
Soft Token Attacks Cannot Reliably Audit Unlearning in Large Language
Models

Anonymous ACL submission

Abstract001

Large language models (LLMs) have become002
increasingly popular. Their emergent capabili-003
ties can be attributed to their massive training004
datasets. However, these datasets often con-005
tain undesirable or inappropriate content, e.g.,006
harmful texts, personal information, and copy-007
righted material. This has promoted research008
into machine unlearning that aims to remove009
information from trained models. In particu-010
lar, approximate unlearning seeks to achieve011
information removal by strategically editing the012
model rather than complete model retraining.013

Recent work has shown that soft token attacks014
(STA ) can successfully extract purportedly un-015
learned information from LLMs, thereby expos-016
ing limitations in current unlearning method-017
ologies. In this work, we reveal that STAs018
are an inadequate tool for auditing unlearning.019
Through systematic evaluation on common un-020
learning benchmarks (Who Is Harry Potter?021
and TOFU), we demonstrate that such attacks022
can elicit any information from the LLM, re-023
gardless of (1) the deployed unlearning algo-024
rithm, and (2) whether the queried content was025
originally present in the training corpus. Fur-026
thermore, we show that STA with just a few027
soft tokens (1 − 10) can elicit random strings028
over 400-characters long. Thus showing that029
STAs are too powerful, and misrepresent the030
effectiveness of the unlearning methods.031

Our work highlights the need for better evalua-032
tion baselines, and more appropriate auditing033
tools for assessing the effectiveness of unlearn-034
ing in LLMs.035

1 Introduction036

In recent years, large language models (LLMs)037

have undergone substantial advancements, leading038

to enhanced performance and widespread adop-039

tion. LLMs have demonstrated exceptional perfor-040

mance in various downstream tasks, such as ma-041

chine translation (Zhu et al., 2023), content genera-042

tion (Acharya et al., 2023), and complex problem- 043

solving (Xi et al., 2025). Their performance is 044

attributed to their large-scale architectures that re- 045

quire datasets consisting of up to billions of tokens 046

to train effectively (Kaplan et al., 2020). These 047

datasets are typically derived from large-scale cor- 048

pora sourced from public internet text. However, 049

such datasets inadvertently contain harmful or in- 050

appropriate content, including instructions for haz- 051

ardous activities (e.g., bomb-making), violent or ex- 052

plicit material, private information, or copyrighted 053

content unsuitable for applications. Given the sen- 054

sitive nature of such data, it may be necessary to 055

remove it from the LLM to comply with the local 056

regulations, or internal company policies. 057

Machine unlearning is a tool for removing in- 058

formation from models (Cao and Yang, 2015; 059

Bourtoule et al., 2021a). Approximate unlearn- 060

ing usually refers to removing information from 061

models without resorting to retraining them from 062

scratch (Zhang et al., 2024a; Eldan and Russi- 063

novich, 2023a; Izzo et al., 2021), ensuring that the 064

resulting model deviates from a fully retrained ver- 065

sion within a bounded error. While numerous stud- 066

ies have proposed various unlearning algorithms, 067

most lack formal guarantees of effectiveness. In 068

fact, prior research has demonstrated that many un- 069

learning techniques can be circumvented through 070

simple rephrasings of the original data (Shi et al., 071

2024). Recent work has shown that a soft token 072

attack (STA ) can be used to elicit harmful com- 073

pletions and extract supposedly unlearned informa- 074

tion from models (Schwinn et al., 2024; Zou et al., 075

2024). 076

In this work, we introduce a simple framework 077

for auditing unlearning and demonstrate that STAs 078

are overly powerful, and hence, inappropriate for 079

verifying the effectiveness of approximate unlearn- 080

ing. We show that the auditor can elicit any infor- 081

mation from the model, regardless of its training 082

data. Our work highlights the need for better un- 083
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learning auditing baselines and methodologies.084

