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Abstract

Recent works in Variational Inference have examined alternative criteria to the
commonly used exclusive Kullback-Leibler divergence. Encouraging empirical
results have been obtained with the family of alpha-divergences, but few works
have focused on the asymptotic properties of the proposed algorithms, especially
as the number of iterations goes to infinity. In this paper, we study a procedure
that ensures a monotonic decrease in the alpha-divergence. We provide sufficient
conditions to guarantee its convergence to a local minimizer of the alpha-divergence
at a geometric rate when the variational family belongs to the class of exponential
models. The sample-based version of this ideal procedure involves biased gradient
estimators, thus hindering any theoretical study. We propose an alternative unbiased
algorithm, we prove its almost sure convergence to a local minimizer of the alpha-
divergence, and a law of the iterated logarithm. Our results are exemplified with
toy and real-data experiments.

1 Introduction

Many statistical inference problems involve computing or sampling from intractable probability
densities. Variational Inference [3, 19] is a broad class of methods that turn this kind of inference
problems into optimization programs. Given a family of tractable densities Q, the goal is to find,
within that family, a fine approximation q of the targeted density p according to a given criterion.
The discrepancy between p and q is usually measured by the exclusive Kullback-Leibler divergence
DKL(q ∥ p), for it is quite convenient to use from a computational standpoint. However, it may
lead to approximations that tend to underestimate the variance of the target [27], a behavior known
as zero-forcing, or mode-seeking when the variational density is unimodal. This can be highly
detrimental to the quality of the posterior approximation, for instance when the target is multimodal.
To overcome this difficulty, recent research has experimented with other divergence measures, such
as the inclusive KL divergence DKL(p ∥ q) [28], or the more general alpha-divergence family [1], for
instance in [9, 15, 25]. Specifically, in [9], the authors introduced a family of iterative algorithms
that perform monotonic alpha-divergence minimization, meaning that the criterion is guaranteed to
decrease at each new iteration. Although numerical experiments suggested a strong potential for their
method, the convergence properties of the proposed algorithm remained to be determined.

After briefly giving some background on alpha-divergence Variational Inference (Section 2), we study
the convergence properties of the monotonic alpha-divergence minimization algorithm introduced in
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[9], assuming that the variational family Q is an exponential family of densities (Section 3). We give
sufficient conditions for the algorithm to converge toward a local minimizer of the alpha-divergence,
and show that the rate of convergence is asymptotically geometric. In Section 4, we explain why
the empirical counterpart of this algorithm will not converge to minimizers of the alpha-divergence.
Instead, we propose an alternative algorithm that has more advantageous properties. We prove its
almost sure convergence, as well as a law of the iterated logarithm. Section 5 is dedicated to extending
our algorithm to the training of Variational Auto-Encoders [22]. We exhibit links to variational bounds
that are known and have already been studied in the literature [7, 25]. While the main focus of this
paper is theoretical, we also provide empirical results on both toy examples and real data in Section 6.

Related work Alpha-divergence minimization has lately become a topic of interest in Variational
Inference [5, 7, 8, 9, 10, 26, 35, 38], and most of the currently existing algorithms that perform this
task rely on biased gradient estimators [15, 25, 31]. While these strategies have yielded promising
empirical results, they have only superficially been studied in theory. In [7], the authors provide
guarantees for methods based on the variational bound introduced in [25], corroborating empirical
findings in [14]. The convergence of other Variational Inference algorithms has been studied. In
[28, 39], the authors use Markov Chain Monte-Carlo to optimize the inclusive Kullback-Leibler
divergence, and provide conditions for the almost-sure convergence of their algorithm. Convergence
guarantees and rates for black-box variational inference with Gaussian variational families have been
obtained in [12]. Even though we use different proof techniques, our framework can be seen as an
instantiation of Minorize-Maximization algorithms [18, 23], for which convergence guarantees and
rates can be obtained, often at the cost of smoothness assumptions [24].

2 Monotonic alpha-divergence minimization with exponential families

Variational Inference. Let (Y,Y, ν) and (X,X , ν′) be sigma-finite measure spaces, and suppose
that we are given some data x = (x1, . . . , xn) in X. We make the assumption that it stems from a
latent variable probabilistic model pθ(x, y) = p0(y)pθ(x | y), where θ is some parameter and y ∈ Y
is a latent variable. The prior p0(y) and the conditional likelihood pθ(x | y) are specified. We are
interested in estimating the posterior density pθ(y |x) = pθ(y,x)/pθ(x), which is intractable in
general due to the normalizing constant pθ(x). Variational Inference methods aim at finding an
approximation of the posterior within a family of tractable probability densitiesQ = {qη(·), η ∈ E},
where E ⊆ Rd is some subset of parameters. The quality of the resulting approximation is estimated
by a given criterion that quantifies the dissimilarity between the variational estimate qη(·) and the
target pθ(· |x). We will work with the alpha-divergence [1, 6], i.e., we will try to minimize

Dα

(
qη(·) ∥ pθ(· |x)

)
=

1

α(α− 1)

∫
Y

[(
qη(y)

pθ(y |x)

)α

− 1

]
pθ(y |x)ν(dy).

The parameter α allows tuning between mass-covering or zero-forcing behaviors. Precisely, the case
α −→ 0 corresponds to the inclusive KL divergence, while α −→ 1 recovers the exclusive KL, and
α = 0.5 is Hellinger’s distance. The alpha-divergence is defined similarly to the Rényi divergence
[25, 32, 36], which writes DR

α (qη ∥ pθ) = 1
α−1 log

∫
qαη p

1−α
θ dν for all α ̸= 1. It is then equivalent

to minimize either of these two objectives. In the remainder of this paper, we set α ∈ (0, 1).

Oftentimes, we only know pθ(y |x) up to a positive constant, say pθ(y |x) ∝ p(y). Most of the
time, the easiest choice is p = pθ(x, ·). Since x remains fixed throughout the optimization process,
we drop the dependency in x and simply write p(y). Minimizing the alpha-divergence amounts to
solving inf

η∈E
Lα(η), where

Lα(η) =
1

α(α− 1)

∫
Y

qη(y)
αp(y)1−αν(dy). (1)

Since
∫
Y
pdν < +∞, Hölder’s inequality ensures that this quantity is well-defined for all η ∈ E.

Useful definitions and notation. For readability, we define and use throughout the paper

φα
η (y) = qη(y)

αp(y)1−α , ℓα(η) =

∫
Y

φα
η (y)ν(dy) , φ̌α

η = φα
η /ℓα(η). (2)
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Note that φ̌α
η is a probability density function (p.d.f.) with respect to ν. Subscripts to E or Cov

indicate the integrating probability measure, e.g., for a p.d.f. f and a measurable function g,
Ef [g] =

∫
Y
g(y)f(y)ν(dy). When η• has a subscript • and acts as a subscript, we only keep •, e.g.,

φα
⋆ may be used in place of φα

η⋆
.

Monotonic alpha-divergence minimization. In [9], the authors propose an iterative algorithm
to perform alpha-divergence minimization in a Variational Inference framework. Given an initial
parameter η0 ∈ E and non-negative numbers (bt)t≥0, we construct a sequence (ηt)t≥0 using

ηt+1 = argmax
η∈E

∫
Y

[
qηt

(y)αp(y)1−α + btqηt
(y)
]
log

(
qη(y)

qηt
(y)

)
ν(dy), (3)

assuming that the argmax is uniquely defined at each iteration (in this paper, this condition will
always be satisfied). Any value of ηt+1 that makes the function in the argmax negative ensures a strict
decrease in the alpha-divergence between the variational distribution and the target [9, Theorem 1].
Since this function is null at ηt, each new iterate is at least as good as the previous one. The point of
taking the argmax is to obtain explicit update formulas when the variational family is well-chosen.
However, when the search space is constrained, these explicit formulas may yield iterates outside the
feasible set. To overcome this difficulty, the regularization term in bt is meant to keep the iterates
within acceptable bounds. Therfore, it can be understood as an inverse step-size.

