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Abstract

Large language models (LLMs) have become
increasingly popular. Their emergent capabili-
ties can be attributed to their massive training
datasets. However, these datasets often con-
tain undesirable or inappropriate content, e.g.,
harmful texts, personal information, and copy-
righted material. This has promoted research
into machine unlearning that aims to remove
information from trained models. In particu-
lar, approximate unlearning seeks to achieve
information removal by strategically editing the
model rather than complete model retraining.

Recent work has shown that soft token attacks
(STA) can successfully extract purportedly un-
learned information from LLMs, thereby expos-
ing limitations in current unlearning method-
ologies. In this work, we reveal that STAs
are an inadequate tool for auditing unlearning.
Through systematic evaluation on common un-
learning benchmarks (Who Is Harry Potter?
and TOFU), we demonstrate that such attacks
can elicit any information from the LLM, re-
gardless of (1) the deployed unlearning algo-
rithm, and (2) whether the queried content was
originally present in the training corpus. Fur-
thermore, we show that STA with just a few
soft tokens (1 — 10) can elicit random strings
over 400-characters long. Thus showing that
STAss are too powerful, and misrepresent the
effectiveness of the unlearning methods.

Our work highlights the need for better evalua-
tion baselines, and more appropriate auditing
tools for assessing the effectiveness of unlearn-
ing in LLMs.

1 Introduction

In recent years, large language models (LLMs)
have undergone substantial advancements, leading
to enhanced performance and widespread adop-
tion. LLMs have demonstrated exceptional perfor-
mance in various downstream tasks, such as ma-
chine translation (Zhu et al., 2023), content genera-

tion (Acharya et al., 2023), and complex problem-
solving (Xi et al., 2025). Their performance is
attributed to their large-scale architectures that re-
quire datasets consisting of up to billions of tokens
to train effectively (Kaplan et al., 2020). These
datasets are typically derived from large-scale cor-
pora sourced from public internet text. However,
such datasets inadvertently contain harmful or in-
appropriate content, including instructions for haz-
ardous activities (e.g., bomb-making), violent or ex-
plicit material, private information, or copyrighted
content unsuitable for applications. Given the sen-
sitive nature of such data, it may be necessary to
remove it from the LLM to comply with the local
regulations, or internal company policies.

Machine unlearning is a tool for removing in-
formation from models (Cao and Yang, 2015;
Bourtoule et al., 2021a). Approximate unlearn-
ing usually refers to removing information from
models without resorting to retraining them from
scratch (Zhang et al., 2024a; Eldan and Russi-
novich, 2023a; Izzo et al., 2021), ensuring that the
resulting model deviates from a fully retrained ver-
sion within a bounded error. While numerous stud-
ies have proposed various unlearning algorithms,
most lack formal guarantees of effectiveness. In
fact, prior research has demonstrated that many un-
learning techniques can be circumvented through
simple rephrasings of the original data (Shi et al.,
2024). Recent work has shown that a soft token
attack (STA) can be used to elicit harmful com-
pletions and extract supposedly unlearned informa-
tion from models (Schwinn et al., 2024; Zou et al.,
2024).

In this work, we introduce a simple framework
for auditing unlearning and demonstrate that STA s
are overly powerful, and hence, inappropriate for
verifying the effectiveness of approximate unlearn-
ing. We show that the auditor can elicit any infor-
mation from the model, regardless of its training
data. Our work highlights the need for better un-



learning auditing baselines and methodologies.
We claim the following contributions:

1. We introduce a simple auditing framework for
unlearning in LL.Ms (Section 3.2).

2. We show that STAs effectively elicit un-
learned information in all tested unlearning
methods and benchmark datasets (Who Is
Harry Potter?, and TOFU). Additionally, we
show that STA s also elicit information in the
base models that were not fine-tuned on the
benchmark datasets (Section 4.2).

3. We further demonstrate that the STAs are in-
appropriate for evaluating unlearning — we
show that a single soft token can elicit 150
random tokens, and ten soft tokens can elicit
over 400 random tokens (Section 4.3).