We claim the following contributions:085

1. We introduce a simple auditing framework for086

unlearning in LLMs (Section 3.2).087

2. We show that STAs effectively elicit un-088

learned information in all tested unlearning089

methods and benchmark datasets (Who Is090

Harry Potter?, and TOFU). Additionally, we091

show that STAs also elicit information in the092

base models that were not fine-tuned on the093

benchmark datasets (Section 4.2).094

3. We further demonstrate that the STAs are in-095

appropriate for evaluating unlearning – we096

show that a single soft token can elicit 150097

random tokens, and ten soft tokens can elicit098

over 400 random tokens (Section 4.3).099

The remainder of this paper is organized as fol-100

lows: In Section 2 we provide an overview of the101

necessary background, and the related work. Sec-102

tion 3 introduces a general auditing framework, and103

instantiates it using STA . In Section 4, we demon-104

strate the efficacy of STA , and subsequently its105

failure, as a tool for auditing unlearning in LLMs.106

In Section 5 we discuss additional considerations107

for auditing unlearning in LLMs. We conclude the108

paper in Section 6, and highlight some limitations109

in Section 7.110

2 Background & Related work111

2.1 Background112

Large language models (LLMs) process input text113

through an auto-regressive framework. Given an114

input sequence of tokens x1:t, the model computes115

the conditional probability distribution p(xt+1|x1:t)116

over the vocabulary at each time-step. The likeli-117

hood of the sequence is given by:118

log p(xt+1|x1:t) =
T∑
t=1

log p(xt|x1:t−1) (1)119

At inference time, the tokens is generated itera-120

tively by sampling the next token xt+1 from this121

distribution (e.g., via greedy decoding or nucleus122

sampling (Holtzman et al., 2019)), then appending123

it to the context x1:t for the subsequent step.124

Machine unlearning is a tool for removing infor-125

mation from models. Consider a machine learning126

model f optimized over a training dataset Dtrain.127

When a data owner submits an unlearning request128

to remove a specified subset Dforget ∈ Dtrain, the 129

objective of machine unlearning is to produce an 130

unlearned model fu that eliminates the influence 131

of Dforget. Machine unlearning methodologies 132

are categorized into two paradigms – exact, and 133

approximate unlearning. 134

Exact unlearning ensures the output distribution 135

of fu is statistically indistinguishable from that of a 136

model retrained exclusively on the retained dataset 137

Dretain = Dtrain/Dforget. This guarantees prov- 138

able data removal, satisfying: 139

p(fu(x) = y) = p(fret(x) = y)

s.t. ∀(x, y) ∈ Dtrain,
(2) 140

where fret denotes a model retrained from scratch 141

on Dretain – which is the most straightforward way 142

of achieving exact unlearning. 143

The process can be made more efficient by 144

splitting the Dtrain into overlapping chunks, and 145

training an ensemble of models (Bourtoule et al., 146

2021b). During an unlearning request, only the 147

models containing the requested records need to 148

be retrained. For certain classes of models, it is 149

possible to achieve exact unlearning without re- 150

training, e.g. ECO adapts the Cauwenberghs and 151

Poggio (CP) algorithm for exact unlearning within 152

LeNet (Huang et al.), and MUSE relabels the target 153

data to achieve unlearning for over-parameterized 154

linear models (Yang et al., 2024). 155

Approximate unlearning, sometimes called in- 156

exact unlearning, relaxes the strict equivalence 157

requirement, instead only requiring that fu ap- 158

proximates fret within some bounded error. This 159

paradigm relies on empirical metrics or probabilis- 160

tic frameworks. In LLMs, approximate unlearning 161

is typically accomplished by overwriting the in- 162

formation in the model (Eldan and Russinovich, 163

2023a; Wang et al., 2024), guiding the model away 164

from it (Feng et al., 2024), or editing the weights 165

and/or activations (Liu et al., 2024; Bhaila et al., 166

2024; Li et al., 2024; Tamirisa et al., 2024; Huu- 167

Tien et al., 2024; Ashuach et al., 2024; Meng et al., 168

2022a,b). 169

2.2 Related work 170

While advances have been made in developing ma- 171

chine unlearning algorithms for LLMs, rigorous 172

methodologies for auditing the efficacy of unlearn- 173

ing remain understudied. Adversarial soft token 174

attacks (STAs) (Schwinn et al., 2024) and 5-shot 175

in-context prompting (Doshi and Stickland, 2024) 176
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Figure 1: Overview of the auditing process using ASTA. For a perfect unlearning method, Ao always correctly audits
the model. On the other hand, ASTA can elicit the completion regardless of the information in the model – the audit
is ineffective.