The case of the exponential family. We respectively denote by ⟨·, ·⟩ and ∥ · ∥ the canonical inner
product on Rd and the induced norm. Assume that the variational family Q belongs to the class of
canonical exponential models, i.e., it is a family of probability densities that write, for all η in the
feasible set E :=

{
η ∈ Rd, |A(η)| < +∞

}
and all y ∈ Y,

qη(y) = κ(y) exp
[
⟨η, S(y)⟩ −A(η)

]
, (4)

where κ : Y → R+ is a function, S : Y → E is a sufficient statistic for the natural parameter η, and
A : E → R is the log-partition function. We will assume that κ > 0 ν-almost everywhere, and that
the family Q is minimal, i.e., the components of S(y) are not linearly constrained for ν-almost all
y ∈ Y. Finally, we suppose that Q is regular, that is, the feasible set E is open. These assumptions
about Q are later referred to as condition (H1). An important property of such families is that for
all η ∈ E, we have ∂ηA(η) = Eqη [S], where ∂ηA is the gradient of A with respect to η. Unless
otherwise specified, ∂A will shorthand ∂ηA. The gradient ∂A is a C∞-diffeomorphism from E to
F := ∂A(E). Let us define

R(η) := Eφ̌α
η
[S] =

1

ℓα(η)

∫
Y

S(y)qη(y)
αp(y)1−αν(dy). (5)

It is shown in [9, Theorem 4] that, given η0 ∈ E and µ0 = Eqη0
[S], algorithm (3) is equivalent to{

µt+1 = γtR(ηt) + (1− γt)µt

ηt+1 = (∂A)−1(µt+1)
(6)

where γt = ν(φα
t )/(ν(φ

α
t ) + bt) belongs to (0, 1) when bt ∈ (0,+∞). It is guaranteed by [9,

Theorem 4] that the argmax in (3) is well-defined if and only if µt+1 belongs to F . Since F is an
open convex set (c.f. [37, Theorem 3.3]), it is always possible to find a valid γt ∈ (0, 1).

Empirical algorithms. The recursion (6) involves the expectation Eφ̌α
η
[S], which does not admit

a closed form in general and thus needs to be computed via Monte-Carlo methods [34]. Assume
that for any η ∈ E, we can easily generate K independent and identically distributed (i.i.d.) samples
y1, . . . , yK ∼ qη(·). In the empirical setting, the mean parameterization of exponential families is
better suited to theoretical analyses. It is defined by µ = ∂A(η), and, using this parameterization, we
introduce

Ê(µ;K) =
1

K

K∑
i=1

S(yi)

(
p(yi)

qη(yi)

)1−α

and E(µ) = E
[
Ê(µ; 1)

]
, (7)

ℓ̂∗α(µ;K) =
1

K

K∑
i=1

(
p(yi)

qη(yi)

)1−α

and ℓ∗α(µ) = E
[
ℓ̂∗α(µ; 1)

]
. (8)
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In what follows, when η• has a subscript •, we will denote by µ• the associated mean.

In the iterative empirical framework, it is implicitly assumed that, given all the random variables
generated up to step t, the (yi)1≤i≤K used in the above definitions of Ê(µt;K) and ℓ̂∗α(µt;K) only
depend on µt.

As will be clear from Section 3, the recursion (6) can be seen as an iterative algorithm converging
to a point η⋆ that satisfiesR(η⋆) = µ⋆. SinceR(η) = E(µ)/ℓ∗α(µ), we naturally replace (6) by the
(computable) empirical version. Dropping the dependency in K for notational convenience, we get

µt+1 = µt + γt

[
Ê(µt)

ℓ̂∗α(µt)
− µt

]
. (9)

This is a special case of Robbins-Monro algorithms [33]. To find the zeros of some deterministic
function h : E → E, such procedures consist in running the recursion

µt+1 = µt + γt
[
h(µt) + rt+1

]
, (10)

where (γt) is a decreasing positive sequence, and (rt) are vector-valued random variables with null
conditional means given the previous iterations. The issue with (9) is that Ê(µt)/ℓ̂

∗
α(µt) is a biased

estimator of E(µt)/ℓ
∗
α(µt), hence it can only converge to a zero of h : µ 7→ E

[
Ê(µ)/ℓ̂∗α(µ)

]
− µ, not

to a limit point of (6). We propose an alternative procedure defined by the recursion

µt+1 = µt + γt

[
Ê(µt)− µtℓ̂

∗
α(µt)

]
. (11)

In Section 4.1, we justify the choice of this algorithm, providing a variety of arguments.

3 Convergence rates for the monotonic algorithm

In this section, we give and discuss conditions for the convergence of the monotonic α-divergence
minimization algorithm (6) when the integral R(η) is evaluated exactly. We start by giving some
definitions. For all γ ∈ [0, 1], we define the mapping

Mγ : η 7→ (∂A)−1
[
γR(η) + (1− γ)∂A(η)

]
, (12)

so that (6) can be written ηt+1 =Mγt
(ηt). Observe thatMγ is defined on the set

Eγ =
{
η ∈ E, γR(η) + (1− γ)∂A(η) ∈ F}. (13)

We say that η is a fixed point of Mγ and we write η ∈ Fix(Mγ) if and only if Mγ(η) = η.
Interestingly, these fixed points are characterized by a (classical, see, e.g., [27]) moment identity and
do not depend on γ, as stated in the following lemma. Note that we take γ > 0, since Fix(M0) = E.
Lemma 1. Suppose that Assumption (H1) holds, and let γ ∈ (0, 1]. For all η ∈ E, there is
η ∈ Fix(Mγ) if and only if Eqη [S] = Eφ̌α

η
[S].

From now on, we simply denote Fix(M) the common set of fixed points ofMγ , γ ∈ (0, 1]. Finally,
we state assumptions that ensure the convergence of (6), which happens at a geometric rate.
Assumption (H1) (Variational family). Q is a regular minimal exponential family of probability
densities as in (4).
Assumption (H2) (Non-divergence). There exists a compact set K ⊂ E such that terms in the
sequence defined by η0 ∈ K and ηt+1 =Mγt(ηt) for t ≥ 1 all belong to K, with (γt)t≥1 ∈ (0, 1]N

∗
.

Assumption (H3) (Covariance condition). For all η ∈ Fix(M) ∩ K, there is

ρη := αϱ
(
Covqη (S)

−1Covφ̌α
η
(S)
)
< 1 , (14)

where, for any square matrix H , we denote by ϱ(H) its spectral radius.
Assumption (H4) (Variability condition). There exists δ ∈ (0, 1] such that γt ≥ δ eventually.

4



Theorem 1. If Assumptions (H1) to (H4) hold, then the sequence (ηt) converges to some parameter
η⋆ ∈ Fix(M) ∩ K that is a strict local minimizer of Lα. Moreover, for all ρ > 1− δ(1− ρ⋆), we
have ∥ηt − η⋆∥ = O(ρt) as t→ +∞.

In Theorem 1, we set ρ⋆ = ρη⋆
, following the convention specified in Section 2. We will discuss the

assumptions hereafter, but note already that (H2) and (H3) imply ρ⋆ < 1 and thus 1− δ(1− ρ⋆) < 1
for all δ ∈ (0, 1]. Hence, Theorem 1 provides a decreasing geometric rate which can at best be
arbitrarily close to ρ⋆ if δ = 1. A proof of Theorem 1 is provided in Appendix B.1. Let us now
discuss the feasibility and reasonableness of the assumptions.

Assumption (H1) is a matter of model design. We refer to [37] for interesting insight on (regular and
minimal) exponential families. For instance, [37, Theorem 3.3] guarantees that F is an open convex
set, as the interior of a convex set. Along with definition (13), this implies that for all η ∈ E, the set
{γ ∈ [0, 1], η ∈ Eγ} is either [0, 1] if R(η) ∈ F , or of the form [0, γη) for some γη > 0. In other
words, (Eγ)γ∈[0,1] is a non-increasing collection of subsets of E, with E0 = E and E1 = R−1 (F ).

