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ABSTRACT

Interpretability is a crucial aspect of deploying deep learning models in critical
care, especially in constantly evolving conditions that influence patient survival.
However, common interpretability algorithms face unique challenges when ap-
plied to dynamic prediction tasks, where patient trajectories evolve over time.
Gradient, Occlusion, and Permutation-based methods often struggle with time-
varying target dependency and temporal smoothness. This paper systematically
analyzes these failure modes and supports learnable mask-based interpretability
frameworks as alternatives, which can incorporate temporal continuity and label
consistency constraints to learn feature importance over time. We argue that learn-
able mask-based approaches for dynamic time-series prediction problems provide
more reliable and consistent interpretations for applications in critical care and
similar domains.

1 INTRODUCTION

Interpretability techniques are essential in high-stakes, resource-constrained environments such as
critical care medicine to ensure model-derived interpretations align with temporal dynamics of the
clinical trajectories. While deep learning models detect subtle temporal patterns, their clinical utility
depends on interpretations that map predictions to pathophysiology (Dey et al., 2022). Time-series
interpretability techniques must not only attribute feature importance but also contextualize when
and why specific features matter, such as a blood pressure drop preceding cardiac arrest. Conven-
tional interpretability approaches may oversimplify the temporal granularity required in critical care,
attributing importance to isolated time points rather than evolving physiological contexts. This mis-
match risks confusing treatment artifacts with genuine deterioration in patient health (Stiglic et al.,
2020), highlighting the need for temporally coherent interpretability methods.

Among conventional methods, Integrated Gradients (Sundararajan et al., 2017), DeepLIFT (Shriku-
mar et al., 2017) and GradientSHAP (Lundberg et al., 2018) are foundational approaches that lever-
age gradients to attribute importance to features. However, gradient-based methods often struggle
to capture temporal dependencies inherent in sequential data (Srinivas & Fleuret, 2020), leading to
adaptations like Temporal Integrated Gradients (TIG) (Enguehard, 2023c) and Sequential Integrated
Gradients (Enguehard, 2023b).

Complementing gradient-based methods are perturbation-based approaches, which assess feature
importance by altering parts of the input and observing the corresponding impact on predictions.
Feature Occlusion (FO) (Suresh et al., 2017) and Augmented Temporal FO (Tonekaboni et al.,
2020) are perturbation-based methods that rely on non-learnable input masking strategies or fea-
ture removal without dynamically adjusting to the data. In contrast, learnable mask-based methods
such as DynaMask (Crabbé & Van Der Schaar, 2021) and ExtremalMask (Enguehard, 2023a) op-
timize the masking process to either preserve or perturb key features while optimizing temporal
continuity and label consistency constraints. Feature Importance in Time (FIT) (Tonekaboni et al.,
2020), a method specifically developed for time-series interpretability offers a robust framework for
quantifying shifts in predictive distributions and understanding temporal feature importance.

Furthermore, certain model architectures enable inherent interpretability by identifying feature
saliency, such as RETAIN (Choi et al., 2016), by directly learning attention weights to provide
feature attributions. However, reliance on attention mechanisms can lead to inconsistencies in inter-
pretations as supported by natural language processing literature (Jain & Wallace, 2019).
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Existing methods for evaluating time-series interpretability have focused on static classification
tasks, where a prediction is made only after observing the entire sequence, typically resulting in
binary or multi-class output (e.g., EEG Classification, Patient Mortality Prediction). In contrast, this
work extends time-series interpretability methods to dynamic prediction tasks, such as predicting
acute organ failure, where predictions are generated at each time step, enabling insights into varying
patient states during their stay in Intensive Care Units (ICU). In this paper, we present:

i. A systematic analysis of failure modes in time-series interpretability algorithms for dynamic
prediction, focusing on target selection, attribution aggregation, and temporal smoothness.

ii. Empirical evidence supporting learnable mask-based frameworks to address the failure modes
through optimization with time-series specific constraints.

