
ERNIE-Tiny : A Progressive Distillation Framework for Pretrained
Transformer Compression

Anonymous ACL submission

Abstract
Pretrained language models (PLMs) such as001
BERT adopt a training paradigm that first pre-002
trains the model in general data and then fine-003
tunes the model on task-specific data, and004
have recently achieved great success. How-005
ever, PLMs are notorious for their enormous006
parameters and hard to be deployed on real-life007
applications. Knowledge distillation has been008
prevailing to address this problem by transfer-009
ring knowledge from a large teacher to a much010
smaller student over a set of data. We argue that011
the selection of three key components, namely012
teacher, training data, and learning objective,013
is crucial to the effectiveness of distillation.014
We, therefore, propose a four-stage progressive015
distillation framework ERNIE-Tiny to com-016
press PLM, which varies the three components017
gradually from general level to task-specific018
level. Specifically, the first stage, General Dis-019
tillation, performs distillation with guidance020
from pretrained teacher, general data, and la-021
tent distillation loss. Then, General-Enhanced022
Distillation changes teacher model from pre-023
trained teacher to finetuned teacher. After that,024
Task-Adaptive Distillation shifts training data025
from general data to task-specific data. In the026
end, Task-Specific Distillation adds two ad-027
ditional losses, namely Soft-Label and Hard-028
Label loss onto the last stage. Empirical results029
demonstrate the effectiveness of our framework030
and generalization gain brought by ERNIE-031
Tiny. In particular, experiments show that a032
4-layer ERNIE-Tiny maintains over 98.0% per-033
formance of its 12-layer teacher BERTBase on034
GLUE benchmark, surpassing state-of-the-art035
(SOTA) by 1.0% GLUE score with the same036
amount of parameters. Moreover, ERNIE-Tiny037
achieves a new compression SOTA on five Chi-038
nese NLP tasks, outperforming BERTBase by039
0.4% accuracy with 7.5x fewer parameters and040
9.4x faster inference speed.041

1 Introduction042

Transformer-based pretrained language models043

(PLMs) (Devlin et al., 2019; Liu et al., 2019; Lan044

Figure 1: GLUE score of different distillation meth-
ods. Performance of the teacher, BERTbase, is shown
in dash line.

et al., 2020; Sun et al., 2019b; Lewis et al., 2020; 045

Lample and Conneau, 2019) have brought signif- 046

icant improvements to the field of Natural Lan- 047

guage Processing (NLP). Their training process 048

that first pretrains model on general data and then 049

finetunes on task-specific data has set up a new 050

training paradigm for NLP. However, the perfor- 051

mance gains come with the massive growth in 052

model sizes (Brown et al., 2020; Raffel et al., 2019; 053

Fedus et al., 2021; Shoeybi et al., 2019) which 054

causes high inference time and storage cost. It be- 055

comes the main obstacle for industrial application, 056

especially for deploying on edge devices. 057

There are some recent efforts such as Knowledge 058

Distillation (KD) (Hinton et al., 2015; Urban et al., 059

2016; Ba and Caruana, 2013), quantization (Kim 060

et al., 2019; Shin et al., 1909; Wei et al., 2018), and 061

weights pruning (Wang et al., 2018b; Han et al., 062

2015; Sindhwani et al., 2015) trying to tackle this 063

problem. KD, in particular, aims to transfer knowl- 064

edge from one network called teacher model to 065

another called student model by training student un- 066

der the guidance of teacher. Typically, teacher is a 067

model with more parameters and capable of achiev- 068

ing high accuracy, whereas student is a model with 069

significantly fewer parameters and requires much 070

less computation. Once trained, the student model 071

maintains teacher’s performance while massively 072

reducing inference time and storage demand, and 073
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Figure 2: The comparison between existing works and ERNIE-Tiny. The curly shaded arrow indicates the change
of the three key components (i.e. Teacher, Data, and Objective). Left: Workflow of Distillation. Teacher transfers
its knowledge to student through data and objective. Middle: Workflow of Existing Works. All of the three
components shift between the two stages. Right: Workflow of ERNIE-Tiny. ERNIE-Tiny carefully designs the
distillation framework such that only one component is changed between any two consecutive stages.

can be deployed in real-life applications. KD can074

be applied on either or both of pretrain and fine-075

tune stages. For example, MiniLM (Wang et al.,076

2020) and MobileBert (Sun et al., 2020) apply KD077

on pretrain stage while (Sun et al., 2019a) applies078

KD on finetune stage. Moreover, TinyBERT (Jiao079

et al., 2020) and DistilBERT (Ren et al., 2020) per-080

form KD on both pretrain and finetune stages. In081

particular, they employ pretrained teacher to pro-082

vide guidance during pretrain stage and choose083

finetuned teacher during finetune stage, where pre-084

trained teacher is the teacher model trained on gen-085

eral data and finetuned teacher is obtained by fine-086

tuning pretrained teacher on task-specific data.087

However, existing works suffer from pretrain-088

finetune distillation discrepancy consisting of the089

difference of training data, teacher model, and090

learning objective between pretrain phase and fine-091

tune phase. Specifically, training data is shifted092

from general data to task-specific data, teacher093

is changed from pretrained teacher to finetuned094

teacher, and learning objective is altered differently095

according to their own decisions. We argue that this096

sudden transition hurts the effectiveness of distilla-097

tion. We, therefore, propose a four-stage progres-098

sive distillation framework ERNIE-Tiny to allevi-099

ate this problem, and our method outperforms sev-100

eral baselines as shown in Figure 1. ERNIE-Tiny101

attempts to smooth this pretrain-finetune transition102

by gradually altering teacher, learning objective,103

and training data from general level to task-specific104

level.105

Akin to pretrain distillation at existing works,106

General distillation (GD) performs distillation107

with pretrained teacher on general data. Following108

previous works (Jiao et al., 2020; Sun et al., 2019a,109

2020; Ren et al., 2020), we utilize latent distillation 110

(LLat) as our learning objective. Then, by altering 111

teacher from pretrained teacher to finetuned teacher, 112

ERNIE-Tiny introduces General-Enhanced Distil- 113

lation (GED) which distills with finetuned teacher 114

and LLat on general data. After that, through 115

changing training data from general data to task- 116

specific data, ERNIE-Tiny presents Task-Adaptive 117

Distillation (TAD) which distills with finetuned 118

teacher and LLat on task-specific data. Finally, 119

ERNIE-Tiny concludes the training process with 120

Task-Specific Distillation (TSD) through adding 121

new learning objectives, namely Soft-Label Distil- 122

lation (LSoft) and Hard-Label loss (LHard) which 123

represents the task-specific finetune loss such as 124

cross-entropy for classification downstream task. 125

Note that TSD is similar to the finetune distillation 126

at existing works. Figure 2 compares the workflow 127

of existing works and ERNIE-Tiny. 128

Notably, general-enhanced distillation provides 129

finetuned teacher’s guidance not through task- 130

specific data as what existing works do, but through 131

general data. Compared with existing works, 132

general-enhanced distillation allows student to ab- 133

sorb task-specific knowledge through general data, 134

improving the effectiveness of distillation and gen- 135

eralization of student model (Laine and Aila, 2016; 136

Sajjadi et al., 2016; Miyato et al., 2018; Goodfel- 137

low et al., 2014). Empirical results show that with 138

general-enhanced distillation, ERNIE-Tiny out- 139

performs the baseline on out-of-domain datasets, 140

demonstrating the generalization gain brought by 141

general-enhanced distillation. In addition, general 142

data can be regarded as additional data to task- 143

specific data. We conduct experiments to show that 144

the effect of general-enhanced distillation is more 145
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significant on low-resource tasks. Moreover, task-146

