
Vision-Language Models Provide Promptable
Representations for Reinforcement Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

Humans can quickly learn new behaviors by leveraging background world knowl-1

edge. In contrast, agents trained with reinforcement learning (RL) typically learn2

behaviors from scratch. We thus propose a novel approach that uses the vast3

amounts of general and indexable world knowledge encoded in vision-language4

models (VLMs) pre-trained on Internet-scale data for embodied RL. We initialize5

policies with VLMs by using them as promptable representations: embeddings6

that encode semantic features of visual observations based on the VLM’s internal7

knowledge and reasoning capabilities, as elicited through prompts that provide task8

context and auxiliary information. We evaluate our approach on visually-complex,9

long horizon RL tasks in Minecraft and robot navigation in Habitat. We find that10

our policies trained on embeddings from off-the-shelf, general-purpose VLMs out-11

perform equivalent policies trained on generic, non-promptable image embeddings.12

We also find our approach outperforms instruction-following methods and performs13

comparably to domain-specific embeddings. Finally, we show that our approach14

can use chain-of-thought prompting to produce representations of common-sense15

semantic reasoning, improving policy performance in novel scenes by 1.5 times.16

1 Introduction17

Embodied decision-making often requires representations informed by world knowledge for per-18

ceptual grounding, planning, and control. Humans rapidly learn to perform sensorimotor tasks by19

drawing on prior knowledge, which might be high-level and abstract (“If I’m cooking something20

that needs milk, the milk is probably in the refrigerator”) or grounded and low-level (e.g., what21

refrigerators and milk look like). These capabilities would be highly beneficial for reinforcement22

learning (RL) too: we aim for our agents to interpret tasks in terms of concepts that can be reasoned23

about with relevant prior knowledge and grounded with previously-learned representations, thus24

enabling more efficient learning. However, doing so requires a condensed source of vast amounts of25

general-purpose world knowledge, captured in a form that allows us to specifically index into and26

access task-relevant information. Therefore, we need representations that are contextual, such that27

agents can use a concise task context to draw out relevant background knowledge, abstractions, and28

grounded features that aid it in acquiring a new behavior.29

An approach to facilitate this involves integrating RL agents with the prior knowledge and reasoning30

abilities of pre-trained foundation models. Transformer-based language models (LMs) and vision-31

language models (VLMs) are trained on Internet-scale data to enable generalization in downstream32

tasks requiring facts or common sense. Moreover, in-context learning [8], chain-of-thought reason-33

ing (CoT) [71], and instruction fine-tuning [50] have provided better ways to index into (V)LMs’34

knowledge and steer their capabilities based on user needs. These successes have seen some transfer35

to embodied control, with (V)LMs being used to reason about goals to produce executable plans36

[2] or as encoders of useful information (like instructions [40] or feedback [61]) that the control37

Submitted to the ICML 2024 AutoRL Workshop.

Prompt
“Spiders in Minecraft
are black. Is there a

spider in this image?”

VLM
Task
Env

Learned
Policy

“Yes, there is a spider.”

Actions

Observations

Prompt
“Would a toilet be

found here? Why or
why not?”

VLM
Task
Env

Learned
Policy

“No, as it’s a bedroom. Toilets
are usually found in bathrooms.”

Actions

Observations

Minecraft Task: Combat Spider Habitat Task: Find Toilet

Figure 1: Example instantiations of PR2L for tasks in Minecraft and Habitat. We query a VLM with a
task-relevant prompt about observations to produce promptable representations, which we train a policy on
via RL. Rather than directly asking for actions or specifying the task, the prompt enables indexing into the
VLM’s prior world knowledge to access task-relevant information. This prompt also allows us to inject auxiliary
information and elicit chain-of-thought reasoning.

policy utilizes. Both these paradigms have major limitations: actions generated by LMs are often not38

appropriately grounded, unless the tasks and scenes are amenable to being expressed or captioned in39

language. Even then, (V)LMs are often only suited to producing subtask plans, not low-level control40

signals. On the other hand, using (V)LMs to simply encode inputs under-utilizes their knowledge and41

reasoning abilities, instead focusing on producing embeddings that reflect the compositionality of42

language (e.g., so an instruction-following policy may generalize). This motivates the development43

of an algorithm for learning to produce low-level actions that are grounded and leverage (V)LMs’44

knowledge and reasoning.45

To this end, we introduce Promptable Representations for Reinforcement Learning (PR2L): a flexible46

framework for steering VLMs into producing semantic features, which (i) integrate observations47

with prior task knowledge and (ii) are grounded into actions via RL (see Figure 1). Specifically,48

we ask a VLM questions about observations that are related to the given control task, priming it to49

attend to task-relevant features in the image based on both its internal world knowledge, reasoning50

capabilities, and any supplemental information injected via prompting. The VLM then encodes this51

information in decoded text, which is discarded, and associated embeddings, which serve as inputs52

to a learned policy. In contrast to the standard approach of using pre-trained image encoders to53

convert visual inputs into generic features for downstream learning, our method yields task-specific54

features capturing information particularly conducive to learning a considered task. Thus, the VLM55

does not just produce an un-grounded encoding of instructions, but embeddings containing semantic56

information relevant to the task, that is both grounded and informed by the VLM’s prior knowledge.57

To the best our knowledge, we introduce the first approach for initializing RL policies with generative58

VLM representations. We demonstrate our approach on tasks in Minecraft [19] and Habitat [58], as59

they present semantically-rich problems representative of many practical, realistic, and challenging60

applications of RL. We find that PR2L outperforms equivalent policies trained on vision-only61

embeddings or with instruction-conditioning, popular ways of using pre-trained image models and62

VLMs respectively for control. We also show that promptable representations extracted from general-63

purpose VLMs are competitive with domain-specific representations. Our results highlight how64

visually-complex control tasks can benefit from accessing the knowledge captured within VLMs via65

prompting in both online and offline RL settings.66

2 Related Works67

Vision-language models. In this work, we utilize generative VLMs (like [33, 34, 14, 29]): models68

that generate language in response to an image and a text prompt passed as input. This is in contrast to69

other designs of combining vision and language that either generate images or segmentation [57, 30]70

and contrastive representations [52]. Formally, the VLM enables sampling from p(x1:K |I, c), where71

x1:K represents the K tokens of the output, I is the input image(s), c is the prompt, and p is the72

distribution over natural language responses produced by the VLM on those inputs. Typically, the73

VLM is pre-trained on tasks that require building association between vision and language such as74

captioning. All these tasks require learning to attend to certain semantic features of input images75

depending on the given prompt. For auto-regressive generative VLMs, this distribution is factorized as76 ∏
t p(xt|I, c, x1:t−1). Typical architectures parameterize these distributions using weights that define77

a representation ϕt(I, c, x1:t−1), which depends on the image I , the prompt c, and the previously78

emitted tokens, and a decoder p(xt|ϕt(I, c, x1:t−1)), which defines a distribution over the next token.79

2

Embodied (V)LM reasoning. Many recent works have leveraged (V)LMs as priors over effective80

plans for a given goal. These works use the model’s language modeling and auto-regressive generation81

capabilities to extract such priors as textual subtask sequences [2, 24, 60] or code [36, 64, 77, 68],82

thereby using the (V)LM to decompose long-horizon tasks into executable parts. These systems83

often need grounding mechanisms to ensure plan feasibility (e.g., affordance estimators [2], scene84

captioners [77], or trajectory labelers [51]). They also often assume access to low-level policies85

that can execute these subtasks, such as robot pick-and-place skills [2, 36], which is often a strong86

assumption. These methods generally do not address how such policies can be acquired, nor how87

these low-level skills can themselves benefit from the prior knowledge in (V)LMs. Even works in88

this area that use RL still use (V)LMs as state-dependent priors over reasonable high-level goals to89

learn [17]. This is a key difference from our work: instead of considering priors on plans/goals, we90

rely on VLM’s implicit knowledge of the world to extract representations which encode task-relevant91

information. We train a policy to convert these features into low-level actions via standard RL,92

meaning the VLM does not need to know how to take actions for a task.93

Embodied (V)LM pre-training. Other works use (V)LMs to embed useful information like instruc-94

tions [40, 45, 42, 44, 49], feedback [61, 9], reward specifications [19], and data for world modeling95

[39, 47]. These works use (V)LMs as encoders of the compositional semantic structure of input text96

and images, which aids in generalization: an instruction-conditioned model may never have learned97

to grasp apples (but can grasp other objects), but by interacting with them in other ways and receiving98

associated language descriptions, the model might still be able to grasp them zero-shot. In contrast,99

our method produces embeddings that are informed by world knowledge and reasoning, both from100

prompting and pre-training. Rather than just specifying that the task is to acquire an apple, we ask a101

VLM to parse observations into task-relevant features, like whether there is an apple in the image or102

if the observed location likely contains apples – information that is useful even in single-task RL.103

Thus, we use VLMs to help RL solve new tasks, not just to follow instructions.104

These two categories are not mutually exclusive: Brohan et al. [6] use VLMs to understand instruc-105

tions, but also reasoning (e.g., figuring out the “correct bowl” for a strawberry is one that contains106

fruits); Palo et al. [51] use a LM to reason about goal subtasks and a VLM to know when a trajectory107

matches a subtask, automating the demonstration collection/labeling of Ahn et al. [2], while Adeniji108

et al. [1] use a similar approach to pretrain a language-conditioned RL policy that is transferable to109

learning other tasks; and Shridhar et al. [63] use CLIP to merge vision and text instructions directly110

into a form that a Transporter [76] policy can operationalize. Nevertheless, these works primarily111

focus on instruction-following for robot manipulation. Our approach instead prompts a VLM to112

supplement RL with representations of world knowledge, not instructions. In addition, except for113

Adeniji et al. [1], these works focus on behavior cloning (BC), assuming access to demonstrations for114

policy learning, whereas our framework can be used for both online RL and offline RL/BC.115

3 PR2L: Promptable Representations for Reinforcement Learning116

We adopt the standard framework of partially-observed Markov decision process in deep RL, wherein117

the objective is to find a policy mapping states to actions that maximizes the expected returns. Our118

goal is to supplement RL with task-relevant information extracted from VLMs containing general-119

purpose knowledge. One way to index into this information is by prompting the model to get it120

to produce semantic information relevant to a given control task. Therefore, our approach, PR2L,121

queries a VLM with a task-relevant prompt for each visual observation received by the agent, and122

receives both the decoded text and, critically, the intermediate representations, which we refer to123

as promptable representations. Even though the decoded text might often not be correct or directly124

usable for choosing the action, our key insight is that these VLM embeddings can still provide125

useful semantic features for training control policies via RL. This recipe enables us to incorporate126

semantic information without the need of re-training or fine-tuning a VLM to directly output actions,127

as proposed by Brohan et al. [6]. Note that our method is not an instruction-following method, and128

it does not require a task instruction to perform well. Instead, our approach still learns control via129

RL, while benefiting from the incorporation of background context. In this section, we will describe130

various components of our approach, accompanied by practical design choices and considerations.131

3.1 Promptable Representations132

In principle, one can directly query a VLM to produce actions for a task given a visual observation.133

While this may work when high-level goals or subtasks are sufficient, VLMs are empirically poor at134

yielding the low-level actions used commonly in RL [23]. As VLMs are trained to follow instructions135

3

Policy NetworkFrozen LLM Transformer Layers

Image Encoder Tokenizer Detokenizer

Prompt
“Spiders in Minecraft are black. Is

there a spider in this image?”

Decoded Text
“Yes, there is a spider.”

