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Abstract

Pretrained language models (PLMs) such as
BERT adopt a training paradigm that first pre-
trains the model in general data and then fine-
tunes the model on task-specific data, and
have recently achieved great success. How-
ever, PLMs are notorious for their enormous
parameters and hard to be deployed on real-life
applications. Knowledge distillation has been
prevailing to address this problem by transfer-
ring knowledge from a large teacher to a much
smaller student over a set of data. We argue that
the selection of three key components, namely
teacher, training data, and learning objective,
is crucial to the effectiveness of distillation.
We, therefore, propose a four-stage progressive
distillation framework ERNIE-Tiny to com-
press PLM, which varies the three components
gradually from general level to task-specific
level. Specifically, the first stage, General Dis-
tillation, performs distillation with guidance
from pretrained teacher, general data, and la-
tent distillation loss. Then, General-Enhanced
Distillation changes teacher model from pre-
trained teacher to finetuned teacher. After that,
Task-Adaptive Distillation shifts training data
from general data to task-specific data. In the
end, Task-Specific Distillation adds two ad-
ditional losses, namely Soft-Label and Hard-
Label loss onto the last stage. Empirical results
demonstrate the effectiveness of our framework
and generalization gain brought by ERNIE-
Tiny. In particular, experiments show that a
4-layer ERNIE-Tiny maintains over 98.0% per-
formance of its 12-layer teacher BERT 45 On
GLUE benchmark, surpassing state-of-the-art
(SOTA) by 1.0% GLUE score with the same
amount of parameters. Moreover, ERNIE-Tiny
achieves a new compression SOTA on five Chi-
nese NLP tasks, outperforming BERT g, 5. by
0.4% accuracy with 7.5x fewer parameters and
9.4x faster inference speed.

1 Introduction

Transformer-based pretrained language models
(PLMs) (Devlin et al., 2019; Liu et al., 2019; Lan
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Figure 1: GLUE score of different distillation meth-
ods. Performance of the teacher, BERT}, ¢, is shown
in dash line.

et al., 2020; Sun et al., 2019b; Lewis et al., 2020;
Lample and Conneau, 2019) have brought signif-
icant improvements to the field of Natural Lan-
guage Processing (NLP). Their training process
that first pretrains model on general data and then
finetunes on task-specific data has set up a new
training paradigm for NLP. However, the perfor-
mance gains come with the massive growth in
model sizes (Brown et al., 2020; Raffel et al., 2019;
Fedus et al., 2021; Shoeybi et al., 2019) which
causes high inference time and storage cost. It be-
comes the main obstacle for industrial application,
especially for deploying on edge devices.

There are some recent efforts such as Knowledge
Distillation (KD) (Hinton et al., 2015; Urban et al.,
2016; Ba and Caruana, 2013), quantization (Kim
etal., 2019; Shin et al., 1909; Wei et al., 2018), and
weights pruning (Wang et al., 2018b; Han et al.,
2015; Sindhwani et al., 2015) trying to tackle this
problem. KD, in particular, aims to transfer knowl-
edge from one network called teacher model to
another called student model by training student un-
der the guidance of teacher. Typically, teacher is a
model with more parameters and capable of achiev-
ing high accuracy, whereas student is a model with
significantly fewer parameters and requires much
less computation. Once trained, the student model
maintains teacher’s performance while massively
reducing inference time and storage demand, and



The Workflow

Existing PLMs Distillation Works
of Distillation

Task-
Specific
Distillation

Student O wamsar, ©
Pretrained ey
Teacher Teacher
General Task Specnflc
Data Data Data
ﬁ&% i

,Objectlve

General
Distillation

SN
Objective Finetuned
.

Teacher
Teacher Student

N/

Data

9 &

I Objectlve

ERNIE-Tiny Progressive Distillation Framework

Task- Task-
Adaptive Specific
Distillation Distillation Distillation

@ Warm Start @ Warm Start ®Wrm5tn @

Teach
Teacher eacher Teacher Teacher Teacher

General-

General Enhanced

Distillation

<tud.

Figure 2: The comparison between existing works and ERNIE-Tiny. The curly shaded arrow indicates the change
of the three key components (i.e. Teacher, Data, and Objective). Left: Workflow of Distillation. Teacher transfers
its knowledge to student through data and objective. Middle: Workflow of Existing Works. All of the three
components shift between the two stages. Right: Workflow of ERNIE-Tiny. ERNIE-Tiny carefully designs the
distillation framework such that only one component is changed between any two consecutive stages.

can be deployed in real-life applications. KD can
be applied on either or both of pretrain and fine-
tune stages. For example, MiniLM (Wang et al.,
2020) and MobileBert (Sun et al., 2020) apply KD
on pretrain stage while (Sun et al., 2019a) applies
KD on finetune stage. Moreover, TinyBERT (Jiao
et al., 2020) and DistilBERT (Ren et al., 2020) per-
form KD on both pretrain and finetune stages. In
particular, they employ pretrained teacher to pro-
vide guidance during pretrain stage and choose
finetuned teacher during finetune stage, where pre-
trained teacher is the teacher model trained on gen-
eral data and finetuned teacher is obtained by fine-
tuning pretrained teacher on task-specific data.

However, existing works suffer from pretrain-
finetune distillation discrepancy consisting of the
difference of training data, teacher model, and
learning objective between pretrain phase and fine-
tune phase. Specifically, training data is shifted
from general data to task-specific data, teacher
is changed from pretrained teacher to finetuned
teacher, and learning objective is altered differently
according to their own decisions. We argue that this
sudden transition hurts the effectiveness of distilla-
tion. We, therefore, propose a four-stage progres-
sive distillation framework ERNIE-Tiny to allevi-
ate this problem, and our method outperforms sev-
eral baselines as shown in Figure 1. ERNIE-Tiny
attempts to smooth this pretrain-finetune transition
by gradually altering teacher, learning objective,
and training data from general level to task-specific
level.

Akin to pretrain distillation at existing works,
General distillation (GD) performs distillation
with pretrained teacher on general data. Following
previous works (Jiao et al., 2020; Sun et al., 2019a,

2020; Ren et al., 2020), we utilize latent distillation
(L1qt) as our learning objective. Then, by altering
teacher from pretrained teacher to finetuned teacher,
ERNIE-Tiny introduces General-Enhanced Distil-
lation (GED) which distills with finetuned teacher
and L, on general data. After that, through
changing training data from general data to task-
specific data, ERNIE-Tiny presents Task-Adaptive
Distillation (TAD) which distills with finetuned
teacher and L1, on task-specific data. Finally,
ERNIE-Tiny concludes the training process with
Task-Specific Distillation (TSD) through adding
new learning objectives, namely Soft-Label Distil-
lation (Ls,f¢) and Hard-Label loss (L f74-q) which
represents the task-specific finetune loss such as
cross-entropy for classification downstream task.
Note that TSD is similar to the finetune distillation
at existing works. Figure 2 compares the workflow
of existing works and ERNIE-Tiny.

