1145/3038912.3052583
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.48550/ARXIV.2209.07661
https://doi.org/10.48550/ARXIV.2209.07661
https://doi.org/10.48550/ARXIV.2209.07661
http://jmlr.org/papers/v24/22-1144.html
http://jmlr.org/papers/v24/22-1144.html
http://jmlr.org/papers/v24/22-1144.html
https://doi.org/10.48550/ARXIV.2305.18654
https://doi.org/10.48550/ARXIV.2305.18654
https://doi.org/10.48550/ARXIV.2305.18654
https://doi.org/10.1073/pnas.2305016120
https://doi.org/10.1073/pnas.2305016120
https://doi.org/10.1073/pnas.2305016120
https://doi.org/10.18653/v1/2023.acl-long.270
https://doi.org/10.18653/v1/2023.acl-long.270
https://doi.org/10.18653/v1/2023.acl-long.270
https://doi.org/10.18653/v1/2023.acl-long.270
https://doi.org/10.18653/v1/2023.acl-long.270

of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 4928-4949, Toronto, Canada. Association for
Computational Linguistics.

Yu Gu, Sue Kase, Michelle Vanni, Brian Sadler, Percy
Liang, Xifeng Yan, and Yu Su. 2021. Beyond i.i.d.:
Three levels of generalization for question answer-
ing on knowledge bases. In Proceedings of the Web
Conference 2021, WWW ’21, page 3477-3488, New
York, NY, USA. Association for Computing Machin-
ery.

Yu Gu and Yu Su. 2022. ArcaneQA: Dynamic program
induction and contextualized encoding for knowl-
edge base question answering. In Proceedings of
the 29th International Conference on Computational
Linguistics, pages 1718-1731, Gyeongju, Republic
of Korea. International Committee on Computational
Linguistics.

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye,
Wayne Xin Zhao, and Ji-Rong Wen. 2023. Structgpt:
A general framework for large language model to
reason over structured data. CoRR, abs/2305.09645.

Yunshi Lan and Jing Jiang. 2020. Query graph gen-
eration for answering multi-hop complex questions
from knowledge bases. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 969-974, Online. Association for
Computational Linguistics.

Ariel N. Lee, Cole J. Hunter, and Nataniel Ruiz. 2023.
Platypus: Quick, cheap, and powerful refinement of
Ilms. CoRR, abs/2308.07317.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Har-
rison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl
Cobbe. 2023. Let’s verify step by step. CoRR,
abs/2305.20050.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju,
Haotang Deng, and Ping Wang. 2020. K-BERT: en-
abling language representation with knowledge graph.
In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innova-
tive Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educa-
tional Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, February 7-12, 2020, pages
2901-2908. AAAI Press.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu
Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen
Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Ao-
han Zeng, et al. 2023. Agentbench: Evaluating llms
as agents. CoRR, abs/2308.03688.

Sheng Lu, Hendrik Schuff, and Iryna Gurevych. 2023.
How are prompts different in terms of sensitivity?
CoRR, abs/2311.07230.

10

Kangqi Luo, Fengli Lin, Xusheng Luo, and Kenny Zhu.
2018. Knowledge base question answering via encod-
ing of complex query graphs. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 2185-2194, Brussels,
Belgium. Association for Computational Linguistics.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
Xu Jiang, Karl Cobbe, Tyna Eloundou, Gretchen
Krueger, Kevin Button, Matthew Knight, Benjamin
Chess, and John Schulman. 2021. Webgpt: Browser-
assisted question-answering with human feedback.
CoRR, abs/2112.09332.

R OpenAl. 2023. Gpt-4 technical report. arXiv, pages
2303-08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welin-
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.
2022. Training language models to follow instruc-
tions with human feedback. In NeurIPS.

Francis Jeffry Pelletier. 2004. The Principle of Semantic
Compositionality. In Semantics: A Reader. Oxford
University Press.

Fabio Petroni, Tim Rocktischel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2463-2473, Hong Kong, China. Association
for Computational Linguistics.

Cheng Qian, Xinran Zhao, and Sherry Tongshuang Wu.
2023. "merge conflicts!" exploring the impacts of
external distractors to parametric knowledge graphs.
CoRR, abs/2309.08594.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,
Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su,
Huadong Wang, Cheng Qian, Runchu Tian, Kun-
lun Zhu, Shihao Liang, Xingyu Shen, Bokai Xu,
Zhen Zhang, Yining Ye, Bowen Li, Ziwei Tang,
Jing Yi, Yuzhang Zhu, Zhenning Dai, Lan Yan, et al.
2023. Tool learning with foundation models. CoRR,
abs/2304.08354.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982-3992, Hong Kong, China. Association for Com-
putational Linguistics.