Learned Transformer
Encoder

CLS

Decoder

Non-visual Observations

Action

Summary
Embed

Vision-Language Model Policy

…

Figure 2: Schematic of how we extract task-relevant features from the VLM and use them in a policy
trained with RL. These representations can incorporate task context from the prompt, while generic image
embeddings cannot. As generative VLM’s embeddings can be variable length, the policy has a Transformer layer
that takes in these embeddings and a “CLS” token, thereby condensing all inputs into a single summary vector.

and answer questions about images, it is more appropriate to use these models to extract and reason136

about semantic features about observations that are conducive to being linked to actions. We thus137

elicit features that are useful for the downstream task by querying these VLMs with task-relevant138

prompts that provide contextual task information, thereby causing the VLM to attend to and interpret139

appropriate parts of observed images. Extracting these features naïvely by only using the VLM’s140

decoded text has its own challenges: such models often suffer from hallucinations [26] and an inability141

to report what they “know” in language, even when their embeddings contain such information142

[27, 21]. However, even when the text is bad, the underlying representations still contain valuable143

granular world information that is potentially lost in the projection to language [32, 72, 22, 35]. Thus,144

we disregard the generated text and instead provide our policy the embeddings produced by the VLM145

in response to prompts asking about relevant semantic features in observations instead.146

Which parts of the network can be used as promptable representations? The VLMs we consider147

are all based on the Transformer architecture [67], which treats the prompt, input image(s), and148

decoded text as token sequences. This architecture provides a source of learned representations by149

computing embeddings for each token at every layer based on the previous layer’s token embeddings.150

In terms of the generative VLM formalism introduced prior, a Transformer-based VLM’s repre-151

sentations ϕt(I, c, x1:t−1) consist of N embeddings per token (the outputs of the N self-attention152

layers) in the input image I , prompt c, and decoded text x1:t−1. The decoder p(xt|ϕt) extracts the153

final layer’s embedding of the most recent token xt−1, projecting it to a distribution over the token154

vocabulary and allowing for it to be sampled. When given a visual observation and task prompt,155

the tokens representing the prompt, image, and answer consequently encode task-relevant semantic156

information. Thus, for each observation, we use the VLM to sample a response to the task prompt157

x1:K ∼ p(x1:K |I, c). We then use some or all of these token embeddings ϕK(I, c, x1:t−1) as our158

promptable representations and feed them, along with any non-visual observation information, as a159

state representation into our neural policy trained with RL.160

In summary, our approach involves creating a task-relevant prompt that provides context and auxiliary161

information. This prompt, alongside the current visual observation from the environment, is fed162

to into the VLM to generate tokens. While these tokens are used for decoding, they are ultimately163

discarded. Instead, we utilize the representations produced by the VLM (associated with the image,164

prompt, and decoded text) as input for our policy, which is trained via an off-the-shelf online RL165

algorithm to produce appropriate actions. A schematic of our approach is depicted in Figure 2 and a166

code snippet example is presented in Appendix I.167

3.2 Design Choices for PR2L168

To instantiate this idea, we need to make some concrete design choices in practice. First, the169

representations of the VLM’s decoded text depend on the chosen decoding scheme: greedy decoding170

is fast and deterministic, but may yield low-probability decoded tokens; beam search improves on this171

by considering multiple “branches” of decoded text, at the cost of requiring more compute time (for172

potentially small improvements); lastly, sampling-based decoding can quickly yield estimates of the173

maximum likelihood answer, but at the cost of introducing stochasticity, which may increase variance.174

Given the inherent high-variance of our tasks (due to sparse rewards and partial observability) and175

the expense of VLM decoding, we opt for greedy decoding or fixed-seed sampling.176

Second, one must choose which VLM layers’ embeddings to utilize in the policy. While theoretically,177

all layers of the VLM could be used, pre-trained Transformer models tend to encode valuable high-178

4

level semantic information in their later layers [66, 25]. Thus, we opt to only feed the final few179

layers’ representations into our policy. As these representation sequences are of variable length, we180

incorporate an encoder-decoder Transformer layer in the policy. At each time step in a trajectory,181

this layer receives variable-length VLM representations, which are attended to and converted into a182

fixed-length summarization by the embeddings of a learned “CLS” token [15] in the decoder (green183

in Figure 2). We also note that this policy can receive the observed image directly (e.g., after being184

embedded by the image encoder), so as to not lose any visual information from being processed185

by the VLM. However, we do not do this in our experiments in order to more clearly isolate and186

demonstrate the usefulness of the VLM’s representations in particular.187

Finally, while it is possible to fine-tune the VLM for RL end-to-end with the policy [6],this incurs188

substantial compute, memory, and time overhead, particularly with larger VLMs. Nonetheless, we189

find that our approach performs better than not using the language and prompting components of the190

VLM. This holds true even when the VLM is frozen, and only the policy is trained via RL, or when191

the decoded text occasionally fails to answer the task-specific prompt correctly.192

3.3 Task-Relevant Prompt Design193

How do we design good prompts to elicit useful representations from VLMs? As we aim to194

extract good state representations from the VLM for a downstream policy, we do not use instructions195

or task descriptions, but task-relevant prompts: questions that make the VLM attend to and encode196

semantic features in the image that are useful for the RL policy learning to solve the task [5]. For197

instance, if the task is to find a toilet within a house, appropriate prompts include “What room is this?”198

and “Would a toilet be found here?” Intuitively, the answers to these questions help determine good199

actions (e.g., look around the room or explore elsewhere), making the corresponding representations200

good for representing the state for a policy. Answering the questions will require the VLM to attend to201

task-relevant features in the scene, relying on the model’s internal conception of what things look like202

and common-sense semantic relations. One can also prompt the VLM to use chain of thought [71]203

to explain its generated text, often requiring it to reason about task-relevant features in the image,204

resulting in further enrichment of the state representations. Finally, prompts can provide helpful205

auxiliary information: e.g., one can describe what certain entities of interest look like, aiding the206

VLM in detecting them even if they were not commonly found in the model’s pre-training data.207

Note that prompts based on instructions or task descriptions do not enjoy the above properties: while208

the goal of those prior methods is to be able to directly query the VLM for the optimal action, the209

goal of task-relevant prompts is to produce a useful state representation, such that running RL with210

them can accelerate learning an optimal policy. While the former is not possible without task-specific211

training data for the VLM in the control task, the latter proves beneficial with off-the-shelf VLMs.212

Evaluating and designing prompts for RL. Since the specific representations elicited from the VLM213

are determined by the prompt, we want to design prompts that produce promptable representations214

that maximize performance on the downstream task. The brute-force approach would involve running215

RL with each candidate prompt to measure its efficacy, but this would be computationally very216

expensive. In lieu of this, we evaluate candidate prompts on a small dataset of observations labeled217

with semantic features of interest for the considered task. Example features include whether task-218

relevant entities are in the image, the relative position of said entities, or even actions (if expert219

demonstrations are available). We test prompts by querying the VLM and checking how well the220

resulting decoded text for each image matches ground truth labels. As this is only practical for221

small, discrete spaces that are easily expressed in words, we see how well a small model can fit the222

VLM’s embeddings to the labels (akin to probing in self-supervised learning [62, 4]). While this does223

not directly optimize for task performance, it does act as a proxy that ensures a prompt’s resulting224

representations encode certain semantic features which are helpful for the task.225

4 Experimental Setups226

Our experiments analyze whether promptable representations from VLMs provide benefits to down-227

stream control, thus providing an effective vehicle for transferring Internet-scale knowledge to RL.228

We aim to show that PR2L is a good source of state representations, even with our current VLMs229

that are bad at reasoning about actions – as such models become more performant, we expect such230

representations to be even better. We thus design experiments to answer the following: (1) Can231

promptable representations obtained via task-specific prompts enable more performant and sample-232

efficient learning than those of non-promptable image encoders pre-trained for vision or control? (2)233

How does PR2L compare to approaches that directly “ask” the VLM to generate good actions for a234

5

task specified in the prompt? (3) How does PR2L fare against other popular learning approaches or235

purely visual features in our domains of interest?236

4.1 Domain 1: Minecraft237

We first conduct experiments in Minecraft, which provides control tasks that require associating238

visual observations with rich semantic information to succeed. Moreover, since these observations239

are distinct from the images in the the pre-training dataset of the VLM, succeeding on these tasks240

relies crucially on the efficacy of the task-specific prompt in meaningfully affecting the learned241

representation, enabling us to stress-test our method. E.g., while spiders in Minecraft somewhat242

resemble real-life spiders, they exhibit stylistic exaggerations such as bright red eyes and a large black243

body. If the task-specific prompt is indeed effective in informing the VLM of these facts, it would244

produce a representation that is more conducive to policy learning and this would be reflected in245

task performance. For this domain, we use the half-precision Vicuna-7B version of the InstructBLIP246

instruction-tuned generative VLM [14, 12] to produce promptable representations.247

Minecraft tasks. We consider all programmatic Minecraft tasks evaluated by Fan et al. [19]: combat248

spider, milk cow, shear sheep, combat zombie, combat enderman, and combat pigman1. The249

remaining tasks considered by Fan et al. [19] are creative tasks, which do not have programmatic250

reward functions or success detectors, so we cannot directly train RL agents on them. We follow the251

MineDojo definitions of observation/action spaces and reward function structures for these tasks: at252

each time step, the policy observes an egocentric RGB image, its pose, and its previously action;253

the policy can choose a discrete action to turn the agent by changing the agent’s pitch and/or yaw in254

discrete increments, move, attack, or use a held item. These tasks are long horizon, with a maximum255

episode length of 500 - 1000 and taking roughly 200 steps for a learned policy to complete them. See256

Figure 3 for example observations and Appendix B.1 for more details.257

Comparisons. We compare PR2L to five performant classes of approaches for RL in Minecraft: (a)258

Methods using non-promptable representations of visual observations. This does not use prompting259

altogether, instead using task-agnostic embeddings from the VLM’s image encoder (specifically, the260

ViT-g/14 from InstructBLIP – blue in Figure 2). While these representations are still pre-trained, PR2L261

utilizes prompting to produce task-specific representations. For a fair comparison, we use the exact262

same policy architecture and hyperparameters for this baseline as in PR2L, ensuring that performance263

differences come from prompting for better representations from the VLM. (b) Methods that directly264

“asks” the VLM to output actions to execute on the agent. This adapts the approach of Brohan et al.265

[6] to our setting and directly outputs the action from the VLM. While Brohan et al. [6] also fine-tune266

the VLM backbone, we are unable to do so using our compute resources. To compensate, we do not267

just execute the action from the VLM, but train an RL policy to map this decoded action to a better268

one. Note that if the VLM already decodes good action texts, simply copying over this action via RL269

should be easy. (c) Methods for efficient RL from pixels via model-based approaches. We choose270

Dreamer v3, since it has proven to be successful at learning Minecraft tasks from scratch [20]. (d)271

Methods leveraging pretrained representations specifically useful for embodied control, though which272

are non-promptable and non-Minecraft specific. We choose VC-1 and R3M [43, 46]. (e) Methods273

using models pre-trained on large-scale Minecraft data. These serve as “oracle” comparisons, as274

these representations are explicitly fine-tuned on Minecraft YouTube videos, whereas our pre-trained275

VLM is both frozen and not trained on any Minecraft video data. We choose MineCLIP, VPT, and276

STEVE-1 as our sources of Minecraft-specific representations [19, 3, 37].277

We use PPO [59] as our base RL algorithm for all non-Dreamer Minecraft policies. We also note that278

we do not compare against non-RL methods, such as Voyager (which uses LLMs to write high-level279

code skills, abstracting away low-level control to hand-written APIs that use oracle information). See280

Appendix B.2 for training details and E.1 for further discussion of such non-learned systems.281

4.2 Domain 2: Habitat282

A major advantage of VLMs pre-trained on Internet-scale data is their reasoning and generalization283

capabilities. To evaluate this, we run offline BC and RL experiments in the Habitat household284

simulator. In contrast to Minecraft, tasks in this domain require connecting naturalistic images285

with real-world common sense about the structure and contents of typical home environments. Our286

experiments evaluate (1) whether PR2L confers the generalization properties of VLMs to our policies,287

1 Fan et al. [19] also consider hunt cow/sheep. However, we omit them as we were unable to replicate their
results on those tasks; all approaches failed to learn them.

6

PR2L Prompt RT-2-style Baseline Prompt Change Auxiliary Text Ablation Prompt

Combat Spider Spiders in Minecraft are black.
Is there a spider in this image?

I want to fight a spider. I can attack,
move, or turn. What should I do? Is there a spider in this image?

Milk Cow Is there a cow in this image? I want to milk a cow. I can use my bucket,
move, or turn. What should I do?

Cows in Minecraft are black and white.
Is there a cow in this image?

Shear Sheep Is there a sheep in this image? I want to shear a sheep. I can use my shears,
move, or turn. What should I do?

Sheep in Minecraft are usually white.
Is there a sheep in this image?

Other Combat Tasks Is there a [target entity] in this image? I want to fight a [target entity]. I can attack,
move, or turn. What should I do? -

Table 1: Prompts used in Minecraft for querying the VLM with PR2L, comparison (b), and the change auxiliary
text ablation. For the last column, we remove the auxiliary text for combat spider, and add it in for the other two.