Assumption (H2) specifies the construction of the sequence (ηt) in order to satisfy (6). This in
particular requires choosing γt ∈ (0, 1] such that ηt ∈ Eγt

, that is, by taking γt small enough. The
compactness of K is useful to ensure the existence of subsequential limits of the sequence (ηt). In
practice, given a compact set K, one can choose an initial η0 ∈ int(K) and take each γt small enough
to stay in this interior. Alternatively, one can choose any initial η0 ∈ E, and a sequence (γt) only to
satisfy the minimal condition that ηt ∈ Eγt at each step. The second strategy is easier to implement
as it does not require choosing a compact set a priori, but there is no guarantee that (ηt) will remain
bounded. The first strategy is safer from this point of view, but a poor choice of K may lead to
vanishing gains (γt), making it incompatible with (H4).

Assumption (H3) is a condition on the parameters in Fix(M), so it ultimately depends on p and
Q. The proof of Theorem 1 relies heavily on the equivalence provided in Lemma 1, and yet the
fixed point of the mappings (Mγ) possess quite a few other remarkable properties. The following
proposition elucidates the connections between (H3) and the behavior of the mappingMγ around
the minimizers of Lα.
Proposition 1. Suppose that (H1) holds and let η⋆ ∈ Fix(Mγ). Define the norm ∥ · ∥⋆ for x ∈ Rd

by ∥x∥⋆ =
∥∥Covη⋆

(S)1/2 x
∥∥ and let ρ⋆ = ρη⋆

be defined as in (14). Then, for all γ ∈ (0, 1] and any
norm ∥ · ∥• on Rd, we have

lim sup
η,η′→η⋆

η ̸=η′

∥Mγ(η)−Mγ(η
′)∥⋆

∥η − η′∥⋆
= 1− γ(1− ρ⋆) ≤ lim sup

η,η′→η⋆
η ̸=η′

∥Mγ(η)−Mγ(η
′)∥•

∥η − η′∥•
. (15)

Moreover, the following two assertions are equivalent.

(i) We have ρ⋆ < 1.

(ii) There exists a norm on Rd for which the mappingMγ is a contraction in a neighborhood of
η⋆ for all γ ∈ (0, 1].

They also imply the following one.

(iii) η⋆ is a strict local minimizer of Lα.

In light of this result, we better understand why choosing δ = 1 in (H4) will yield the fastest
asymptotic convergence rate of ρ⋆. The only purpose of the sequence (γt) in the ideal setting is to
confine the iterates in a bounded region of the parameter space. Showing that we can choose (γt)
as in (H4) is beyond the scope of this paper, but the intuitive idea is that when close enough to a
minimizer of the alpha-divergence, the iterates are always contained in some compact set regardless
of the choice of γt as t goes to infinity.

The next section is about transposing the exact algorithm to an empirical setting, which will naturally
lead to formulating Robbins-Monro algorithms. The usual gains conditions

∑
γt = +∞ and∑

γ2
t < +∞ imply γt −→ 0, so we will find ourselves in a situation where δ = 0. Combining this

observation with insight from [13, Theorems 2 and 3] could explain why we do not get a geometric
convergence rate for the empirical version of the algorithm.
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4 Unbiased alpha-divergence minimization

4.1 Justification of the unbiased algorithm

Perhaps the easiest way to get rid of the bias in (9) is to multiply the gradient estimator by ℓ̂∗α(µt),
leading to the recursion (11), which we recall is given by

µt+1 = µt + γt

[
Ê(µt)− µtℓ̂

∗
α(µt)

]
.

Taking h(µ) = E(µ) − µℓ∗α(µ) and rt+1 = Ê(µt) − µtℓ̂
∗
α(µt) − h(µt), this can be written as a

Robbins-Monro procedure (10). Clearly, denoting by (Ft) the filtration generated by the random
variables simulated up to the computation of µt, we have E[rt+1|Ft] = 0. Note that the zeros of h
are characterized by the same moment identity as the one characterizing the fixed point ofMγ in
Lemma 1.

Another beneficial property of (11) is that if γt is small enough to have γt/ℓ
∗
α(µt) < 1, the exact

version of this update carries the same monotonicity property as (6).

Interestingly, we can consider (11) as a gradient descent scheme. Indeed, letting L∗
α be such that

Lα = L∗
α ◦ (∂A), the gradient of L∗

α computed with respect to η = (∂A)−1(µ) is

∂ηL∗
α(µ) =

1

α− 1

∫
Y

[
S(y)− ∂A(η)

]
qη(y)

αp(y)1−αν(dy) =
1

α− 1

[
E(µ)− µℓ∗α(µ)

]
. (16)

For exponential families that satisfy (H1), the chain rule leads to ∂ηL∗
α(µ) = F(µ)∂µL∗

α(µ), where
F(µ) is the Fisher information matrix of the model evaluated at µ, i.e., the Hessian matrix of the
log-partition A taken at η. Setting γt ← γt(α− 1), we may write the expectation version of (11) as

µt+1 = µt + γtF(µt)∂µL∗
α(µt).

Under (H1), the matrix F(µt) is positive definite, hence the unbiased algorithm appears as a gradient
descent procedure on L∗

α. More specifically, it is a steepest descent algorithm for the dissimilarity
measure D(µ, µ′) = ∥µ−µ′∥F−1(µ) = (µ−µ′)⊤F−1(µ)(µ−µ′). In other words, the update writes

µt+1 = argmin
m∈Rd

{
(m− µt)

⊤∂µL∗
α(µt) +

1

2γt
D(µt,m)

}
.

Lastly, note that we could obtain similar guarantees for natural gradient procedures [1, 2, 17], that
is, ηt+1 = ηt + γt∂µLα(ηt), or with plain gradient descent, i.e., µt+1 = µt + γt∂µL∗

α(µt) or
ηt+1 = ηt + γt∂ηLα(ηt). However, these algorithms either require evaluating the inverse of the
Fisher information matrix – which can be computationally expensive, with an O(d3) cost –, or they
are unstable in practice due to unfavorable loss landscapes (see the toy examples in Section 6). On
top of that, we lose the monotonicity property for the exact versions of these procedures.

These four arguments justify the choice of algorithm (11), which is ultimately quite close to (6).
However, obtaining guarantees for this new algorithm is far easier, as covered in the next section.

4.2 Convergence results

We now state two theorems regarding the convergence of algorithm (11). Let us start by giving some
definitions. A matrix H ∈ Rd×d is said to be stable if, for all λ ∈ Sp(H), we have ℜ(λ) < 0, i.e., the
eigenvalues of H have negative real parts. Then, we denote L(H) = −max{ℜ(λ), λ ∈ Sp(H)}. We
also still denote F = ∂A(E), and introduce the critical set S = {µ ∈ F, E(µ) = µℓ∗α(µ)}. The set
S is qualified as critical, since µ ∈ S if and only if ∂µL∗

α(µ) = 0. Remember that (11) can be written
as a special case of (10) by taking h(µ) = E(µ)− µℓ∗α(µ) and rt+1 = Ê(µt)− µtℓ̂

∗
α(µt)− h(µt).

Lastly, given some sequence (µt) ∈ FN, a point µ⋆ ∈ F , and a subset M ⊂ F , we define the events

Γ(µ⋆) = {ω ∈ Ω, µt(ω) −→ µ⋆(ω)} and Ξ(M) = {ω ∈ Ω, ∃t0 ≥ 0,∀t ≥ t0, µt(ω) ∈ M},

and we denote H⋆ ∈ Rd×d the Jacobian matrix of h at µ⋆.

Assumption (C0) (Gains). The positive sequence (γt) is such that
∑

γt = +∞ and
∑

γ2
t < +∞.
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Assumption (C1) (Critical set). The elements in the set S are isolated, i.e., for all µ ∈ S , there exists
an open neighborhood V of µ such that V ∩ S = {µ}.
Assumption (C2) (Moment condition). The set M is compact and, with η = (∂A)−1(µ), there is

sup
µ∈M

Eqη

[∥∥S − µ
∥∥2( p

qη

)2(1−α)
]
< +∞.