2 METHODS

2.1 DATASET DESCRIPTION AND PREDICTION TASK

We focused on Circulatory Failure, a leading cause of morbidity and mortality in critical care set-
tings, as the use case for this work (MEMBERS et al., 2023). We utilized the Dynamic Circulatory
Failure1 Prediction task from the HiRID-ICU benchmark study (Yèche et al., 2021), which involves
dynamic binary prediction throughout the patient’s ICU stay. Specifically, it continuously predicts
the onset of circulatory failure within the next 12 hours, provided the patient is not already in organ
failure. Detailed information on the distribution of the data set, including the number of ICU stay
records in the training, validation, and test sets, and the number of prediction samples, is provided
in Appendix A.1. This multivariate time-series dataset spans 2016 time steps at 5-minute intervals,
totaling 7 days, and includes 231 clinical features such as vital signs, hemodynamic data, treatments,
pathological laboratory values, and ventilation parameters for critical care management.

2.2 MODEL ARCHITECTURES AND TRAINING

We replicated the study by (Yèche et al., 2021), which used the standard transformer encoder archi-
tecture (1.64 Million params) (Vaswani, 2017) and extended their approach by utilizing an encoder-
only variant of the CrossFormer model (28.6 Thousand params) (Zhang & Yan, 2023). This choice
was motivated by CrossFormer’s state-of-the-art performance on time-series forecasting tasks and
parameter efficiency. The reduced parameter count not only aligns with the need for efficient gra-
dient calculations but also enables faster computation in the case of the perturbation-based method
where multiple forward passes of the model are required. CrossFormer significantly outperformed
the standard Transformer architecture, and test-set evaluation metrics are provided in Appendix A.2.

2.3 MODEL INTERPRETABILITY METHODS

We applied 14 time-series interpretability methods to the dynamic circulatory failure predic-
tion task and extracted corresponding attribution maps using captum (Kokhlikyan et al.,
2020) and time-interpret (Enguehard, 2023c) Python libraries. A complete list of
methods is provided in Table 1, and the code to reproduce the results is available at:
https://anonymous.4open.science/r/tsaifailuremodes-DB0C/.

3 RESULTS

3.1 FAILURE MODE 1: TIME-VARYING MULTI-OUTPUT MODELS

We observed that GradientSHAP, DeepLift, Integrated Gradients, and their variants are not inher-
ently optimized for time-varying multi-output models. This becomes particularly challenging in
dynamic prediction tasks, where predictions are generated at every time step, resulting in extended
attribution outputs. Specifically, these methods produce attributions of size T ×F for each time step
T and class C, which results in a full attribution set of T × T × F × C, where F is the number of

1Circulatory failure is defined as lactate levels exceeding 2 mmol / L combined with mean arterial blood
pressure below 65 mmHg or administration of any vasoactive drug.

2

https://anonymous.4open.science/r/tsaifailuremodes-DB0C/


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a workshop paper at ICLR 2025

Table 1: Comparison of Model Interpretability Methods. T denotes the number of time steps, F
denotes the number of features, C denotes the number of classes or outputs. Output attributions are
extracted for a single ICU stay are shown.

Index Method Library Output Attribution Shape

1 GradientSHAP captum T × T × F × C
2 DeepLift captum T × T × F × C
3 DeepLiftSHAP captum T × T × F × C
4 Integrated Gradients captum T × T × F × C
5 Temporal Integrated Gradients time-interpret 1× T × F × C
6 Sequential Integrated Gradients time-interpret T × T × F × C
7 Occlusion time-interpret T × T × F × C
8 Augmented Occlusion time-interpret T × T × F × C
9 Feature Ablation captum T × T × F × C
10 Feature Permutation captum T × T × F × C
11 RETAIN time-interpret T × F
12 FIT time-interpret T × F
13 DynaMask time-interpret T × F
14 Extremal Mask time-interpret T × F