adaptive distillation is introduced between general-147

enhanced distillation and task-specific distillation,148

serving as a bridge to smooth the transition between149

those two stages. We conduct experiments to show150

the performance gain brought by this stage.151

The main contributions of this work are as fol-152

lows: 1) We propose a novel four-stage progressive153

learning framework for language model compres-154

sion called ERNIE-Tiny to smooth the distillation155

process by gradually altering teacher, training data,156

and learning objective. 2) To our knowledge, lever-157

aging finetuned teacher with general data is the158

first time introduced in PLM distillation, helping159

student capture task-specific knowledge from fine-160

tuned teacher and improving generalization of stu-161

dent. 3) ERNIE-Tiny achieves 9.4x speedup keeps162

over 98.0% performance of its 12-layer teacher163

BERTbase on GLUE benchmark and exceeds state-164

of-the-art (SOTA) by 1.0% GLUE score. In Chi-165

nese datasets, 4-layer ERNIE-Tiny, harnessed with166

a better teacher, outperforms BERTbase by 0.4% ac-167

curacy with 7.5x fewer parameters and 9.4x faster168

inference speed.169

2 Related Work170

Pretrained Language Models Pretrained lan-171

guage models are learned on large amounts of text172

data and then finetuned to adapt to specific tasks.173

BERT (Devlin et al., 2019) proposes to pretrain174

a deep bidirectional Transformer. RoBERTa (Liu175

et al., 2019) achieves strong performance by train-176

ing longer steps using large batch size and more177

text data. ERNIE (Sun et al., 2019b) (Sun et al.,178

2019c) proposes to pretrain the language model179

on an enhanced mask whole word objective and180

further employs continue learning strategy. Re-181

cent works (Shoeybi et al., 2019; Brown et al.,182

2020; Kaplan et al., 2020) observe the trend that183

increasing model size also leads to lower perplexity.184

Switch-transformer (Fedus et al., 2021) simplifies185

and improves over Mixture of Experts (Shazeer186

et al., 2017) and trains a trillion parameters lan-187

guage model. However, (Kovaleva et al., 2019)188

shows the parameters are redundant in those mod-189

els and the performance can be kept even when190

the computational overhead and model storage191

is reduced. Moreover, the training cost of those192

models also raises serious environmental concerns193

(Strubell et al., 2019).194

Knowledge Distillation Knowledge distillation 195

(Hinton et al., 2015; Wang et al., 2020) aims to 196

train a small student model with soft labels and 197

intermediate representations provided by the large 198

teacher model. (Jiao et al., 2020) proposes Tiny- 199

BERT on the general distillation and task-specific 200

distillation stages. (Ren et al., 2020) proposes Dis- 201

tilBERT, which successfully halves the depth of 202

BERT model by knowledge distillation in the pre- 203

train stage and an optional finetune stage. (Sun 204

et al., 2019a) distills BERT into a shallower student 205

through knowledge distillation only in the finetune 206

stage. (Wang et al., 2020) proposes to compress 207

teacher by mimicking self-attention and value re- 208

lation in the pretrain stage. In contrast to these ex- 209

isting literature, we argue that the pretrain-finetune 210

distillation discrepancy exists. Specifically, the 211

pretrain-finetune distillation discrepancy is caused 212

by training data shift, teacher model alteration and 213

learning objective change. Therefore, we propose a 214

progressive distillation framework ERNIE-Tiny to 215

compress PLM. Through this progressive distilla- 216

tion framework, the discrepancy of distillation can 217

be alleviated and the performance of the distilled 218

student can be improved. Table 1 summarizes the 219

differences between our framework and previous 220

works. 221

3 Proposed Framework 222

Distillation aims to use the pretrained teacher T 223

to teach a student model S that is usually much 224

smaller as shown in the left part of Figure 2. In 225

our setting, besides the labeled task-specific data 226

Dt, we also have large-scale unlabeled data which 227

we call general data Dg from which the teacher 228

is pretrained. To combine those data and teacher 229

knowledge smoothly, we devise a four-stage pro- 230

gressive distillation framework. Those four stages 231

vary the three key distillation components, namely 232

training data, teacher model and learning objective 233

gradually from general level to task-specific level 234

as shown in Figure 2. To better explain those meth- 235

ods, we first show the background and discuss the 236

distillation framework in detail. 237

3.1 Background: Transformer Backbone 238

The Transformer architecture (Vaswani et al., 239

2017) is a highly modularized neural network, 240

where each Transformer layer consists of two 241

sub-modules, namely the multi-head self-attention 242
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Stage Teacher Data ERNIE-Tiny BERT-EMD TinyBERT DistilBERT BERT-PKD MiniLM MobileBert

GD pretrained General LLat LLat LLat LLat+LSoft - LLat LLat+LSoft
GED finetuned General LLat - - - - - -
TAD finetuned Task-Specific LLat - - - - - -
TSD finetuned Task-Specific LL+S+H LL+S+H LL+S+H LL+S+H LL+S+H LHard LHard

Table 1: Comparison with previous PLM distillation approaches. Latent Distillation (LLat) represents distillation
loss on the attributes at intermediate layers and it varies on different methods (e.g hidden states and attention
distribution in TinyBERT and BERT-EMD; attention distribution and attention value relation in MiniLM). Soft-
Label Distillation (LSoft) denotes distillation on soft target probabilities from the teacher model. As all methods
adopt Hard-Label loss (LHard) in TSD, for simplicity, we denote LL+S+H = LLat + LSoft + LHard.