https://doi.org/10.1145/3442381.3449992
https://doi.org/10.1145/3442381.3449992
https://doi.org/10.1145/3442381.3449992
https://doi.org/10.1145/3442381.3449992
https://doi.org/10.1145/3442381.3449992
https://aclanthology.org/2022.coling-1.148
https://aclanthology.org/2022.coling-1.148
https://aclanthology.org/2022.coling-1.148
https://aclanthology.org/2022.coling-1.148
https://aclanthology.org/2022.coling-1.148
https://doi.org/10.48550/ARXIV.2305.09645
https://doi.org/10.48550/ARXIV.2305.09645
https://doi.org/10.48550/ARXIV.2305.09645
https://doi.org/10.48550/ARXIV.2305.09645
https://doi.org/10.48550/ARXIV.2305.09645
https://doi.org/10.18653/v1/2020.acl-main.91
https://doi.org/10.18653/v1/2020.acl-main.91
https://doi.org/10.18653/v1/2020.acl-main.91
https://doi.org/10.18653/v1/2020.acl-main.91
https://doi.org/10.18653/v1/2020.acl-main.91
https://doi.org/10.48550/ARXIV.2308.07317
https://doi.org/10.48550/ARXIV.2308.07317
https://doi.org/10.48550/ARXIV.2308.07317
https://doi.org/10.48550/ARXIV.2305.20050
https://doi.org/10.1609/AAAI.V34I03.5681
https://doi.org/10.1609/AAAI.V34I03.5681
https://doi.org/10.1609/AAAI.V34I03.5681
https://doi.org/10.48550/ARXIV.2308.03688
https://doi.org/10.48550/ARXIV.2308.03688
https://doi.org/10.48550/ARXIV.2308.03688
https://doi.org/10.48550/ARXIV.2311.07230
https://doi.org/10.18653/v1/D18-1242
https://doi.org/10.18653/v1/D18-1242
https://doi.org/10.18653/v1/D18-1242
http://arxiv.org/abs/2112.09332
http://arxiv.org/abs/2112.09332
http://arxiv.org/abs/2112.09332
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://doi.org/10.1093/oso/9780195136975.003.0009
https://doi.org/10.1093/oso/9780195136975.003.0009
https://doi.org/10.1093/oso/9780195136975.003.0009
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.48550/ARXIV.2309.08594
https://doi.org/10.48550/ARXIV.2309.08594
https://doi.org/10.48550/ARXIV.2309.08594
https://doi.org/10.48550/ARXIV.2304.08354
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020.
How much knowledge can you pack into the param-
eters of a language model? In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 5418-5426,
Online. Association for Computational Linguistics.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
CoRR, abs/2302.04761.

Noah Shinn, Federico Cassano, Beck Labash, Ashwin
Gopinath, Karthik Narasimhan, and Shunyu Yao.
2023. Reflexion: Language agents with verbal rein-
forcement learning.

Yiheng Shu and Zhiwei Yu. 2023. Data distribution bot-
tlenecks in grounding language models to knowledge
bases. CoRR, abs/2309.08345.

Yiheng Shu, Zhiwei Yu, Yuhan Li, Borje Karlsson,
Tingting Ma, Yuzhong Qu, and Chin-Yew Lin. 2022.
TIARA: Multi-grained retrieval for robust question
answering over large knowledge base. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 8108-8121,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Yu Su, Huan Sun, Brian Sadler, Mudhakar Srivatsa,
Izzeddin Giir, Zenghui Yan, and Xifeng Yan. 2016.
On generating characteristic-rich question sets for
QA evaluation. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 562-572, Austin, Texas. Associa-
tion for Computational Linguistics.

Theodore R. Sumers, Shunyu Yao, Karthik Narasimhan,
and Thomas L. Griffiths. 2023. Cognitive architec-
tures for language agents. CoRR, abs/2309.02427.

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo
Wang, Chen Lin, Yeyun Gong, Heung-Yeung Shum,
and Jian Guo. 2023a. Think-on-graph: Deep and
responsible reasoning of large language model with
knowledge graph. CoRR, abs/2307.07697.

Simeng Sun, Yang Liu, Shuohang Wang, Chenguang
Zhu, and Mohit Iyyer. 2023b. PEARL: prompting
large language models to plan and execute actions
over long documents. CoRR, abs/2305.14564.

Hugo Touvron, Thibaut Lavril, Gautier [zacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti

11

Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open foundation and
fine-tuned chat models. CoRR, abs/2307.09288.

Denny Vrandecic and Markus Krétzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Commun.
ACM, 57(10):78-85.

Keheng Wang, Feiyu Duan, Sirui Wang, Peiguang Li,
Yunsen Xian, Chuantao Yin, Wenge Rong, and Zhang
Xiong. 2023a. Knowledge-driven cot: Exploring
faithful reasoning in llms for knowledge-intensive
question answering. CoRR, abs/2308.13259.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei
Wei, and Ji-Rong Wen. 2023b. A survey on large
language model based autonomous agents. CoRR,
abs/2308.11432.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhigiang Hu,
Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
2023c. Plan-and-solve prompting: Improving zero-
shot chain-of-thought reasoning by large language
models. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2609-2634, Toronto,
Canada. Association for Computational Linguistics.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023d. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 13484—13508, Toronto, Canada. Association
for Computational Linguistics.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large lan-
guage models to follow complex instructions. CoRR,
abs/2304.12244.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R. Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language