(2) whether PR2L-based policies can leverage the semantic reasoning capabilities of the underlying288

VLM (e.g., via chain-of-thought [71]), and (3) whether PR2L can learn entirely from stale, offline289

data sources. We use a Llama2-7B Prismatic VLM for the Habitat experiments [29].290

Habitat tasks. We consider the ObjectNav task suite in 3D scanned household scenes from the291

HM3D dataset [58, 73, 54]. These tasks involve a simulated robot traversing a home environment to292

find an instance of a specified object (toilet, bed, sofa, television, plant, or chair) in the shortest path293

possible. The full benchmark consists of 80 household scenes intended to train the agent and 20 for294

validation. We change the observation space to consist of just RGB vision, previous action, pose,295

and target object class, omitting depth images to ensure that observed performance differences come296

from the quality of promptable representations vs. unpromptable ones. Like with MineDojo, these297

tasks are long horizon, taking 80 steps for a privileged shortest path follower to succeed and 150+298

for humans. See Figure 3 for example observations and Appendix C for more details.299

Comparisons. To see if PR2L can leverage VLM reasoning capabilities, we train two PR2L policies,300

one with and one without chain-of-thought prompting (see Section 4.3). We also train a policy301

on Prismatic VLM image encoder embeddings (equivalent to Minecraft approach (a), but with302

Dino+SigLIP [11, 78]) on a human demonstration dataset collected from the ObjectNav training303

scenes collected with Habitat-Web [55] and used by past works on large-scale BC on pre-trained304

visual representations [56, 74, 43]. As it previously achieved state-of-the-art performance among305

those works, we also compare against two policies using VC-1 as an encoder [43], either using just306

its summarizing CLS token or using a learned Transformer layer to condense its patch embeddings.307

We adopt the same LSTM-based recurrent architecture used by that work, but replace the image308

embeddings with a learned Transformer layer that condenses our input token embeddings (from the309

VLM, VLM image encoder, or VC-1) into a single summary embedding, as done with Minecraft.310

Due to computational constraints, we train all policies on just under a tenth of the full dataset of311

77k trajectories/12M steps. In contrast, other works using this dataset train on the entire dataset.312

Nevertheless, we evaluate on the unseen validation scenes, thereby testing how well PR2L generalizes.313

4.3 Designing Task-Specific Prompts for Minecraft and Habitat314

We now discuss how to design prompts for PR2L. As noted in Section 3.3, these are not instructions315

or task descriptions, but prompts that force the VLM to encode semantic information useful for the316

task in its representation. The simplest relevant feature for our Minecraft tasks is the presence of the317

target entity in an observation. Thus, we choose “Is there a [target entity] in this image?” as the base318

of our chosen prompt. We also pick two alternate prompts per task that prepend different amounts of319

auxiliary information about the target entity. E.g., for combat spider, one candidate is “Spiders in320

Minecraft are black.” To choose between these candidates, we measure how well the VLM is able321

to decode a correct answer to the prompt question of whether or not the target entity is present in322

the image on a small annotated dataset. Full details of this prompt evaluation scheme for the first323

three Minecraft tasks are presented in Appendix A and Table 5. We find that auxiliary text only helps324

with detecting spiders while systematically and significantly degrading the detection of sheep and325

cows. Our ablations show that this detection success rate metric correlates with performance of the326

RL policy. Additionally, the prompts used for comparison (b) follow the prompt structure prescribed327

by Brohan et al. [6], which motivated this comparison. In these prompts, we also provide a list of328

actions that the VLM can choose from to the policy. All chosen prompts are presented in Table 1.329

For Habitat, we choose the prompt “Would a [target object] be found here? Why or why not?” As330

opposed to the Minecraft prompts, this does not just identify the presence of a target object in the331

image, but draws on general knowledge from the VLM to determine if the observed location would332

contain the target object, even if said object is not in view. The second part of the prompt then leads333

the VLM to provide a chain of thought (CoT) [71] rationale for its final answer. This CoT draws out334

7

Task PR2L (Ours) Baselines Oracles
VLM Image Encoder RT-2-style Dreamer VC-1 R3M MineCLIP VPT STEVE-1

Combat Spider 97.6 ± 14.9 51.2 ± 9.3 71.5 ± 9.7 5.4 ± 1.1 72.2 ± 9.3 72.9 ± 8.7 176.9 ± 19.8 137.2 ± 19.2 88.8 ± 14.0
Milk Cow 223.4 ± 35.4 95.2 ± 18.7 128.6 ± 28.9 24.0 ± 1.2 96.6 ± 16.3 100.0 ± 14.1 194.4 ± 33.3 85.5 ± 14.5 75.2 ± 15.4

Shear Sheep 37.0 ± 4.4 23.0 ± 3.6 26.2 ± 3.2 20.9 ± 1.2 26.5 ± 4.0 17.5 ± 2.4 23.1 ± 3.7 24.1 ± 2.9 18.2 ± 2.5
Combat Zombie 24.6 ± 1.6 14.8 ± 2.0 18.2 ± 2.1 1.8 ± 0.2 5.6 ± 1.0 5.8 ± 1.4 56.6 ± 8.3 31.2 ± 3.2 23.6 ± 3.4

Combat Enderman 52.2 ± 5.6 51.9 ± 6.8 44.6 ± 5.8 1.6 ± 0.5 27.2 ± 2.4 33.8 ± 3.8 72.1 ± 7.1 74.4 ± 13.2 59.3 ± 6.7
Combat Pigman 46.4 ± 3.3 36.8 ± 3.7 35.1 ± 2.5 5.8 ± 1.5 33.7 ± 4.9 31.4 ± 4.2 189.0 ± 7.9 169.0 ± 7.8 98.3 ± 8.4

Table 2: Performance of PR2L, baseline, and oracle approaches in Minecraft tasks. Values reported
are IQM successes and standard errors. PR2L universally outperforms all baselines. As they are trained on
Minecraft-specific data, the oracles outperform PR2L in half the comparisons (italicized).

Task (# Episodes) PR2L (Ours) VLM Image Encoder VC-1 + CLS VC-1 + Patch Embeds
With CoT Without CoT 40 Epochs 120 Epochs 40 Epochs 120 Epochs

Average (2000) 41.9% 27.8% 11.6% 6.8% 8.9% 13.6% 15.8%

Toilet (398) 37.2% 22.9% 8.8% 2.8% 2.0% 7.0% 9.3%
Bed (433) 45.0% 28.9% 12.9% 6.7% 9.9% 14.8% 19.2%
Sofa (376) 48.1% 34.3% 11.7% 9.8% 14.4% 17.0% 19.4%

Chair (428) 51.2% 40.9% 17.5% 11.7% 15.0% 22.4% 23.8%
Television (281) 26.7% 10.3% 5.0% 2.8% 3.2% 4.6% 4.6%

Plant (84) 23.8% 8.3% 9.1% 1.2% 1.2% 9.5% 9.5%

Table 3: Performance of PR2L and baselines on Habitat ObjectNav tasks. Following prior works, values
reported are average success rates in unseen validation scenes. PR2L (with or without CoT) does better than
all other approaches. PR2L with CoT does the best, universally achieving more than double the performance
of all non-PR2L approaches and 14.7% higher average performance than PR2L without CoT. Note that PR2L
and image encoder policies were trained for 40 epochs, but VC-1 policies’ performance saturated at 120, so we
report their performance at both times.

task-relevant VLM world knowledge by explicitly reasoning about visual semantic concepts, that are335

useful to learning a policy (see Table 4; ObjectNav). To investigate if PR2L enables embodied agents336

to benefit from these VLM common-sense reasoning capabilities (even if they do not directly reason337

about actions), we train PR2L policies both with and without the second part of the prompt.338

5 Results339

Minecraft results. We report the interquartile mean (IQM) and standard error number of successes340

over 16 seeds for all Minecraft tasks in Table 2. PR2L uniformly outperforms the non-oracle341

approaches of (a) using non-promptable image embeddings, (b) directly asking the VLM for actions,342

(c) learning from scratch Dreamer, and (d) using non-promptable control-specific embeddings.343

PR2L outperforms (a) the VLM image encoder baseline, even though both approaches receive344

the same visual features, with PR2L simply transforming those features via prompting an LLM345

(with no additional information from the environment), thus supporting that prompting does shape346

representations in a beneficial way for learning control tasks. We provide an analysis of why PR2L347

states are better than (b) RT-2-style ones in Appendix H.1. We observe that PR2L embeddings are348

bimodally distributed, with transitions leading to high reward clustered at one mode. This structure349

likely enables more efficient learning, thereby showing how control tasks can benefit from extracting350

prior knowledge encoded in VLMs by prompting them with task context, even when the VLM does351

not know how to act. For (c) the model-based comparisons, we find that Dreamer is not as conducive352

at learning our Minecraft tasks. We hypothesize this is because our tasks are comparatively shorter353

than the ones considered by Hafner et al. [20], so learning a model is less beneficial (while PR2L354

provides immediately-useful representations). Additionally, we note that all our approaches involve355

interacting with partially-observable, non-stationary entities, which the Dreamer model may have a356

hard time learning. See Appendix E.2 for further discussion. Finally, (e) the oracles outperform PR2L357

in combat enderman/pigman, all but STEVE-1 do better in combat spider/zombie, and none do better358

in shear sheep/milk cow. We hypothesize this is because endermen and pigmen are Minecraft-specific359

entities, giving rise to comparatively poor representations in the VLM (which is trained exclusively360

on natural images). In contrast, Minecraft zombies/spiders are heavily stylized, but still somewhat361

resemble other depictions of such creatures, while Minecraft cows and sheep are the closest to their362

naturalistic counterparts, making PR2L more effective. Even though our VLM is not trained on363

Minecraft data, its representations yield better policies in half the oracle comparisons.364

We provide ablations in Table 8 and Appendix F. We find that (1) PR2L performs worse when it is365

unprompted or does not decode text, (2) our prompt evaluation scheme successfully identified cases366

where auxiliary text improves/degrades performance, and (3) a policy with oracle entity detection367

does worse than PR2L, suggesting our prompt is not just eliciting that feature from the VLM.368

8

Target Example VLM Responses to "Would a [target] be found here? Why or why not?"

Toilet
"No, a toilet is not found in this room as it is a bedroom. Toilets are typically found in bathrooms .
The image shows a large bed with a wooden headboard, nightstands, and lamps ."

"Yes, a toilet would be found in this room because it is a bathroom.
The presence of a toilet in the image is expected, as bathrooms are designed to accommodate toilets for personal hygiene ."

Bed
"No, a bed would not be found in this room because it is a dining room.
The presence of a dining table and chairs suggests that this room is designed for eating meals and socializing, rather than sleeping "

"Yes, a bed would be found here because the room is described as a bedroom.
It has a bed , a television, a lamp, and a dresser , all of which are common furnishings in a bedroom ."

Sofa
"No, a sofa is not found here because it is a kitchen area with appliances and cabinets .
Sofas are typically found in living rooms or other common areas ."

" Yes, there is a black leather sofa in the living room. It has a red pillow on it. It is a large sectional couch ."

Table 4: Example VLM responses to the Habitat prompt for various images. Beyond just detecting the target,
prompting the VLM for CoT elicits relevant common sense, which it semantically relates to other useful visual
features. By using the underlying VLM embeddings as a state representation, the policy thus integrates the
VLM’s knowledge and reasoning into its decision-making.

Habitat results. Following prior works, we report success rates on the ObjectNav validation369

episodes in Table 3. PR2L with CoT outperforms all other policies on all tasks, including an almost370

4× performance increase over the VLM image encoder baselines – again, suggesting that using371

promptable representations for control improves over the base purely-visual embeddings. While372

PR2L without CoT still does better than all baselines, we find CoT prompting improves policy373

performance (by 1.5×, from 27.8% success rate to 41.9%), likely because it provides the policy with374

useful generalizable features: e.g., even if the agent comes across an unfamiliar room while searching375

for a toilet, it still knows to look elsewhere if the VLM reasons that, due to the presence of a bed, the376

room is likely a bedroom (which is unlikely to contain toilets). Thus, even if the VLM cannot reason377

about actions, our results indicate that PR2L provides a promising way of using its ability to reason378

about image semantics and common sense for control. See Table 4 for CoT examples.379

While we do not beat VC-1’s reported SOTA BC performance (60.3% success rate when VC-1 is380

frozen [43]), we note that said performance is achieved with (1) over ten times more training data and381

gradient steps and (2) image augmentations to prevent overfitting. Our VC-1 policies were trained on382

the same amount of data as our PR2L agent and for 1-3× as many gradient steps, but perform far383

worse, suggesting that PR2L is significantly more sample- and compute-efficient than VC-1 policies.384

Additionally, PR2L does not use any explicit countermeasures to overfitting, yet still generalizes well385

to unseen ObjectNav scenes (aided by the VLM’s representations of reasoning).386

Finally, we analyze policies trained with offline RL in a simplified Habitat setting in Appendices D,387

H, where we find that VLM representations align well with the returns of an optimal policy.388

6 Conclusion389

We propose Promptable Representations for Reinforcement Learning, a method for extracting se-390

mantic features from images by prompting VLMs with task context to leverage their extensive391

general-purpose prior knowledge. We demonstrate PR2L in Minecraft and Habitat, domains that392

benefit from interpreting observations in terms of semantic concepts that can be related to task context.393

This framework for using VLMs for control opens new directions. For example, other types of394

foundation models pre-trained with more sophisticated methods could also be used for PR2L: e.g.,395

ones trained on physical interactions might yield features which encode physics or action knowledge,396

rather than just common-sense visual semantics. Developing and using such models with PR2L offers397

an exciting way to transfer diverse prior knowledge to a broad range of control applications.398

A limitation of PR2L is that prompts are currently hand-crafted based on the user’s conception of399

useful task features. While coming up with good prompts for our tasks was not hard, the process of400

evaluating and improving them could be automated, which we leave to future works. We also find that401

the quality of representations largely depends on the VLM – e.g., InstructBLIP could not reason well402

about Habitat scenes, but the more recent Prismatic VLMs are more capable in that regard, enabling403

our CoT experiments. Thus, as VLM capabilities are expected to increase, we expect the quality of404

their representations to also improve. Lastly, the size and speed of VLMs can limit their applicability.405

Our policies typically achieve 3-5 Hz inference speeds, comparable to those of robot policies built on406

large models [7, 6, 49]. Likewise, our VLM sizes are comparable to models used for policies in prior407

works [6, 65]. While their inference speeds may hinder online policy learning, we find that offline408

approaches (which can parallelize training and data generation) we used for Habitat help remedy this.409