Notably, general-enhanced distillation provides
finetuned teacher’s guidance not through task-
specific data as what existing works do, but through
general data. Compared with existing works,
general-enhanced distillation allows student to ab-
sorb task-specific knowledge through general data,
improving the effectiveness of distillation and gen-
eralization of student model (Laine and Aila, 2016;
Sajjadi et al., 2016; Miyato et al., 2018; Goodfel-
low et al., 2014). Empirical results show that with
general-enhanced distillation, ERNIE-Tiny out-
performs the baseline on out-of-domain datasets,
demonstrating the generalization gain brought by
general-enhanced distillation. In addition, general
data can be regarded as additional data to task-
specific data. We conduct experiments to show that
the effect of general-enhanced distillation is more



significant on low-resource tasks. Moreover, task-
adaptive distillation is introduced between general-
enhanced distillation and task-specific distillation,
serving as a bridge to smooth the transition between
those two stages. We conduct experiments to show
the performance gain brought by this stage.

The main contributions of this work are as fol-
lows: 1) We propose a novel four-stage progressive
learning framework for language model compres-
sion called ERNIE-Tiny to smooth the distillation
process by gradually altering teacher, training data,
and learning objective. 2) To our knowledge, lever-
aging finetuned teacher with general data is the
first time introduced in PLM distillation, helping
student capture task-specific knowledge from fine-
tuned teacher and improving generalization of stu-
dent. 3) ERNIE-Tiny achieves 9.4x speedup keeps
over 98.0% performance of its 12-layer teacher
BERT},s. on GLUE benchmark and exceeds state-
of-the-art (SOTA) by 1.0% GLUE score. In Chi-
nese datasets, 4-layer ERNIE-Tiny, harnessed with
a better teacher, outperforms BERT, . by 0.4% ac-
curacy with 7.5x fewer parameters and 9.4x faster
inference speed.

2 Related Work

Pretrained Language Models Pretrained lan-
guage models are learned on large amounts of text
data and then finetuned to adapt to specific tasks.
BERT (Devlin et al., 2019) proposes to pretrain
a deep bidirectional Transformer. RoBERTa (Liu
et al., 2019) achieves strong performance by train-
ing longer steps using large batch size and more
text data. ERNIE (Sun et al., 2019b) (Sun et al.,
2019c) proposes to pretrain the language model
on an enhanced mask whole word objective and
further employs continue learning strategy. Re-
cent works (Shoeybi et al., 2019; Brown et al.,
2020; Kaplan et al., 2020) observe the trend that
increasing model size also leads to lower perplexity.
Switch-transformer (Fedus et al., 2021) simplifies
and improves over Mixture of Experts (Shazeer
et al., 2017) and trains a trillion parameters lan-
guage model. However, (Kovaleva et al., 2019)
shows the parameters are redundant in those mod-
els and the performance can be kept even when
the computational overhead and model storage
is reduced. Moreover, the training cost of those
models also raises serious environmental concerns
(Strubell et al., 2019).

Knowledge Distillation Knowledge distillation
(Hinton et al., 2015; Wang et al., 2020) aims to
train a small student model with soft labels and
intermediate representations provided by the large
teacher model. (Jiao et al., 2020) proposes Tiny-
BERT on the general distillation and task-specific
distillation stages. (Ren et al., 2020) proposes Dis-
tilBERT, which successfully halves the depth of
BERT model by knowledge distillation in the pre-
train stage and an optional finetune stage. (Sun
et al., 2019a) distills BERT into a shallower student
through knowledge distillation only in the finetune
stage. (Wang et al., 2020) proposes to compress
teacher by mimicking self-attention and value re-
lation in the pretrain stage. In contrast to these ex-
isting literature, we argue that the pretrain-finetune
distillation discrepancy exists. Specifically, the
pretrain-finetune distillation discrepancy is caused
by training data shift, teacher model alteration and
learning objective change. Therefore, we propose a
progressive distillation framework ERNIE-Tiny to
compress PLM. Through this progressive distilla-
tion framework, the discrepancy of distillation can
be alleviated and the performance of the distilled
student can be improved. Table 1 summarizes the
differences between our framework and previous
works.

3 Proposed Framework

Distillation aims to use the pretrained teacher T’
to teach a student model S that is usually much
smaller as shown in the left part of Figure 2. In
our setting, besides the labeled task-specific data
Dy, we also have large-scale unlabeled data which
we call general data D, from which the teacher
is pretrained. To combine those data and teacher
knowledge smoothly, we devise a four-stage pro-
gressive distillation framework. Those four stages
vary the three key distillation components, namely
training data, teacher model and learning objective
gradually from general level to task-specific level
as shown in Figure 2. To better explain those meth-
ods, we first show the background and discuss the
distillation framework in detail.

3.1 Background: Transformer Backbone

The Transformer architecture (Vaswani et al.,
2017) is a highly modularized neural network,
where each Transformer layer consists of two
sub-modules, namely the multi-head self-attention



Stage  Teacher Data ERNIE-Tiny BERT-EMD TinyBERT DistilBERT BERT-PKD MiniLM MobileBert
GD  pretrained General Lrat Lrat Lrat Lrat+Lsoft Lrat Lrat+Lsoft
GED finetuned General Lrat - - - - - -
TAD finetuned Task-Specific Liat - - - R
TSD  finetuned  Task-Specific  Lrisin Livsirn  Lrysen Livsyn Loystn Lhard Luard
Table 1: Comparison with previous PLM distillation approaches. Latent Distillation (L1,¢) represents distillation

loss on the attributes at intermediate layers and it varies on different methods (e.g hidden states and attention
distribution in TinyBERT and BERT-EMD; attention distribution and attention value relation in MiniLM). Soft-
Label Distillation (Lg,¢¢) denotes distillation on soft target probabilities from the teacher model. As all methods
adopt Hard-Label loss (L fqrq) in TSD, for simplicity, we denote L1 5+1 = Lrat + Lsoft + LHard-

(MHA) and position-wise feed-forward network
(FFN). Transformer encodes contextual infor-
mation for input tokens. The input embeddings
{x}$_, for sample = are packed together into
Hy = [x1,---,xs] , where s denotes the in-
put sequence length. Then stacked Transformer
blocks iteratively compute the encoding vectors as
H; = Transformer; (H;_1),l € [1, L], and the
Transformer is computed as:

Ay, = MHA; (H_ W

lLa’

H, W),
h

H) | = LN(H;_ + (|| Ay (H_ W/)WP), (D)
a=1

H, = LN (H]_, + FFN (H,_,)),

where the previous layer’s output H; ; €
R*4 s linearly projected to a triple of
queries keys and values using parameter matri-
ces Wz . Wl o WlVa € R where d denotes
the hidden size of Hl’and d’ denotes the hidden size
of each head’s dimension. A; , € R®*¢ indicates
the attention distributions for the a-th head in layer
[, which is computed by the scaled dot-product of
queries and keys respectively. h represents the num-
ber of self-attention heads. || denotes concatenate
operator along the head dimension. Wlo € Rxd
denotes the linear transformer for the output of
the attention module. LN denotes the layer nor-
malization operation (Ba et al., 2016). FFN is
composed of two linear transformation function
including mapping the hidden size of H; , to dyy
and then mapping it back to d.