The following theorem guarantees the almost sure convergence of the sequence (11) to some µ⋆,
given the existence of a compact subset of F to which the terms in (µt) belong eventually.
Theorem 2 (Almost sure convergence). Let Q be an exponential family of densities as in (H1), (γt)
a positive sequence that satisfies (C0), and M a (compact) subset of F . We construct a sequence (µt)
using recursion (11). If conditions (C1) and (C2) hold, with S ∩M ̸= ∅, then

P

 ⋃
µ⋆∈S∩M

Γ(µ⋆)

∣∣∣∣ Ξ(M)

 = 1.

For the next result, we need to strengthen Assumptions (C0) and (C2) slightly. Recall that H∗ denotes
the Jacobian matrix of h at µ∗.
Assumption (C0’) (Gains). There exists δ ∈ ( 12 , 1] such that for all t ≥ 1, we have γt = γ0t

−δ , with
γ0 > 0 if δ ∈ ( 12 , 1), or γ0 > β/(2L(H⋆)) for some arbitrary β ∈ (0, 1] if δ = 1 and H⋆ is stable.
Assumption (C2’) (Additional moment condition). We can find R > 0 and b > 2 such that for all
µ⋆ ∈ S,

sup
µ∈F

∥µ−µ⋆∥≤R

Eqη

[∥∥S − µ
∥∥b( p

qη

)b(1−α)
]
< +∞.

The result of Theorem 3 holds almost surely on the event Γ(µ⋆), thus complementing Theorem 2 by
giving an almost sure convergence rate.
Theorem 3 (Law of the iterated logarithm). Construct a sequence (µt) as in (11) using the same
number of samples K at each iteration, and let µ⋆ ∈ S. Assume that (C0’), (C2’) and (H3) hold,
with δ > 2/b. Then, letting St =

∑t
i=1 γi, there exists a real constant Λ such that

lim sup

√
t

ln(St)
∥µt − µ⋆∥ ≤ Λ almost surely on Γ(µ⋆).

Let us now discuss these two results. Theorem 2 guarantees the convergence of (11) to a critical point
of L∗

α, i.e., a minimizer of the alpha-divergence when (H3) is also satisfied. However, it gives no
information regarding the minimizer to which the algorithm will converge. It is a typical convergence
result for Robbins-Monro algorithms, with the added difficulty that there are many possible points of
convergence. The proof given in Appendix B.2 consists in showing that the distance between µt and
S ∩M almost surely tends to 0. Then, we use (C0) and (C1) to show that the iterates cannot jump
from one critical point to another.

The result of Theorem 2 is stated conditionally to the event Ξ(M). While we immediately notice if
the iterates get out of M in practice, finding a priori a compact set that has a non-empty intersection
with S and that almost surely contains the terms in (µt) is virtually impossible, since it would require
knowing h. However, under mild assumptions on L∗

α, there exists an elegant and theoretically sound
way around this problem. Chen’s algorithm [4] consists in taking an increasing sequence of compact
sets (Ms)s≥0 that eventually covers the entire parameter space. If the update flies out of the current
compact, say Ms, we reset the sequence of iterates by randomly choosing an initial parameter in M0

and start over, but with a larger compact subset of E, namely Ms+1. To simplify the exposition and
provide easy-to-implement algorithms, we will only consider that we are given a compact set M that
eventually contains the iterates. However, with some minor tweaks to our assumptions, it could be
possible to obtain similar guarantees with Chen’s algorithm (e.g., by adapting results from [11]).

Finally, let us briefly discuss assumptions (C1) and (C2). The former is verified if the Hessian matrix
of Lα is definite positive at all η ∈ (∂A)−1(S) (see Proposition 1 and its proof in Appendix B.1). In
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particular, (C1) is implied by (H3). As for (C2), notice that for α ∈ [1/2, 1), by Jensen’s inequality,
it is satisfied as soon as

∫
∥S∥1/(1−α)pdν < ∞. Extending it to α ∈ (0, 1/2) supposes specific

behaviors on the relative tails of p and qη .

5 Related algorithms in the context of Variational Auto-Encoders

In this section, we explain how to transpose the algorithms presented in Section 4.1 to the training of
Variational Auto-Encoders (VAEs) [21]. We start by showing that the exact versions of the biased and
unbiased algorithms correspond to gradient ascent procedures on two different variational bounds.
Let us first address the case of the biased algorithm. Recall that it writes

µt+1 = µt + γt

[
E(µt)

ℓ∗α(µt)
− µt

]
.

For η ∈ E and µ = ∂A(η), we define the Variational Rényi (VR) bound [25] by

LR
α(µ) =

1

1− α
logEy∼qη

[(
p(y)

qη(y)

)1−α
]
=

1

1− α
log ℓ∗α(µ). (17)

Noticing that ∂ηℓ∗α(µ) = α (E(µ)− µℓ∗α(µ)), we can write an iteration of the biased algorithm as

µt+1 = µt +
γt · α
1− α

∂ηLR
α(µt) = µt +

γt · α
1− α

F(µt)∂µLR
α(µt).

Under (H1), the Fisher Information Matrix F(µt) is positive definite, hence the biased algorithm is a
gradient ascent procedure on the VR bound.

The unbiased algorithm, which writes µt+1 = µt + γt [E(µt)− µℓ∗α(µt)], similarly amounts to
performing gradient ascent on the variational bound LG

α defined by

LG
α (µ) =

1

1− α
Ey∼qη

[(
p(y)

qη(y)

)1−α
]
=

1

1− α
ℓ∗α(µ). (18)

In the context of VAEs, we learn both a probabilistic encoder y 7→ q̃f(x;η)(y) and a probabilistic
decoder x 7→ p̃g(y;θ)(x), where q̃η and p̃θ are densities from families parameterized respectively by η
and θ, while x 7→ f(x; η) and y 7→ g(y; θ) are neural networks. For simplicity and to align with the
usual notation for VAEs, we will denote q̃f(x;η)(·) = qη(· |x) and p̃g(y;θ)(·) = pθ(· | y). We will also
use the shorthand ϕ = (η, θ).

Since the biased and unbiased algorithms studied in the previous sections minimize the alpha-
divergence by maximizing the variational bounds LR

α and LG
α , we propose to train VAEs to maximize

those same bounds. In this new setting, they write

LR
α(η, θ, x) =

1

1− α
logEy∼qη(· | x)

[(
pθ(x, y)

qη(y |x)

)1−α
]
,

LG
α (η, θ, x) =

1

1− α
Ey∼qη(· | x)

[(
pθ(x, y)

qη(y |x)

)1−α
]
.

To update both the encoder and decoder simultaneously, we differentiate them with respect to ϕ using
the reparameterization trick [21]. If z ∼ r(·) and there exists a mapping v such that v(z; η, x) has the
same distribution as y when y ∼ qη(· |x), then we have

∂ϕLR
α(η, θ, x) = Ez∼r(·)

[
wα(z, η, x)∂ϕ

(
log

pθ(x, v(z; η, x))

qη(v(z; η, x) |x)

)]
, (19)

∂ϕLG
α (η, θ, x) = Ez∼r(·)

[
wα(z, η, x)∂ϕ

(
log

pθ(x, v(z; η, x))

qη(v(z; η, x) |x)

)]
. (20)
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where wα(z, η, x) =

(
pθ(x, v(z; η, x))

qη(v(z; η, x) |x)

)1−α

and wα(z, η, x) =
wα(z, η, x)∫

Y
wα(z′, η, x)r(z′)ν(dz′)

.

To train VAEs, we simply plug batch estimates of these gradients into an optimizer like Adam.
Notably, ∂ϕLG

α can be estimated unbiasedly, while estimators of ∂ϕLR
α are subject to bias. We will

study the practical implications of this fact in Section 6.