9

References410

[1] A. Adeniji, A. Xie, C. Sferrazza, Y. Seo, S. James, and P. Abbeel. Language reward modulation411

for pretraining reinforcement learning, 2023.412

[2] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakr-413

ishnan, K. Hausman, A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, E. Jang, R. J. Ruano,414

K. Jeffrey, S. Jesmonth, N. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, K.-H. Lee, S. Levine,415

Y. Lu, L. Luu, C. Parada, P. Pastor, J. Quiambao, K. Rao, J. Rettinghouse, D. Reyes, P. Sermanet,416

N. Sievers, C. Tan, A. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, S. Xu, M. Yan, and A. Zeng.417

Do as i can and not as i say: Grounding language in robotic affordances. 2022.418

[3] B. Baker, I. Akkaya, P. Zhokhov, J. Huizinga, J. Tang, A. Ecoffet, B. Houghton, R. Sampedro,419

and J. Clune. Video pretraining (vpt): Learning to act by watching unlabeled online videos,420

2022.421

[4] Y. Belinkov and J. Glass. Analysis methods in neural language processing: A survey, 2019.422

[5] J. Borja-Diaz, O. Mees, G. Kalweit, L. Hermann, J. Boedecker, and W. Burgard. Affordance423

learning from play for sample-efficient policy learning. In Proceedings of the IEEE International424

Conference on Robotics and Automation (ICRA), Philadelphia, USA, 2022.425

[6] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choromanski, T. Ding, D. Driess,426

A. Dubey, C. Finn, P. Florence, C. Fu, M. G. Arenas, K. Gopalakrishnan, K. Han, K. Hausman,427

A. Herzog, J. Hsu, B. Ichter, A. Irpan, N. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, I. Leal,428

L. Lee, T.-W. E. Lee, S. Levine, Y. Lu, H. Michalewski, I. Mordatch, K. Pertsch, K. Rao,429

K. Reymann, M. Ryoo, G. Salazar, P. Sanketi, P. Sermanet, J. Singh, A. Singh, R. Soricut,430

H. Tran, V. Vanhoucke, Q. Vuong, A. Wahid, S. Welker, P. Wohlhart, J. Wu, F. Xia, T. Xiao,431

P. Xu, S. Xu, T. Yu, and B. Zitkovich. Rt-2: Vision-language-action models transfer web432

knowledge to robotic control, 2023.433

[7] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-434

man, A. Herzog, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, T. Jackson, S. Jesmonth, N. J. Joshi,435

R. Julian, D. Kalashnikov, Y. Kuang, I. Leal, K.-H. Lee, S. Levine, Y. Lu, U. Malla, D. Manju-436

nath, I. Mordatch, O. Nachum, C. Parada, J. Peralta, E. Perez, K. Pertsch, J. Quiambao, K. Rao,437

M. Ryoo, G. Salazar, P. Sanketi, K. Sayed, J. Singh, S. Sontakke, A. Stone, C. Tan, H. Tran,438

V. Vanhoucke, S. Vega, Q. Vuong, F. Xia, T. Xiao, P. Xu, S. Xu, T. Yu, and B. Zitkovich. Rt-1:439

Robotics transformer for real-world control at scale, 2023.440

[8] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,441

P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child,442

A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,443

B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Lan-444

guage models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and445

H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 1877–446

1901. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_447

files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.448

[9] A. Bucker, L. Figueredo, S. Haddadin, A. Kapoor, S. Ma, S. Vemprala, and R. Bonatti. Latte:449

Language trajectory transformer, 2022.450

[10] S. Cai, Z. Wang, X. Ma, A. Liu, and Y. Liang. Open-world multi-task control through goal-aware451

representation learning and adaptive horizon prediction, 2023.452

[11] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joulin. Emerging453

properties in self-supervised vision transformers, 2021.454

[12] W.-L. Chiang, Z. Li, Z. Lin, Y. Sheng, Z. Wu, H. Zhang, L. Zheng, S. Zhuang, Y. Zhuang, J. E.455

Gonzalez, I. Stoica, and E. P. Xing. Vicuna: An open-source chatbot impressing gpt-4 with 90%*456

chatgpt quality, March 2023. URL https://lmsys.org/blog/2023-03-30-vicuna/.457

[13] W. Dabney, M. Rowland, M. G. Bellemare, and R. Munos. Distributional reinforcement learning458

with quantile regression, 2017.459

10

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://lmsys.org/blog/2023-03-30-vicuna/

[14] W. Dai, J. Li, D. Li, A. M. H. Tiong, J. Zhao, W. Wang, B. Li, P. Fung, and S. Hoi. Instructblip:460

Towards general-purpose vision-language models with instruction tuning, 2023.461

[15] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional462

transformers for language understanding, 2019.463

[16] Z. Ding, H. Luo, K. Li, J. Yue, T. Huang, and Z. Lu. Clip4mc: An rl-friendly vision-language464

model for minecraft, 2023.465

[17] Y. Du, O. Watkins, Z. Wang, C. Colas, T. Darrell, P. Abbeel, A. Gupta, and J. Andreas. Guiding466

pretraining in reinforcement learning with large language models, 2023.467

[18] K. Ehsani, T. Gupta, R. Hendrix, J. Salvador, L. Weihs, K.-H. Zeng, K. P. Singh, Y. Kim,468

W. Han, A. Herrasti, R. Krishna, D. Schwenk, E. VanderBilt, and A. Kembhavi. Imitating469

shortest paths in simulation enables effective navigation and manipulation in the real world,470

2023.471

[19] L. Fan, G. Wang, Y. Jiang, A. Mandlekar, Y. Yang, H. Zhu, A. Tang, D.-A. Huang, Y. Zhu,472

and A. Anandkumar. Minedojo: Building open-ended embodied agents with internet-scale473

knowledge. In Neural Information Processing Systems, 2022, 2022.474

[20] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap. Mastering diverse domains through world475

models, 2023.476

[21] J. Hu and R. Levy. Prompt-based methods may underestimate large language models’ linguistic477

generalizations, 2023.478

[22] C. Huang, O. Mees, A. Zeng, and W. Burgard. Visual language maps for robot navigation.479

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),480

London, UK, 2023.481

[23] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Language models as zero-shot planners:482

Extracting actionable knowledge for embodied agents, 2022.483

[24] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng, J. Tompson, I. Mordatch,484

Y. Chebotar, P. Sermanet, N. Brown, T. Jackson, L. Luu, S. Levine, K. Hausman, and B. Ichter.485

Inner monologue: Embodied reasoning through planning with language models, 2022.486

[25] G. Jawahar, B. Sagot, and D. Seddah. What does BERT learn about the structure of language?487

In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,488

Florence, Italy, 2019. Association for Computational Linguistics.489

[26] Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. J. Bang, A. Madotto, and P. Fung.490

Survey of hallucination in natural language generation. ACM Computing Surveys, 55(12):1–38,491

mar 2023.492

[27] S. Kadavath, T. Conerly, A. Askell, T. Henighan, D. Drain, E. Perez, N. Schiefer, Z. Hatfield-493

Dodds, N. DasSarma, E. Tran-Johnson, S. Johnston, S. El-Showk, A. Jones, N. Elhage, T. Hume,494

A. Chen, Y. Bai, S. Bowman, S. Fort, D. Ganguli, D. Hernandez, J. Jacobson, J. Kernion,495

S. Kravec, L. Lovitt, K. Ndousse, C. Olsson, S. Ringer, D. Amodei, T. Brown, J. Clark,496

N. Joseph, B. Mann, S. McCandlish, C. Olah, and J. Kaplan. Language models (mostly) know497

what they know, 2022.498

[28] A. Kanervisto, S. Milani, K. Ramanauskas, N. Topin, Z. Lin, J. Li, J. Shi, D. Ye, Q. Fu, W. Yang,499

W. Hong, Z. Huang, H. Chen, G. Zeng, Y. Lin, V. Micheli, E. Alonso, F. Fleuret, A. Nikulin,500

Y. Belousov, O. Svidchenko, and A. Shpilman. Minerl diamond 2021 competition: Overview,501

results, and lessons learned, 2022.502

[29] S. Karamcheti, S. Nair, A. Balakrishna, P. Liang, T. Kollar, and D. Sadigh. Prismatic vlms:503

Investigating the design space of visually-conditioned language models, 2024.504

[30] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C.505

Berg, W.-Y. Lo, P. Dollár, and R. Girshick. Segment anything, 2023.506

11

[31] A. Kumar, A. Zhou, G. Tucker, and S. Levine. Conservative q-learning for offline reinforcement507

learning, 2020.508

[32] B. Z. Li, M. Nye, and J. Andreas. Implicit representations of meaning in neural language509

models, 2021.510

[33] J. Li, D. Li, C. Xiong, and S. Hoi. Blip: Bootstrapping language-image pre-training for unified511

vision-language understanding and generation, 2022.512

[34] J. Li, D. Li, S. Savarese, and S. Hoi. Blip-2: Bootstrapping language-image pre-training with513

frozen image encoders and large language models, 2023.514

[35] K. Li, A. K. Hopkins, D. Bau, F. Viégas, H. Pfister, and M. Wattenberg. Emergent world515

representations: Exploring a sequence model trained on a synthetic task, 2023.516

[36] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and A. Zeng. Code as517

policies: Language model programs for embodied control, 2023.518

[37] S. Lifshitz, K. Paster, H. Chan, J. Ba, and S. McIlraith. Steve-1: A generative model for519

text-to-behavior in minecraft, 2023.520

[38] H. Lin, Z. Wang, J. Ma, and Y. Liang. Mcu: A task-centric framework for open-ended agent521

evaluation in minecraft, 2023.522

[39] J. Lin, Y. Du, O. Watkins, D. Hafner, P. Abbeel, D. Klein, and A. Dragan. Learning to model523

the world with language. 2023.524

[40] H. Liu, L. Lee, K. Lee, and P. Abbeel. Instruction-following agents with multimodal transformer,525

2023.526

[41] H. Luo, A. Yue, Z.-W. Hong, and P. Agrawal. Stubborn: A strong baseline for indoor object527

navigation, 2022.528

[42] C. Lynch and P. Sermanet. Language conditioned imitation learning over unstructured data,529

2021.530

[43] A. Majumdar, K. Yadav, S. Arnaud, Y. J. Ma, C. Chen, S. Silwal, A. Jain, V.-P. Berges, P. Abbeel,531

J. Malik, D. Batra, Y. Lin, O. Maksymets, A. Rajeswaran, and F. Meier. Where are we in the532

search for an artificial visual cortex for embodied intelligence?, 2023.533

[44] O. Mees, J. Borja-Diaz, and W. Burgard. Grounding language with visual affordances over534

unstructured data. In Proceedings of the IEEE International Conference on Robotics and535

Automation (ICRA), London, UK, 2023.536

[45] V. Myers, A. He, K. Fang, H. Walke, P. Hansen-Estruch, C.-A. Cheng, M. Jalobeanu, A. Kolobov,537

A. Dragan, and S. Levine. Goal representations for instruction following: A semi-supervised538

language interface to control, 2023.539

[46] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta. R3m: A universal visual representation540

for robot manipulation, 2022.541

[47] K. Narasimhan, R. Barzilay, and T. Jaakkola. Grounding language for transfer in deep reinforce-542

ment learning, 2018.543

[48] K. Nottingham, P. Ammanabrolu, A. Suhr, Y. Choi, H. Hajishirzi, S. Singh, and R. Fox. Do544

embodied agents dream of pixelated sheep: Embodied decision making using language guided545

world modelling, 2023.546

[49] O.M.T., D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees, S. Dasari, J. Hejna, C. Xu, J. Luo,547

T. Kreiman, Y. Tan, D. Sadigh, C. Finn, and S. Levine. Octo: An open-source generalist robot548

policy. https://octo-models.github.io, 2023.549

[50] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,550

K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder,551

P. Christiano, J. Leike, and R. Lowe. Training language models to follow instructions with552

human feedback, 2022.553

12

https://octo-models.github.io

[51] N. D. Palo, A. Byravan, L. Hasenclever, M. Wulfmeier, N. Heess, and M. Riedmiller. Towards554

a unified agent with foundation models, 2023.555

[52] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,556

P. Mishkin, J. Clark, G. Krueger, and I. Sutskever. Learning transferable visual models from557

natural language supervision, 2021.558

[53] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann. Stable-baselines3:559

Reliable reinforcement learning implementations. Journal of Machine Learning Research, 22560

(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.561

[54] S. K. Ramakrishnan, A. Gokaslan, E. Wijmans, O. Maksymets, A. Clegg, J. Turner, E. Un-562

dersander, W. Galuba, A. Westbury, A. X. Chang, M. Savva, Y. Zhao, and D. Batra. Habitat-563

matterport 3d dataset (hm3d): 1000 large-scale 3d environments for embodied ai, 2021.564