The remainder of this paper is organized as fol-
lows: In Section 2 we provide an overview of the
necessary background, and the related work. Sec-
tion 3 introduces a general auditing framework, and
instantiates it using STA. In Section 4, we demon-
strate the efficacy of STA, and subsequently its
failure, as a tool for auditing unlearning in LLMs.
In Section 5 we discuss additional considerations
for auditing unlearning in LLMs. We conclude the
paper in Section 6, and highlight some limitations
in Section 7.

2 Background & Related work

2.1 Background

Large language models (LLMs) process input text
through an auto-regressive framework. Given an
input sequence of tokens x1.;, the model computes
the conditional probability distribution p(zy41|x1:¢)
over the vocabulary at each time-step. The likeli-
hood of the sequence is given by:

T

log p(@t41|1:4) = Zlogp(xt’xlzt—l) (D
=1

At inference time, the tokens is generated itera-
tively by sampling the next token x4y from this
distribution (e.g., via greedy decoding or nucleus
sampling (Holtzman et al., 2019)), then appending
it to the context x 1., for the subsequent step.

Machine unlearning is a tool for removing infor-
mation from models. Consider a machine learning
model f optimized over a training dataset Dyyq;n.
When a data owner submits an unlearning request

to remove a specified subset D tyrget € Dyrain, the
objective of machine unlearning is to produce an
unlearned model f, that eliminates the influence
of Dyorget- Machine unlearning methodologies
are categorized into two paradigms — exact, and
approximate unlearning.

Exact unlearning ensures the output distribution
of f, is statistically indistinguishable from that of a
model retrained exclusively on the retained dataset
Dretain = Dirain/ D forger- This guarantees prov-
able data removal, satisfying:

p(fu(z) =) = p(free(z) = v)

2
s.t. ¥Y(x,y) € Dirain, @

where f,.; denotes a model retrained from scratch
on Dyctqin, — Which is the most straightforward way
of achieving exact unlearning.

The process can be made more efficient by

splitting the Dy,.q;,, into overlapping chunks, and
training an ensemble of models (Bourtoule et al.,
2021b). During an unlearning request, only the
models containing the requested records need to
be retrained. For certain classes of models, it is
possible to achieve exact unlearning without re-
training, e.g. ECO adapts the Cauwenberghs and
Poggio (CP) algorithm for exact unlearning within
LeNet (Huang et al.), and MUSE relabels the target
data to achieve unlearning for over-parameterized
linear models (Yang et al., 2024).
Approximate unlearning, sometimes called in-
exact unlearning, relaxes the strict equivalence
requirement, instead only requiring that f, ap-
proximates f.; within some bounded error. This
paradigm relies on empirical metrics or probabilis-
tic frameworks. In LLMs, approximate unlearning
is typically accomplished by overwriting the in-
formation in the model (Eldan and Russinovich,
2023a; Wang et al., 2024), guiding the model away
from it (Feng et al., 2024), or editing the weights
and/or activations (Liu et al., 2024; Bhaila et al.,
2024; Li et al., 2024; Tamirisa et al., 2024; Huu-
Tien et al., 2024; Ashuach et al., 2024; Meng et al.,
2022a,b).

2.2 Related work

While advances have been made in developing ma-
chine unlearning algorithms for LLMs, rigorous
methodologies for auditing the efficacy of unlearn-
ing remain understudied. Adversarial soft token
attacks (STAs) (Schwinn et al., 2024) and 5-shot
in-context prompting (Doshi and Stickland, 2024)
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have been shown to recover unlearned knowledge
in models. When model weights can be modi-
fied, techniques such as model quantization (Zhang
etal., 2024e) and retraining on a partially unlearned
dataset (Lucki et al., 2024; Hu et al., 2024) have
also proven effective in recalling forgotten infor-
mation. (Lynch et al., 2024) examined eight meth-
ods for evaluating LLM unlearning techniques and
found that their latent representations remained
similar. News and book datasets are used to ana-
lyze unlearning algorithms from six different per-
spectives (Shi et al., 2024). It was shown that fine-
tuning on unrelated data can restore information
unlearned from the LLM (Qi et al., 2024), indicat-
ing the existing unlearning methods do not actually
remove the information but learn a refusal filter
instead. Several benchmarks have been developed
to evaluate the existing unlearning algorithms. Be-
sides, an unlearning benchmark was introduced
based on fictitious author information (Maini et al.,
2024a). For real-world knowledge unlearning,
Real-World Knowledge Unlearning (RWKU) used
200 famous people as unlearning targets (Jin et al.,
2024), while WDMP focused on unlearning haz-
ardous knowledge in biosecurity, cybersecurity (Li
etal., 2024).