6 Experiments

Toy Gaussian. For our toy experiments in the empirical case, we keep a Gaussian variational family.
We try to approximate various targets, including a Gaussian mixture and a Cauchy distribution. The
latter does not verify assumption (C2), as its tails are too heavy. Even then, the studied algorithms
seem to converge without any issue. Let us now focus on the case of the Gaussian Mixture. On
the figures, MAX, UNB, SGE, SGM and NAT respectively stand for maximization approach (9),
unbiased algorithm (11), SGD on η, SGD on µ, and natural gradient descent (as discussed at the end
of Section 4.1). Since the parameter space has only two dimensions, we also plot the loss landscape
and the trajectories followed by the different algorithms (e.g. Gaussian mixture target in Figure 1).
We observe that MAX and UNB always seem to have a straightforward path toward a local minimizer
of the alpha-divergence, while the other procedures are heavily influenced by the loss landscapes
in their respective parameter spaces. Unfavorable landscapes can lead to erratic trajectories and
slow convergence, or even to convergence failure (see Appendix D). The MAX and UNB algorithms
exhibit better stability and reliability on these toy examples.
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Figure 1: Trajectories to approximate a Gaussian mixture with a Gaussian family, represented under
different parameterizations.

On Figure 1, we approximate a Gaussian mixture with a single Gaussian. With α = 0.5, the landscape
of the alpha-divergence around the starting point has three local minima. The global optimum is
situated on the left in the first plot. It is not attained by any of the algorithms, as they all converge to
the local minimum in the center. The stochastic gradient with respect to η (SGE, in green) almost
gets attracted to the local minimum on the right in the first plot, which is the worst of all three. More
precisely, Figure 2 shows boxplots of the alpha-divergence after a certain number of iterations for
all five algorithms. The number of Monte-Carlo samples is set to 10, and we run each algorithm
100 times. We see that the MAX approach is the quickest to converge, however it lands to slightly
suboptimal parameters and gets surpassed by UNB, SGE, and even SGM after a sufficient number of
iterations. This could be due to the bias induced by the normalization, as discussed in Section 4.

Variational Auto-Encoders. We evaluate the two approaches described in Section 5 on the image
datasets CIFAR10 (50 000 images of size 32× 32) and CelebA (192 599 randomly chosen training
images cropped to 128 × 128), comparing their performance for varying values of α. VAEs have
achieved notable success in separating style and content on various types of data, like images and time
series. However, they may suffer posterior collapse on challenging datasets as a result of learning
an entangled latent representation. Several authors have investigated ways to disentangle the latent
space (see, e.g., [29]), and alpha-divergence minimization could be helpful to learn suitable latent
representations. In this series of experiments, we train VAEs with a Gaussian prior to generate new
images, the encoders consisting of cascades of four convolutional layers, with batch normalization
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Figure 2: Boxplot of the alpha-divergence against the number of iterations for the five algorithms.

and leaky ReLU activations. Similarly, the decoders are composed of four transposed convolutional
layers. We set the latent dimensions to 64 on CIFAR10 and 128 on CelebA.

We compute the gradient estimators (19) and (20). These approaches are respectively referred to
as VR and UB in Table 1. We choose the number of samples to be K = 5. The weights are
optimized with Adam [20], using learning rates of 8e− 4 on CIFAR10 and 2e− 4 on CelebA, and
(β1, β2) = (0.9, 0.999) in both cases. We set the batch size to 256 and train for 100 epochs on
CIFAR10 and 30 epochs on CelebA, for a total of roughly 20 000 iterations on both datasets. Training
takes 30 minutes per model on CIFAR10 and a few hours on CelebA, using a single V100 GPU. To
evaluate the models, we use the Fréchet Inception Distance (FID) metric [16]. Both test sets include
10 000 examples.

Table 1: Fréchet Inception Distance (FID) on CIFAR-10 and CelebA. Lower is better.

α = 0.01 α = 0.3 α = 0.5 α = 0.7 α = 0.99

Dataset VR UB VR UB VR UB VR UB VR UB

CIFAR-10 102.0 85.8 102.8 95.4 87.0 90.9 87.4 108.3 81.2 110.3
CelebA 241.4 237.6 240.0 237.7 257.7 237.6 234.3 231.1 239.7 232.5

α = 0 (IWAE) α = 1 (VAE)

CIFAR-10 122.2 121.1
CelebA 243.8 235.3

It seems that the choice of α can indeed make a difference in the quality of the resulting model, in
terms of FID to the test set. The best values of α differ between the datasets, and are also inconsistent
between the two approaches. For instance, on CIFAR10, the better results for the VR approach are
obtained when α gets closer to 1, while the opposite is observed for the UB approach. Still, for both
approaches and on both datasets, the IWAE and VAE baselines can be outperformed with a proper
choice of α. Though it is not visible in the FID score, the losses obtained with the UB approach
are significantly higher than those yielded by the VR approach, and we find that normalizing the
importance weights yields a much stabler training process than using unbiased gradient estimators.

7 Conclusion

Our paper presents various asymptotic results for both exact and empirical alpha-divergence min-
imization algorithms for Variational Inference. We find that the studied algorithms converge to a
minimizer of the alpha-divergence. The rate of convergence is asymptotically geometric for the exact
procedure, and we prove a law of the iterated logarithm in the empirical setting. However, we only
address the case where the variational family is an exponential model. While this covers many use
cases, the general case should be investigated in future research.
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A Table of notation

Symbol Description Expression

◦ Function composition
p Target
qη Variational density qη(y) = κ(y) exp [⟨S(y), η⟩ −A(η)]
E Set of variational parameters E = {η ∈ Rd, |A(η)| < +∞}
Q Variational family Q = {qη, η ∈ E}
ν(f) Integral of f w.r.t. ν ν(f) =

∫
f dν

Ef [g] Expectation of g under the density f Ef [g] =

∫
gf dν

Covf [g] Covariance of g under the density f Covf [g] =

∫
g(g − Ef [g])f dν

∂xf Gradient of f w.r.t. x
∂A Gradient of A w.r.t. η ∂A(η) = Eqη [S]
φα
η Geometric average of p and qη φα

η = qαη p
1−α

ℓα Normalization constant ℓα(η) =

∫
Y

qη(y)p(y)
1−αν(dy)

ℓ∗α Normalization constant ℓ∗α = ℓα ◦ (∂A)
φ̌α
η Normalized version of φα

η φ̌α
η = φα

η /ℓα(η)

Lα Objective function Lα(η) =
1

α(α− 1)
ℓα(η)

L∗
α Objective as a function of µ L∗

α = Lα ◦ (∂A)
R(η) Expectation of S under φ̌α

η R(η) = Eφ̌α
η
[S] =

1

ℓα(η)

∫
Y

S(y)φ̌α
η ν(dy)

µ• Mean of an exponential distribution
with natural parameter η•

µ• = ∂A(η•)

E(µ) Integral of Sφα
η w.r.t. ν E(µ) = ℓα(η) · R(η)

Ê(µ;K) Monte-Carlo estimator of E(η) with K
i.i.d. samples y1, . . . , yK ∼ qη

Ê(µ;K) =
1

K

K∑
i=1

S(yi)

(
p(yi)

qη(yi)

)1−α

ℓ̂∗α(µ;K) Monte-Carlo estimator of ℓα(η) with K
i.i.d. samples y1, . . . , yK ∼ qη

ℓ̂∗α(µ;K) =
1

K

K∑
i=1

(
p(yi)

qη(yi)

)1−α

F Parameter space for the mean parame-
terization

F = ∂A(E)

Mγ Exact algorithm iterated function Mγ : η 7→ (∂A)−1
[
γR(η) + (1− γ)∂A(η)

]
Eγ Domain ofMγ Eγ =

{
η ∈ E, γR(η) + (1− γ)∂A(η) ∈ F}

Fix(M) Set of fixed points ofMγ for any γ Fix(M) = {η ∈ E,Mγ(η) = η}
K Compact subset of E
M Compact subset of F
ρη Covariance ratio ρη = αϱ

(
Covqη (S)

−1Covφ̌α
η
(S)
)

F(µ) Fisher information matrix of the model
Q at η = (∂A)−1(µ)

L(H) Opposite of the largest real part of
eigenvalues in the spectrum of the sym-
metric matrix H

L(H) = −max{ℜ(λ), λ ∈ Sp(H)}

S Critical set of L∗
α S = {µ ∈ F, E(µ) = µL∗

α(µ)}
Γ(µ⋆) Event on which the random sequence

(µt) converges to µ∗

Γ(µ⋆) = {ω ∈ Ω, µt(ω) −→ µ⋆(ω)}

Ξ(M) Event on which the random sequence
(µt) falls into the compact setM

Ξ(M) = {ω ∈ Ω, ∃t0 ≥ 0,∀t ≥ t0, µt(ω) ∈ M}
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B Proofs

Preliminaries on useful derivatives. We start with some elementary and useful facts on the
derivatives of mappings defined through integrals. Recall that, under (H1), the log-partition function
A is of class C∞ and strictly convex on E with gradient and Hessian given by

∂A(η) = Eqη [S] and HA(η) = Covqη (S) , η ∈ E. (21)

The differentiation operations under the integral sign can be justified by the expression of the moment
generating function of the sufficient statistic S under the various probabilities at hand. More precisely,
for all η in the open set E ⊆ Rd and ς ∈ Rd such that η + ς ∈ E, we have

Eqη

[
exp(⟨ς, S⟩)

]
= exp

(
A(η + ς)−A(η)

)
.