have been shown to recover unlearned knowledge177

in models. When model weights can be modi-178

fied, techniques such as model quantization (Zhang179

et al., 2024e) and retraining on a partially unlearned180

dataset (Łucki et al., 2024; Hu et al., 2024) have181

also proven effective in recalling forgotten infor-182

mation. (Lynch et al., 2024) examined eight meth-183

ods for evaluating LLM unlearning techniques and184

found that their latent representations remained185

similar. News and book datasets are used to ana-186

lyze unlearning algorithms from six different per-187

spectives (Shi et al., 2024). It was shown that fine-188

tuning on unrelated data can restore information189

unlearned from the LLM (Qi et al., 2024), indicat-190

ing the existing unlearning methods do not actually191

remove the information but learn a refusal filter192

instead. Several benchmarks have been developed193

to evaluate the existing unlearning algorithms. Be-194

sides, an unlearning benchmark was introduced195

based on fictitious author information (Maini et al.,196

2024a). For real-world knowledge unlearning,197

Real-World Knowledge Unlearning (RWKU) used198

200 famous people as unlearning targets (Jin et al.,199

2024), while WDMP focused on unlearning haz-200

ardous knowledge in biosecurity, cybersecurity (Li201

et al., 2024).202

3 Auditing with Soft Token Attacks203

3.1 Adversarial prompts204

An adversarial prompt xa, is an input prompt to205

the LLM, obtained by applying the transform T (·)206

to the base prompt xp, xa = T (xp, aux) in order to207

elicit a desired completion c. T can be any function 208

that swaps, removes or adds tokens; aux denotes 209

any additional needed information. However, such 210

arbitrary attacks are expensive to optimize1, and 211

difficult to reason about. In practice, T optimizes 212

an adversarial suffix xs that is appended to xp to 213

elicit c (Zou et al., 2023). Specifically, we optimize 214

the probability: 215

Prob = P (c|xp ⊕ xs). (3) 216

An adversary with white-box access to the LLM, 217

can instead mount the attack in the embedding 218

space i.e. modify the soft tokens: 219

Prob = P (c|embed(xp)⊕ embed(xs)). (4) 220

In this case, T uses the gradient from the LLM to 221

update xs. 222

3.2 Unlearning auditor 223

An oracle auditor Ao takes an unlearned model fu 224

and the candidate sentences xc ∈ Xc and outputs a 225

ground truth, binary decision a = {0, 1} indicating 226

whether the given records was part of Dtrain of: 227

a = Ao(fu, Xc = Dforget, aux) (5) 228

Ao is unrealistic in many scenarios; however, it 229

can be easily instantiated for exact unlearning 230

where Ao knows the training data associated with 231

f : aux = {Dretain}. 232

1Suffix-only attacks allow efficient use of the KV-cache.
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On the other hand, a realistic unlearning Au233