3.2 General Distillation and
General-Enhanced Distillation

General Distillation As shown in Figure 2,
ERNIE-Tiny employs general distillation and
general-enhanced distillation sequentially. In the
general distillation stage, the pretrained teacher
helps the student learn knowledge on the massive
unlabeled general data with the intermediate repre-

sentation. The loss is computed as follows:

Llo(x ZZFA z),M; , A7, (x))
=1 a=1
Lg
# 3 PO ). (N
ﬁGD— E ﬁLat( z),
()

where k = [ X ¢, Lgp denotes the loss for general
distillation on the general data D, . Lg denotes the
number of layers of student model. Considering the
number of layers of pretrained teacher L7 and stu-
dent model L g may not be the same, we set student
layers to mimic the representation of every c layers
of pretrained teacher model, where ¢ = Ly / Lg.
We introduce a mapping matrix M;, € RAxH
to align the number of attention heads for teacher
and student’s attention heads, h and h’, when they
do not match. Similarly, a linear transformation
N; € R?? is used when the hidden size d and d’
of H/' € R**% and Hy € R**? does not match.
A metric function F' is utilized to measure the dis-
tance between teacher and student’s representation
and guide the distillation process. We choose mean
square error as F' for our experiment. Put it to-
gether, we call the right hand side of Eq. (2) latent
distillation and denotes it as Lf‘it where T, indi-
cates the pretrained teacher (i.e. the guidance ATv
and H”9 come from pretrained teacher).

General-Enhanced Distillation To further ex-
ploit the general data, we propose to use the fine-
tuned teacher as a surrogate for task-specific knowl-
edge and perform distillation over general data.
And the training loss of general-enhanced distilla-
tion is defined as follows:

EGED— IE ELat() (3)



where Ef’;t indicates that the guidance involved in
latent distillation loss comes from finetuned teacher.
During general-enhanced distillation, the student
is optimized by minimizing the Lggp on general
data.

One benefit of this stage is that the distilla-
tion process becomes much smoother. Comparing
Eq. (3) with Eq. (2), the only change between gen-
eral distillation and general-enhanced distillation is
that we only replace the teacher T, with T’y among
the three components (i.e. teacher, training data,
learning objective) while existing works change
all of them together at the same time as shown in
Figure 2.

Another benefit is that introducing finetuned
teacher on general data improves the generalization
of student model. As the number of task-specific
samples is usually much smaller than general data,
having the finetuned teacher generating hidden rep-
resentations on general data can be used to com-
pensate for the task-specific data sparsity. Those
hidden representations extracted from D, can be
regarded as feature augmentation. Although there
may be no task-related label information on Dy, the
hidden representation from finetuned teacher still
contains task-specific information. Several works
(Laine and Aila, 2016; Sajjadi et al., 2016; Miyato
et al., 2018; Goodfellow et al., 2014) succeed in us-
ing the random image augmentation to improve
generalization performance for semi-supervised
tasks. The empirical results on generalization gains
led by general-enhanced distillation are shown in
Section 4.3.

3.3 Task-Adaptive Distillation and
Task-Specific Distillation

Task-Adaptive Distillation Task-adaptive distil-
lation is introduced after general-enhanced distilla-
tion to start distillation on task-specific data. The
task-adaptive distillation loss is devised as follow-
ing:
T¢
Lrap= E Lyg(z), )
x~Dy
where D is the task-specific data. Student model
is trained by minimizing L7 4p. Comparing Eq.(4)
with Eq.(3), we see that the difference between
general-enhanced distillation and task-adaptive dis-
tillation is that the training data is changed from
general data to task-specific data.
The advantage of proposing the task-specific
stage is two-fold. First, continuing with the philos-
ophy of progressive distillation and pretrain-then-

finetune paradigm, only the dataset is changed in
this stage to smoothen the distillation. Second, as
recent work (Raffel et al., 2019) shows that unsu-
pervised learning on the task-specific data before
applying the supervised signal leads to improve-
ment on downstream performance, distillation of
hidden representations on task-specific data paves
the way for the upcoming task-specific objective
learning.

Task-Specific Distillation Task-specific distilla-
tion is presented to finish the whole distillation
process. Compared with the last stage, this stage
includes soft-label and hard-label learning objec-
tives. Specifically, the loss is computed as follows:

T, T
ﬁTSD = E ’CLj;t(m) + ﬁsf)ff(l‘) + ﬁH(l’!‘d(xvy)7

(z.y)~D¢
Eggft(l') = R (2" (2),25(x)),
ﬁHard(JZ, ?/) = Fg(y, ZS("];)),
&)
where L7gp contains three losses for distillation

( Lf’; »), soft-label (Lg{) ) and hard-label (L grara)-

2Tt and 2% denotes the logit of finetuned teacher
and student respectively. y represents the ground-
truth label from task-specific data. For super-
vised classification problems, we choose Kullback-
Leibler Divergence (Kullback and Leibler, 1951)
for F and cross entropy for F5. For regression
task, we choose mean square error for both F7 and
Fy.

3.4 Progressive Distillation Framework

The key technique for ERNIE-Tiny is to change
the teacher, training data and learning objective
carefully and smoothly. Overall, the student is
trained using following four losses:

Lirpay = E  Liu(®)+ oL () + Luara(w,y))
(@y)~D

Lop, T =T, D=Dya=0
) Leep, T=T;,D=Dga=0
"\ Lrap, T=T;D=Dya=0

Lrsp, T=T;,D=Dja=1

(6)
where T' € {T,,Tt}, D € {Dy,D;} and a €
{0,1}. The overall algorithm is shown in Ap-
pendix A.4. Put them together, ERNIE-Tiny
presents a smoothly transited distillation frame-
work to effectively compress a large teacher model
into a significantly smaller student model. The
advantage of each stage is shown in the ablation
studies.



Method Params Speedup MNLIm MNLImm QQP SST-2 QNLI MRPC RTE CoLA STS-B Avg.
BERT ggs(T.)  109M Ix 84.6 83.4 712 935 90.5 889 664 521 858 79.6
DistilBERT 52.2M 3x 78.9 78.0 685 914 85.2 824 541 328 76.1 719
BERT-PKD 52.2M 3x 79.9 79.3 702 894 85.1 826 623 248 79.8 726
BERT-EMD 14.5M 9.4x 82.1 80.6 69.3 910 87.2 87.6 662 256 823 747
MobileBERT*  15.1M 8.6x 81.5 81.6 68.9 91.7 89.5 879 651 467 80.1 77.0
MiniLM(re.) 14.5M 9.4x 71.9 77.6 67.5 88.0 86.5 81.4 620 137 794 704
TinyBERT 14.5M 9.4x 82.5 81.8 71.3 926 87.7 86.4 66.6 44.1 804 770
ERNIE-Tiny 14.5M 9.4x 83.0 81.8 71.3 933 88.3 884 66.6 474 823 78.0

Table 2: GLUE test results that are scored by GLUE evaluation server. The state-of-the-art results are in bold. All
methods adopt BERT g, as teacher model, excluding MobileBERT. MobileBERT* is distilled from IB-BERT,
which has the same amount of parameters with BERT .,.g.. The architecture of ERNIE-Tiny, BERT-EMD, MiniLM
and TinyBERT is (L=4, d=312, dyy=1200). MiniLM on this table is reproducted by us. BERT-PKD and DistilBERT
is (L=4, d=768, d;¢=3072). MobileBERT is (L=24, d=128, d;¢=512) with different transformer architecture
design. Please refer to Appendix A.6 for how the speedup is calculated.

4 Experiment

In this section, we first evaluate ERNIE-Tiny on
English datasets and compare it with existing
works. Then, we evaluate ERNIE-Tiny on Chinese
datasets. After that, ablation studies and discus-
sions are presented to analyze the contribution of
each stage.