This fact is useful to differentiate under the integral mappings such as η 7→ Eqη

[∏m
j=1 Skj

]
for

m ∈ N and indices k1, . . . , km ∈ {1, . . . , d}.
Similar arguments apply with the quantities defined in (2). Since

∫
pdν is a positive constant by

definition and κ > 0 ν-almost everywhere, the Hölder inequality yields, for all η ∈ E,

0 < ν
(
φα
η

)
≤
(∫

pdν

)1−α

< +∞.

Thus for all η ∈ E and ς ∈ Rd such that η + ς ∈ E,

Eφ̌α
η

[
exp(α ⟨ς, S⟩)

]
=

ν
(
φα
η+ς

)
ν
(
φα
η

) exp
(
α(A(η + ς)−A(η))

)
.

This can again be used to differentiate under the integral mappings such as η 7→ Eφ̌α
η

[∏m
j=1 Skj

]
for

m ∈ N and indices k1, . . . , km ∈ {1, . . . , d}.

Consequently, the mappings η 7→ ν
(
φα
η

)
and R : η 7→ Eφ̌α

η
[S] are of class C∞ on E with the

gradient of the former being equal to

∂ην
(
φα
η

)
= α

∫
Y

(
S(y)− ∂ηA(η)

)
φα
η (y)ν(dy), (22)

and the Jacobian matrix of the latter being given by

JR(η) =
1

ν(φα
η )

2

[
ν(φα

η )

(
α

∫
Y

S(y)(S(y)− Eqη [S])
⊤φα

η (y)ν(dy)

)
−
(∫

Y

S(y)φα
η (y)ν(dy)

)(
α

∫
Y

(S(y)− Eqη [S])
⊤φα

η (y)ν(dy)

)]
,

which simplifies to

JR(η) = α

[∫
Y

S(y)(S(y)− Eqη [S])
⊤φ̌α

η (y)ν(dy)

−
(∫

Y

S(y)φ̌α
η (y)ν(dy)

)(∫
Y

(S(y)− Eqη [S])
⊤φ̌α

η (y)ν(dy)

)]
. (23)

Proof of Lemma 1. Let γ ∈ (0, 1] and η ∈ E. By (12), the condition η ∈ Fix(M) is equivalent to
∂A(η) = γR(η) + (1− γ)∂A(η). Since γ > 0, this equation simplifies to ∂A(η) = R(η), which
concludes the proof since ∂A(η) = Eqη [S] and, by definition,R(η) = Eφ̌α

η
[S].

Proof of Proposition 1. Using the properties of ∂A and R, the mappingMγ defined in (12) is of
class C∞ on E. By applying formula (23) at η∗ and simplifying the expression, we get

JR(η⋆) = αCovφ̌α
⋆
(S) . (24)
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Using the chain rule with (21), and once again the fact that η⋆ ∈ Fix(M), we obtain

JMγ
(η⋆) = γαCovq⋆(S)

−1Covφ̌α
⋆
(S) + (1− γ)Id.

Recall that Covq⋆(S) is positive definite. Multiplying by Covq⋆(S)
1/2 on the left and by

Covq⋆(S)
−1/2 on the right shows that αCovq⋆(S)

−1Covφ̌α
⋆
(S) has the same complex eigenvalues as

the positive semidefinite matrix αCovq⋆(S)
−1/2Covφ̌α

⋆
(S)Covq⋆(S)

−1/2. Hence these eigenvalues
are non-negative and we have

ϱ
(
JMγ

(η⋆)
)
= ϱ

(
γαCovq⋆(S)

−1Covφ̌α
⋆
(S)
)
+ (1− γ)

= 1− γ (1− ρ⋆) .

We also deduce that the Jacobian matrix JMγ (η⋆) admits an eigenvector x⋆ ∈ Rd for the eigenvalue
1− γ (1− ρ⋆). For any norm ∥ · ∥• on Rd, there is

lim
ε→0

∥Mγ(η⋆ + εx⋆)−Mγ(η⋆)∥•
ε∥x⋆∥•

=

∥∥JMγ (η⋆)x⋆

∥∥
•

∥x⋆∥•
= 1− γ (1− ρ⋆) ,

which proves the inequality in (15). Moreover, for all x ∈ Rd, there is∥∥JMγ
(η⋆)x

∥∥
⋆
=
∥∥∥(γαCovq⋆(S)−1/2Covφ̌α

⋆
(S)Covq⋆(S)

−1/2 + (1− γ)Id
)
Covq⋆(S)

1/2x
∥∥∥ .

Denoting by ∥ · ∥op⋆ and ∥ · ∥op the operator norms associated to ∥ · ∥⋆ and ∥ · ∥, respectively, we get∥∥JMγ
(η⋆)

∥∥
op⋆

= sup
x:∥Covq⋆ (S)1/2x∥≤1

∥∥JMγ
(η⋆)x

∥∥
⋆

=
∥∥∥γαCovq⋆(S)−1/2Covφ̌α

⋆
(S)Covq⋆(S)

−1/2 + (1− γ)Id
∥∥∥
op

= 1− γ (1− ρ⋆) ,

which proves the equality in (15).

Observe that the equivalence (i)⇔ (ii) is a direct consequence of (15). Thus, it only remains to prove
that (i)⇒ (iii). The gradient of the function Lα is null at any fixed point ofMγ . Indeed we can
rewrite (16) as

∂ηLα(η) =
ν(φα

η )

α− 1

(
Eφ̌α

η
[S]− Eqη [S]

)
,

which is zero at η = η⋆ by Lemma 1. Therefore, we only need to show that (i) is equivalent to the
positive-definiteness of the Hessian matrix of Lα at η⋆. We have, differentiating the above formula
and using (21) and (22) at η = η⋆ along with (24),

HLα
(η⋆) =

ν(φα
⋆ )

α− 1

(
αCovφ̌α

⋆
(S)− Covq⋆(S)

)
.

Multiplying by Covq⋆(S)
−1/2 on both sides, HLα

(η⋆) is positive definite if and only if the (non-
negative) eigenvalues of αCovq⋆(S)

−1/2Covφ̌α
⋆
(S)Covq⋆(S)

−1/2 are all less than 1. This condition
is equivalent to (i), as we have already proven that the largest eigenvalue of this matrix is ρ⋆.
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B.1 Proof of Theorem 1

The proof of the theorem is based on the following lemma, inspired by [13, Theorem 6]. We do not
apply the main result of this paper directly, as it requires the sequence to converge to some known
value. We circumvent this difficulty by using the Banach fixed point theorem, a natural idea in light
of the insight provided in Proposition 1.
Lemma 2. Let E be an open subset of Rd andM : E → E be a continuous mapping. Starting
from η0 ∈ E, we construct the sequence (ηt) by the recursion ηt+1 =M(ηt). We assume that the
following three conditions hold.

(i) There exists a compact subset K of E such that {ηt, t ≥ 0} ⊂ K.