[55] R. Ramrakhya, E. Undersander, D. Batra, and A. Das. Habitat-web: Learning embodied565

object-search strategies from human demonstrations at scale, 2022.566

[56] R. Ramrakhya, D. Batra, E. Wijmans, and A. Das. Pirlnav: Pretraining with imitation and rl567

finetuning for objectnav, 2023.568

[57] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis569

with latent diffusion models, 2022.570

[58] M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain, J. Straub, J. Liu, V. Koltun,571

J. Malik, D. Parikh, and D. Batra. Habitat: A Platform for Embodied AI Research. In572

Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2019.573

[59] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization574

algorithms, 2017.575

[60] P. Sharma, A. Torralba, and J. Andreas. Skill induction and planning with latent language, 2022.576

[61] P. Sharma, B. Sundaralingam, V. Blukis, C. Paxton, T. Hermans, A. Torralba, J. Andreas, and577

D. Fox. Correcting robot plans with natural language feedback. In Robotics: Science and578

Systems, 2022, 2023.579

[62] X. Shi, I. Padhi, and K. Knight. Does string-based neural MT learn source syntax? In580

Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing,581

pages 1526–1534, Nov. 2016.582

[63] M. Shridhar, L. Manuelli, and D. Fox. Cliport: What and where pathways for robotic manipula-583

tion. In Proceedings of the 5th Conference on Robot Learning (CoRL), 2021.584

[64] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox, J. Thomason, and585

A. Garg. Progprompt: Generating situated robot task plans using large language models, 2022.586

[65] A. Szot, M. Schwarzer, H. Agrawal, B. Mazoure, W. Talbott, K. Metcalf, N. Mackraz, D. Hjelm,587

and A. Toshev. Large language models as generalizable policies for embodied tasks, 2024.588

[66] I. Tenney, D. Das, and E. Pavlick. Bert rediscovers the classical nlp pipeline, 2019.589

[67] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and590

I. Polosukhin. Attention is all you need, 2017.591

[68] S. Vemprala, R. Bonatti, A. Bucker, and A. Kapoor. Chatgpt for robotics: Design principles and592

model abilities. Technical report, Microsoft, 2023.593

[69] G. Wang, Y. Xie, Y. Jiang, A. Mandlekar, C. Xiao, Y. Zhu, L. Fan, and A. Anandkumar. Voyager:594

An open-ended embodied agent with large language models, 2023.595

[70] Z. Wang, S. Cai, G. Chen, A. Liu, X. Ma, and Y. Liang. Describe, explain, plan and select:596

Interactive planning with large language models enables open-world multi-task agents, 2023.597

13

http://jmlr.org/papers/v22/20-1364.html

[71] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. Le, and D. Zhou.598

Chain-of-thought prompting elicits reasoning in large language models, 2023.599

[72] G. Wiedemann, S. Remus, A. Chawla, and C. Biemann. Does bert make any sense? interpretable600

word sense disambiguation with contextualized embeddings, 2019.601

[73] K. Yadav, J. Krantz, R. Ramrakhya, S. K. Ramakrishnan, J. Yang, A. Wang, J. Turner,602

A. Gokaslan, V.-P. Berges, R. Mootaghi, O. Maksymets, A. X. Chang, M. Savva, A. Clegg,603

D. S. Chaplot, and D. Batra. Habitat challenge 2023. https://aihabitat.org/challenge/604

2023/, 2023.605

[74] K. Yadav, A. Majumdar, R. Ramrakhya, N. Yokoyama, A. Baevski, Z. Kira, O. Maksymets, and606

D. Batra. Ovrl-v2: A simple state-of-art baseline for imagenav and objectnav, 2023.607

[75] H. Yuan, C. Zhang, H. Wang, F. Xie, P. Cai, H. Dong, and Z. Lu. Plan4mc: Skill reinforcement608

learning and planning for open-world minecraft tasks, 2023.609

[76] A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian, T. Armstrong, I. Krasin,610

D. Duong, V. Sindhwani, and J. Lee. Transporter networks: Rearranging the visual world for611

robotic manipulation. Conference on Robot Learning (CoRL), 2020.612

[77] A. Zeng, M. Attarian, B. Ichter, K. Choromanski, A. Wong, S. Welker, F. Tombari, A. Purohit,613

M. Ryoo, V. Sindhwani, J. Lee, V. Vanhoucke, and P. Florence. Socratic models: Composing614

zero-shot multimodal reasoning with language, 2022.615

[78] X. Zhai, B. Mustafa, A. Kolesnikov, and L. Beyer. Sigmoid loss for language image pre-training,616

2023.617

[79] B. Zhou, K. Li, J. Jiang, and Z. Lu. Learning from visual observation via offline pretrained618

state-to-go transformer, 2023.619

[80] M. Zhu, Y. Li, and T. Kong. Integrating map-based method with end-to-end learning, 2022.620

URL https://www.youtube.com/watch?v=N-wW3TwEqbU.621

[81] X. Zhu, Y. Chen, H. Tian, C. Tao, W. Su, C. Yang, G. Huang, B. Li, L. Lu, X. Wang, Y. Qiao,622

Z. Zhang, and J. Dai. Ghost in the minecraft: Generally capable agents for open-world623

environments via large language models with text-based knowledge and memory, 2023.624

14

https://aihabitat.org/challenge/2023/
https://aihabitat.org/challenge/2023/
https://aihabitat.org/challenge/2023/
https://www.youtube.com/watch?v=N-wW3TwEqbU

Target Entity Prompt True Positive Rate True Negative Rate

Spider
“Is there a spider in this image?" 22.27% 100.00%

“Spiders in Minecraft are black.
Is there a spider in this image?" 73.42% 94.54%

“Spiders in Minecraft are black
and have red eyes and long, thin

legs. Is there a spider in this image?"
50.50% 99.85%

Cow
“Is there a cow in this image?" 71.00% 45.41%

“Cows in Minecraft are black and white.
Is there a cow in this image?" 98.22% 2.00%

“Cows in Minecraft are black and white
and have four legs.

Is there a cow in this image?"
96.67% 7.35%

Sheep
“Is there a sheep in this image?" 88.00% 59.83%

“Sheep in Minecraft are white.
Is there a sheep in this image?" 100.00% 0.00%

“Sheep in Minecraft are white and
have four legs.

Is there a sheep in this image?"
100.00% 0.00%

Table 5: InstructBLIP’s performance at decoding text indicating that it detected the presence of a
target entity when given different prompts. We use this as a proxy metric for prompt engineering for
RL, allowing us to determine which prompt to use for PR2L.

A Prompt Evaluation for RL in Minecraft625

We discuss how to evaluate prompts to use with PR2L, by showcasing an example for a Minecraft626

task. We start by noting that the presence and relative location of the entity of interest for each task627

(i.e., spiders, sheep, or cows) are good features for the policy to have. To evaluate if a prompt elicits628

these features from the VLM, we collect a small dataset of videos in which each Minecraft entity629

of interest is on the left, right, middle, or not on screen for the entirety of the clip. Each video is630

collected by a human player screen recording visual observations from Minecraft of the entity from631

different angles for around 30 seconds at 30 frames per second (with the exception of the video where632

the entity is not present, which is a minute long).633

We propose prompts that target each of the two features we labeled. First, we evaluate prompts that634

ask “Is there a(n) [entity] in this image?” As the answers to these questions are just yes/no, we see635

how well the VLM can directly generate the correct answer for each frame in the collected videos.636

The VLM should answer “yes” for frames in the three videos where the target entity is on the left,637

right, or middle of the screen and “no” for the final video. Second, we evaluate if our prompts can638

extract the entity’s relative position (left, right, or middle) in the videos where it is present. We639

note that the prompts we tried could not extract this feature in the decoded text (e.g., asking “Is the640

[entity] on the left, right, or middle of the screen?” will always cause the VLM to decode the same641

text). Thus, we try to see if this feature can be extracted from the decoded texts’ representations. We642

measure this by fitting a three-category linear classifier of the entity’s position given the token-wise643

mean of the decoded tokens’ final embeddings. This is an unsophisticated and unexpressive classifier,644

i.e., we do not have to worry about the model potentially memorizing the data, which means that645

good classification performance corresponds to an easy extractability of said feature.646

We evaluate three types of prompts per task entity for the first feature: one simply asking if the647

entity is present in the image (e.g., “Is there a spider in this image?”) and two others adding varying648

amounts of auxiliary information about visual characteristics of the entity (e.g., “Spiders in Minecraft649

are black. Is there a spider in this image?” and “Spiders in Minecraft are black and have red eyes650

and long, thin legs. Is there a spider in this image?”). We present evaluations of all such prompts in651

Table 5. We find that the VLM benefits greatly from auxiliary information for the spider case only,652

likely because spiders in Minecraft are the most dissimilar to the ones present in natural images of653

real spiders, whereas cows and sheep are still comparatively similar, especially in terms of scale and654

color. However, adding too much auxiliary information degrades performance, perhaps because the655

input prompt becomes too long, and therefore is out-of-distribution for the types of prompts that656

the VLM was pre-trained on. This same argument may explain why auxiliary information degrades657

15

Figure 3: Example tasks, observations, and task-relevant prompts from MineDojo and Habitat.

performance for the other two target entities as well, causing them to almost always answer that658

said entities are present, even when they are not. Once more, considering that these targets exhibit a659

higher degree of visual resemblance to to their real counterparts compared to Minecraft spiders, it is660

reasonable to infer that the VLM would not benefit from auxiliary information. Furthermore, taking661

into account that the auxiliary information we gave is more common-sense than the information given662

for the spider, it could imply that the prompts are also more likely to be out-of-distribution (given663

that “sheep are white” is so obvious that people would not bother expressing it in language), causing664

the systematic performance degradation.665

For the probing evaluation, we find that all three prompts reach similar final linear classifiabilities for666

each of their target entities, as shown in Figure 4. While this does not aid in choosing one prompt667

over another, it does confirm that the VLM’s decoded embeddings for each prompt still contains this668

valuable and granular position information about the target entity, even though the input prompt did669

not ask for it.670

B MineDojo Details671

B.1 Environment Details672

Spaces. The observation space for the Minecraft tasks consists of the following:673

1. RGB: Egocentric RGB images from the agent. (160, 256, 3)-size tensor of integers ∈674

{0, 1, ..., 255}.675

2. Position: Cartesian coordinates of agent in world frame. 3-element vector of floats.676

3. Pitch, Yaw: Orientation of agent in world frame in degrees. Note that we limit the pitch677

to 15◦ above the horizon to 75◦ below for combat spider, which makes learning easier (as678

the agent otherwise often spends a significant amount of time looking straight up or down).679

Two 1-element vectors of floats.680

4. Previous Action: The previous action taken by the agent. Set to no operation at the start681

of each episode. One-hot vector of size |A| = 53 for combat spider and 89 otherwise (see682

below).683

This differs from the simplified observation space used in [19] in that we do not use any nearby voxel684

label information and impose pitch limits for combat spider. This observation space is the same for685

all Minecraft experiments.686

16

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

Linear Classifier Accuracy of Relative Position of Spider

Is there a spider in this image?
Spiders in Minecraft are black. Is there a spider in this image?
Spiders in Minecraft are black and have red eyes and long, thin legs.
Is there a spider in this image?

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

Linear Classifier Accuracy of Relative Position of Cow

Is there a cow in this image?
Cows in Minecraft are black and white. Is there a cow in this image?
Cows in Minecraft are black and white and have four legs.
Is there a cow in this image?

0 100 200 300 400 500
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

Linear Classifier Accuracy of Relative Position of Sheep

Is there a sheep in this image?
Sheep in Minecraft are white. Is there a sheep in this image?
Sheep in Minecraft are white and have four legs.
Is there a sheep in this image?

Figure 4: We train a linear classifier to predict the rela-
tive position of the target entity (left/right/middle) based
on the average VLM embeddings decoded in response to
each associated candidate prompt. We find that all three
candidate prompts per task elicit embeddings that are
similarly highly conducive to this classification scheme.