(MHA) and position-wise feed-forward network243

(FFN). Transformer encodes contextual infor-244

mation for input tokens. The input embeddings245

{x}si=1 for sample x are packed together into246

H0 = [x1, · · · ,xs] , where s denotes the in-247

put sequence length. Then stacked Transformer248

blocks iteratively compute the encoding vectors as249

Hl = Transformerl (Hl−1) , l ∈ [1, L], and the250

Transformer is computed as:251

Al,a = MHAl,a(Hl−1W
Q
l,a,Hl−1W

K
l,a),

H′
l−1 = LN(Hl−1 + (

h

∥
a=1

Al,a(Hl−1W
V
l,a))W

O
l ),

Hl = LN
(
H′

l−1 + FFN
(
H′

l−1

))
,

(1)252

where the previous layer’s output Hl−1 ∈253

Rs×d is linearly projected to a triple of254

queries, keys and values using parameter matri-255

ces WQ
l,a,W

K
l,a,W

V
l,a ∈ Rd×d′ , where d denotes256

the hidden size of Hl and d′ denotes the hidden size257

of each head’s dimension. Al,a ∈ Rs×s indicates258

the attention distributions for the a-th head in layer259

l, which is computed by the scaled dot-product of260

queries and keys respectively. h represents the num-261

ber of self-attention heads. ∥ denotes concatenate262

operator along the head dimension. WO
l ∈ Rd×d263

denotes the linear transformer for the output of264

the attention module. LN denotes the layer nor-265

malization operation (Ba et al., 2016). FFN is266

composed of two linear transformation function267

including mapping the hidden size of H′
l−1 to dff268

and then mapping it back to d.269

3.2 General Distillation and270

General-Enhanced Distillation271

General Distillation As shown in Figure 2,272

ERNIE-Tiny employs general distillation and273

general-enhanced distillation sequentially. In the274

general distillation stage, the pretrained teacher275

helps the student learn knowledge on the massive276

unlabeled general data with the intermediate repre-277

sentation. The loss is computed as follows: 278

LTLat(x) =
LS∑
l=1

h∑
a=1

F (AT
k,a(x),Ml,aA

S
l,a(x))

+

LS∑
l=1

F (HT
k (x),H

S
l (x)Nl),

LGD = E
x∼Dg

LTg

Lat(x),

(2) 279

where k = l × c, LGD denotes the loss for general 280

distillation on the general data Dg . LS denotes the 281

number of layers of student model. Considering the 282

number of layers of pretrained teacher LT and stu- 283

dent model LS may not be the same, we set student 284

layers to mimic the representation of every c layers 285

of pretrained teacher model, where c = LT / LS . 286

We introduce a mapping matrix Ml,a ∈ Rh×h′
287

to align the number of attention heads for teacher 288

and student’s attention heads, h and h′, when they 289

do not match. Similarly, a linear transformation 290

Nl ∈ Rd×d′ is used when the hidden size d and d′ 291

of HT
l ∈ Rs×d and HS

l ∈ Rs×d′ does not match. 292

A metric function F is utilized to measure the dis- 293

tance between teacher and student’s representation 294

and guide the distillation process. We choose mean 295

square error as F for our experiment. Put it to- 296

gether, we call the right hand side of Eq. (2) latent 297

distillation and denotes it as LTg

Lat where Tg indi- 298

cates the pretrained teacher (i.e. the guidance ATg 299

and HTg come from pretrained teacher). 300

General-Enhanced Distillation To further ex- 301

ploit the general data, we propose to use the fine- 302

tuned teacher as a surrogate for task-specific knowl- 303

edge and perform distillation over general data. 304

And the training loss of general-enhanced distilla- 305

tion is defined as follows: 306

LGED = E
x∼Dg

LTf

Lat(x), (3) 307
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where LTf

Lat indicates that the guidance involved in308

latent distillation loss comes from finetuned teacher.309

During general-enhanced distillation, the student310

is optimized by minimizing the LGED on general311

data.312

One benefit of this stage is that the distilla-313

tion process becomes much smoother. Comparing314

Eq. (3) with Eq. (2), the only change between gen-315

eral distillation and general-enhanced distillation is316

that we only replace the teacher Tg with Tf among317

the three components (i.e. teacher, training data,318

learning objective) while existing works change319

all of them together at the same time as shown in320

Figure 2.321

Another benefit is that introducing finetuned322

teacher on general data improves the generalization323

of student model. As the number of task-specific324

samples is usually much smaller than general data,325

having the finetuned teacher generating hidden rep-326

resentations on general data can be used to com-327

pensate for the task-specific data sparsity. Those328

hidden representations extracted from Dg can be329

regarded as feature augmentation. Although there330

may be no task-related label information on Dg, the331

hidden representation from finetuned teacher still332

contains task-specific information. Several works333

(Laine and Aila, 2016; Sajjadi et al., 2016; Miyato334

et al., 2018; Goodfellow et al., 2014) succeed in us-335

ing the random image augmentation to improve336

generalization performance for semi-supervised337

tasks. The empirical results on generalization gains338

led by general-enhanced distillation are shown in339

Section 4.3.340

3.3 Task-Adaptive Distillation and341

Task-Specific Distillation342

Task-Adaptive Distillation Task-adaptive distil-343

lation is introduced after general-enhanced distilla-344

tion to start distillation on task-specific data. The345

task-adaptive distillation loss is devised as follow-346

ing:347

LTAD = E
x∼Dt

LTf

Lat(x), (4)348

where Dt is the task-specific data. Student model349

is trained by minimizing LTAD. Comparing Eq.(4)350

with Eq.(3), we see that the difference between351

general-enhanced distillation and task-adaptive dis-352

tillation is that the training data is changed from353

general data to task-specific data.354

The advantage of proposing the task-specific355

stage is two-fold. First, continuing with the philos-356

ophy of progressive distillation and pretrain-then-357

finetune paradigm, only the dataset is changed in 358

this stage to smoothen the distillation. Second, as 359

recent work (Raffel et al., 2019) shows that unsu- 360

pervised learning on the task-specific data before 361

applying the supervised signal leads to improve- 362

ment on downstream performance, distillation of 363

hidden representations on task-specific data paves 364

the way for the upcoming task-specific objective 365

learning. 366

Task-Specific Distillation Task-specific distilla- 367

tion is presented to finish the whole distillation 368

process. Compared with the last stage, this stage 369

includes soft-label and hard-label learning objec- 370

tives. Specifically, the loss is computed as follows: 371

372

LTSD = E
(x,y)∼Dt

LTf

Lat(x) + L
Tf

Soft(x) + LHard(x, y),

LTf

Soft(x) = F1(z
Tf (x), zS(x)),

LHard(x, y) = F2(y, z
S(x)),

(5) 373

where LTSD contains three losses for distillation 374

(LTf

Lat), soft-label (LTf

Soft) and hard-label (LHard). 375

zTf and zS denotes the logit of finetuned teacher 376

and student respectively. y represents the ground- 377

truth label from task-specific data. For super- 378

vised classification problems, we choose Kullback- 379

Leibler Divergence (Kullback and Leibler, 1951) 380

for F1 and cross entropy for F2. For regression 381

task, we choose mean square error for both F1 and 382

F2. 383

3.4 Progressive Distillation Framework 384

The key technique for ERNIE-Tiny is to change 385

the teacher, training data and learning objective 386

carefully and smoothly. Overall, the student is 387

trained using following four losses: 388

L{T,D,α} = E
(x,y)∼D

LTLat(x) + α(LTSoft(x) + LHard(x, y))