(ii) There exists a continuous function ϑ : E → R such that for all η ∈ E, ϑ ◦M(η) ≤ ϑ(η),
with equality if and only if η =M(η).

(iii) For all η ∈ Fix(M), there exists ρ′η ∈ (0, 1) such that, for all ρ ∈ (ρ′η, 1), we can find an
open neighborhood V of η on which the mappingM is a ρ-contraction.

Then the sequence (ηt) converges to some η⋆ ∈ Fix(M). Additionally, for all ρ ∈ (ρ′⋆, 1), we have
∥ηt − η⋆∥ = O(ρt).

Proof. There are two parts in this proof. First, we show that under (i) and (ii), the sequence (ηt)
admits a limit point that is a fixed point of the mappingM. Then, assumption (iii) allows us to apply
the Banach fixed point theorem to conclude.

Since K in (i) is a compact set, there exist a strictly increasing function π : N → N and a point
η⋆ ∈ K such that ηπ(t) −→ η⋆. Now, consider the sequence (ηπ(t)+1). Once again, by compactness,
there exist a strictly increasing function χ : N→ N and a point η⋆⋆ ∈ K such that ηπ◦χ(t)+1 −→ η⋆⋆.
Note that for all t ≥ 0, we have

π ◦ χ(t+ 1) ≥ π ◦ χ(t) + 1 ≥ π ◦ χ(t),
and under (ii) this implies ϑ(ηπ◦χ(t+1)) ≤ ϑ(ηπ◦χ(t)+1) ≤ ϑ(ηπ◦χ(t)). By continuity of ϑ, taking
the limit and applying the squeeze theorem, we obtain ϑ(η⋆) = ϑ(η⋆⋆). The sequence (ηt) is defined
such thatM(ηπ◦χ(t)) = ηπ◦χ(t)+1. The mappingM being continuous, taking t −→ +∞ yields
M(η⋆) = η⋆⋆. Applying ϑ on both sides of the previous identity yields ϑ◦M(η⋆) = ϑ(η⋆⋆) = ϑ(η⋆).
The equality case in (ii) impliesM(η⋆) = η⋆, i.e., the sequence (ηt) has a limit point η⋆ that is a
fixed point of the mappingM.

Since η⋆ ∈ Fix(M), assumption (iii) ensures the existence of a norm ∥ · ∥⋆ on Rd and of a
neighborhood V of η⋆ such that M is ρ-Lipschitz continuous on V for the norm ∥ · ∥⋆, for all
ρ ∈ (ρ′⋆, 1). Recall that, by convention, ρ′⋆ shorthands for ρ′η⋆

. Thus there exists a non-empty open
∥ · ∥⋆-ball B centered at η⋆ such thatM is a ρ-contraction from B to itself. Since η⋆ is a limit point
of the sequence (ηt), this sequence eventually falls into B. By the Banach fixed point theorem, the
sequence (ηt)t≥t0 converges to η⋆ at a geometric rate, namely ∥ηt − η⋆∥ = O(ρn).

Let us recall the monotonicity property that justifies algorithm (3) and its exact expression (6). This
result is simply a reformulation of [9, Corollary 1] in a less general context.
Theorem 4 (Monotonicity). Let α ∈ (0, 1), γ ∈ (0, 1], and define the mappingMγ as in (12). Then,
for all η ∈ E, ifMγ(η) ∈ E, we have

Lα ◦Mγ(η) ≤ Lα(η),

with equality if and only if η =Mγ(η).

We can now put these results together to prove Theorem 1.

Proof of Theorem 1. We apply Lemma 2 under the conditions (H1)–(H3). Condition (i) of Lemma 2
directly follows from (H2), and assumption (H1) guarantees that the mappingMγ is continuous. By
Theorem 4, we get condition (ii) with ϑ = Lα in Lemma 2. Finally, condition (iii) of Lemma 2 is
verified by applying Proposition 1 with Assumption (H3), and since γt ≥ δ eventually by (H4), we
can take ρ′⋆ = 1− δ(1− ρ⋆) in Lemma 2.

16



B.2 Proof of Theorem 2

We start by stating a convergence result in a deterministic setting, which is a particular case of [11,
Theorem 2].
Lemma 3. Let (µt) be a sequence constructed by the recursion µt+1 = µt + γtMt [h(µt) + rt+1]
where the real- and vector-valued sequences (γt) and (rt) verify

∑
γt = +∞,

∑
γ2
t < +∞,

and (Mt) are positive definite matrices such that for all t ≥ 1, Sp(Mt) ⊂ [λmin, λmax], where
λmax > λmin > 0, and Sp(Mt) is the spectrum of Mt. We also assume that the series

∑
γtMtrt+1

converges in Rd. Further assume that h is a continuous function, that there exists L : F → R
satisfying ∂L = −h, and that the points in S = {µ ∈ F, h(µ) = 0} are isolated. If the iterates in
(µt) eventually belong to some compact M ⊂ F such that S ∩M ̸= ∅, then (µt) converges to some
point in S.

The idea is now to prove that the assumptions made in Lemma 3 hold almost surely. In what follows,
we use the notation

G(µ) = Ê(µ;K)− µℓ̂∗α(µ;K), (25)
where Ê and ℓ̂∗α are defined in (7) and (8)
Lemma 4. Let K be a positive integer. Using the notation introduced in (25), if (C2) holds, then

sup
µ∈M

E
[
∥G(µ)∥2

]
< +∞. (26)

Proof. By Minkowski’s inequality, it suffices to prove the result for K = 1. In this case, setting
η = ∂A−1(µ), there is

E
[
∥G(µ)∥2

]
= Eη

[
∥S − µ∥2

(
p

qη

)2(1−α)
]
.

The result follows immediately.

Proof of Theorem 2. The sequence (µt) is constructed by the recursion

µt+1 = µt + γt

[
Ê(µt)− µtℓ̂

∗
α(µt)

]
= µt + γtMt

[
h(µt) + rt+1

]
,

introducing the matrix Mt = F(µt), the deterministic function h(µ) = F−1(µ)
[
E(µ) − µℓ∗α(µ)

]
and the noise term rt+1 = F−1(µt)

[
Ê(µt)− µtℓ̂

∗
α(µt)

]
− h(µt). As explained in Section 4.1, we

have h = −∂L∗
α, and the zero set of h is equal to the set S in assumption (C1). In particular, its

points are isolated.

Let us now prove the existence of λmax > λmin > 0 such that Sp(Mt) ⊂ [λmin, λmax] for all
t ≥ 1. Since we are working on Ξ(M), we will assume without loss of generality that µt ∈ M for
all t. It thus suffices to show that the eigenvalues of F(µ) can be bounded for all µ ∈ M. We have
M ⊂ F , and F(µ) is a positive definite matrix for all µ ∈ F . The application µ 7→ min Sp(F(µ)) is
continuous, thence the Weierstrass extreme value theorem ensures that it attains a minimum on M, and
by the aforementioned positive-definiteness argument, this minimum cannot be 0. We denote it λmin.
Similarly, λmax can be defined as the maximum of the continuous function µ 7→ maxSp(F(µ)) on
M.

To apply Lemma 3, the only assumption left to check is the almost sure convergence of the series∑
t γtMtrt+1. The general term of this series is given by

γtF(µt)rt+1 = γt

[
Ê(µt)− µtℓ̂

∗
α(µt)− E(µt) + µtℓ

∗
α(µt)

]
,

and as explained in Section 4.1, it is a martingale increment sequence. To conclude, we only need to
show that the martingale sequence

∑n−1
t=0 γtMtrt+1 is bounded in L2. This is equivalent to showing∑

t E
[
∥γtMtrt+1∥2

]
< +∞. Using (C2) and Lemma 4, we have

E
[
∥γtMtrt+1∥2

]
= γ2

t E
[
1{µt ∈ M}E

[
∥r′′t+1∥2

]]
≤ γ2

t sup
µ∈M

E
[
∥G(µ)− F(µ)h(µ)∥2

]
≤ γ2

t M.