4.1 Evaluation on English Datasets
4.1.1 Downstream Tasks

General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2019) is cho-
sen to evaluate ERNIE-Tiny. It is a well-studied
collection of NLP tasks, including textual entail-
ment, emotion detection, etc. Please refer to Ap-
pendix A.2 for details.

4.1.2 Experiment Setup

For a fair comparison, we adopt pretrained
BERT g, checkpoint released by the author (De-
vlin et al., 2019) as pretrained teacher. BERT g4
is a 12-layer transformer-based model with hidden
size of 768 and intermediate size of 3072, account-
ing for 109M parameters in total, pretrained on
English Wikipedia and BooksCorpus (Zhu et al.,
2015a). To obtain finetuned teachers, we finetune
pretrained BERT g, on each task as the finetuned
teachers. Following existing works (Jiao et al.,
2020), we adopt a 4-layer model with hidden size
of 312 and intermediate hidden size of 1200 as our
student. The hyper-parameters for each task are in
Appendix A.9. We use GLUE as the task-specific
data which is the training data in TAD and TD. We
also adopt English Wikipedia and BooksCorpus on
which BERT g, is pretrained as the general data
which is the training data in GD and GED. This

ensures that no additional resources or knowledge
are involved. Recall that a finetuned teacher and
general data are combined to perform distillation
during GED.

4.1.3 Results on English Datasets

We compare ERNIE-Tiny with several baselines.
The results of MobileBERT (Sun et al., 2020),
TinyBERT (Jiao et al., 2020) and BERT-EMD (Li
et al., 2020) are quoted from their paper. As BERT-
PKD (Sun et al., 2019a) and DistilBERT (Ren et al.,
2020) do not experiment with 4-layer model, we
quote the results from the TinyBERT’s implemen-
tation (Jiao et al., 2020). We report test set results
evaluated by the official GLUE server, summarized
in Table 2. Since MiniLM (Wang et al., 2020)
do not report test results on GLUE, We reproduce
a 4-layer MiniLM for comparison. ERNIE-Tiny
outperforms TinyBERT, DistilBERT, BERT-PKD,
MiniLM and BERT-EMD across most tasks and
exceeds SOTA by 1.0% GLUE score. Compared
with its teacher BERT g5, ERNIE-Tiny retains
98.0% performance while is 7.5x smaller and 9.4x
faster for inference.

4.2 Evaluation on Chinese Datasets

We have also conducted experiments on 5 Chi-
nese datasets, and ERNIE-Tiny outperforms base-
line models. Particularly, with equipping a strong
teacher ERNIE2.05,sc (Sun et al., 2019¢), ERNIE-
Tiny even outperforms a 12-layer BERT g,
Please refer to Appendix A.5 for details.

4.3 Ablation Studies

We perform ablation studies on each stage involved
in ERNIE-Tiny. To better illustrate the contribution
of each stage, we divide them into two categories



Method | MNLIm MNLImm MRPC CoLA | Avg.
BERT g (T) | 845 84.6 868 613 | 79.3
ERNIE-Tiny 83.0 83.0 8.9 500 | 757

wlo GED 80.7 80.8 850 449 | 723

Method | MNLIm  MNLImm MRPC CoLA | Avg.

BERT g5 (T.) | 845 84.6 86.8 613 | 793
ERNIE-Tiny 83.0 83.0 86.9 500 | 757
wlo TAD 80.3 80.7 86.5 393 | 717
w/o TAD&TSD w/FT | 81.4 81.9 83.5 208 | 66.9

Table 3: Ablation study on distillation with general data.
(T.) denotes the teacher model. The model with only GD
employ the same training computations with ERNIE-
Tiny.

based on the training data used: GD and GED as
general data based distillation; TAD and TSD as
task-specific data based distillation. Experiments
in this section follow the experiment setup in Sec-
tion 4.1.2. All results in this section are obtained by
taking the average on the dev set result of 5 runs.

Effect of General Data Based Distillation To
analyze the contribution of general data, we per-
form ablation studies on 2 low-resource tasks
MRPC and CoLA, and 1 high-resource task MNLI.
As general data is utilized in GD and GED, we
construct 2 different settings of ERNIE-Tiny to
demonstrate the effect of distilling with general
data by removing GED. For a fair comparison, we
have increased the training steps of GD to keep
the number of training computations the same. It
means that we increase the training steps of GD
in experiment w/o GED in Table 3 such that the
total number of training steps of this experiment
equals that of ERNIE-Tiny (i.e., the former has GD
with 1000k steps while the latter has GD with 500k
steps and GED with 500k steps). This setting aims
to remove GED and leave all other settings, includ-
ing the number of training steps the same to show
the performance gain comes from GED strategy,
rather than the additional computation. As shown
in Table 3, removing GED significantly worsens
the performance of distilled student, suggesting
that general data plays an important role in distilla-
tion. Recall that the only difference between GED
and GD is that GED equips a finetuned teacher
model. Compared with pretrained treacher, fine-
tuned teacher captures task-specific information
and is able to extract task-specific knowledge from
general data. The results show that ERNIE-Tiny
exceeds the one without GED by 3.4% average
score, indicating that GED has a more significant
contribution than GD on distillation.

Effect of Task-specific Data Based Distillation
To demonstrate the effectiveness of distillation on
task-specific data, we vary the training process

Table 4: Ablation study on distillation with task-specific
data. FT denotes finetuning model directly. Three exper-
iments used the same number of training computations.

when performing distillation on task-specific data
and summarize the results in Table 4. We keep
the training computations of three experiments the
same by increasing the steps of TAD and finetuning.
The results show that solely removing TAD consis-
tently leads to a performance drop across all tasks.
Note that although TAD only differs from TSD in
that TAD has only L, involved while the loss
in TSD comprises Lrq¢, L3507t and Lrqrq. Table
4 shows that without the task-adaptive distillation
step, the average score dropped from 75.7 to 71.7,
verifying that TAD is essential. The results verify
that the transition smoothing brought by TAD is
crucial to the effectiveness of distillation. We then
remove distillation on task-specific data entirely
(i.e. TAD and TSD) and only finetune student of
task-specific data, and find significant performance
degradation. This indicates that distillation on task-
specific data is non-negligible.

Effect of Student Capacity To illustrate the ef-
fect of the student model size, we enlarge the size
of the student model to have the same size as the
teacher model. As shown in Table 5, an ERNIE-
Tiny with the original model size can exceed the
teacher by 0.4% average score.

4.4 Discussion

In this section, we analyze how general-enhanced
distillation benefits the effectiveness of distillation.
Experiments in this section follows the setup in
Section 4.1.2.

General Data as Supplement to Task-specific
Data ERNIE-Tiny transfers task-specific knowl-
edge from finetuned teacher over general data
to student model in GED, while it transfers task-
specific knowledge over task-specific data in TAD
and TSD. General data in GED can be regarded
as a supplement to task-specific data. The effect
of additional data should be more significant on
low-resource tasks. To illustrate this, we select the
relatively large datasets MNLI, QNLI and QQP
from GLUE and vary them to 1%, 10%, and 50%
of the original size to simulate low-resource tasks.