=


LGD, T = Tg, D = Dg, α = 0

LGED, T = Tf , D = Dg, α = 0

LTAD, T = Tf , D = Dt, α = 0

LTSD, T = Tf , D = Dt, α = 1

(6) 389

where T ∈ {Tg, Tf}, D ∈ {Dg, Dt} and α ∈ 390

{0, 1}. The overall algorithm is shown in Ap- 391

pendix A.4. Put them together, ERNIE-Tiny 392

presents a smoothly transited distillation frame- 393

work to effectively compress a large teacher model 394

into a significantly smaller student model. The 395

advantage of each stage is shown in the ablation 396

studies. 397
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Method Params Speedup MNLIm MNLImm QQP SST-2 QNLI MRPC RTE CoLA STS-B Avg.

BERTBase(T.) 109M 1x 84.6 83.4 71.2 93.5 90.5 88.9 66.4 52.1 85.8 79.6

DistilBERT 52.2M 3x 78.9 78.0 68.5 91.4 85.2 82.4 54.1 32.8 76.1 71.9
BERT-PKD 52.2M 3x 79.9 79.3 70.2 89.4 85.1 82.6 62.3 24.8 79.8 72.6
BERT-EMD 14.5M 9.4x 82.1 80.6 69.3 91.0 87.2 87.6 66.2 25.6 82.3 74.7

MobileBERT* 15.1M 8.6x 81.5 81.6 68.9 91.7 89.5 87.9 65.1 46.7 80.1 77.0
MiniLM(re.) 14.5M 9.4x 77.9 77.6 67.5 88.0 86.5 81.4 62.0 13.7 79.4 70.4
TinyBERT 14.5M 9.4x 82.5 81.8 71.3 92.6 87.7 86.4 66.6 44.1 80.4 77.0

ERNIE-Tiny 14.5M 9.4x 83.0 81.8 71.3 93.3 88.3 88.4 66.6 47.4 82.3 78.0

Table 2: GLUE test results that are scored by GLUE evaluation server. The state-of-the-art results are in bold. All
methods adopt BERTBase as teacher model, excluding MobileBERT. MobileBERT* is distilled from IB-BERT,
which has the same amount of parameters with BERTLarge. The architecture of ERNIE-Tiny, BERT-EMD, MiniLM
and TinyBERT is (L=4, d=312, dff=1200). MiniLM on this table is reproducted by us. BERT-PKD and DistilBERT
is (L=4, d=768, dff=3072). MobileBERT is (L=24, d=128, dff=512) with different transformer architecture
design. Please refer to Appendix A.6 for how the speedup is calculated.

4 Experiment398

In this section, we first evaluate ERNIE-Tiny on399

English datasets and compare it with existing400

works. Then, we evaluate ERNIE-Tiny on Chinese401

datasets. After that, ablation studies and discus-402

sions are presented to analyze the contribution of403

each stage.404

4.1 Evaluation on English Datasets405

4.1.1 Downstream Tasks406

General Language Understanding Evaluation407

(GLUE) benchmark (Wang et al., 2019) is cho-408

sen to evaluate ERNIE-Tiny. It is a well-studied409

collection of NLP tasks, including textual entail-410

ment, emotion detection, etc. Please refer to Ap-411

pendix A.2 for details.412

4.1.2 Experiment Setup413

For a fair comparison, we adopt pretrained414

BERTBase checkpoint released by the author (De-415

vlin et al., 2019) as pretrained teacher. BERTBase416

is a 12-layer transformer-based model with hidden417

size of 768 and intermediate size of 3072, account-418

ing for 109M parameters in total, pretrained on419

English Wikipedia and BooksCorpus (Zhu et al.,420

2015a). To obtain finetuned teachers, we finetune421

pretrained BERTBase on each task as the finetuned422

teachers. Following existing works (Jiao et al.,423

2020), we adopt a 4-layer model with hidden size424

of 312 and intermediate hidden size of 1200 as our425

student. The hyper-parameters for each task are in426

Appendix A.9. We use GLUE as the task-specific427

data which is the training data in TAD and TD. We428

also adopt English Wikipedia and BooksCorpus on429

which BERTBase is pretrained as the general data430

which is the training data in GD and GED. This431

ensures that no additional resources or knowledge 432

are involved. Recall that a finetuned teacher and 433

general data are combined to perform distillation 434

during GED. 435

4.1.3 Results on English Datasets 436

We compare ERNIE-Tiny with several baselines. 437

The results of MobileBERT (Sun et al., 2020), 438

TinyBERT (Jiao et al., 2020) and BERT-EMD (Li 439

et al., 2020) are quoted from their paper. As BERT- 440

PKD (Sun et al., 2019a) and DistilBERT (Ren et al., 441

2020) do not experiment with 4-layer model, we 442

quote the results from the TinyBERT’s implemen- 443

tation (Jiao et al., 2020). We report test set results 444

evaluated by the official GLUE server, summarized 445

in Table 2. Since MiniLM (Wang et al., 2020) 446

do not report test results on GLUE, We reproduce 447

a 4-layer MiniLM for comparison. ERNIE-Tiny 448

outperforms TinyBERT, DistilBERT, BERT-PKD, 449

MiniLM and BERT-EMD across most tasks and 450

exceeds SOTA by 1.0% GLUE score. Compared 451

with its teacher BERTBase, ERNIE-Tiny retains 452

98.0% performance while is 7.5x smaller and 9.4x 453

faster for inference. 454

4.2 Evaluation on Chinese Datasets 455

We have also conducted experiments on 5 Chi- 456

nese datasets, and ERNIE-Tiny outperforms base- 457

line models. Particularly, with equipping a strong 458

teacher ERNIE2.0Base (Sun et al., 2019c), ERNIE- 459

Tiny even outperforms a 12-layer BERTBase. 460

Please refer to Appendix A.5 for details. 461

4.3 Ablation Studies 462

We perform ablation studies on each stage involved 463

in ERNIE-Tiny. To better illustrate the contribution 464

of each stage, we divide them into two categories 465
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Method MNLIm MNLImm MRPC CoLA Avg.