3 Auditing with Soft Token Attacks

3.1 Adversarial prompts

An adversarial prompt x4, is an input prompt to
the LLM, obtained by applying the transform 7(-)
to the base prompt x,, z, = T'(z;, aux) in order to

elicit a desired completion c. 7' can be any function
that swaps, removes or adds tokens; aux denotes
any additional needed information. However, such
arbitrary attacks are expensive to optimize!, and
difficult to reason about. In practice, 1" optimizes
an adversarial suffix x that is appended to ), to
elicit ¢ (Zou et al., 2023). Specifically, we optimize
the probability:

Prob = P(clx, ® xs). 3)

An adversary with white-box access to the LLM,
can instead mount the attack in the embedding
space i.e. modify the soft tokens:

Prob = P(clembed(xy) ® embed(xs)). (4)

In this case, T  uses the gradient from the LLM to
update ;.

3.2 Unlearning auditor

An oracle auditor A, takes an unlearned model f;,
and the candidate sentences x. € X, and outputs a
ground truth, binary decision a = {0, 1} indicating
whether the given records was part of Dy, Of:

a = Ao(fzu X = Dforget» aux) (5)

A, is unrealistic in many scenarios; however, it
can be easily instantiated for exact unlearning
where A, knows the training data associated with
[ aux = {Dyretain }-

'Suffix-only attacks allow efficient use of the KV-cache.



On the other hand, a realistic unlearning A,
takes an fy,, and Dy,.g¢; and outputs a score
s = (0,1) indicating whether the records were
in D train-

s = Au(fu7 {xc} = Dforgeta aux = @) (6)

A, represents cases where users remove informa-
tion from models that they did not create, e.g. to
prevent harmful outputs.

In this work, we instantiate the soft token at-
tack auditor Asts based on the soft token attacks
(STAss) against unlearning (Schwinn et al., 2024;
Zou et al., 2024). Our auditor compares the relative
difficulty of eliciting c for f7; and f,. The unlearn-
ing procedure is effective if eliciting completions
using f,, is more difficult than f;.

s = ASTA(fua {xc} = Dforget> aux = {fft})
(7
Figure 1 gives a complete overview of the audit-
ing procedure, and the difference between A( and
Agta. In Table 1, we summarize the notation.
In the next Section, we show that Aga cannot
reliably audit LLMs.

4 Evaluation

4.1 Experiment setup

Datasets. To attack unlearning and evaluate its
effectiveness, we use two popular benchmark
datasets: 1) Who Is Harry Potter? (Eldan and Russi-
novich, 2023a), a benchmark that intends to re-
move information about the world of Harry Pot-
ter and the associated characters; WHP hereafter.
2) TOFU (Maini et al., 2024a), a dataset of fic-
tional writers that are guaranteed to be absent in
the LLM’s training data’.

WHP does not publish a complete dataset. For
that reason we use the passages included in the
associated Hugging Face page (Eldan and Russi-
novich, 2023b). Additionally, we augment it with
20 (x, — c) pairs generated with Llama2-7b-chat-
hf. These contain general trivia about the Harry
Potter universe.

For TOFU, we use the 10% forget to 90% retain
split provided by the authors (Maini et al., 2024b).
Models & environment. For all experiments,
we use Llama-2-7b-chat-hf (Touvron et al., 2023)
(Llama2), and Llama-3-8b-instruct (Meta, 2024)
(Llama3) downloaded from Hugging Face. We

This cannot be guaranteed for models published after
TOFU.

STA soft token attack
A, oracle auditor
Asta STA auditor
Tp base prompt (benign)
T adversarial suffix
Tq adversarial prompt (x,, ® x)
c target completion
fo base model
fre fine-tuned model
fu unlearned model
Sfu—x model unlearned using *
Dirain training data
Diyorget forget data
Dyetain retain data

Table 1: Summary of the notation. **’ is replaced with
the specific unlearning method.

get the unlearned WHP model from it’s Hugging
Face repository (Eldan and Russinovich, 2023b)
(Llama2-WHP).