Method | MNLIm  MNLImm MRPC CoLA |  Avg.
BERT s (L=12;d=768;d;;=3072) (T.) | 84.5 84.6 868 613 | 793
ERNIE-Tiny (L=4;d=312;d s y=1200) 83.0 83.0 86.9 50.0 | 75.7 (-3.6)
ERNIE-Tiny (L=12;d=768;d s ;=3072) 84.6 84.9 87.3 62.1 | 79.7 (+0.4)
Table 5: Ablation study on student capacity. (T.) is the teacher model.
Method | MNLIm  MNLImm QNLI QQP | Avg. Method MNLIm | SNLI RTE
1% of labeled data
BERT .. (T) | 67.0 93 84 713 [ 7135 GD+GED+TSD 81.2 759 65.7
ERNIE-Tiny 65.2 67.4 754 708 | 69.7 GD+TAD+TSD 824 709 528
w/o GED 57.7 60.5 754 69.4 | 65.8 GD+TSD 80.8 63.6 473
gain of GED +7.5 +6.9 +0.0 +14 | +4.0
10% of labeled data Table 7: Accuracy on out-of-domain datasets.
BERTp, (T) | 76.4 773 86.9 79.7 | 80.1
ERNIE-Tiny 74.5 75.0 824 781 | 715
wlo GED 69.1 69.8 824 782 | 749 ) ' ) .
gain of GED +5.4 +52 400 01 | +26 is a 3-class classification task, we simply drop the
50% of labeled data "neural" and take argmax of "entailment" and "not
BERT s (T) | 805 81.9 0.1 842 | 842 entailment” when calculating accuracy on RTE. As
ERNIE-Tiny 79.3 80.1 842 835 | 818 ) . ]
w/o GED 75.3 76.4 835 833 | 796 shown in Table 7, experiment with GED exceed
gain of GED +4.0 +37 407 402 | +2.2 those without GED by a large margin. Specifically,

Table 6: Ablation study on labeled data size.

The resulting data sizes are listed in Appendix A.3.
Then we finetune BERT . to obtain finetuned
teacher and perform distillation on student model
with the finetuned teacher for each configuration.
Results are presented in Table 6, from which we
can see that the gain from GED is impressive when
less task-specific data is used, especially when only
1% of the dataset can be used, the gain of GED can
reach 4%, showing the importance of our method.

Generalization Gain by GED Besides its ben-
efits on low-resource tasks, GED can also be con-
sidered as a stage to improve the generalization
of the student, as it allows the student to capture
task-specific knowledge on a much larger dataset.
Several works (Laine and Aila, 2016; Sajjadi et al.,
2016; Miyato et al., 2018; Goodfellow et al., 2014)
succeeded in using random image augmentation
to improve generalization performance for semi-
supervised tasks. Similarly, at this stage, the hid-
den representation information still contains task-
specific data distribution information, which can
be used to compensate for the sparse task data and
augment the feature representations. This leads to
improving the generalization of the student model.
To show that, we first distill ERNIE-Tiny on MNLI
and then evaluate it on out-of-domain datasets in-
cluding SNLI (Bowman et al., 2015) and RTE. As
RTE is a 2-class classification task while MNLI

with GED and TAD, the out-of-domain SNLI and
RTE can improve 12 and 18.4 percent points re-
spectively. In particular, although removing one
of GED or TAD results in similar MNLI accu-
racy, the experiment with GED significantly outper-
forms the one without GED on all out-of-domain
datasets, demonstrating the generalization benefit
led by GED. Another interesting observation is that
adding TAD can also be beneficial to the general-
ization of the student.

5 Conclusion

In this paper, we propose a progressive distillation
framework ERNIE-Tiny to compress PLMs. Four-
stage distillation is introduced to smooth the transi-
tion from pretrain distillation to finetune distillation.
In particular, general-enhanced distillation employs
finetuned teacher to deliver enhanced knowledge
over general data to student model, boosting the
generalization of student model. Task-adaptive dis-
tillation further smooths transition via carefully
designed learning objectives. ERNIE-Tiny dis-
tilled from BERT g, retains 98% performance
with 9.4x faster inference speed, achieving SOTA
on GLUE benchmark with the same amount of pa-
rameters. Our 4-layer ERNIE-Tiny distilled from
Chinese ERNIE2.0p,5 also outperforms 12-layer
Chinese BERT 5. Our work didn’t apply larger
unlabeled general data such as C4 (Raffel et al.,
2019). More efficient data utilization is left for
future work.



6 Broader Impact

As we have introduced four stages in our frame-
work, it naturally causes concerns about the com-
putation cost brought by our method. One metric
to measure the computation cost is carbon foot-
print introduced in (Patterson et al., 2021), and the
calculation equation is shown as following:

F= ((c/‘train +4qX ginference) X COQ/KWh7 (7)

where Eyain and Einference 18 the energy for train-
ing and inference respectively. ¢ is the number
of calling for model inference, COy/ KW h is the
emission of C'Oz per KW h. Assume the hardware
and software environment are the same for teacher
and student, the only factors affects equation 7 are
the computation FLOPS and number of ¢q. Figure 3,
shows the total cost for ERNIE-Tiny and BERT,
including the total training cost and inference cost.
Please refer to A.8 for the calculation details. It can
be seen that at a certain point of g, the computation
for ERNIE-Tiny is much lower than BERT with

nearly 10x.

— ERNIE-Tiny
— BERT

1E+25

1E+22 /
1E+19

1.00E+02

FLOPS

1.00E+04 1.00E+06 1.00E+08

# of g (million)

Figure 3: Cost Comparison Between ERNIE-Tiny and
BERT with number of queries. The axes are shown in
log scale.

ERNIE-Tiny distillation framework might seem
expensive at first glance as it brings additional
computation requirements compared to other exist-
ing works. However, as shown in Figure 3, when
the number of model inferences is large enough,
ERNIE-Tiny requires less computational resources
than directly inferring with BERT. That being said,
ERNIE-Tiny is more suitable for the scenarios
where the number of model inferences is large such
as real-life servers, and less suitable for those with
small number of model inferences required.

Applying ERNIE-Tiny on real-life application
with large number of requests, ERNIE-Tiny can
significantly reduce carbon emission by 10x com-
paring to inferring with BERT. Furthermore, we

have also discussed some interesting research ques-
tions in Appendix ??.



References

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E
Hinton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Lei Jimmy Ba and Rich Caruana. 2013. Do deep
nets really need to be deep? arXiv_preprint
arXiv:1312.6184.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo
Giampiccolo. 2009. The fifth pascal recognizing
textual entailment challenge. In TAC.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large an-
notated corpus for learning natural language infer-
ence. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
pages 632—-642, Lisbon, Portugal. Association for
Computational Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity-multilingual and
cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina
Williams, Samuel Bowman, Holger Schwenk, and
Veselin Stoyanov. 2018. XNLI: Evaluating cross-
lingual sentence representations. In Proceedings
of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 2475-2485,
Brussels, Belgium. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Asso-
ciation for Computational Linguistics.

William B Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.

10

In Proceedings of the Third International Workshop
on Paraphrasing IWP2005).

William Fedus, Barret Zoph, and Noam Shazeer. 2021.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. arXiv
preprint arXiv:2101.03961.

Ian J Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2014. Explaining and harnessing adver-
sarial examples. arXiv preprint arXiv:1412.6572.

Song Han, Jeff Pool, John Tran, and William J
Dally. 2015. Learning both weights and connec-
tions for efficient neural networks. arXiv preprint
arXiv:1506.02626.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2020. TinyBERT: Distilling BERT for natural lan-
guage understanding. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
4163-4174, Online. Association for Computational
Linguistics.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Jangho Kim, Yash Bhalgat, Jinwon Lee, Chirag Pa-
tel, and Nojun Kwak. 2019. Qkd: Quantization-
aware knowledge distillation. arXiv_preprint
arXiv:1911.12491.