BERTBase (T.) 84.5 84.6 86.8 61.3 79.3

ERNIE-Tiny 83.0 83.0 86.9 50.0 75.7
w/o GED 80.7 80.8 85.0 44.9 72.3

Table 3: Ablation study on distillation with general data.
(T.) denotes the teacher model. The model with only GD
employ the same training computations with ERNIE-
Tiny.

based on the training data used: GD and GED as466

general data based distillation; TAD and TSD as467

task-specific data based distillation. Experiments468

in this section follow the experiment setup in Sec-469

tion 4.1.2. All results in this section are obtained by470

taking the average on the dev set result of 5 runs.471

Effect of General Data Based Distillation To472

analyze the contribution of general data, we per-473

form ablation studies on 2 low-resource tasks474

MRPC and CoLA, and 1 high-resource task MNLI.475

As general data is utilized in GD and GED, we476

construct 2 different settings of ERNIE-Tiny to477

demonstrate the effect of distilling with general478

data by removing GED. For a fair comparison, we479

have increased the training steps of GD to keep480

the number of training computations the same. It481

means that we increase the training steps of GD482

in experiment w/o GED in Table 3 such that the483

total number of training steps of this experiment484

equals that of ERNIE-Tiny (i.e., the former has GD485

with 1000k steps while the latter has GD with 500k486

steps and GED with 500k steps). This setting aims487

to remove GED and leave all other settings, includ-488

ing the number of training steps the same to show489

the performance gain comes from GED strategy,490

rather than the additional computation. As shown491

in Table 3, removing GED significantly worsens492

the performance of distilled student, suggesting493

that general data plays an important role in distilla-494

tion. Recall that the only difference between GED495

and GD is that GED equips a finetuned teacher496

model. Compared with pretrained treacher, fine-497

tuned teacher captures task-specific information498

and is able to extract task-specific knowledge from499

general data. The results show that ERNIE-Tiny500

exceeds the one without GED by 3.4% average501

score, indicating that GED has a more significant502

contribution than GD on distillation.503

Effect of Task-specific Data Based Distillation504

To demonstrate the effectiveness of distillation on505

task-specific data, we vary the training process506

Method MNLIm MNLImm MRPC CoLA Avg.

BERTBase (T.) 84.5 84.6 86.8 61.3 79.3

ERNIE-Tiny 83.0 83.0 86.9 50.0 75.7
w/o TAD 80.3 80.7 86.5 39.3 71.7
w/o TAD&TSD w/ FT 81.4 81.9 83.5 20.8 66.9

Table 4: Ablation study on distillation with task-specific
data. FT denotes finetuning model directly. Three exper-
iments used the same number of training computations.

when performing distillation on task-specific data 507

and summarize the results in Table 4. We keep 508

the training computations of three experiments the 509

same by increasing the steps of TAD and finetuning. 510

The results show that solely removing TAD consis- 511

tently leads to a performance drop across all tasks. 512

Note that although TAD only differs from TSD in 513

that TAD has only LLat involved while the loss 514

in TSD comprises LLat, LSoft and LHard. Table 515

4 shows that without the task-adaptive distillation 516

step, the average score dropped from 75.7 to 71.7, 517

verifying that TAD is essential. The results verify 518

that the transition smoothing brought by TAD is 519

crucial to the effectiveness of distillation. We then 520

remove distillation on task-specific data entirely 521

(i.e. TAD and TSD) and only finetune student of 522

task-specific data, and find significant performance 523

degradation. This indicates that distillation on task- 524

specific data is non-negligible. 525

Effect of Student Capacity To illustrate the ef- 526

fect of the student model size, we enlarge the size 527

of the student model to have the same size as the 528

teacher model. As shown in Table 5, an ERNIE- 529

Tiny with the original model size can exceed the 530

teacher by 0.4% average score. 531

4.4 Discussion 532

In this section, we analyze how general-enhanced 533

distillation benefits the effectiveness of distillation. 534

Experiments in this section follows the setup in 535

Section 4.1.2. 536

General Data as Supplement to Task-specific 537

Data ERNIE-Tiny transfers task-specific knowl- 538

edge from finetuned teacher over general data 539

to student model in GED, while it transfers task- 540

specific knowledge over task-specific data in TAD 541

and TSD. General data in GED can be regarded 542

as a supplement to task-specific data. The effect 543

of additional data should be more significant on 544

low-resource tasks. To illustrate this, we select the 545

relatively large datasets MNLI, QNLI and QQP 546

from GLUE and vary them to 1%, 10%, and 50% 547

of the original size to simulate low-resource tasks. 548
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Method MNLIm MNLImm MRPC CoLA Avg.

BERTBase (L=12;d=768;dff=3072) (T.) 84.5 84.6 86.8 61.3 79.3

ERNIE-Tiny (L=4;d=312;dff=1200) 83.0 83.0 86.9 50.0 75.7 (-3.6)
ERNIE-Tiny (L=12;d=768;dff=3072) 84.6 84.9 87.3 62.1 79.7 (+0.4)

Table 5: Ablation study on student capacity. (T.) is the teacher model.

Method MNLIm MNLImm QNLI QQP Avg.

1% of labeled data
BERTBase (T.) 67.0 69.3 78.4 71.3 71.5
ERNIE-Tiny 65.2 67.4 75.4 70.8 69.7

w/o GED 57.7 60.5 75.4 69.4 65.8
gain of GED +7.5 +6.9 +0.0 +1.4 +4.0

10% of labeled data
BERTBase (T.) 76.4 77.3 86.9 79.7 80.1
ERNIE-Tiny 74.5 75.0 82.4 78.1 77.5

w/o GED 69.1 69.8 82.4 78.2 74.9
gain of GED +5.4 +5.2 +0.0 -0.1 +2.6

50% of labeled data
BERTBase (T.) 80.5 81.9 90.1 84.2 84.2
ERNIE-Tiny 79.3 80.1 84.2 83.5 81.8

w/o GED 75.3 76.4 83.5 83.3 79.6
gain of GED +4.0 +3.7 +0.7 +0.2 +2.2

Table 6: Ablation study on labeled data size.