https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.48550/ARXIV.2302.04761
https://doi.org/10.48550/ARXIV.2302.04761
https://doi.org/10.48550/ARXIV.2302.04761
https://api.semanticscholar.org/CorpusID:258833055
https://api.semanticscholar.org/CorpusID:258833055
https://api.semanticscholar.org/CorpusID:258833055
https://doi.org/10.48550/ARXIV.2309.08345
https://doi.org/10.48550/ARXIV.2309.08345
https://doi.org/10.48550/ARXIV.2309.08345
https://doi.org/10.48550/ARXIV.2309.08345
https://doi.org/10.48550/ARXIV.2309.08345
https://doi.org/10.18653/v1/2022.emnlp-main.555
https://doi.org/10.18653/v1/2022.emnlp-main.555
https://doi.org/10.18653/v1/2022.emnlp-main.555
https://doi.org/10.18653/v1/D16-1054
https://doi.org/10.18653/v1/D16-1054
https://doi.org/10.18653/v1/D16-1054
https://doi.org/10.48550/ARXIV.2309.02427
https://doi.org/10.48550/ARXIV.2309.02427
https://doi.org/10.48550/ARXIV.2309.02427
https://doi.org/10.48550/ARXIV.2307.07697
https://doi.org/10.48550/ARXIV.2307.07697
https://doi.org/10.48550/ARXIV.2307.07697
https://doi.org/10.48550/ARXIV.2307.07697
https://doi.org/10.48550/ARXIV.2307.07697
https://doi.org/10.48550/ARXIV.2305.14564
https://doi.org/10.48550/ARXIV.2305.14564
https://doi.org/10.48550/ARXIV.2305.14564
https://doi.org/10.48550/ARXIV.2305.14564
https://doi.org/10.48550/ARXIV.2305.14564
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://doi.org/10.48550/ARXIV.2308.13259
https://doi.org/10.48550/ARXIV.2308.13259
https://doi.org/10.48550/ARXIV.2308.13259
https://doi.org/10.48550/ARXIV.2308.13259
https://doi.org/10.48550/ARXIV.2308.13259
https://doi.org/10.48550/ARXIV.2308.11432
https://doi.org/10.48550/ARXIV.2308.11432
https://doi.org/10.48550/ARXIV.2308.11432
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.48550/ARXIV.2304.12244
https://doi.org/10.48550/ARXIV.2304.12244
https://doi.org/10.48550/ARXIV.2304.12244
https://openreview.net/pdf?id=WE_vluYUL-X
https://openreview.net/pdf?id=WE_vluYUL-X

models. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Michihiro Yasunaga, Antoine Bosselut, Hongyu Ren,
Xikun Zhang, Christopher D. Manning, Percy Liang,
and Jure Leskovec. 2022. Deep bidirectional
language-knowledge graph pretraining. In NeurIPS.

Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou,
and Caiming Xiong. 2022. RNG-KBQA: Generation
augmented iterative ranking for knowledge base ques-
tion answering. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 6032—-6043,
Dublin, Ireland. Association for Computational Lin-
guistics.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jian-
feng Gao. 2015. Semantic parsing via staged query
graph generation: Question answering with knowl-
edge base. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1321-1331, Beijing, China. Association for
Computational Linguistics.

Wen-tau Yih, Matthew Richardson, Chris Meek, Ming-
Wei Chang, and Jina Suh. 2016. The value of se-
mantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 201-206, Berlin,
Germany. Association for Computational Linguis-
tics.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In
Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021, Vir-
tual Event, volume 139 of Proceedings of Machine
Learning Research, pages 12697-12706. PMLR.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis,
Luke Zettlemoyer, and Omer Levy. 2023. LIMA:
less is more for alignment. CoRR, abs/2305.11206.

A Data Creation

A.1 Dataset Quality Inspection

Fine-tuning LLMs with large but very noisy
data contributes little to performance improve-
ment (Zhou et al., 2023; Lee et al., 2023). We
manually inspect selected data from the original
dataset. Several issues are identified: unnatu-
ral expressions, redundant logical forms, ambigu-
ous questions, and inconsistencies between ques-
tions and logical forms. GrailQA is a large-scale

12

dataset aiming at evaluating different level gen-
eralization abilities of KGQA models. Among
500 sampled data points, roughly 15% contained
errors. The main issue is the wrong direction-
ality of relations. In the case where the ques-
tion is asking about operating systems that in-
clude 386bsd, the logical form is searching for
operating systems belonging to 386sd (JOIN com-
puter.operating_system.parent_os 386BSD). An-
other common issue is improper comparative oper-
ations. For instance, the question is asking about
the comparison more than while ge (greater than
or equal to) is adapted in logical forms. Besides,
some errors involve redundant components within
the query, which is unnecessary to answer the ques-
tion. GraphQ is a medium-sized dataset where
questions are generated by expert annotators ac-
cording to the query graph. It has multiple para-
phrased questions in the same logical form. We
only retain one question for each logical form. We-
bQSP is another medium-sized dataset comprising
questions sourced from Google query logs. This
dataset includes implicit entities not mentioned in
the questions and complex logical operations. Fur-
thermore, it contains many ambiguous/open ques-
tions. For example, what did Stephen Hawking
become famous for? is an open question. The an-
swer could be his profession, book, discovery, etc.
The data statistics of these three datasets are shown
in Table 6.