Olga Kovaleva, Alexey Romanov, Anna Rogers, and
Anna Rumshisky. 2019. Revealing the dark secrets
of bert. arXiv preprint arXiv:1908.08593.

S. Kullback and R. A. Leibler. 1951. On information
and sufficiency. Ann. Math. Statist., 22(1):79-86.

Samuli Laine and Timo Aila. 2016. Temporal ensem-
bling for semi-supervised learning. arXiv preprint
arXiv:1610.02242.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual language model pretraining. Advances in
Neural Information Processing Systems (NeurIPS).

Zhenzhong Lan, Mingda Chen, Sebastian Good-
man, Kevin Gimpel, Piyush Sharma, and Radu
Soricut. 2020. ALBERT: A lite BERT for
self-supervised learning of language represen-
tations. In 8th International Conference on
Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.



https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/v1/D18-1269
https://doi.org/10.18653/v1/D18-1269
https://doi.org/10.18653/v1/D18-1269
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS

Hector Levesque, Ernest Davis, and Leora Mor-
genstern. 2012.  The winograd schema chal-
lenge. In Thirteenth International Conference on
the Principles of Knowledge Representation and

Reasoning.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and
comprehension. In Proceedings of the 58th Annual
Meeting of the Association for Computational
Linguistics, pages 7871-7880, Online. Association
for Computational Linguistics.

Jianquan Li, Xiaokang Liu, Honghong Zhao, Ruifeng
Xu, Min Yang, and Yaohong Jin. 2020. BERT-EMD:
Many-to-many layer mapping for BERT compression
with earth mover’s distance. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 3009-3018,
Online. Association for Computational Linguistics.

Xin Liu, Qingcai Chen, Chong Deng, Huajun Zeng,
Jing Chen, Dongfang Li, and Buzhou Tang. 2018.
LCQMC:a large-scale Chinese question matching
corpus. In Proceedings of the 27th International
Conference on Computational Linguistics, pages
1952-1962, Santa Fe, New Mexico, USA. Associa-
tion for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama,
and Shin Ishii. 2018. Virtual adversarial training:
a regularization method for supervised and semi-
supervised learning. IEEE transactions on pattern
analysis and machine intelligence, 41(8):1979-1993.

David A. Patterson, Joseph Gonzalez, Quoc V. Le, Chen
Liang, Lluis-Miquel Munguia, Daniel Rothchild,
David R. So, Maud Texier, and Jeff Dean. 2021.
Carbon emissions and large neural network training.
CoRR, abs/2104.10350.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Xingkai Ren, Ronghua Shi, and Fangfang Li. 2020.
Distill bert to traditional models in chinese ma-
chine reading comprehension (student abstract). In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 13901-13902.

11

Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen.
2016. Regularization with stochastic transformations
and perturbations for deep semi-supervised learning.
arXiv preprint arXiv:1606.04586.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538.

Sungho Shin, Yoonho Boo, and Wonyong Sung. 1909.
Empirical analysis of knowledge distillation tech-
nique for optimization of quantized deep neural net-
works. arXiv preprint arXiv.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-Im: Training multi-billion
parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053.

Vikas Sindhwani, Tara N Sainath, and Sanjiv Kumar.
2015. Structured transforms for small-footprint deep
learning. arXiv preprint arXiv:1510.01722.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empirical
methods in natural language processing, pages 1631—
1642.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for deep
learning in nlp. arXiv preprint arXiv:1906.02243.

Siqgi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019a.
Patient knowledge distillation for BERT model com-
pression. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the Oth International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP),
pages 4323-4332, Hong Kong, China. Association
for Computational Linguistics.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi
Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao
Tian, and Hua Wu. 2019b. Ernie: Enhanced rep-
resentation through knowledge integration. arXiv
preprint arXiv:1904.09223.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao
Tian, Hua Wu, and Haifeng Wang. 2019¢c. Ernie
2.0: A continual pre-training framework for language
understanding. arXiv preprint arXiv:1907.12412.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. MobileBERT:
a compact task-agnostic BERT for resource-limited
devices. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics,
pages 2158-2170, Online. Association for Computa-
tional Linguistics.



https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.emnlp-main.242
https://doi.org/10.18653/v1/2020.emnlp-main.242
https://doi.org/10.18653/v1/2020.emnlp-main.242
https://doi.org/10.18653/v1/2020.emnlp-main.242
https://doi.org/10.18653/v1/2020.emnlp-main.242
https://www.aclweb.org/anthology/C18-1166
https://www.aclweb.org/anthology/C18-1166
https://www.aclweb.org/anthology/C18-1166
http://arxiv.org/abs/2104.10350
https://doi.org/10.18653/v1/D19-1441
https://doi.org/10.18653/v1/D19-1441
https://doi.org/10.18653/v1/D19-1441
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195

Gregor Urban, Krzysztof J Geras, Samira Ebrahimi Ka-
hou, Ozlem Aslan, Shengjie Wang, Rich Caruana,
Abdelrahman Mohamed, Matthai Philipose, and Matt
Richardson. 2016. Do deep convolutional nets really
need to be deep and convolutional? arXiv preprint
arXiv:1603.05691.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is
all you need. In Advances in Neural Information
Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, pages
5998-6008.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel R. Bowman.
2019. GLUE: A multi-task benchmark and anal-
ysis platform for natural language understand-
ing. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net.

Wei Wang, Ming Yan, and Chen Wu. 2018a. Multi-
granularity hierarchical attention fusion networks
for reading comprehension and question answering.
arXiv preprint arXiv:1811.11934.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao,
Nan Yang, and Ming Zhou. 2020. Minilm: Deep
self-attention distillation for task-agnostic compres-
sion of pre-trained transformers. arXiv preprint
arXiv:2002.10957.

Yunhe Wang, Chang Xu, Chao Xu, and Dacheng Tao.
2018b. Packing convolutional neural networks in
the frequency domain. IEEE transactions on pattern
analysis and machine intelligence, 41(10):2495-
2510.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625-641.

Yi Wei, Xinyu Pan, Hongwei Qin, Wanli Ouyang, and
Junjie Yan. 2018. Quantization mimic: Towards very
tiny cnn for object detection. In Proceedings of the
European conference on computer vision (ECCV),
pages 267-283.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2017. A broad-coverage challenge corpus for

sentence understanding through inference. arXiv
preprint arXiv:1704.05426.

Suxiang Zhang, Ying Qin, Wen-Juan Hou, and Xiaojie
Wang. 2006. Word segmentation and named entity
recognition for sighan bakeoff3. In Proceedings of
the Fifth SIGHAN Workshop on Chinese Language

Processing, pages 158-161.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015a. Aligning books and movies: Towards

12

story-like visual explanations by watching movies
and reading books. In Proceedings of the IEEE
international conference on computer vision, pages
19-27.