The resulting data sizes are listed in Appendix A.3.549

Then we finetune BERTBase to obtain finetuned550

teacher and perform distillation on student model551

with the finetuned teacher for each configuration.552

Results are presented in Table 6, from which we553

can see that the gain from GED is impressive when554

less task-specific data is used, especially when only555

1% of the dataset can be used, the gain of GED can556

reach 4%, showing the importance of our method.557

Generalization Gain by GED Besides its ben-558

efits on low-resource tasks, GED can also be con-559

sidered as a stage to improve the generalization560

of the student, as it allows the student to capture561

task-specific knowledge on a much larger dataset.562

Several works (Laine and Aila, 2016; Sajjadi et al.,563

2016; Miyato et al., 2018; Goodfellow et al., 2014)564

succeeded in using random image augmentation565

to improve generalization performance for semi-566

supervised tasks. Similarly, at this stage, the hid-567

den representation information still contains task-568

specific data distribution information, which can569

be used to compensate for the sparse task data and570

augment the feature representations. This leads to571

improving the generalization of the student model.572

To show that, we first distill ERNIE-Tiny on MNLI573

and then evaluate it on out-of-domain datasets in-574

cluding SNLI (Bowman et al., 2015) and RTE. As575

RTE is a 2-class classification task while MNLI576

Method MNLIm SNLI RTE

GD+GED+TSD 81.2 75.9 65.7
GD+TAD+TSD 82.4 70.9 52.8
GD+TSD 80.8 63.6 47.3

Table 7: Accuracy on out-of-domain datasets.

is a 3-class classification task, we simply drop the 577

"neural" and take argmax of "entailment" and "not 578

entailment" when calculating accuracy on RTE. As 579

shown in Table 7, experiment with GED exceed 580

those without GED by a large margin. Specifically, 581

with GED and TAD, the out-of-domain SNLI and 582

RTE can improve 12 and 18.4 percent points re- 583

spectively. In particular, although removing one 584

of GED or TAD results in similar MNLI accu- 585

racy, the experiment with GED significantly outper- 586

forms the one without GED on all out-of-domain 587

datasets, demonstrating the generalization benefit 588

led by GED. Another interesting observation is that 589

adding TAD can also be beneficial to the general- 590

ization of the student. 591

5 Conclusion 592

In this paper, we propose a progressive distillation 593

framework ERNIE-Tiny to compress PLMs. Four- 594

stage distillation is introduced to smooth the transi- 595

tion from pretrain distillation to finetune distillation. 596

In particular, general-enhanced distillation employs 597

finetuned teacher to deliver enhanced knowledge 598

over general data to student model, boosting the 599

generalization of student model. Task-adaptive dis- 600

tillation further smooths transition via carefully 601

designed learning objectives. ERNIE-Tiny dis- 602

tilled from BERTBase retains 98% performance 603

with 9.4x faster inference speed, achieving SOTA 604

on GLUE benchmark with the same amount of pa- 605

rameters. Our 4-layer ERNIE-Tiny distilled from 606

Chinese ERNIE2.0Base also outperforms 12-layer 607

Chinese BERTBase. Our work didn’t apply larger 608

unlabeled general data such as C4 (Raffel et al., 609

2019). More efficient data utilization is left for 610

future work. 611
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6 Broader Impact612

As we have introduced four stages in our frame-613

work, it naturally causes concerns about the com-614

putation cost brought by our method. One metric615

to measure the computation cost is carbon foot-616

print introduced in (Patterson et al., 2021), and the617

calculation equation is shown as following:618

F = (Etrain + q × Einference)× CO2/KWh, (7)619

where Etrain and Einference is the energy for train-620

ing and inference respectively. q is the number621

of calling for model inference, CO2/KWh is the622

emission of CO2 per KWh. Assume the hardware623

and software environment are the same for teacher624

and student, the only factors affects equation 7 are625

the computation FLOPS and number of q. Figure 3,626

shows the total cost for ERNIE-Tiny and BERT,627

including the total training cost and inference cost.628

Please refer to A.8 for the calculation details. It can629

be seen that at a certain point of q, the computation630

for ERNIE-Tiny is much lower than BERT with631

nearly 10x.632

FL
O

PS

1E+19

1E+22

1E+25

# of q (million)

1.00E+02 1.00E+04 1.00E+06 1.00E+08

ERNIE-Tiny
BERT

Figure 3: Cost Comparison Between ERNIE-Tiny and
BERT with number of queries. The axes are shown in
log scale.

ERNIE-Tiny distillation framework might seem633

expensive at first glance as it brings additional634

computation requirements compared to other exist-635

ing works. However, as shown in Figure 3, when636

the number of model inferences is large enough,637

ERNIE-Tiny requires less computational resources638

than directly inferring with BERT. That being said,639

ERNIE-Tiny is more suitable for the scenarios640

where the number of model inferences is large such641

as real-life servers, and less suitable for those with642

small number of model inferences required.643

Applying ERNIE-Tiny on real-life application644

with large number of requests, ERNIE-Tiny can645

significantly reduce carbon emission by 10x com-646

paring to inferring with BERT. Furthermore, we647

have also discussed some interesting research ques- 648

tions in Appendix ??. 649
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A Appendix937

A.1 Pretraining Dataset Details938

For ERNIE-Tiny, GD and GED are trained on pre-939

training dataset. Specifically, we use Wikipedia940

(English Wikipedia dump1; 12GB), BookCorpus941

(Zhu et al., 2015b) (4.6GB) for those two steps.942

Table 8 shows statistics of the pretraining data.943

Source Tokens Avg doc len

Wikipedia 3.0B 515
BookCorpus 1.2B 23K

Table 8: Pretraining data statistics.

A.2 Task Dataset Details944

GLUE The General Language Understanding945

Evaluation (GLUE) benchmark is a well-studied946

collections of nine natural language understanding947

tasks, including:948

• CoLA: The Corpus of Linguistic Acceptabil-949

ity (CoLA)(Warstadt et al., 2019) is com-950

monly used to judge whether a sentence con-951

forms to the syntax specification, consisting952

of 10657 sentences from 23 linguistics, an-953

notated for acceptability (grammatically) by954

their original authors.955

• SST-2: The Stanford Sentiment Treebank956

(SST-2)(Socher et al., 2013) is a sentiment957

analysis task consisting of 9645 movie re-958

views.959

• MNLI: Multi-genre Natural Language Infer-960

ence (MNLI)(Williams et al., 2017) is a tex-961

tual inference task, including 433k sentence962

pairs annotated with textual entailment infor-963

mation.964

• RTE: Recognizing Textual Entailment965

(RTE)(Bentivogli et al., 2009) is a Natural966

Language Inference task, similar to MNLI.967

• WNLI: Winograd Natural Language Infer-968

ence (WNLI)(Levesque et al., 2012) is a task969

that needs capturing the coreference informa-970

tion between two paragraphs.971

• QQP: Quora Question Pairs (QQP)2 is a task972

for detecting whether the question pairs are973

1https://dumps.wikimedia.org/enwiki/
2https://www.quora.com/q/quoradata/First-Quora-