features. This failure mode is illustrated in Figure 1 for GradientSHAP, where we analyzed a patient
record with an ICU stay of 7 days and three brief periods of elevated risk of circulatory failure. We
randomly selected three consecutive time steps (T = 199, T = 200, T = 201) during a circulatory
failure event and extracted the corresponding attribution maps for the GradientSHAP method. The
results showed that the attribution maps varied significantly across these adjacent time steps and
contradicted the expectation that a short 5-minute interval would not result in substantial changes in
the patient’s state, especially when the patient is already in a state of circulatory failure. It further
leads to two sub-modes of failure:

i. Temporal Aggregation: Multi-dimensional attribution maps (size: T×F×C) generated for each
time step T lack interpretable aggregation across the temporal dimension, obscuring sustained
pathophysiological patterns.

ii. Temporal Causality: Interpretability heatmaps for time T incorporate attribution scores influ-
enced by future observations (e.g., T + 1, T + 2, ...), violating clinical causality.

Similarly, other gradient, occlusion, ablation, and static permutation-based methods are plagued
with the same failure modes as illustrated in Appendix A.3 (figs. 3 to 10), further highlighting the
challenges in achieving temporal coherence in attribution results.

Figure 1: Illustration of a patient’s timeline from T=0 to T=2015 for the dynamic circulatory failure
prediction task. The top bar shows the patient’s state. The first heatmap shows normalized feature
values over time, and the three lower heatmaps show GradientSHAP Attributions at selected time
steps (T=199, T=200, and T=201).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a workshop paper at ICLR 2025

3.2 FAILURE MODE 2: ISSUES WITH TEMPORAL SMOOTHNESS

Interpretability methods specifically designed for time-series contexts, such as TIG and FIT, produce
attributions that are not coherent in time. We observed that feature attributions for these methods
show abrupt changes in feature importance that are inconsistent with the smooth trends typically ob-
served in ICU time-series data. This behavior is illustrated in Figure 2 for both TIG and FIT. For FIT,
this incoherence may stem from its dependence on pointwise Kullback-Leibler (KL) divergence to
quantify predictive distributional shifts, which isolates individual time steps by contrasting observed
features against counterfactuals where other features are masked. While theoretically rigorous, this
framework risks overemphasizing transient perturbations in the predictive distribution rather than
capturing the gradual, interdependent evolution of patient states.

Figure 2: Illustration of a patient’s timeline from T=0 to T=2015 for the dynamic circulatory failure
prediction task. The top bar shows patient state. The first heatmap shows normalized feature values
over time. The next four heatmaps show attributions for Temporal Integrated Gradients (TIG),
Feature Importance in Time (FIT), DynaMask, and ExtremalMask, respectively, for all times.

3.3 ALTERNATIVE APPROACHES

Methods such as DynaMask and ExtremalMask dynamically learn masks to selectively perturb fea-
tures in a way that optimizes the relevance and consistency of attributions (Figure 2). A major
benefit of these frameworks is their ability to achieve significantly lower variance in attributions
across time steps, ensuring better temporal continuity. Furthermore, the optimization problem in
learnable mask-based approaches is framed to ensure that model predictions on perturbed data re-
main consistent with the original predictions, often achieved by incorporating losses to enforce label
consistency. We argue that the potential of learnable mask-based approaches is immense and they
can offer consistent and meaningful interpretations for dynamic prediction tasks.