Yukun Zhu, Ryan Kiros, Richard S. Zemel, Rus-
lan Salakhutdinov, Raquel Urtasun, Antonio Tor-
ralba, and Sanja Fidler. 2015b. Aligning books
and movies: Towards story-like visual explanations
by watching movies and reading books. In 2015
IEEE International Conference on Computer Vision,
ICCV 2015, Santiago, Chile, December 7-13, 2015,
pages 19-27. IEEE Computer Society.



https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11

A Appendix

A.1 Pretraining Dataset Details

For ERNIE-Tiny, GD and GED are trained on pre-
training dataset. Specifically, we use Wikipedia
(English Wikipedia dump'; 12GB), BookCorpus
(Zhu et al., 2015b) (4.6GB) for those two steps.
Table 8 shows statistics of the pretraining data.

Source ‘ Tokens Avg doc len
Wikipedia 3.0B 515
BookCorpus | 1.2B 23K

Table 8: Pretraining data statistics.

A.2 Task Dataset Details

GLUE The General Language Understanding
Evaluation (GLUE) benchmark is a well-studied
collections of nine natural language understanding
tasks, including:

* CoLA: The Corpus of Linguistic Acceptabil-
ity (CoLA)(Warstadt et al., 2019) is com-
monly used to judge whether a sentence con-
forms to the syntax specification, consisting
of 10657 sentences from 23 linguistics, an-
notated for acceptability (grammatically) by
their original authors.

e SST-2: The Stanford Sentiment Treebank
(SST-2)(Socher et al., 2013) is a sentiment
analysis task consisting of 9645 movie re-
views.

e MNLI: Multi-genre Natural Language Infer-
ence (MNLI)(Williams et al., 2017) is a tex-
tual inference task, including 433k sentence
pairs annotated with textual entailment infor-
mation.

* RTE: Recognizing Textual Entailment
(RTE)(Bentivogli et al., 2009) is a Natural
Language Inference task, similar to MNLI.

* WNLI: Winograd Natural Language Infer-
ence (WNLI)(Levesque et al., 2012) is a task
that needs capturing the coreference informa-
tion between two paragraphs.

* QQP: Quora Question Pairs (QQP)? is a task
for detecting whether the question pairs are

"https://dumps.wikimedia.org/enwiki/
“https://www.quora.com/q/quoradata/First-Quora-
Dataset-Release-Question-Pairs

duplicates or not, consisting of over 400,000
sentence pairs with data extracted from Quora
QA community.

* MRPC: Microsoft Research Paraphrase Cor-
pus (MRPC)(Dolan and Brockett, 2005) is a
task that requires the model to capture the
paraphrase or semantic relationship between
a pair of sentences. it contains 5800 pairs of
sentences extracted from web-crawled news.

e STS-B: The Semantic Textual Similarity
Benchmark (STS-B)(Cer et al., 2017) contains
a selection of English datasets containing texts
from image captions, news headlines, and user
forums.

* QNLI: Question Natural Language Inference
(QNLI)(Rajpurkar et al., 2016; Wang et al.,
2018a) is a task that requires the mode to clas-
sify if the given premise is the answer to the
hypothesis.

Chinese Datasets We have chosen the following
5 Chinese NLP datasets to evaluate ERNIE-Tiny.
Like GLUE, the collections of Chinese datasets
also covers various NLP tasks. The details of the
chosen Datsets are listed below:

¢ XNLI (Conneau et al., 2018): The Cross-
lingual Natural Language Inference (XNLI) is
the extension of MNLI to multiple languages.
The train set of XNLI is translated by ma-
chines, and the dev set is translated by hu-
man experts. We took the Chinese version of
XNLI.

+ ChnSentiCorp *: ChnSentiCorp consists of
9600 samples collected from hotel reviews
and is annotated for sentiment analysis.

* MSRA-NER (SIGHAN 2006) (Zhang et al.,
2006): MSRA-NER is a named entity recog-
nition task containing 21000 examples anno-
tated into three types: people, location, and
organization.

 LCQMC (Liu et al., 2018): LCQMC is a text
similarity task consisting of 260,068 query-
paragraph pairs collected from search engine
logs. The similarity between question and
paragraph is annotated by human experts.

« NLPCC-DBQA “: DBQA is a QA task

3https://github.com/pengming617/bert_classification
*http://tcci.cef.org.cn/conference/2016/dldoc/evagline2.pdf



Corpus Task #Train #Dev #Test #Label Metrics

CoLA Acceptability 8.5k 1k 1k 2 Matthews corr
SST-2 Sentiment 67k 872 1.8k 2 Accuracy

MNLI NLI 393k 20k 20k 3 Accuracy

RTE NLI 2.5k 276 3k 2 Accuracy
WNLI NLI 634 71 146 2 Accuracy

QQP Paraphrase 364k 40k 391k 2 Accuracy/F1
MRPC Paraphrase 3.7k 408 1.7k 2 Accuracy/F1
STS-B Similarity 7k 1.5k 1.4k 1 Pearson/Spearman corr
QNLI QA/NLI 108k 5.7k 5.7k 2 Accuracy

Table 9: The details of GLUE benchmark.

The #Train, #Dev and #Test denote the size of the training set,

development set and test set of corresponding corpus respectively. The #label denotes the size of the label set of the

corresponding corpus.

consisting of 182K question-document pairs.
Though one-to-many relation is presented in
training data, we cast this task into a sentence-
pair classification problem.

A.3 Size of Resulted Low-source Datasets

We vary the task-specific dataset size of MNLI,
QNLI, and QQP tasks to 1%, 10%, and 50% of the
original size, the resulting data sizes are listed in
Table 12.

A4 Algorithm

Algorithm 1 ERNIE-Tiny Progressive Distillation
Framework
step < 0
while step < Egp do
esteerl <~ estep - 5GDV9£GD
end while
step < 0
while step < Eqgp do
esteerl < estep - 5GEDVG£G’ED > GED
end while
step < 0
while step < Er4p do
95tep+1 — estep - BTADVG'CTAD > TAD
end while
step < 0
while step < Erp do
Ostep+1 < Ostep — BrpVeLrp
end while

> GD

>TD

Algorithm 1 shows the overall procedure of
ERNIE-Tiny. Egp, Eqep. Erap. Erp, Bap,
BaED, Brap and Srp are the training steps and
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learning rate of these four stage respectively. As
shown in this algorithm, the student resulted from
each stage are used as initialization for next stage.

A.5 Evaluation on Chinese Datasets

Dataset 5 Chinese NLP datasets are chosen for
evaluating ERNIE-Tiny, including XNLI (Con-
neau et al., 2018) for natural language inference,
LCQMC (Liu et al., 2018) for semantic similarity,
ChnSentiCorp® for sentiment analysis, NLPCC-
DBQA? for question answering and MSRA-NER
(Zhang et al., 2006) for named entity recognition.
All results reported in this section are calculated by
taking the average on the dev set result of 5 runs.
Please refer to Appendix A.9 for details.

Result Since most of the compression models
do not experiment on Chinese tasks, we reproduce
TinyBERT for comparison. Both TinyBERT and
ERNIE-Tiny are distilled from an strong teacher
Chinese ERNIE2.034se (Sun et al., 2019¢) instead
of Chinese BERT g,s.. It can be seen in Table 11
that ERNIE-Tiny outperforms Chinese BERT 5.
on XNLI, LCQMC, ChnSentiCorp and NLPCC-
DBQA, and exceeds it by 0.4% average score over
the five datasets, while being 7.5x smaller and 9.4x
faster in inference time.