We implement STA using LLMart (Cornelius
et al., 2025) — a PyTorch and Hugging Face-based
library for crafting adversarial prompts. We use im-
plementations of the unlearning methods from the
TOFU (Maini et al., 2024c), and NPO (Zhang et al.,
2024b) repositories. We benchmark the attack
against seven different unlearning algorithms: gra-
dient ascent (GA), gradient difference (GDF) (Liu
et al., 2022), refusal (IDK) (Rafailov et al., 2024),
knowledge distillation (KL) (Hinton, 2015), nega-
tive preference optimization (NPO) (Zhang et al.,
2024c¢), NPO-GDF, NPO-KL.

We run our experiments on a machine equipped
with Intel Xeon Gold 5218 CPU, eight NVIDIA
A6000, and 256 GB of RAM.

4.2 Auditing with attacks

Who Is Harry Potter?. To elicit information
about the Harry Potter universe, we initialize the
soft tokens using randomly selected hard tokens,
and append them to the prompt (embed(z, =
xp @ ). We then train the soft prompt using
AdamW (Loshchilov and Hutter, 2019) for up to
3000 iterations; using learning 0.005, and default
Bs — we reiterate that the x,, does not change, only
the embedded suffix does. If the optimization fails,
we double the the number of soft tokens up to the
maximum of 16. We rerun the experiment five
times, and report the mean and standard deviation
across all prompt and reruns. In Table 2 we report
the average number of soft tokens needed to elicit a



completion. WHP * denotes the unlearned model
with different prompt templates.

Our results show that all information can be gen-
erated with ~ 4 — 6 added soft tokens. For all pairs
of models, we conduct a ¢-fest under the null hy-
pothesis Hq of equivalent population distributions
with o = 0.05. We use an unpaired Welch’s t-
test since sample variances are not equal (WELCH,
1947). We cannot reject the hypothesis for any of
the pairs i.e. p > 0.05. In other words, for all
models, there is not enough evidence to say that
eliciting completions is more difficult.

Additionally, we observe that the ease of elic-
iting the completions changes depending on the
prompt template. We conducted our initial ex-
ploratory experiments in the chat setting with a chat
prompt template. We notice that the model (WHP
+chat) reveals all unlearned information with man-
ually paraphrased prompts. Furthermore, when
using the example prompts in the corresponding
Hugging Face repository (Eldan and Russinovich,
2023b), the model (WHP) would often begin the
response with a double new line (\n\n). We sus-
pect that the provided unlearned model is overfit
to “prompt\n\n completion”. To run our evalua-
tion in the most favorable setting, we report all
three. Our results show that attacking is the easiest
for WHP +chat, and the most difficult for WHP
+\n\n. Given these discrepancies, and the lack of a
standard WHP dataset, we believe it is not a good
unlearning benchmark, despite its popularity.

Also, in our dataset there are three challenging

outlier prompts that require 16 soft tokens, un-
like other prompts. Filtering these out results in
4.05,4.60, 1.61 average required tokens for WHP,
WHP +\n\n, and WHP +chat respectively.
TOFU. For TOFU, we follow the same setup as for
WHP- we initialize soft tokens using random hard
tokens, and append them; we then train the soft
prompt using AdamW for up to 3000 iterations;
using learning 0.005, and s = (0.9,0.999); we
double the soft tokens if the optimization fails; we
rerun the experiments five times and report the
averages across all prompts. In Table 3, we report
the number of soft tokens required to elicit the
completions. fp refers to the unmodified baseline
model, fy; corresponds to the models fine-tuned
on TOFU, followed by the unlearned models.