GraphQ GrailQA WebQSP

Training 2,381 44.337 3,098
Dev - 6,763 -
Test 2,395 13,231 1,639

Table 6: Original Dataset Statistics

A.2 Logical Operations

The common logical operations are as follows:

* Superlative (ARGMIN/ARGMAX): it is used
to get entities with the maximum value of a
given attribute.

* Intersection (AND): it is used to get an inter-
section between two sets of entities.

* Comparative (LT/LE/GE/GE): it is used to
filter properties according to numerical con-
straints.

https://openreview.net/pdf?id=WE_vluYUL-X
http://papers.nips.cc/paper_files/paper/2022/hash/f224f056694bcfe465c5d84579785761-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/f224f056694bcfe465c5d84579785761-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/f224f056694bcfe465c5d84579785761-Abstract-Conference.html
https://doi.org/10.18653/v1/2022.acl-long.417
https://doi.org/10.18653/v1/2022.acl-long.417
https://doi.org/10.18653/v1/2022.acl-long.417
https://doi.org/10.18653/v1/2022.acl-long.417
https://doi.org/10.18653/v1/2022.acl-long.417
https://doi.org/10.3115/v1/P15-1128
https://doi.org/10.3115/v1/P15-1128
https://doi.org/10.3115/v1/P15-1128
https://doi.org/10.3115/v1/P15-1128
https://doi.org/10.3115/v1/P15-1128
https://doi.org/10.18653/v1/P16-2033
https://doi.org/10.18653/v1/P16-2033
https://doi.org/10.18653/v1/P16-2033
https://doi.org/10.18653/v1/P16-2033
https://doi.org/10.18653/v1/P16-2033
http://proceedings.mlr.press/v139/zhao21c.html
http://proceedings.mlr.press/v139/zhao21c.html
http://proceedings.mlr.press/v139/zhao21c.html
https://doi.org/10.48550/ARXIV.2305.11206
https://doi.org/10.48550/ARXIV.2305.11206
https://doi.org/10.48550/ARXIV.2305.11206

(AND ul w2)

(JOIN b u)
(JOIN bl b2)

(ARGMAX/ARGMIN u b)
(LT/LE/GT/GE b n)

hat (x, y

X in u such that (x, y) is in b and y is the Targest / smallest
Return all x such that (x. v) in b and v <//>/n

Table 7: The definition and syntax of s-expression

¢ Count (COUNT): it is used to count the num-
ber of a set of entities.

* Projection (JOIN): This operation is used to
get the other side entity of a triplet via the
relation.

We break down the logical form into subtasks ac-
cording to the above logical operations. For pro-
jection operation, it may be used due to the KG
structure rather than the question. For such cases,
we do not break it down.

A.3 Logical form used in DARA

We use s-expression (Gu et al., 2021) as the logical
form to represent SPARQL. The definition and syn-
tax of logical operations are as shown in Table 7.

B Implementation Details

Training We fine-tuned Llama-2 7B/13B using 4
80GiB H100 for 10 epochs using 2e-5 learning rate
with 0.03 warm-up ratio and 8 batch size. Deep-
speed is utilized to accelerate the training process.

Inference To do inference on Llama 7B/13B, we
use one 40GiB A100 GPU while 2 80GiB A180
GPUs are used to test Llama-2-chat-70B. We call
Azure OpenAl service API for GPT-4 inference.

C Prompt and reasoning trajectories

C.1 Prompt used to convert logical forms to
natural languages

We present the prompt and demonstrations used
to convert broken-down logical forms into natural
languages in Table 8.

C.2 A exemplary reasoning trajectory of
DARA

As shown in Table 9, we provide the complete rea-
soning trajectory of DARA, which includes iterative
task decomposition and the two-stage reading-to-
learn relation selection method.

13

30
©
-
©

@ 20
e
-+
(@)]
e

910

0

GrailQA WebQSP GraphQ
Dataset

Figure 3: Ratio between tokens of SPARQL and tokens
of questions in three test datasets

D Why is there a performance
discrepancy between WebQSP and
GrailQA, GraphQ?