The action space is discrete, consisting of 53 or687

89 different actions:688

1. Turn: Change the yaw and pitch of689

the agent. The yaw and pitch can be690

changed up to ±90◦ in multiples of691

15◦. As they can both be changed at692

the same time, there are 9× 9 = 81 to-693

tal different turning actions. The turn-694

ing action where the yaw and pitch695

changes are both 0◦ is the no opera-696

tion action. Note that, since we im-697

pose pitch limits for the spider task, we698

also limit the change in pitch to ±30◦,699

meaning there are only 45 turning ac-700

tions in that case.701

2. Move: Move forward, backward, left,702

right, jump up, or jump forward for 6703

actions total.704

3. Attack: Swing the held item at what-705

ever is targeted at the center of the706

agent’s view.707

4. Use Item: Use the held item on what-708

ever is targeted at the center of the709

agent’s view. This is used to milk cows710

or shear sheep (with an empty bucket711

or shears respectively). If holding a712

sword and shield, this action will block713

attacks with the latter.714

This non-combat spider action space is the same715

as the simplified one in [19]. All experiments716

for a given task share the same action space.717

World specifications. MineDojo implements718

a fast reset functionality that we use. Instead719

of generating an entirely new world for each720

episode, fast reset simply respawns the player721

and all specified entities in the same world instance, but with fully restored items, health points,722

and other relevant task quantities. This lowers the time overhead of resets significantly, but also723

means that some changes to the world (like block destruction) are persistent. However, as breaking724

blocks generally takes multiple time steps of taking the same action (and does not directly lead to any725

reward), the agent empirically does not break many blocks aside from tall grass (which is destroyed726

with a single strike from any held item). We keep all reset parameters (like the agent respawn radius,727

how far away entities can spawn from the agent, etc) at their default values provided by MineDojo.728

We stage all tasks in the same area of the same programmatically-generated world: namely, a729

sunflower plains biome in the world with seed 123. This is the default location for the implementation730

of the spider combat task in MineDojo. We choose this specific world/location as it represents a731

prototypical Minecraft scene with relatively easily-traversable terrain (thus making learning faster732

and easier).733

Additional task details and reward functions. We provide additional notes about our Minecraft734

tasks.735

Combat spider: Upon detecting the agent, the spider approaches and attacks; if the agent’s health is736

depleted, then the episode terminates in failure. The agent receives +1 reward for striking any entity737

and +10 for defeating the spider. We also include several distractor animals (a cow, pig, chicken, and738

sheep) that passively wander the task space; the agent can reward game by striking these animals,739

making credit assignment of success rewards and the overall task harder.740

17

Hyperparameter Task
Combat Spider Milk Cow Shear Sheep Combat Zombie Combat Enderman Combat Pigman

Total Train Steps 150000 100000
Rollout Steps 2048

Action Entropy Coefficient 5e-3
Value Function Coefficient 0.5

Max LR 5e-5 1e-4 1e-4 5e-5 1e-4 5e-5
Min LR 5e-6 1e-4 1e-4 5e-6 1e-4 5e-6

Batch Size 64
Update Epochs 10

γ 0.99
GAE λ 0.95

Clip Range 0.2
Max Gradient Norm 0.5

Normalize Advantage True

Table 6: PPO hyperparameters for Minecraft tasks, shared by the baselines, our method, and ablations.

Policy Transformer Hyperparameters

Transformer Token Size 512 / 128
Transformer Feedforward Dim 512 / 128

Transformer Number Heads 2
Transformer Number Decoder Layers 1
Transformer Number Encoder Layers 1

Transformer Output Dim 128
Transformer Dropout 0.1

Transformer Nonlinearity ReLU

Policy MLP Hyperparameters

Number Hidden Layers 1
Hidden Layer Size 128
Activation Function tanh

VLM Generation Hyperparameters

Max Tokens Generated 6
Min Tokens Generated 6

Decoding Scheme Greedy

Table 7: All policy hyperparameters for all Minecraft tasks. Smaller token sizes and feedforward
dimensions are used for combat [zombie/enderman/pigman].

Milk cow: The agent also holds wheat in its off hand, which causes the cow to approach the agent741

when detected and sufficiently nearby. For each episode, we track the minimum visually-observed742

distance between the agent and the cow at each time step. The agent receives +0.1|∆dmin| reward for743

decreasing this minimum distance (where ∆dmin ≤ 0 is the change in this minimum distance at a744

given time step) and +10 for successfully milking the cow.745

Shear sheep: As with milk cow, the agent holds wheat in its off hand to cause the sheep to approach746

it. The reward function also has the same structure as that task, albeit with different coefficients:747

+|∆dmin| for decreasing the minimum distance to the sheep and +10 for shearing it.748

Combat zombie: Same as combat spider, but the enemy is a zombie. We increase the episode length749

to 1000, as the zombie has more health points than the spider.750

Combat enderman: Same as combat spider, but the enemy is an Enderman. As with combat zombie,751

we increase the episode length to 1000. Note that Endermen are non-hostile (until directly looked at752

for sufficiently long or attacked) and have significantly more health points than other enemies. We753

thus enchant the agent’s sword to deal more damage and decrease the initial spawn distance of the754

enderman from the agent.755

Combat pigman: Same as combat spider, but the enemy is a hostile zombie pigman. As with combat756

zombie, we increase the episode length to 1000.757

18

B.2 Policy and Training Details758

For our actual RL algorithm, we use the Stable-Baselines3 (version 2.0.0) implementation of clipping-759

based PPO [53], with hyperparameters presented in Table 6. Many of these parameters are the same760

as the ones presented by [19]. For the spider trials, we use a cosine learning rate schedule:761

LR(current train step) = Min LR + (Max LR − Min LR)

1 + cos
(
π current train step

total train steps

)
2

 (1)

We also present the policy and VLM hyperparameters in Table 7. The hyperparameters and architec-762

ture of the MLP part of the policy are primarily defined by the default values and structure defined by763

the Stable-Baselines3 ActorCriticPolicy class. Note that the no generation ablation, VLM image764

encoder baseline, and MineCLIP trials do not generate text with the VLM, and so all do not use the765

associated process’s hyperparameters. The MineCLIP trials also do not use a Transformer layer in766

the policy, due to not receiving token sequence embeddings. It instead just uses a MLP, but with two767

hidden layers (to supplement the lowered policy expressivity due to the lack of a Transformer layer).768

Additionally, InstructBLIP’s token embeddings are larger than ViT-g/14’s (used in the VLM image769

encoder baseline), and so may carry more information. However, the VLM does not receive any770

privileged information over the image encoder from the task environment – any additional information771

in the VLM’s representations is therefore purely from the model’s prompted internal knowledge. Still,772

to ensure consistent policy expressivity, we include a learned linear layer projecting all representations773

for this baseline and our approach to the same size (512 dimensions) so that the rest of the policy is774

the same for both.775

Minecraft training runs were run on 16 A5000 GPUs (to accommodate the 16 seeds).776

C Habitat ObjectNav Details777

C.1 Environment Details778

The spaces and agent/task specifications are largely the same as the defaults provided by Habitat, as779

specified in the HM3D ObjectNav configuration file [58].780

Spaces. The observation space for Habitat consists of the following:781

1. RGB: Egocentric RGB images from the agent. (480, 640, 3)-size tensor of integers ∈782

{0, 1, ..., 255}. By default, agents also receive depth images, but we remove them to ensure783

that state representations are grounded primarily in visual observations.784

2. Position: Horizontal Cartesian coordinates of agent. 2-element vector of floats.785

3. Compass: Yaw of the agent. Single floats.786

4. Previous Action: The previous action taken by the agent. Set to no operation at the start of787

each episode. One-hot vector of size |A| = 4.788

5. Object Goal: Which object the agent is aiming to find. One-hot vector of size 3.789

The action space is the standard Habitat-Lab action space, though we remove the pitch-changing790

actions, leaving only four:791

1. Turn: Turn left or right, changing the yaw by 30◦.792

2. Move Forward: Move forward a fixed amount or until the agent collides with something.793

3. Stop: Ends the episode, indicating that the agent believes it has found the goal object.794

All observations, actions, and associated dynamics are deterministic.795

World specifications. In ObjectNav, an agent is spawned in a household environment and must find796

and navigate to an instance of a specified target object in as efficient a path as possible. Doing so797

effectively requires a common-sense understanding of where household objects are often found and798

the structure of standard homes.799

19

Habitat provides a standardized train-validation split, consisting of 80 household scenes for training800

(from which one can run online RL or collect data for offline RL or BC) and 20 novel scenes801

for validation, thereby testing policies’ generalization capabilities. These scenes come from the802

Habitat-Matterport 3D v1 dataset [54].803

C.2 Policy and Training Details804

In line with previous work [56, 74, 43], we train our policies with behavior cloning (BC) on the805

Habitat-Web human demonstration dataset of 77k trajectories (12M steps) [55]. We adopt many of806

the same design choices provided by said prior works, but with a few critical differences:807

1. Due to compute limitations, we were unable to train on the full dataset (as those original808

works used 512 parallel environments to roll out demo trajectories and collect data). Instead,809

we used a subset of the dataset, built by dividing the dataset by both target object and scene,810

then sampling every tenth demo. This would ensure that our training data still contained811

examples from every training scene + target object combination that existed. In total, our812

subsampled dataset contains approximately 1.1M steps over 7550 trajectories.813

2. We adopt the same optimizer, scheduler, and associated hyperparameters as Majumdar et al.814

[43], but find a learning rate of 1e− 4 to be more effective than their 1e− 3.815

3. Rather than sampling partial trajectory rollouts from 512 parallel environments as done by816

Majumdar et al. [43], our batches contain full trajectories, though with the same total number817

of transitions per batch as in that work. This means that our batches potentially contain less818

diverse data (due to observations from fewer different total scenes being present), but allow819

us to compute up-to-date full trajectory hidden states for the RNN portion of our policy. We820

use gradient accumulation to achieve this, once again due to compute limitations.821

4. While Majumdar et al. [43] trains for 24k gradient steps (observing approximately 400M822

transitions.), we find using only approximately a tenth of that (40 epochs through our smaller823

dataset, so around 40M transitions) to reach peak performance for our policy. The scheduler824

still assumes the full training run will last for 400M transitions, so our LR decays at the825

same rate as with VC-1. Furthermore, for fairness, we leave our VC-1 baseline policies826

(trained on our subsampled datasets) training beyond 40 epochs, and report their validation827

performance at both 40 and 120 epochs (when its performance saturates).828

5. For policies that receive visual observations as a sequence of tokens (PR2L, VC-1 with829

patch embeddings), we apply 2D average pooling with kernel sizes of 4× 4 to reduce down830

to 16 tokens. Then, we pass those tokens through a learned Transformer layer, instead of the831

learned compression layer used by Majumdar et al. [43]. We do this to ensure that policy832

performance differences are due to representation quality, not architecture.833

6. We employ inflection upweighting during training, as done by Ramrakhya et al. [56], Yadav834

et al. [74], Majumdar et al. [43]. However, we also categorically upweight the cross entropy835

loss of stopping and turning by 1.5 (due to them being uncommon but important), as we836

observe this increases learning speed for all policies.837

7. We do not employ any image augmentation or loss regularization to prevent overfitting.838

However, we find our policy exhibits strong generalization performance in unseen validation839

scenes nonetheless.840

For PR2L-specific design choices:841

1. Our chosen VLM is the Prismatic VLM [29] with Dino+SigLIP as a vision backbone and842

Llama2-7B-pure as the language backbone. We use the 224px version, which maps images843

to 256 visual tokens (which, as described above, get compressed into 16 via pooling).844

2. To reduce the size of VLM representations for PR2L, we embed one observation (sampled845

uniformly at random) from each trajectory in our subsampled dataset with our VLM, then846

compute all resulting tokens’ principle component vectors. We then use said vectors to847

lower all tokens’ dimensionality down from 4096 to 1024 (i.e., corresponding approximately848

to their first 1024 principle components).849

3. Like with the Minecraft experiments, we take the VLM’s last two layers’ embeddings and850

treat them as our promptable representations. However, unlike with Minecraft, we stack851

20

each VLM token’s two embeddings (forming new embeddings of size 2048), rather than852

concatenate all of them.853

4. For generating text in response to our task-relevant prompt, we use sample-based decoding854

with fixed random seed prior to the decoding with temperature 0.4 and 32− 48 new tokens855

generated.856

5. The learned Transformer layer of our policy is the same as the one used in the Minecraft857

experiments, but with token embedding sizes of 1024.858

All Habitat training was done on an A100 GPU server. Generation of data and evaluations were done859

on 16 A5000 GPUs for parallelization.860

D Simplified Habitat Offline RL Experiments861

While our primary Habitat experiments use behavior cloning to stay consistent with past works, we862

also run offline RL experiments on a simplified version of ObjectNav to better explore how VLM863

representations aid action learning. We discuss the details of said setting now.864

D.1 Environment Details865

We pick 32 reconstructed 3D home environments with at least one instance of each of the three target866

objects (toilet, bed, and sofa) and an annotator quality score of at least 4 out of 5. We choose to867

remove plants and televisions from the goal object set due to finding numerous unlabeled instances868

of them. Additionally, we remove chairs, as they are significantly more common than other goal869

objects and thus usually can be found in much shorter episodes. This simplified problem formulation870

enables us to remove many of the “tricks” that aid ObjectNav, such as using omnidirectional views or871

policies with history; our agent makes action decisions purely based on its current visual observation872

and pose, allowing us to do “vanilla” RL to better isolate the effect of PR2L.873

To generate data, we use Habitat’s built-in greedy shortest geodesic path follower. Imitating such874

demonstrations allows policies to learn unintuitively emergent and performant navigation behaviors875