For all methods, we can elicit the completions
with = 3 appended soft tokens. Similarly to WHP,
for all possible pairs of models (within the same
architecture), we conduct a #-fest under the null hy-

Prompt Model
template Llama2-WHP Llama3
N/A N/A 5.61 £6.32
WHP 4.63 £+ 3.69 N/A
WHP +\n\n 6.50 £ 5.13 N/A
WHP +chat 4.12 £ 5.53 N/A

Table 2: Number of soft tokens required to elicit a com-
pletion for a fixed number of iterations. Soft tokens are
appended to the prompt. Results are averaged over all
prompts in the WHP set and over five runs for each
prompt. When we increase the maximum iterations to
10, 000 we can elicit all completions with 1 — 2 soft to-
kens. We do not report the results for Llama2 hf because
it was used to generated the data. For comparison we
also report the results for Llama3 without any prompt
template (N/A).

. Model
Unlearning method Llama? Llama3
fo (none) 3.07£3.25 3.11+£3.15
fft (none) 2.954+3.35 3.21+3.19
fu—IDK 3.40+3.20 3.33+3.09
Ju—ca 3.34+3.97 3.21+3.87
fu—GDF 3.064+3.34 3.11+3.40
Ju—KL 3.08+£3.31 3.12+3.17
fu_NPO 3.11+3.27 3.12+3.27
fu_nPO—GDF | 3.15+£3.24 3.16+3.16
fu_NPO—KL 3.2343.62 3.2443.57

Table 3: Number of soft tokens required to elicit a com-
pletion for a fixed number of iterations. Soft tokens are
appended to the prompt. Results are averaged over all
prompts in the TOFU set and over five runs for each
prompt. When we increase the maximum iterations to
10,000 we can elicit all completions with 1 — 2 soft
tokens.

pothesis Hq of equivalent population distributions
with oo = 0.05. We use an unpaired Welch’s t-test
since sample variances are not equal.

We cannot reject the hypothesis for any of the
pairsi.e. p > 0.05; fy,_rpk vs fy: (for Llama2)
gives the lowest p-value of 0.509. In other words,
for all models (regardless if trained on TOFU, or
used unlearning method), there is not enough ev-
idence to say that eliciting completions is more
difficult.

One could argue that used unlearning methods
are not effective (wWhen comparing fr; vs fu—s),
hence they require similar numbers of soft tokens.>

3Most of these approaches have been in fact been shown
ineffective, and susceptible to simple paraphrasing.



However, the same holds when compared to fj.
In the next section, we demonstrate that the result
cannot be attributed to the (in-)effectiveness of the
unlearning methods but rather the power of STA.

4.3 Eliciting random strings

To further show the power of STAs, we use them
to elicit random strings. Unlike natural text, the
chance of a random string appearing in the training
set is negligible. Also, preceding tokens do not
inform the selection of the next token. In the fol-
lowing experiments, we pick characters uniformly
at random in the range 33-126 of the ASCII ta-
ble (asciitable.com).

To elicit a random string, we initialize the soft
prompt using randomly selected tokens. Unlike in
the WHP and TOFU experiments, there is only the
soft prompt. We then train the soft prompt using
AdamW for up to 3000 iterations per soft token;
using learning rate 0.005, and s = (0.9, 0.999).

In Figure 2, we report the longest elicited string
for a given number of soft tokens. We repeat the ex-
periment five times — e.g., the first marker implies
that for each of the five tested random strings of
length 150, we found an effective soft prompt. We
observe that not all initializations and seed config-
urations succeed, in which case a run needs to be
restarted with a different seed. If the loss plateaus
around 25% of the iterations, we restart the run.
However, no single string was restarted more than
ten times. We experimented with learning rate
schedulers but they did not improve the search.

Our results show that STAs can be used to elicit
completely random strings, thus undermining their
application for auditing unlearning. Due to lim-
ited computational resources and long run-times,
our evaluation is limited to 10 soft tokens, and
400-character long random strings. This does not
provide a bound on the longest string that can be
elicited.

Next, we aim to answer why eliciting strings
is possible. Prompt-tuning (Lester et al., 2021)
is a performance efficient fine-tuning technique in
which instead of training all weights, one trains
only a soft prompt added to the input. STAs can be
viewed as an extreme case of prompt-tuning, where
instead of training over many prompts, one trains
an attack per each prompt. Hence, an LLM that
outputs a completion that it was trained on is an
expected behavior. We urge against misinterpreting
the results and declaring techniques ineffective.