One significant factor lies in the different sources of
the questions. Questions of GrailQA and GraphQ
are derived from logical forms, which are struc-
tured and explicitly aligned with underlying KGs.
Conversely, WebQSP collects questions from real
users’ query logs on Google search, often contain-
ing common sense or complex logical operations.
Intuitively, when the SPARQL is longer but the
question is short, it often signifies a requirement
for implicit knowledge or complex reasoning. To
explore this hypothesis, we simply calculate the
ratio between the lengths of SPARQL queries and
questions, visualizing it in a violin plot as shown in
Figure 3. Compared with GrailQA and GraphQ, we
observe that WebQSP exhibits more extreme cases
in the length ratio, suggesting that it contains more
short questions with long SPARQL queries. Some
of them (cf. Table 10) include complex logical
constraints (e.g. time comparison) that cannot be
represented by s-expression. Besides, Humans can
formulate concise and abstract questions based on
common sense, which poses a challenge for pars-
ing questions in the absence of such knowledge or
an ability to leverage it. For example, to answer the
question what year did Seattle Seahawks go to the
Super Bow!l? The model needs to know Superbowl
serves as the final match of the American National
Football League. Therefore, it needs to find the
season when the Seattle Seahawks were not only
the champion but also the runner-up. Those real
questions from humans can be more flexible, and

User: You are knowledgeable about Freebase. You need to describe what is the intent of logical forms
in the given subtasks and steps. To find the answer to the question *Which type of dish common
in manado cuisine contains sugars? The linked entities are sugars (m.06x4c), and manado cuisine
(m.0102k5v9).’, it has the following subtasks. Note: Some tasks may have multiple steps due to the
schemas of the KG.

Task 1: Step1:(JOIN food.dish.ingredients m.06x4c)

Task 2: Step1:(JOIN (R dining.cuisine.dishes) m.0102k5v9)

Task 3: Step1:(AND task1 task2)

Task 4: Step1:(JOIN food.type_of_dish.dishes task3)

To help you understand the relations used in the above steps, we provide the following descriptions
of them. 1. the incoming relation *food.dish.ingredients’, which describes please enter the main
ingredients usually included in this dish. The type of its head entity is "food.dish’ (A dish is a food
prepared and presented in a certain way. These are foods that are ready to be served and eaten as a
meal itself, or part of a larger meal). 2. the outgoing relation ’dining.cuisine.dishes’, which describes
the dishes of cuisine. The type of its tail entity is *food.dish’ (A dish is a food prepared and presented
in a certain way. These are foods that are ready to be served and eaten as a meal itself, or part of a
larger meal). 3. the incoming relation *food.type_of_dish.dishes’, which describes the dishes of type of
dish. The type of its head entity is *food.type_of_dish’ (This type is used to classify dishes into broad
categories, such as appetizers, soups, desserts, etc.). Please describe the intent of the above tasks and
steps.

Assistant: To solve this question, we can break it down into the following tasks:

Task 1: Determine the dishes that contain sugars.

- Step 1.1: use the incoming relation ’food.dish.ingredients’ of surgars with the operator JOIN to find
dishes whose ingredients contain sugars.

Task 2: Identify the dishes in Manado cuisine.

- Step 2.1: we can use the outgoing relation ’dining.cuisine.dishes’ of manado cuisine to find the dishes
in Manado cuisine.

Task 3: Find the common dishes from Task 1 and Task 2.

- Step 3.1: we can use the operator AND to get the common dishes from Task 1 and Task 2.

Task 4: Determine the type of dish among the common dishes.

- Step 4.1: to get the type of dish, we use the the incoming relation *food.type_of_dish.dishes’ of those
entities obtained from Task 3 to get the final answer.

User: To find the answer to the question *which academic was an dashiell that was born in japan? The
linked entities are Japan (m.03_3d), dashiell (m.03m3mgq).’, it has following tasks.

Each task may have multiple steps due to the schemas of the KG.

Task 1: Step1:(JOIN people.person.place_of_birth m.03_3d)

Please describe the intent of the above tasks and steps.
Assistant: To solve this question, we can break it down into following tasks:
Task1: find people who were born in Japan.

User: To find the answer to the question ’{question}’, it has following tasks.

{subtasks}

To help you understand the relations used in above steps, we provide the following descriptions of
them.

{description}

Please describe the intent of above tasks and steps.

Table 8: The prompt used to convert linearized logical forms to natural languages.

14

User: For a given question, your task is to parse the question into a correct logical form (s-expression)
which could be executed over a KG to get the answer. To write the s-expression, you need to decompose
the question into subtasks and solve them step-by-step. To get necessary schemas (i.e., relations or
classes) for s-expression writing, you can use the following functions to interact with the KG.
get_relations(expression): return all relations of those entities represented by the expression.
get_classes(expression): return all class types of those entities represented by the expression.
get_relevant_relations(thought): retrieve relevant relations from the KG according to your thought.
get_relevant_classes(thought): retrieve relevant classes from the KG according to your thought.
get_descriptions(candidate): get description of candidate schemas. The question is what olympic games
did ronny represent as a mascot? The linked entity is Ronny (m.04dwjbg).

Agent: The given question can be decomposed into the following subtasks: # Task 1: Find the Olympic
games that Ronny represented as a mascot.

Step 1.1:

Action 1.1.1: get_relations(m.04dwjbg)

Obs 1.1.1: m.04dwjbg has following relations. The outgoing relations are
[olympics.olympic_mascot.olympic_games, kg.object_profile.prominent_type, com-
mon.topic.notable_for, common.topic.notable_types, type.object.name]. The incoming relations are
1.