4 DISCUSSION

Mask-based approaches provide a significant advantage for interpretability in time-series tasks by
enabling the integration of task-specific constraints such as temporal continuity and label consis-
tency. These constraints ensure that the feature importance scores evolve smoothly across adjacent
time steps, preserving the inherent dependencies in temporal data. In contrast, traditional inter-
pretability methods often fail to account for such temporal structures, leading to fragmented and
inconsistent attributions that are unsuitable for dynamic prediction tasks. Mask-based methods of-
fer a robust solution for generating coherent model interpretability attribution scores, particularly
in high-stakes applications such as acute organ failure prediction, by tailoring the interpretability
framework to the unique characteristics of time-series datasets.
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A APPENDIX

A.1 DATASET DESCRIPTION

Table 2: Dataset Description for the Dynamic Circulatory Failure Prediction Task. M: Million

Set ICU Stays Predictions(% positive)

Train 23643 11.56M (4.51%)
Validation 5072 2.42M (4.22%)

Test 5069 2.44M (4.67%)

A.2 MODEL EVALUATION

Table 3: Model evaluation metrics on the test set. Mean and standard deviation are calculated over
ten runs. M: Million, K: Thousand

Model (# Parameters) AUC-ROC AUC-PR F1 MCC

Transformer-Encoder (1.64M) 90.26±0.42 34.84±0.69 26.32±2.56 28.72±1.62
Crossformer-Encoder (28.6K) 96.33±0.14 62.87±0.80 54.82±0.81 53.94±0.65

A.3 ADDITONAL FEATURE-TIME ATTRIBUTION MAPS

Figure 3: Illustration of a patient’s timeline from T=0 to T=2015 for the dynamic circulatory failure
prediction task. The top bar shows the patient’s state. The first heatmap shows normalized feature
values over time, and the three lower heatmaps show Integrated Gradients (IG) Attributions at
selected time steps (T=199, T=200, and T=201).
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Figure 4: Illustration of a patient’s timeline from T=0 to T=2015 for the dynamic circulatory failure
prediction task. The top bar shows the patient’s state. The first heatmap shows normalized feature
values over time, and the three lower heatmaps show DeepLift Attributions at selected time steps
(T=199, T=200, and T=201).

Figure 5: Illustration of a patient’s timeline from T=0 to T=2015 for the dynamic circulatory failure
prediction task. The top bar shows the patient’s state. The first heatmap shows normalized feature
values over time, and the three lower heatmaps show DeepLiftSHAP Attributions at selected time
steps (T=199, T=200, and T=201).

Figure 6: Illustration of a patient’s timeline from T=0 to T=2015 for the dynamic circulatory failure
prediction task. The top bar shows the patient’s state. The first heatmap shows normalized fea-
ture values over time, and the three lower heatmaps show Sequential Integrated Gradients (SIG)
Attributions at selected time steps (T=199, T=200, and T=201).
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Figure 7: Illustration of a patient’s timeline from T=0 to T=2015 for the dynamic circulatory failure
prediction task. The top bar shows the patient’s state. The first heatmap shows normalized feature
values over time, and the three lower heatmaps show Occlusion attributions at selected time steps
(T=199, T=200, and T=201).

Figure 8: Illustration of a patient’s timeline from T=0 to T=2015 for the dynamic circulatory failure
prediction task. The top bar shows the patient’s state. The first heatmap shows normalized feature
values over time, and the three lower heatmaps show Augmented Occlusion attributions at selected
time steps (T=199, T=200, and T=201).

Figure 9: Illustration of a patient’s timeline from T=0 to T=2015 for the dynamic circulatory failure
prediction task. The top bar shows the patient’s state. The first heatmap shows normalized feature
values over time, and the three lower heatmaps show Feature Ablation attributions at selected time
steps (T=199, T=200, and T=201).
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Figure 10: Illustration of a patient’s timeline from T=0 to T=2015 for the dynamic circulatory failure
prediction task. The top bar shows the patient’s state. The first heatmap shows normalized feature
values over time, and the three lower heatmaps show Feature Permutation attributions at selected
time steps (T=199, T=200, and T=201).

Figure 11: Illustration of a patient’s timeline from T=0 to T=2015 for the dynamic circulatory failure
prediction task. The top bar shows the patient’s state. The first heatmap shows normalized feature
values over time. The second heatmap shows attributions obtained from the RETAIN method for
the whole timeline.
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