Dataset-Release-Question-Pairs

duplicates or not, consisting of over 400,000 974

sentence pairs with data extracted from Quora 975

QA community. 976

• MRPC: Microsoft Research Paraphrase Cor- 977

pus (MRPC)(Dolan and Brockett, 2005) is a 978

task that requires the model to capture the 979

paraphrase or semantic relationship between 980

a pair of sentences. it contains 5800 pairs of 981

sentences extracted from web-crawled news. 982

• STS-B: The Semantic Textual Similarity 983

Benchmark (STS-B)(Cer et al., 2017) contains 984

a selection of English datasets containing texts 985

from image captions, news headlines, and user 986

forums. 987

• QNLI: Question Natural Language Inference 988

(QNLI)(Rajpurkar et al., 2016; Wang et al., 989

2018a) is a task that requires the mode to clas- 990

sify if the given premise is the answer to the 991

hypothesis. 992

Chinese Datasets We have chosen the following 993

5 Chinese NLP datasets to evaluate ERNIE-Tiny. 994

Like GLUE, the collections of Chinese datasets 995

also covers various NLP tasks. The details of the 996

chosen Datsets are listed below: 997

• XNLI (Conneau et al., 2018): The Cross- 998

lingual Natural Language Inference (XNLI) is 999

the extension of MNLI to multiple languages. 1000

The train set of XNLI is translated by ma- 1001

chines, and the dev set is translated by hu- 1002

man experts. We took the Chinese version of 1003

XNLI. 1004

• ChnSentiCorp 3: ChnSentiCorp consists of 1005

9600 samples collected from hotel reviews 1006

and is annotated for sentiment analysis. 1007

• MSRA-NER (SIGHAN 2006) (Zhang et al., 1008

2006): MSRA-NER is a named entity recog- 1009

nition task containing 21000 examples anno- 1010

tated into three types: people, location, and 1011

organization. 1012

• LCQMC (Liu et al., 2018): LCQMC is a text 1013

similarity task consisting of 260,068 query- 1014

paragraph pairs collected from search engine 1015

logs. The similarity between question and 1016

paragraph is annotated by human experts. 1017

• NLPCC-DBQA 4: DBQA is a QA task 1018

3https://github.com/pengming617/bert_classification
4http://tcci.ccf.org.cn/conference/2016/dldoc/evagline2.pdf
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Corpus Task #Train #Dev #Test #Label Metrics
CoLA Acceptability 8.5k 1k 1k 2 Matthews corr
SST-2 Sentiment 67k 872 1.8k 2 Accuracy
MNLI NLI 393k 20k 20k 3 Accuracy
RTE NLI 2.5k 276 3k 2 Accuracy
WNLI NLI 634 71 146 2 Accuracy
QQP Paraphrase 364k 40k 391k 2 Accuracy/F1
MRPC Paraphrase 3.7k 408 1.7k 2 Accuracy/F1
STS-B Similarity 7k 1.5k 1.4k 1 Pearson/Spearman corr
QNLI QA/NLI 108k 5.7k 5.7k 2 Accuracy

Table 9: The details of GLUE benchmark. The #Train, #Dev and #Test denote the size of the training set,
development set and test set of corresponding corpus respectively. The #label denotes the size of the label set of the
corresponding corpus.

consisting of 182K question-document pairs.1019

Though one-to-many relation is presented in1020

training data, we cast this task into a sentence-1021

pair classification problem.1022

A.3 Size of Resulted Low-source Datasets1023

We vary the task-specific dataset size of MNLI,1024

QNLI, and QQP tasks to 1%, 10%, and 50% of the1025

original size, the resulting data sizes are listed in1026

Table 12.1027

A.4 Algorithm1028

Algorithm 1 ERNIE-Tiny Progressive Distillation
Framework

step← 0
while step ≤ EGD do

θstep+1 ← θstep − βGD∇θLGD ▷ GD
end while
step← 0
while step ≤ EGED do

θstep+1 ← θstep − βGED∇θLGED ▷ GED
end while
step← 0
while step ≤ ETAD do

θstep+1 ← θstep − βTAD∇θLTAD ▷ TAD
end while
step← 0
while step ≤ ETD do

θstep+1 ← θstep − βTD∇θLTD ▷ TD
end while

Algorithm 1 shows the overall procedure of1029

ERNIE-Tiny. EGD, EGED, ETAD, ETD, βGD,1030

βGED, βTAD and βTD are the training steps and1031

learning rate of these four stage respectively. As 1032

shown in this algorithm, the student resulted from 1033

each stage are used as initialization for next stage. 1034

A.5 Evaluation on Chinese Datasets 1035

Dataset 5 Chinese NLP datasets are chosen for 1036

evaluating ERNIE-Tiny, including XNLI (Con- 1037

neau et al., 2018) for natural language inference, 1038

LCQMC (Liu et al., 2018) for semantic similarity, 1039

ChnSentiCorp5 for sentiment analysis, NLPCC- 1040

DBQA6 for question answering and MSRA-NER 1041

(Zhang et al., 2006) for named entity recognition. 1042

All results reported in this section are calculated by 1043

taking the average on the dev set result of 5 runs. 1044

Please refer to Appendix A.9 for details. 1045

Result Since most of the compression models 1046

do not experiment on Chinese tasks, we reproduce 1047

TinyBERT for comparison. Both TinyBERT and 1048

ERNIE-Tiny are distilled from an strong teacher 1049

Chinese ERNIE2.0Base (Sun et al., 2019c) instead 1050

of Chinese BERTBase. It can be seen in Table 11 1051

that ERNIE-Tiny outperforms Chinese BERTBase
7 1052

on XNLI, LCQMC, ChnSentiCorp and NLPCC- 1053

DBQA, and exceeds it by 0.4% average score over 1054

the five datasets, while being 7.5x smaller and 9.4x 1055

faster in inference time. 1056

A.6 Speed Up Calculation 1057

We followed how TinyBERT (Jiao et al., 2020) 1058

evaluates inference speedup (i.e. evaluating the 1059

inference time on a single NVIDIA K80 GPU) and 1060

obtained the same result with TinyBERT as our 1061

5https://github.com/pengming617/bert_classification
6http://tcci.ccf.org.cn/conference/2016/dldoc/evagline2.pdf
7https://github.com/google-research/bert
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Corpus Task #Train #Dev #Test #Label Metrics
XNLI NLI 392k 2.5k 2.5k 3 Accuracy
ChnSentiCorp SA 9.6k 1.2k 1.2k 2 Accuracy
MSRA-NER NER 21k 2.3k 4.6k 7 F1
LCQMC SS 240k 8.8k 12.5k 2 Accuracy
NLPCC-DBQA QA 182k 41k 82k 2 mrr/F1

Table 10: The details of Chinese NLP datasets. The #Train, #Dev and #Test denote the size of the training set,
development set and test set of corresponding corpus respectively. The #label denotes the size of the label set of the
corresponding corpus.