Thought 1.1.1: From the above relations, olympics.olympic_mascot.olympic_games (outgoing),
kg.object_profile.prominent_type (outgoing) are the two most likely relations to finish Task 1. To select
the correct one, I need to check their underlying meaning.

Action 1.1.2: get_descriptions(olympics.olympic_mascot.olympic_games (outgoing),
kg.object_profile.prominent_type (outgoing))

Obs 1.1.2: 1. the outgoing relation *olympics.olympic_mascot.olympic_games’, which describes
the Olympic games for which this was a mascot. The type of its tail entities is olympics.olympic_games’
(This type is for any modern Olympic Games, summer or winter.). 2. the outgoing relation
’kg.object_profile.prominent_type’, which describes the prominent type of object profile. The type of
its tail entities is "prominent_type’ (prominent type).

Thought 1.1.2: From the explanations, use the outgoing relation
>olympics.olympic_mascot.olympic_games’ of Ronny with the operator JOIN to find the Olympic
games that Ronny represented as a mascot.

S-exp-1.1: (JOIN (R olympics.olympic_mascot.olympic_games) m.04dwjbg)

S-exp-1: (JOIN (R olympics.olympic_mascot.olympic_games) m.04dwjbg)

Final s-exp: (JOIN (R olympics.olympic_mascot.olympic_games) m.04dwjbg)

Table 9: An exemplary reasoning trajectory of DARA.

15

obscurer than synthetic questions derived from log-
ical forms. In light of these findings, it is evident
that advancing the field of knowledge graph reason-
ing requires the design of more realistic datasets,
the creation of more expressive intermediate rep-
resentations, and the exploration of new model
paradigms that can effectively harness common-
sense knowledge. but sometimes such synthetic
questions lack clarity and authenticity, which may
impede the LLM agent’s understanding. For ex-
ample, which industry is ayala land in which real
estate and rental and leasing is also in? is ambigu-
ous and unnatural.

16

Question what did james k polk do before he was president?

PREFIX ns: <http://rdf.freebase.com/ns/>

SELECT DISTINCT ?x

WHERE {

{

SELECT ?pFrom

WHERE {

ns:m.042f1 ns:government.politician.government_positions_held 7y .

7y ns:government.government_position_held.office_position_or_title ?x ;
ns:government.government_position_held.basic_title ns:m.060c4 ; # President
ns:government.government_position_held.from ?pFrom .

}

}

ns:m.042f1 ns:government.politician.government_positions_held ?y . # James K. Polk
7y ns:government.government_position_held.office_position_or_title ?x ;
ns:government.government_position_held.from ?from .

SPARQL

FILTER (xsd:dateTime(?pFrom) - xsd:dateTime(?from) >0)
}

Question what super bowl did peyton manning win?

SELECT DISTINCT 7z
WHERE {
ns:m.027jv8 ns:sports.pro_athlete.teams ?y .
7y ns:sports.sports_team_roster.team ?x . #team
7x ns:sports.sports_team.championships ?z . # super bowls
?z ns:common.topic.notable_types ns:m.01xljv1 . #super bowl
7z ns:sports.sports_championship_event.champion 7c .
7z ns:time.event.start_date ?a .
SPARQL # Check the time overlap
FILTER(NOT EXISTS {?y ns:sports.sports_team_roster.from ?sk0} I
EXISTS {?y ns:sports.sports_team_roster.from ?sk1 .
FILTER (xsd:datetime(?sk1) - xsd:datetime(?a) <= 0) })

FILTER(NOT EXISTS {?y ns:sports.sports_team_roster.to ?sk2} |l
EXISTS {?y ns:sports.sports_team_roster.to ?sk3 .
FILTER(xsd:datetime(?sk3) - xsd:datetime(?a) >=0) })

}

Question which country in north america is divided into provinces?

17

SPARQL

PREFIX ns: <http://rdf.freebase.com/ns/>
SELECT DISTINCT ?x

WHERE {

ns:m.059g4 ns:location.location.contains ?x . # North America
7x ns:common.topic.notable_types ns:m.01mp . # Country
7x ns:location.location.contains ?y .

7y ns:common.topic.notable_types ?t .

All the possible "province" type
FILTER ((?t = ns:m.01nm) I
(Mt=nsm.02_1y_9) Il
(M=ns:m.02_3ny_) Il

(7t = ns:m.02_3phk) Il

(7t =ns:m.02_3r2r) Il

(7t =ns:m.02_3rt3) |l

(7t =ns:m.02_3zf4) Il

(?t = ns:m.02_40h1) II

(7t =ns:m.02_96Im) |

(7t =ns:m.02yxk5c) |l

(7t =ns:m.02zd6yn) ||

(Mt =ns:m.03z96kq) |l

(7t =ns:m.04g7rg9) Il

(7t = ns:m.04js0Oh5) Il

(7t = ns:m.065rjpr) Il

(7t =ns:m.078_8dm) Il

(?t = ns:m.Ohzcb31) Il

(7t = ns:m.Ohzcb5p) Il

(?t = ns:m.Ohzcb69) ||

(7t = ns:m.Ohzcb7p) Il

(?t = ns:m.Ohzcd76) |

(7t = ns:m.Ohzcd7v) Il

Question

who was president after franklin d. roosevelt?