[18] at scale. For each defined starting location in our considered households, we autonomously876

collect data by using the path follower to navigate to each reachable instance of the corresponding877

goal object. This yields high quality, near-optimal data. We then supplement our dataset by generating878

lower-quality data. Specifically, for each computed near-optimal path from a starting location to a879

goal object instance, we choose to inject action noise partway through the trajectory (uniformly at880

random from 0 − 90% of the way through). At that point, all subsequent actions have a 0 − 50%881

probability (again chosen uniformly at random) of being a random action other than the one specified882

by the path follower. To ensure that paths are sufficiently long, we choose to make the probability of883

choosing the stop action 10% and the other two movement actions 45%. In total, we collect 107518884

observations over 2364 trajectories.885

Reward functions. The ObjectNav challenge evaluates agents based on the average "success886

weighted by path length" (SPL) metric [73]: if an agent succeeds at taking the stop action while close887

to an instance of the goal object, it gets SPL(p, l) = l
max(l,p) points, where l is the actual shortest888

path from the starting point to an instance of the goal object and p is the length of the path that the889

agent actually took during that particular episode. If the agent stops while not close to the target890

object, the SPL is 0. Thus, taking the most efficient path to the nearest goal object and stopping yields891

a maximum SPL of 1.892

We use this to design our reward function. Specifically, when the agent stops, it receives a reward893

of +10SPL(p, l). Additionally, we add a shaping reward of the change in geodesic distance to the894

nearest goal object instance each time the agent moves (where lowering that distance yields a positive895

reward).896

D.2 Policy and Training Details897

For our offline RL experiments in Habitat, we use Conservative Q-Learning (CQL) on top of898

the Stable-Baslines3 Contrib codebase’s implementation of Quantile Regression DQN (QR-DQN)899

[31, 13]. We choose to multiply the QR-DQN component of the CQL loss by 0.2. Using the notation900

21

proposed by Kumar et al. [31], this is equivalent to α = 5, which said work also uses. Other901

hyperparameters are τ = 1, γ = 0.99, fixed learning rate of 1e− 4, 100 epochs, and 50 quantiles (no902

exploration hyperparameters are specified, since we do not generate any new online data).903

The policy architecture used for Habitat experiments are the same as those used for PPO, though the904

final network outputs quantile Q-values for each action (rather than just a distribution over actions).905

The action with the highest mean quantile value is chosen at evaluation time.906

During training, we shuffle the data and load full offline trajectories until the buffer has at least907

32×1024 = 32768 transitions or all trajectories have been loaded once that epoch. We then uniformly908

sample and train on batches of size 512 transitions from the buffer until each transition has been909

trained on once in expectation (e.g., ∼ number of transitions in the buffer
512 batches). Each batch is used for 8910

gradient steps before the next is sampled. We choose this data loading scheme to fit the training911

infrastructure provided by Stable-Baselines3 while not using up too much memory at once.912

D.3 Experiments and Results913

Our primary comparison is once again between our promptable representations and general-purpose914

non-promptable ones. We thus repeat the baseline described previously for Minecraft in Section 4.1,915

training a single agent for all three ObjectNav tasks using both PR2L and the VLM image encoder916

representations. We empirically note that longer visual embedding sequences tend to perform better in917

Habitat. To control for this, we opt to use InstructBLIP’s Q-Former unprompted embeddings instead918

of the ViT embeddings directly (which are much longer than PR2L’s embedding sequences). As919

InstructBLIP uses the former representations to extract visual features to be projected into language920

embedding space, this serves to close the gap in embedding sequence length between our two921

conditions while still providing us with general visual features that the VLM processes via prompting.922

In this case, we use the same InstructBLIP model as the Minecraft experiments and choose “What923

room is this?” as our task-relevant prompt.924

Average Toilet Bed Sofa
Target Object

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Success Rates Per Category

Average Toilet Bed Sofa
Target Object

0

2

4

6

8

10

Av
er

ag
e

Re
tu

rn
s

Average Returns Per Category

PR2L (ours) VLM Image Encoder Baseline

Figure 5: Offline RL performance of PR2L and baselines in Habitat ObjectNav. Plots show final evaluation
success rates and average returns per target object and overall. PR2L outperforms the baseline in all cases.

We report evaluation success rates and average returns for the simplified Habitat ObjectNav setting in925

Figure 5. PR2L achieves nearly double the average success rate of the baseline (60.4% vs. 35.2%),926

supporting the hypothesis that PR2L works especially well when exploration is not needed. Lastly, in927

Appendix H.2, we find that PR2L causes the VLM to produce highly structured representations that928

correlate with an expert policy’s value function: high-value states are typically labeled by the VLM929

as being from a room where one would expect to find the target object.930

E Extended Discussion of Tasks and Results931

E.1 Notes on Task-specific Systems932

We designed experiments to specifically investigate the use of VLM embeddings as task-specific933

promptable representations for downstream sensorimotor policy learning. As such, we compare with934

22

Task PR2L (Ours) VLM Image Encoder Ablations
No Prompt No Generation Change Aux. Text Oracle Detector

Combat Spider 97.6 ± 14.9 51.2 ± 9.3 72.6 ± 14.2 66.6 ± 11.8 80.1 ± 12.6 58.0 ± 13.4
Milk Cow 223.4 ± 35.4 95.2 ± 18.7 116.6 ± 25.9 160.2 ± 23.6 80.5 ± 17.8 178.4 ± 42.5

Shear Sheep 37.0 ± 4.4 23.0 ± 3.6 23.8 ± 3.2 26.1 ± 4.5 27.8 ± 4.6 27.4 ± 9.3

Table 8: Minecraft ablations, VLM image encoder baseline, and our full approach. All achieve worse
performance than PR2L. Values are final IQM success counts and intervals are the standard error.

other works that propose or evaluate either learning from scratch or from pre-trained representations,935

but not to systems in Minecraft and Habitat that require domain-specific engineered systems beyond936

just policy learning (such as Luo et al. [41], Zhu et al. [80]) or which target learning or producing937

higher-level plans or abstractions (such as Wang et al. [70]).938

Such comparisons are not made as these works either aim to investigate other problems in control or939

are aiming to develop highly specialized and task-specific systems (whereas we present a general940

approach for policy learning). For instance, Voyager shows how an LLM can reason about and941

compose high-level hand-crafted control primitives [69]. Voyager’s ability to complete harder tasks942

comes from its access to powerful hand-crafted high-level primitives that extensively leverage oracle943

information, which are composed into skills by GPT-4 (which does not handle any low-level control).944

Said hand-coded control primitives used in Voyager are very advanced and do much of the heavy-945

lifting. In particular, Voyager gives GPT-4 access to a dedicated killMob(<entity name>) control946

primitive function. This function calls a separate bot.pvp.attack(<entity>) (hand-written)947

function, which calls a hard-coded oracle pathfinder, aiming controller, and attack function to948

repeatedly approach and attack the specified entity until it is defeated. Thus, for Voyager, the skill for949

hunting sheep simply fills in the powerful killMob() primitive function with “sheep” as the target,950

abstracting away all low-level control via the oracle hand-written controllers.951

Vitally, unlike PR2L, Voyager does not investigate how to use (V)LMs to learn these primitives. It952

thus cannot be applied to settings that lack such primitives (e.g., because oracle path planners are953

not available, like in Habitat). This makes PR2L complementary: we directly learn a policy to link954

observations to low-level actions (turning, moving, attacking, etc) via RL with no oracle information,955

while Voyager aims to compose pre-existing primitives into skills via LLMs.956

E.2 Notes on Dreamer v3957

We note that PR2L just proposes to use VLMs as a source of task-specific representations for RL958

tasks; it does not prescribe which learning algorithm to use. Therefore, in principle, one could959

use Dreamer in conjunction with PR2L and gain benefits from both the VLM representation and960

the choice of a strong model-based RL algorithm. However, while we leave this to future works,961

our Minecraft comparison (c) measures how well the approach does on our Minecraft tasks (as the962

original paper focuses more on the component subtasks involved in the find diamond task, all of963

which do not involve interacting with moving entities).964

We find that Dreamer v3 is unable to learn our six tasks given the same number of environment interac-965

tions that PR2L+PPO was trained on. We hypothesize that this is due to its visual reconstruction-based966

world model not being suited for tasks requiring interaction with partially-observable, non-stationary967

autonomous entities (which all our tasks involve). We note that the last two rows of the figure968

visualizing model reconstructions in the original Dreamer v3 paper shows that its world model969

fails to reconstruct an observed pig [20], supporting our hypothesis. This highlights the need for970

robust representations that are conducive to world model learning, with PR2L’s capabilities to elicit971

task-relevant visual semantic features via prompting being one possibility for doing so.972

F Ablations973

We run four ablations on combat spider, milk cow, and shear sheep to isolate and understand the974

importance of various components of PR2L. First, we run PR2L with no prompt to see if prompting975

with task context actually tailors the VLM’s generated representations favorably towards the target976

task, improving over an unprompted VLM. Note that this is not the same as just using the image977

encoder (comparison (a)), as this ablation still decodes through the VLM, just with an empty prompt.978

Second, we run PR2L with our chosen prompt, but no generation of text – i.e., the policy only979

23

0.0 0.2 0.4 0.6 0.8 1.0
Success Rate

Combat
Spider

Milk
Cow

Shear
Sheep

Behavior Cloning Success Rate

PR2L (ours)
VLM Image Encoder Baseline

Figure 6: Success rates for BC on either PR2L or VLM image encoder baseline representations for
all original tasks. PR2L excels at combat spider, even after the policy is trained for a single epoch.

receives the embeddings associated with the image and prompt (the left and middle red groupings980

of tokens in Figure 2, but not the right-most group). This tests the hypothesis that representations981

of generated text might make certain task-relevant features more salient: e.g., the embeddings for982

“Is there a cow in this image?”, might not encode the presence of a cow as clearly as if the VLM983

generates “Yes” in response, impacting downstream performance. Third, to check if our prompt984

evaluation strategy provides a good proxy for downstream task performance while tuning prompts985

for P2RL, we run PR2L with alternative prompts that were not predicted to be the best, as per our986

criterion in Appendix A. We thus remove the auxiliary text from the prompt for combat spider and987

add it for milk cow and shear sheep. Lastly, to see if PR2L embeddings are just better due to them988

encoding entity detection, we train a VLM image encoder policy with an additional ground truth989

oracle target entity detector as a feature.990

Results from these additional experiments are presented in Table 8. In general, all ablations perform991

worse than PR2L. For milk cow, we note the most performant ablation is no generation, perhaps992

because the generated text is often wrong; among the chosen prompts, it yields the lowest true993

positive and negative rates for classifying the presence of its corresponding target entity (see Table 5994

in Appendix A), though adding auxiliary text makes it even worse, perhaps explaining why milk cow995

experienced the largest performance decrease from adding it back in. Based on these overall trends,996

we conclude that (i) the promptable and generative aspects of VLM representations are important for997

extracting good features for control tasks and (ii) our simple evaluation scheme is an effective proxy998

measure of how good a prompt is for PR2L.999

G Minecraft Behavior Cloning Experiments1000

We collected expert policy data by training a policy on MineCLIP embeddings to completion on all1001

of our original tasks and saving all transitions to create an offline dataset. We then embedded all1002

transitions with either PR2L or the VLM image encoder. Finally, we train policies with behavior1003

cloning (BC) on successful trajectories under a specified length (300 for combat spider, 250 for milk1004

cow, and 500 for shear sheep) from either set of embeddings for all three tasks, then evaluate their1005

task success rates.1006

Results are presented in Figure 6. We first note that, since the expert data was collected from a policy1007

trained on MineCLIP embeddings, the shear sheep policy is not very effective (as we found in Table1008

2). Both resulting shear sheep BC policies are likewise not very performant. We find that combat1009

spider in particular shows a very large gap in performance: the PR2L agent achieves approximately1010

twice the success rate of the VLM image encoder agent after training for just a single epoch. The1011

comparatively small amount of training and data necessary to achieve near-expert performance for1012

this task supports our hypothesis that promptable representations from general-purpose VLMs do1013

not help with exploration (they work better in offline cases, where exploration is not a problem), but1014

instead are particularly conducive to being linked to appropriate actions even though the VLM is not1015

producing actions itself. Further investigation of this hypothesis is presented in Appendix H.1016

24

0 5 10 15 20

10

5

0

5

10

15

PC
2

Combat Spider PR2L Reps PCA
Movement
Attack

15 10 5 0 5 10 15

15

10

5

0

5

10

15
Milk Cow PR2L Reps PCA

Movement
Use

20 15 10 5 0 5 10

15

10

5

0

5

10

15
Shear Sheep PR2L Reps PCA
Movement
Use

15 10 5 0 5 10
PC1

15

10

5

0

5

10

PC
2

Combat Spider Instruction Reps PCA
Movement
Attack

15 10 5 0 5 10 15
PC1

10

5

0

5

10

15

Milk Cow Instruction Reps PCA
Movement
Use

15 10 5 0 5 10 15
PC1

10

5

0

5

10

15

Shear Sheep Instruction Reps PCA
Movement
Use

Figure 7: PCA of PR2L representations of observations from twenty episode rollouts of expert
policies in all three Minecraft tasks. Larger points correspond to transitions where the expert
received > 0.1 reward. We vary the prompt to be either our task-relevant prompt or the RT-2-style
baseline instruction prompt. Our prompt’s representations are bi-modal, with the clusters on the left
corresponding to the VLM outputting “yes” (the entity is in view). We find that most functional
actions (orange points) that yielded rewards are located in said clusters. Note that, since these expert
policies are trained on top of MineCLIP embeddings, the shear sheep policy is not very performant,
as seen in Table 2.