4001 —— Llama2
Llama3

w
ul
o

w
o
o

N
u
o

Random characters

N
o
o

150 //
2 4 6 8 10
Number of soft tokens

Figure 2: Numbers of random characters generated for
the given soft prompt length. A single soft token can
force over 150 random characters — more than any text
in the TOFU benchmark. With 10 soft tokens, it is
possible to generate over 400 random characters.

5 Discussion & Conclusion

Auditing with hard prompts. Attacks such as
greedy coordinate gradient (Zou et al., 2023) op-
timize the attack prompt in the hard token space
instead of the soft token space. Hence, they are
weaker at eliciting completions. On one hand, this
might make them more suitable for auditing un-
learning. On the other hand, due to their compu-
tational requirements, they are often used to force
only the beginning of a harmful completion (e.g.
Sure, here’s how to build a bomb...) with the hope
that the LLM follows. It is unclear whether this
would be sufficient to produce specific unlearned
passages. We see it as an interesting direction for
future work.

Unlearning vs jail-breaking. Our findings are
applicable to the jail-breaking community as well.
Prior work (Zhang et al., 2024d) hinted that un-
learning and preventing harmful outputs can be
viewed as the same task — removing or suppress-
ing particular information. STA s and fine-tuning
attacks (Hu et al., 2024) are useful tools for eval-
uating LLMs in powerful threat models. It was
shown that fine-tuning on benign data, or data un-
related to the unlearning records (for jail-breaking
and unlearning respectively) can restore undesir-
able behavior (Lucki et al., 2024).

Variation in gradient-based learning. Prior work
showed that removing training records from the
training set, and repeating the training can result in
the same final model (Thudi et al., 2022) depend-
ing on the random seed. Even though a record was



part of the training run, its influence might be min-
imal, making unlearning unnecessary. Similarly,
it was shown that SGD has intrinsic privacy guar-
antees, assuming there exists a group of similar
records (Hyland and Tople, 2022). Thus, algorith-
mic auditing of unlearning might not be possible,
and one would have to rely on verified or attested
procedures instead (Eisenhofer et al., 2023), regard-
less of their impact on the model.

Distinguishing learned soft tokens. Even though,
in most our results, the number of soft tokens re-
quired to elicit a completion is the same, we at-
tempted to distinguish between them. To this end,
we take all single-token STA's optimized for TOFU
(Table 3) and assign a label y = {0,1}: y = 0
for fp, and y = 1 for f;; and the unlearned mod-
els. We then train a binary classifier using fp and
fr¢- While we are able to overfit it and distinguish
between fj and f;, we were not able to train a
model that would generalize to the unlearned mod-
els, and decisively assign a class. Our approach
is similar to Dataset Inference (Maini et al., 2021,
2024d) which showed there can be distributional
differences between the models, depending on the
data they were trained on. Further investigation
into what soft tokens are learned during the audit
is an interesting direction for future work.

6 Conclusion

In this work, we show that soft token attacks
(STAss) cannot reliably distinguish between base,
fine-tuned, and unlearned models. In all cases, the
auditor can elicit all unlearned information by ap-
pending optimized soft prompts to the base prompt.
Additionally, we show that STA with a single soft
token can elicit 150 random characters, and over
400 with soft tokens.

Our work demonstrates that machine unlearn-
ing in LLMs needs better evaluation frameworks.
While many unlearning methods can be broken by
simple paraphrasing of original prompts, or by fine-
tuning on partial unlearned data or even unrelated
data, STA misrepresents their efficacy.

7 Limitations & ethical considerations

Limitations. Due to computational constraints our
work is limited to 7-8 billion parameter models.
Nevertheless, given that LLMs’ expressive power
increases with size (Kaplan et al., 2020), our re-
sults should hold for larger LLMs. Our evaluation
with random strings could be extended to verify if

there is a clear and generalizable dependency be-
tween the number of soft tokens and the maximum
number of generated characters.

Ethical considerations. In this work, we show
that an auditor (a user) with white-box access to
the model, and sufficient compute can elicit any
text from the LLM. While it does require knowing
the target completion for a given prompt, it is likely
that partial completions might be enough, thus al-
lowing the user to elicit harmful information. This
may be particularly dangerous in settings where the
user has approximate knowledge of the information
that had been scrubbed off the LLM.
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