A.6 Speed Up Calculation

We followed how TinyBERT (Jiao et al., 2020)
evaluates inference speedup (i.e. evaluating the
inference time on a single NVIDIA K80 GPU) and
obtained the same result with TinyBERT as our

Shttps://github.com/pengming617/bert_classification
®http://tcci.ccf.org.cn/conference/2016/dldoc/evagline2.pdf
"https://github.com/google-research/bert



Corpus Task #Train #Dev #Test #Label Metrics
XNLI NLI 392k 2.5k 2.5k 3 Accuracy
ChnSentiCorp SA 9.6k 1.2k 1.2k 2 Accuracy
MSRA-NER NER 21k 2.3k 4.6k 7 F1
LCQMC SS 240k 8.8k 12.5k 2 Accuracy
NLPCC-DBQA QA 182k 41k 82k 2 mrr/F1

Table 10: The details of Chinese NLP datasets. The #Train, #Dev and #Test denote the size of the training set,
development set and test set of corresponding corpus respectively. The #label denotes the size of the label set of the

corresponding corpus.

Method | Params | Speedup | XNLI LCQMC ChnSentiCorp NLPCC-DBQA MSRA-NER | Avg.
ERNIE2.0gasc (T) | 109M | 1x | 798 875 95.5 84.4 950 | 884
BERT pasc 109M 1x 772 870 94.3 80.9 92.3 86.3
TinyBERT (re.) 145M | 94x | 763  86.8 94.2 81.8 87.3 85.3
ERNIE-Tiny 145M | 94x | 77.6  88.0 94.9 822 90.8 86.7

Table 11: Test Results of Chinese Tasks. TinyBERT on this table is reproducted by us. The teacher of TinyBERT
and ERNIE-Tiny(L=4, d=312, dsy=1200) are set to Chinese ERNIE2.0ps.. Both BERT g4, and ERNIE2.0p4

is (L=12, d=768, d; ;=3072).

proportion ‘ MNLI QNLI QQP
1% 3927 1047 3638

10% | 39270 10474 36384

50% | 196351 52371 181925

Table 12: Number of labeled data.

model has the same architecture and parameters as
TinyBERT

A.7 Sensitive To Hyperparameters

We empirically found that the final performance
is insensitive to most hyper-parameters and most
hyper-parameters in our experiment can be adopted
in practice, except for the number of training steps
in TAD which requires adjustment based on the
size of the task datasets (e.g. reduce it for large
task datasets). Take the hyper-parameters used in
our experiment as examples, the hyper-parameters
for experiments with Chinese datasets are mostly
the same as for GLUE.

A.8 Details on Computation Cost

Arch. ‘ Train Inference
BERT e 6.43E+19 1.37E+11
ERNIE-Tiny | 5.79E+19 2.24E+10

Table 13: Computation FLOPS for both training and
inference.

In this section, we will describe the calculation
details for Figure 3. As shown in Table 13, we
list the training and inference FLOPS for both
BERTp,se and ERNIE-Tiny respectively 8 The
training computation cost is recorded for total train-
ing process, and the inference computation cost is
recorded for one sample feedfoward. So the total
distillation cost for ERNIE-Tiny can be calculated
as

CT = Tstudent + Iteacher X S X BatChSizev

where T qen: denotes that FLOPS caused by stu-
dent training such as forward/backward propaga-
tion and updating parameters which can be found
in Table 13. I;.qcher denotes the FLOPS for a sin-
gle inference or forward propagation on Teacher.
S denotes the total training steps.

The inference cost for ERNIE-Tiny can be cal-
culated as

Cfnfer = Istudent X S X Batchsize,

where g 4ent denotes the FLOPS for a single in-
ference or forward propagation on ERNIE-Tiny.
A.9 Implementation Details

Table 14 gives the detailed hyper-parameters used
in our ablation experiment on GLUE tasks. Note

8Those result can be calculated with the opensourced
scripts at https://tinyurl.com/47ercmu9
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that dropout intervenes in hidden states and hurts
distillation performance, thus all dropout rates were
set to 0 in our experiment setting. Also, we find that
using AMP hurts distillation performance due to
inaccuracy of hidden state representation, so we use
pure FP32 training in all experiments. The GED
stage takes about 2 days on 4 16g-V100, while the
computation cost for other tasks no more than 1
day. Hyper-parameters for our Chinese results are
listed in Table 15.
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Hyper parameters | MNLI QQP QNLI RTE SST-2 STS-B MRPC CoLA
GD

batch size 2000 2000 2000 2000 2000 2000 2000 2000
learning rate 4e-4 4e-4 4e-4 4e-4 4e-4 4e-4 4e-4 4e-4
training steps 500K 500K 500K 500K 500K 500K 500K 500K
optimizer Adam Adam Adam Adam Adam Adam Adam Adam
warmup steps 5000 5000 5000 5000 5000 5000 5000 5000
dropout rate 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GED

batch size 1280 1280 1280 1280 1280 1280 1280 1280
learning rate 2e-4 2e-4  2e-4 2e-4 2e-4 2e-4 2e-4 2e-4
training steps 500K 500K 500K 500K 500K 500K  S00K 500K
optimizer Adam Adam Adam Adam Adam Adam Adam Adam
warmup steps 500 500 500 500 500 500 500 500
dropout rate 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TAD

batch size 256 256 256 128 128 128 128 128
learning rate Se-5 S5e-5  5e-5  Se-5 Se-5 Se-5 Se-5 Se-5
epoch 5 5 5 10 10 10 10 50
optimizer Adam Adam Adam Adam Adam Adam Adam Adam
warmup proportion | 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
dropout rate 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TSD

batch size 256 256 256 128 128 128 128 128
learning rate le-5 le-5 le-5 3e-5 3e-5 3e-5 3e-5 3e-5
epoch 3 3 3 3 3 3 3 3
optimizer Adam Adam Adam Adam Adam Adam Adam Adam
warmup proportion | 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
dropout rate 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 14: Hyper-parameters for ablation studies on GLUE tasks.
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Hyper parameter XNLI  ChnSentiCorp MSRA-NER LCQMC NLPCC-DBQA
GD

batch size 2000 2000 2000 2000 2000
learning rate 4e-4 4e-4 4e-4 4e-4 4e-4
training steps 500K 500K 500K 500K 500K
optimizer Adam Adam Adam Adam Adam
warmup steps 5000 5000 5000 5000 5000
dropout rate 0.0 0.0 0.0 0.0 0.0
GED

batch size 1280 1280 1280 1280 1280
learning rate 2e-4 2e-4 2e-4 2e-4 2e-4
training steps 500K 500K 500K 500K 500K
optimizer Adam Adam Adam Adam Adam
warmup steps 500 500 500 500 500
dropout rate 0.0 0.0 0.0 0.0 0.0
TAD

batch size 256 128 256 128 128
learning rate Se-5 Se-5 Se-5 Se-5 Se-5
epoch 5 10 5 10 50
optimizer Adam Adam Adam Adam Adam
warmup proportion | 0.01 0.01 0.01 0.01 0.01
dropout rate 0.0 0.0 0.0 0.0 0.0
TSD

batch size 256 128 256 128 128
learning rate le-5 3e-5 le-5 3e-5 3e-5
epoch 3 3 3 3 3
optimizer Adam Adam Adam Adam Adam
warmup proportion | 0.01 0.01 0.01 0.01 0.01
dropout rate 0.0 0.0 0.0 0.0 0.0

Table 15: Hyper-parameters for evaluation on Chinese Datasets.
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