By assumption (C0), the associated series converges. Lemma 3 allows us to conclude.
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B.3 Proof of Theorem 3

Theorem 3 is simply an application of [30, Theorem 1]. We recall a simplified version that fits the
context of our analysis.
Theorem 5. Let µ⋆ ∈ F and (µt) be a sequence constructed by the stochastic algorithm

µt+1 = µt + γt
[
h(µt) + rt+1

]
with (γt) a positive sequence, h a deterministic function, and (rt) a random noise sequence. Let (Ft)
be a filtration such that (µt) is Ft-adapted, and assume

(i) There exist a > 1 and a neighborhood U of µ⋆ such that for all µ ∈ U , we may write
h(µ) = H⋆(µ− µ⋆) +O(∥µ− µ⋆∥a), where H⋆ is a stable matrix.

(ii) There exists δ ∈ ( 12 , 1] such that for all t ≥ 1, we have γt = γ0t
−δ , with γ0 > 0 if δ ∈ ( 12 , 1),

or γ0 > β
2L(H⋆)

for some arbitrary β ∈ (0, 1] if δ = 1.

(iii) There exist R > 0 and b > 2/δ such that E[rt+1 | Ft]1{∥µt − µ⋆∥ ≤ R} = 0, and
sup
t≥0

E
[
∥rt+1∥b | Ft

]
1{∥µt − µ⋆∥ ≤ R} < +∞.

(iv) There exists a deterministic symmetric positive definite matrix C such that
limE

[
rt+1r

⊤
t+1 | Ft

]
= C.

Then, letting St =
∑t

i=1 γi, there exists a real constant Λ such that, almost surely on Γ(µ⋆), we have

lim sup

√
t

ln(St)
∥µt − µ⋆∥ ≤ Λ.

Proof of Theorem 3. The proof consists in checking the assumptions of Theorem 5. First, the filtration
(Ft) can be chosen as follows. We set F0 = σ({µ0}) and Ft the σ-field generated by the (possibly
random) initial parameter µ0 and the successive (yi) generated to compute Ê(µs) and ℓ̂∗α(µs) for
s = 1, . . . , t.

Condition (ii) on the design choice corresponds to (C0’), and (iii) is implied by (C2’) using similar
arguments as in Lemma 4 and that h is continuous over F . Thus, we only need to check (i) and (iv).
Recall that in this proof, we have h(µ) = E(µ)− µℓ∗α(µ) and rt+1 = Ê(µt)− µtℓ̂

∗
α(µt)− h(µt).

(i) Rewriting (16), and using the properties of exponential families, for all µ ∈ F ,

∂µh(µ) = ∂µ [(α− 1)∂ηL∗
α(µ)] = (α− 1)F−1(µ)HL∗

α
(µ).

Since µ⋆ ∈ S , we have h(µ⋆) = 0. In other words, E(µ⋆)/ℓ
∗
α(µ⋆) = µ⋆, which means that

η⋆ = (∂A)−1(µ⋆) is a fixed point of the mappingM1 defined in (12). By Proposition 1, the
matrix HLα

(η⋆) is positive definite. Using HLα
(η) = HL∗

α
(µ) and the positive-definiteness

of F−1(µ⋆) under (H1), we deduce that H⋆ = (α− 1)F−1(µ⋆)HL∗
α
(µ⋆) is a stable matrix.

We conclude by applying Taylor’s formula to the mapping h.

(iv) Note that, for all t, rt+1 = G(µt) − E[G(µt)] where G is defined as in Lemma 4. We
deduce that E

[
rt+1r

⊤
t+1 | Ft

]
is equal to the matrix Cov (G(µ)) taken at (the random vector)

µ = µt. To obtain (iv), it thus suffices to show that µ 7→ Cov (G(µ)) is continuous on F
and valued in the set of positive definite matrices.

Let η ∈ E and µ = ∂A(η). We have

Cov
(
G(µ)

)
=

1

K
Covqη

(
(S − µ)

(
p

qη

)1−α
)
.

This covariance matrix is positive definite since the exponential family is assumed to be
minimal under Assumption (H1), which means that S does not belong to an affine hyperplane
under qη . The continuity also follows from the preliminaries of the appendix.
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C Additional results on the convergence of (11)

The following results are follow-ups on Theorem 3, they are all proven in [30], and reminded here for
completeness.
Theorem 6 (Law of the iterated logarithm, extended version). Under the assumptions of Theorem 3,
almost surely on Γ(µ∗),

lim sup

√
t

ln(St)
∥µt − µ∗∥ ≤ Λ,

where Λ is a real constant and St =
∑t

s=1 γs. Moreover, if w is an eigenvector of H∗, the Jacobian
matrix of the function h : µ 7→ E(µ)− µℓ∗α(µ) taken at µ∗, then

lim sup

√
t

ln(St)
⟨w, µt − µ∗⟩ = − lim inf

√
t

ln(St)
⟨w, µt − µ∗⟩ =

√
2w⊤Σw,

where Σ is the solution of the Lyapunov equation

(H∗ + ζId)Σ + Σ(H⊤
∗ + ζId) = −D,

with ζ = 0 under (C0)-(i) and ζ = β/(2γ0) < L(H∗) under (C0)-(ii).

Remark. (i) If H∗ is diagonalizable, we have Λ = ∥(P †)−1∥
√

2tr(P †ΣP ), where P a matrix
which columns are eigenvectors of H∗, and P † is its transconjugate.

(ii) Σ is given by the formula

Σ =

∫ +∞

0

exp
[
s(H∗ + ζId)

]
D exp

[
s(H⊤

∗ + ζId)
]
ds.

Theorem 7 (Quadratic strong law of large numbers). Under the assumptions of Theorem 3, and
using the same notations, almost surely on Γ(µ∗),

lim
1

St

t∑
i=1

(µi − µ∗)(µi − µ∗)
⊤ = Σ.

Theorem 8 (Central limit theorem). Under the assumptions of Theorem 3, given Γ(µ∗),√
γ−1
t

(
µt − µ∗

) (d)−→ N (0,Σ).
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D Additional figures

D.1 Toy experiment with a Gaussian mixture target

In the case of a Gaussian mixture target, approximated by a single Gaussian density, we find that the
initial point and the learning rate have a high influence on whether the algorithms converge, where
they converge, and at what speed.

In most cases, we find that UNB is at least as good SGM, SGE and NAT, while being less com-
putationally intensive than SGM and NAT, and more stable than SGE. An improper tuning of γ0
may cause some procedures to diverge, SGE being by far the most sensitive, followed by NAT and
SGM. Divergence very rarely happens for MAX, which requires little to no tuning to converge.
Another noticeable effect is that MAX matches the unbiased procedures in terms of value of the
alpha-divergence if γt is too large and there are enough samples.
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Figure 3: Boxplot of the alpha-divergence after set numbers of iterations with large step sizes.
Approximating a Gaussian mixture with a single Gaussian.

In the case of the Gaussian approximation of a Cauchy target, Assumption (C2) is not verified.
However, we still observe convergence for all algorithms in most cases. As in the Gaussian mixture
example, SGM appears to be the slowest method, while SGE sometimes diverges due to an unfavorable
loss landscape.
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Figure 4: Boxplot of the alpha-divergence after set numbers of iterations. Approximating a Cauchy
density with a single Gaussian.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The theoretical results obtained for both the exact and empirical algorithms
are clearly stated in the Abstract and the Introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the reasonableness of the various assumptions made after stating
our theoretical results.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Justification: All the assumptions are clearly stated before the main results, and complete
proofs are given in Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The code written for our experiments is attached to the submission.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code written for the experiments is provided in the submission.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We give the hyperparameters for the toy example on the Gaussian mixture,
and details about the architecture and hyperparameters in the VAE experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The only random experiment that we could run multiple times is the toy
example, we provide boxplots to summarize some of our results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The type of GPU and computation time are specified in the VAE experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We followed the guidelines regarding data-related concerns.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This does not apply to the paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release any new data or pretrained model with this work.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We used some pre-existing code in the VAE experiment and credited the
authors.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release new assets apart from the code for the toy experiment.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

26

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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