Method Params Speedup XNLI LCQMC ChnSentiCorp NLPCC-DBQA MSRA-NER Avg.

ERNIE2.0Base (T.) 109M 1x 79.8 87.5 95.5 84.4 95.0 88.4

BERTBase 109M 1x 77.2 87.0 94.3 80.9 92.3 86.3
TinyBERT (re.) 14.5M 9.4x 76.3 86.8 94.2 81.8 87.3 85.3
ERNIE-Tiny 14.5M 9.4x 77.6 88.0 94.9 82.2 90.8 86.7

Table 11: Test Results of Chinese Tasks. TinyBERT on this table is reproducted by us. The teacher of TinyBERT
and ERNIE-Tiny(L=4, d=312, dff=1200) are set to Chinese ERNIE2.0Base. Both BERTBase and ERNIE2.0Base

is (L=12, d=768, dff=3072).

proportion MNLI QNLI QQP

1% 3927 1047 3638
10% 39270 10474 36384
50% 196351 52371 181925

Table 12: Number of labeled data.

model has the same architecture and parameters as1062

TinyBERT1063

A.7 Sensitive To Hyperparameters1064

We empirically found that the final performance1065

is insensitive to most hyper-parameters and most1066

hyper-parameters in our experiment can be adopted1067

in practice, except for the number of training steps1068

in TAD which requires adjustment based on the1069

size of the task datasets (e.g. reduce it for large1070

task datasets). Take the hyper-parameters used in1071

our experiment as examples, the hyper-parameters1072

for experiments with Chinese datasets are mostly1073

the same as for GLUE.1074

A.8 Details on Computation Cost1075

Arch. Train Inference

BERTBase 6.43E+19 1.37E+11
ERNIE-Tiny 5.79E+19 2.24E+10

Table 13: Computation FLOPS for both training and
inference.

In this section, we will describe the calculation 1076

details for Figure 3. As shown in Table 13, we 1077

list the training and inference FLOPS for both 1078

BERTBase and ERNIE-Tiny respectively 8. The 1079

training computation cost is recorded for total train- 1080

ing process, and the inference computation cost is 1081

recorded for one sample feedfoward. So the total 1082

distillation cost for ERNIE-Tiny can be calculated 1083

as 1084

CT = Tstudent + Iteacher × S ×Batchsize, 1085

where Tstudent denotes that FLOPS caused by stu- 1086

dent training such as forward/backward propaga- 1087

tion and updating parameters which can be found 1088

in Table 13. Iteacher denotes the FLOPS for a sin- 1089

gle inference or forward propagation on Teacher. 1090

S denotes the total training steps. 1091

The inference cost for ERNIE-Tiny can be cal- 1092

culated as 1093

CInfer = Istudent × S ×Batchsize, 1094

where Istudent denotes the FLOPS for a single in- 1095

ference or forward propagation on ERNIE-Tiny. 1096

A.9 Implementation Details 1097

Table 14 gives the detailed hyper-parameters used 1098

in our ablation experiment on GLUE tasks. Note 1099

8Those result can be calculated with the opensourced
scripts at https://tinyurl.com/47ercmu9
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that dropout intervenes in hidden states and hurts1100

distillation performance, thus all dropout rates were1101

set to 0 in our experiment setting. Also, we find that1102

using AMP hurts distillation performance due to1103

inaccuracy of hidden state representation, so we use1104

pure FP32 training in all experiments. The GED1105

stage takes about 2 days on 4 16g-V100, while the1106

computation cost for other tasks no more than 11107

day. Hyper-parameters for our Chinese results are1108

listed in Table 15.1109
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Hyper parameters MNLI QQP QNLI RTE SST-2 STS-B MRPC CoLA

GD
batch size 2000 2000 2000 2000 2000 2000 2000 2000
learning rate 4e-4 4e-4 4e-4 4e-4 4e-4 4e-4 4e-4 4e-4
training steps 500K 500K 500K 500K 500K 500K 500K 500K
optimizer Adam Adam Adam Adam Adam Adam Adam Adam
warmup steps 5000 5000 5000 5000 5000 5000 5000 5000
dropout rate 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

GED
batch size 1280 1280 1280 1280 1280 1280 1280 1280
learning rate 2e-4 2e-4 2e-4 2e-4 2e-4 2e-4 2e-4 2e-4
training steps 500K 500K 500K 500K 500K 500K 500K 500K
optimizer Adam Adam Adam Adam Adam Adam Adam Adam
warmup steps 500 500 500 500 500 500 500 500
dropout rate 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

TAD
batch size 256 256 256 128 128 128 128 128
learning rate 5e-5 5e-5 5e-5 5e-5 5e-5 5e-5 5e-5 5e-5
epoch 5 5 5 10 10 10 10 50
optimizer Adam Adam Adam Adam Adam Adam Adam Adam
warmup proportion 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
dropout rate 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

TSD
batch size 256 256 256 128 128 128 128 128
learning rate 1e-5 1e-5 1e-5 3e-5 3e-5 3e-5 3e-5 3e-5
epoch 3 3 3 3 3 3 3 3
optimizer Adam Adam Adam Adam Adam Adam Adam Adam
warmup proportion 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
dropout rate 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 14: Hyper-parameters for ablation studies on GLUE tasks.
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Hyper parameter XNLI ChnSentiCorp MSRA-NER LCQMC NLPCC-DBQA

GD
batch size 2000 2000 2000 2000 2000
learning rate 4e-4 4e-4 4e-4 4e-4 4e-4
training steps 500K 500K 500K 500K 500K
optimizer Adam Adam Adam Adam Adam
warmup steps 5000 5000 5000 5000 5000
dropout rate 0.0 0.0 0.0 0.0 0.0

GED
batch size 1280 1280 1280 1280 1280
learning rate 2e-4 2e-4 2e-4 2e-4 2e-4
training steps 500K 500K 500K 500K 500K
optimizer Adam Adam Adam Adam Adam
warmup steps 500 500 500 500 500
dropout rate 0.0 0.0 0.0 0.0 0.0

TAD
batch size 256 128 256 128 128
learning rate 5e-5 5e-5 5e-5 5e-5 5e-5
epoch 5 10 5 10 50
optimizer Adam Adam Adam Adam Adam
warmup proportion 0.01 0.01 0.01 0.01 0.01
dropout rate 0.0 0.0 0.0 0.0 0.0

TSD
batch size 256 128 256 128 128
learning rate 1e-5 3e-5 1e-5 3e-5 3e-5
epoch 3 3 3 3 3
optimizer Adam Adam Adam Adam Adam
warmup proportion 0.01 0.01 0.01 0.01 0.01
dropout rate 0.0 0.0 0.0 0.0 0.0

Table 15: Hyper-parameters for evaluation on Chinese Datasets.
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