SPARQL

PREFIX ns: <http://rdf.freebase.com/ns/>
SELECT DISTINCT ?x

WHERE {

President of the United States
ns:m.060d2 ns:government.government_office_or_title.office_holders 7y1 .
Franklin D. Roosevelt

7y1 ns:government.government_position_held.office_holder ns:m.02yy8 ;
ns:government.government_position_held.to 7to .

President of the United States

ns:m.060d2 ns:government.government_office_or_title.office_holders 7y2 .
7y2 ns:government.government_position_held.office_holder 7x ;
ns:government.government_position_held.to ?from .

FILTER(xsd:dateTime(?from) - xsd:dateTime(?to) >0)
}

ORDER BY xsd:dateTime(?from)

LIMIT 1

Question

who is meredith gray married to in real life?

18

SPARQL

PREFIX ns: <http://rdf.freebase.com/ns/>

SELECT DISTINCT 7x

WHERE {

ns:m.0268x2f ns:tv.tv_character.appeared_in_tv_program ?y .

7y ns:tv.regular_tv_appearance.actor 7z .

7z ns:people.person.spouse_s ?s .

7s ns:people.marriage.spouse 7x .

?7s ns:people.marriage.type_of_union ns:m.04ztj .

Filter (?x 1= 7z)

FILTER(NOT EXISTS {7?s ns:people.marriage.from ?sk0} I
EXISTS {7s ns:people.marriage.from ?sk1 .
FILTER(xsd:datetime(?sk1) <= "2015-08-10""xsd:dateTime) })
FILTER(NOT EXISTS {?s ns:people.marriage.to ?7sk2} |l
EXISTS {?s ns:people.marriage.to ?sk3 .

FILTER (xsd:datetime(?sk3) >= "2015-08-10""xsd:dateTime) })
7s ns:people.marriage.from ?sk4 .

}

ORDER BY DESC(xsd:datetime(?sk4))

LIMIT 1

Question

what was franklin d roosevelt ’s job before president?

SPARQL

PREFIX ns: <http://rdf.freebase.com/ns/>

SELECT DISTINCT ?x

WHERE {

{

SELECT ?pFrom

WHERE {

ns:m.02yy8 ns:government.politician.government_positions_held ?y . # Franklin D. Roosevelt
7y ns:government.government_position_held.office_position_or_title ?x ;
ns:government.government_position_held.basic_title ns:m.060c4 ; # President
ns:government.government_position_held.from ?pFrom .

}
}

ns:m.02yy8 ns:government.politician.government_positions_held ?y . # Franklin D. Roosevelt
7y ns:government.government_position_held.office_position_or_title ?x ;
ns:government.government_position_held.from ?from .

FILTER (xsd:dateTime(?pFrom) - xsd:dateTime(?from) >0

Table 10: Questions in unseen schemas test data of WebQSP with unseen schemas whose length ratio is larger than

10.

19

E Error Analysis

As discussed in section 5.3, we compared DARA
with ICL-based agents with GPT4, Llama-2-chat
(70B). We show three examples in Table 11 ~ Ta-
ble 13.

20

Question

guitar hero iii has what songs?

ICL Agent

Llama-2-chat (70B): Thought: To find songs that can be played in Guitar Hero 3, we can use
the knowledge base to find relations connected to the entity *Guitar Hero 3°.

Thought: From the above relations, I might use cvg.musical_game.songs to find the songs in
Guitar Hero 3.

Action: get_neighbors(Guitar Hero 3, cvg.musical_game.songs)

Observation: variable #0, which are instances of cvg.musical_game_song_relationship
Thought: I can use intersection() to find the songs that are in Guitar Hero 3.

Action: intersection(#0, Guitar Hero 3)

GPT-4: Thought: I need to find songs that can be played in ’guitar hero 3’.

Thought: The relation ’cvg.musical_game.songs’

seems to be the most relevant to find the songs in ’guitar hero 3’.

Action: get_neighbors(guitar hero 3, cvg.musical_game.songs)

Observation : variable #0, which are instances of cvg.musical_game_song_relationship
Thought: The variable #0 should be the final answer to the question as it represents the songs
that can be played in Guitar Hero 3.

DARA

The given question can be decomposed into the following subtasks:
Task 1: Find the songs that can be played in Guitar Hero 3.

Thought 1.1.2: From the explanations, we can use the outgoing relation
"cvg.musical_game.songs’ of Guitar Hero 3 with the operator JOIN to reach the intermediate (CVT)
node first, which contains all related information of songs in the game.

Thought 1.2.2: From the explanations,
we can use the outgoing relation ’cvg.musical_game_song_relationship.song’ of
the CVT node from step 1.1 with JOIN to find the songs that can be played in the game.