H Representation Analysis1017

Why do our prompts yield higher performance than one asking for actions or instruction-following?1018

Intuitively, despite appropriate responses to our task-relevant prompts not directly encoding actions,1019

there should be a strong correlation: e.g., when fighting a spider, if the spider is in view and the1020

VLM detects this, then a good policy should know to attack to get rewards. We therefore wish to1021

investigate if our representations are conducive to easily deciding when certain rewarding actions1022

would be appropriate for a given task – if it is, then such a policy may be more easily learned by RL,1023

which would explain PR2L’s improved performance over the baselines.1024

H.1 Minecraft Analysis1025

To investigate this, we use the embeddings of our offline data from the BC experiments (collected1026

by training a MineCLIP encoder policy to high performance on all of our original three tasks, as1027

discussed in Appendix G). We specifically look at the embeddings produced by a VLM when given1028

our standard task-relevant prompts and when given the instructions used for our RT-2-style baseline.1029

We then perform principal component analysis (PCA) on the tokenwise average of all embeddings1030

for each observation, thereby projecting the embeddings to a 2D space with maximum variance.1031

We visualize these low-dimensional space in Figure 7 for the final 20 successful observations from1032

each task, with the point colors of orange and blue respectively indicating whether the observation1033

results in a functional action (attack or use item) or movement (translation or rotation) by the expert1034

policy. Additionally, we enlarge points corresponding to when the agent received rewards in order to1035

recognize which actions aided in or achieved the task objective.1036

We find that our considered prompts resulted in a bimodal distribution over representations, wherein1037

the left-side cluster corresponds to the VLM outputting “yes (the entity is in view)” and the right-side1038

one corresponds to “no.” Additionally, observations resulting in functional actions that received1039

25

60 50 40 30 20 10 0 10
PC1

40

30

20

10

0

10

20

30

PC
2

Find Toilet PR2L Reps PCA

60 50 40 30 20 10 0 10 20
PC1

30

20

10

0

10

20

30

40

PC
2

Find Bed PR2L Reps PCA

20 10 0 10 20 30 40 50
PC1

40

30

20

10

0

10

20

30

40

PC
2

Find Sofa PR2L Reps PCA

2

0

2

4

6

8

0

2

4

6

8

2

0

2

4

6

8

bedroom bathroom living room hallway dining room kitchen foyer stair laundry

30 20 10 0 10 20 30 40
PC1

30

20

10

0

10

20

30

40

PC
2

Find Toilet Image Encoder Reps PCA

30 20 10 0 10 20 30 40
PC1

40

30

20

10

0

10

20

30

PC
2

Find Bed Image Encoder Reps PCA

30 20 10 0 10 20 30 40
PC1

30

20

10

0

10

20

30

40

PC
2

Find Sofa Image Encoder Reps PCA

0

2

4

6

8

2

0

2

4

6

8

0

2

4

6

8

Figure 8: PCA of PR2L (above) and image encoder (below) representations of observations
from thirty episode rollouts of expert policies in all Habitat tasks. The points’ colors correspond
to their value under Habitat’s built-in oracle shortest path follower (a near-optimal policy). More
yellow is better. Boxes correspond to points the VLM has labeled as a given household room, in
response to the task prompt of “What room is this?” This analysis aligns with intuition: for find toilet,
high value observations tend to be labeled as bathrooms (orange box), find bed’s tend to be labeled as
bedrooms (blue), and find sofa’s are labeled as living rooms (red).

rewards (large orange points in Figure 7) tend to be on the left-side (“yes”) cluster for representations1040

elicited by our prompt, but are more widely distributed in the instruction prompt case, in agreement1041

with intuition. This is especially clear in the milk cow plot, wherein nearly all rewarding functional1042

actions (using the bucket on the cow to successfully collect milk) are in the lower left corner.1043

This analysis supports that the representations yielded by InstructBLIP in response to our chosen style1044

of prompts are more structured than representations from instructions. Such structure is useful in1045

identifying and learning rewarding actions, even when said actions were taken from an expert policy1046

trained on unrelated embeddings. This suggests that such representations may similarly be more1047

conducive to being mapped to good actions via RL, which we observe empirically (as our prompt’s1048

representations yield more performant policies than the instructions for the RT-2-style baseline).1049

H.2 Habitat Analysis1050

Likewise, we conduct a similar analysis on the Habitat data from our simplified setting. Specifically,1051

we wish to see if PR2L produces representations that are conducive to extracting the value function1052

of a good policy. Since the chosen Habitat ObjectNav prompt is “What room is this?” we expect the1053

state representations to be clustered based on room categories. Intuitively, states corresponding to the1054

room one is likely to find the target object should have the highest values.1055

As shown in Figure 8, we thus used PCA to project expert trajectories’ PR2L and general image1056

encoder state representations (generated with Habitat’s geodesic shortest path follower) to two1057

dimensions, then colored each one based on their value under said near-optimal policy. We also1058

plotted the mean and standard deviation of all points labeled as each room, visualizing them as1059

axis-aligned bounding boxes. Note that each upper subplot in Figure 8 has a cluster of points far from1060

all boxes. These correspond to the VLM generating nothing or garbage data with no room label.1061

This visualization qualitatively agrees with intuition. High value states tend to be grouped with the1062

room the corresponding target object is often found in: find toilet corresponds to bathrooms, find bed1063

to bedrooms, and find sofa to living rooms. Comparatively, the general image encoder features do1064

not have such semantically meaningful groupings; all observations are clustered together and, within1065

26

that single grouping, high-value observations are more spread out. This all supports the idea that1066

prompting allows representations to take on structures that correlate well to value functions of good1067

policies.1068

I Code Snippets1069

We provide some code snippets showcasing instantiations of PR2L.1070

class Policy(torch.nn.Module):1071

def __init__(self , num_actions , tf_embed_dim =4096):1072

""" Policy that accepts promptable reps as input """1073

super().__init__ ()1074

Project down VLM embed dimensions1075

self.embed_fc = torch.nn.Linear(tf_embed_dim , 1024)1076

Predict actions1077

self.action_fc = torch.nn.Linear (1024, num_actions)1078

Transformer layer to condense promptable reps to 1 token1079

self.transformer = torch.nn.Transformer(1080

1024,1081

1,1082

num_encoder_layers =1,1083

num_decoder_layers =1,1084

dim_feedforward =1024 ,1085

batch_first=True ,1086

)1087

self.cls = torch.nn.Embedding(1, 1024) # cls tokens1088

1089

def forward(self , x):1090

seq , mask = x1091

bs , traj_len , num_tokens , _ = seq.shape1092

1093

[batch*traj_len , num tokens , token size]1094

seq = seq.reshape(bs * traj_len , num_tokens , -1)1095

[batch*traj_len , num tokens]1096

mask = mask.reshape(bs * traj_len , num_tokens)1097

1098

Project down1099

[batch*traj_len , num tokens , tf dim]1100

seq = self.embed_fc(seq)1101

1102

Get CLS embedding1103

cls = self.cls(torch.zeros ([bs * traj_len , 1],1104

device=seq.device , dtype=int))1105

1106

Get summary embedding1107

[batch*traj_len , 1, tf dim]1108

cls_embed = self.transformer(1109

seq , # Encoder input1110

cls , # Decoder input1111

Apply mask1112

src_key_padding_mask=mask ,1113

memory_key_padding_mask=mask ,1114

)1115

1116

[batch , traj_len , d_model]1117

cls_embed = cls_embed.reshape(bs, traj_len , -1)1118

1119

Predict actions1120

[batch , traj_len , actions]1121

return self.action_fc(cls_embed)1122

Listing 1: Example policy for PR2L.

def process_obs(model , processor , image , prompt , device , last_n =2):1123

27

inputs = processor(images=image , text=prompt , return_tensors="pt")1124

.to(device)1125

1126

Generate text in response to prompt and extract embeddings1127

outputs = model.generate(1128

**inputs ,1129

output_hidden_states=True ,1130

return_dict_in_generate=True ,1131

Any other generation parameters (min/max tokens , temp , etc)1132

)1133

hs = outputs["hidden_states"]1134

1135

Get image and prompt token embeds1136

Any additional processing should happen here (eg pooling of1137

visual tokens)1138

[last_n , num img + prompt tokens , tf_embed_dim]1139

image_and_prompt_embs = torch.cat(hs[0], dim=0)[-last_n :]1140

1141

Get decoded token embeds1142

[last_n , num decoded tokens , tf_embed_dim]1143

dec_embs = []1144

for dec_hs in hs [1:]:1145

[last_n , 1, tf_embed_dim]1146

dec_hs = torch.cat(dec_hs , dim=0)[-last_n :]1147

dec_embs.append(dec_hs)1148

[last_n , num decoded tokens , tf_embed_dim]1149

dec_embs = torch.cat(dec_embs , dim=1)1150

1151

[last_n , num total tokens]1152

seq_embs = torch.cat([image_and_prompt_embs , dec_embs], dim=1)1153

tf_embed_dim = seq_embs.shape[-1]1154

1155

[bs=1, seq_len=1, last_n*num total tokens , tf_embed_dim]1156

seq_embs = seq_embs.reshape(1, 1, -1, tf_embed_dim)1157

1158

mask = torch.zeros(seq_embs [:-1], type=int)1159

1160

return seq_embs , mask1161

Listing 2: Example code for extracting promptable representations from a VLM.

Create VLM and processor (InstructBLIP , for example)1162

model = InstructBlipForConditionalGeneration.from_pretrained(1163

"Salesforce/instructblip -vicuna -7b"1164

)1165

processor = InstructBlipProcessor.from_pretrained("Salesforce/1166

instructblip -vicuna -7b")1167

1168

Set device , can also change dtype if desired1169

device = "cuda:0"1170

model = model.to(device)1171

1172

Create env1173

env = ...1174

1175

Create policy. This can be trained via RL or BC as needed.1176

policy = Policy(env.num_actions).to(device)1177

1178

Define task -relevant prompt1179

prompt = "Would a toilet be found here? Why or why not?"1180

1181

To predict an action , get an RGB obs from the env and process it1182

with the VLM1183

obs = env.reset()1184

seq , mask = process_obs(model , processor , obs , prompt , device)1185

28

1186

Then , pass it through the policy to get action logits and step env1187

act_logits = policy.forward ((seq , mask)).reshape(env.num_actions)1188

action = torch.argmax(act_logits)1189

obs , _, _, _ = env.step(action)1190

Listing 3: Example usage of the above function and policy.

J Extended Literature Review1191

Learning in Minecraft. We now consider some current approaches for creating autonomous learning1192

systems for tasks in Minecraft. Such works highlight some of the difficulties prevalent in tasks1193

in said environment. For instance, since Minecraft tasks take place in a dynamic open world, it1194

can be difficult for an agent to determine what goal it is attempting to reach and how close it is1195

to reaching that goal. [10] tackles these issues by introducing and integrating a training scheme1196

for self-supervised goal-conditioned representations and a horizon predictor. [79] learns a model1197

from visual observations to discriminate between expert state sequences and non-expert ones, which1198

provides a source of intrinsic rewards for downstream RL tasks (as it pushes the policy to learn1199

to match the expert state distribution, which tend to be “good” states for accomplishing tasks in1200

Minecraft).1201

Foundation Models and Minecraft. Likewise, there has been much interest in applying foundation1202

models – especially (V)LMs – to Minecraft tasks. [3] pretrains on large scale videos, which enabled1203

the first agent that could learn to acquire diamond tools (thereby completing a longstanding challenge1204

in the MineRL competition [28]). LMs have subsequently also been used to produce graphs of1205

proposed skills to learn or technology tree advancements to make in the form of structured language1206

[48, 81, 75, 70]. Other works propose to use the LLM to generate actions or code submodules1207

given textual descriptions of observations or agent states [69]. Finally, VLMs have been used1208

largely for language-conditioned reward shaping [19, 16]. In contrast, we use VLMs as a source1209

of representations for learning of atomic tasks (as defined by [38]) that have pre-defined reward1210

functions; the latter works can thus be used in conjunction with our proposed approach for tasks1211

where these vision-language reward functions are appropriate.1212

29

	Introduction
	Related Works
	PR2L: Promptable Representations for Reinforcement Learning
	Promptable Representations
	Design Choices for PR2L
	Task-Relevant Prompt Design

	Experimental Setups
	Domain 1: Minecraft
	Domain 2: Habitat
	Designing Task-Specific Prompts for Minecraft and Habitat

	Results
	Conclusion
	Prompt Evaluation for RL in Minecraft
	MineDojo Details
	Environment Details
	Policy and Training Details

	Habitat ObjectNav Details
	Environment Details
	Policy and Training Details

	Simplified Habitat Offline RL Experiments
	Environment Details
	Policy and Training Details
	Experiments and Results

	Extended Discussion of Tasks and Results
	Notes on Task-specific Systems
	Notes on Dreamer v3

	Ablations
	Minecraft Behavior Cloning Experiments
	Representation Analysis
	Minecraft Analysis
	Habitat Analysis

	Code Snippets
	Extended Literature Review