Explanation

ICL-based agents prematurely stop at the CVT node while DARA gets the correct answer.

Table 11: The incorrect reasoning trajectory is highlighted in red while the correct one is in blue.

21

Question snk developed how many video game compilations?

Llama-2-chat (70B): Thought: To find the number of video game compilations developed
by SNK, I need to first find the games developed by SNK. To achieve this, I will query the KB to
find relations connected to the entity 'SNK’ and see if any of them can help me find the answer.

Thought: From the above relations, I might use cvg.cvg_developer.game_versions_developed to
find the games developed by SNK.

Thought: Now, I need to find the number of unique game compilations developed by SNK.
To achieve this, I can use the intersection function to find the intersection of all the games
developed by SNK.

Action: intersection(#0)

ICL Agent GPT-4: Thought: I need to find out the number of video game compilations developed by snk.
To achieve this, I will query the KB to find relations connected to the entity ’snk’ and see if any
of them can help me find the answer.

Thought: From the above relations, I can use cvg.cvg_developer.games_developed

to find video games developed by snk.

Thought: Now, I need to find out which of these games are compilations. To achieve this,
I will query the KB to find relations connected to the variable #0.
Action: get_relations(#0)

Thought: From the above relations, I might use cvg.computer_game_compilation.games_included
to find which of these games are compilations.

The given question can be decomposed into the following subtasks:
Task 1: Find the video game compilations developed by SNK.

Thought 1.1.2: From the explanations, use the outgoing relation
“cvg.cvg_developer.games_developed’
DARA of SNK with the operator JOIN to find the video game compilations developed by SNK.

Action 1.2.1: get_classes(s-exp-1.1)
Thought 1.2.1: From classes in Obs 1.2.1, use the operator AND with the class

’cvg.computer_game_compilation’ to filter out the entities that are not video game compilations.
S-exp-1.2: (AND cvg.computer_game_compilation s-exp-1.1)

ICL-based agents are incapable of getting class information due to the lack of functions

Explanation |
P in the action space while DARA calls the correct function.

Table 12: The incorrect reasoning trajectory is highlighted in red while the correct one is in blue.

22

Question

talk of the nation appears in what radio program episode?

ICL Agent

Llama-2-chat (70B): Thought: To find the answer, I need to first find radio programs related to
"Talk of the Nation’. I will query the KB to find relations connected to the entity ’Talk of the Nation’.

Thought: From the above relations, I might use radio.radio_program.episodes to
find the radio program episodes related to *Talk of the Nation’.

Thought: Now I have the episodes, I need to find the specific episode that is related to the question.
To achieve this, I will query the KB to find relations connected to the variable #0.

GPT-4: Thought: To find the radio program episodes where *Talk of the Nation’ appears, I need to first
find the relations connected to the entity *Talk of the Nation’

Action: get_neighbors(talk of the nation, radio.radio_program.episodes)

Observation: variable #0, which are instances of radio.radio_program_episode

Thought: The variable #0 represents the radio program episodes where ’Talk of the Nation’ appears,
which is the answer to the question.

Final Answer: #0

Thought: To find the radio program episodes where *Talk of the Nation’ appears,

I need to first find the relations connected to the entity... ...

Thought: From the above relations, I might use cvg.computer_game_compilation.games_included
to find which of these games are compilations.

DARA

The given question can be decomposed into the following subtasks:
Task 1: Find the radio program episode that contains the Talk of the Nation§egment.

Thought 1.1.2: From the explanations, use the outgoing relation ’cvg.cvg_developer.games_developed’
of SNK with the operator JOIN to find the video game compilations developed by SNK.

Thought 1.2.1: From the explanations, use the outgoing relation ’radio.radio_program.episodes’
of "Talk of the Nation" with the operator JOIN to find the radio program episode that contains the
"Talk of the Nation" segment.

#Final s-exp: (JOIN (R radio.radio_program.episodes) m.017dgp)

Explanation

Llama-chat call incorrect functions for further reasoning.
While GPT-4 finds the correct answer, it cannot stop at the trigger phrase (Final answer).

Table 13: The incorrect reasoning trajectory is highlighted in red while the correct one is in blue.

23

	Introduction
	Related work
	The Approach
	Overview
	The Action Space
	The Reasoning Framework
	Iterative Task Decomposition
	Reading-to-learn Relation Selection
	Logical Form Construction

	Constructing Reasoning Trajectory Data

	Experiment Setup
	Evaluation metrics
	Baselines
	Implementation Details

	Experiment Results
	Overall Performance
	Deatailed Analysis on DARA Components
	Error Analysis
	The Quality of Reasoning Trajectories
	The Running Expense of Models

	Conclusion
	Limitations
	Data Creation
	Dataset Quality Inspection
	Logical Operations
	Logical form used in DARA

	Implementation Details
	Prompt and reasoning trajectories
	Prompt used to convert logical forms to natural languages
	A exemplary reasoning trajectory of DARA

	Why is there a performance discrepancy between WebQSP and GrailQA, GraphQ?
	Error Analysis