takes an fu, and Dforget and outputs a score234

s = (0, 1) indicating whether the records were235

in Dtrain:236

s = Au(fu, {xc} = Dforget, aux = ∅) (6)237

Au represents cases where users remove informa-238

tion from models that they did not create, e.g. to239

prevent harmful outputs.240

In this work, we instantiate the soft token at-241

tack auditor ASTA based on the soft token attacks242

(STAs) against unlearning (Schwinn et al., 2024;243

Zou et al., 2024). Our auditor compares the relative244

difficulty of eliciting c for fft and fu. The unlearn-245

ing procedure is effective if eliciting completions246

using fu is more difficult than fft.247

s = ASTA(fu, {xc} = Dforget, aux = {fft}).
(7)248

Figure 1 gives a complete overview of the audit-249

ing procedure, and the difference between A0 and250

ASTA. In Table 1, we summarize the notation.251

In the next Section, we show that ASTA cannot252

reliably audit LLMs.253

4 Evaluation254

4.1 Experiment setup255

Datasets. To attack unlearning and evaluate its256

effectiveness, we use two popular benchmark257

datasets: 1) Who Is Harry Potter? (Eldan and Russi-258

novich, 2023a), a benchmark that intends to re-259

move information about the world of Harry Pot-260

ter and the associated characters; WHP hereafter.261

2) TOFU (Maini et al., 2024a), a dataset of fic-262

tional writers that are guaranteed to be absent in263

the LLM’s training data2.264

WHP does not publish a complete dataset. For265

that reason we use the passages included in the266

associated Hugging Face page (Eldan and Russi-267

novich, 2023b). Additionally, we augment it with268

20 (xp → c) pairs generated with Llama2-7b-chat-269

hf. These contain general trivia about the Harry270

Potter universe.271

For TOFU , we use the 10% forget to 90% retain272

split provided by the authors (Maini et al., 2024b).273

Models & environment. For all experiments,274

we use Llama-2-7b-chat-hf (Touvron et al., 2023)275

(Llama2), and Llama-3-8b-instruct (Meta, 2024)276

(Llama3) downloaded from Hugging Face. We277

2This cannot be guaranteed for models published after
TOFU .

STA soft token attack
Ao oracle auditor
ASTA STA auditor
xp base prompt (benign)
xs adversarial suffix
xa adversarial prompt (xp ⊕ xs)
c target completion
f∅ base model
fft fine-tuned model
fu unlearned model
fu−∗ model unlearned using *
Dtrain training data
Dforget forget data
Dretain retain data

Table 1: Summary of the notation. ’*’ is replaced with
the specific unlearning method.

get the unlearned WHP model from it’s Hugging 278

Face repository (Eldan and Russinovich, 2023b) 279

(Llama2-WHP ). 280

We implement STA using LLMart (Cornelius 281

et al., 2025) – a PyTorch and Hugging Face-based 282

library for crafting adversarial prompts. We use im- 283

plementations of the unlearning methods from the 284

TOFU (Maini et al., 2024c), and NPO (Zhang et al., 285

2024b) repositories. We benchmark the attack 286

against seven different unlearning algorithms: gra- 287

dient ascent (GA), gradient difference (GDF) (Liu 288

et al., 2022), refusal (IDK) (Rafailov et al., 2024), 289

knowledge distillation (KL) (Hinton, 2015), nega- 290

tive preference optimization (NPO) (Zhang et al., 291

2024c), NPO-GDF, NPO-KL. 292

We run our experiments on a machine equipped 293

with Intel Xeon Gold 5218 CPU, eight NVIDIA 294

A6000, and 256 GB of RAM. 295

4.2 Auditing with attacks 296

Who Is Harry Potter?. To elicit information 297

about the Harry Potter universe, we initialize the 298

soft tokens using randomly selected hard tokens, 299

and append them to the prompt (embed(xa = 300

xp ⊕ xs)). We then train the soft prompt using 301

AdamW (Loshchilov and Hutter, 2019) for up to 302

3000 iterations; using learning 0.005, and default 303

βs – we reiterate that the xp does not change, only 304

the embedded suffix does. If the optimization fails, 305

we double the the number of soft tokens up to the 306

maximum of 16. We rerun the experiment five 307

times, and report the mean and standard deviation 308

across all prompt and reruns. In Table 2 we report 309

the average number of soft tokens needed to elicit a 310
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completion. WHP * denotes the unlearned model311

with different prompt templates.312

Our results show that all information can be gen-313

erated with ≈ 4−6 added soft tokens. For all pairs314

of models, we conduct a t-test under the null hy-315

pothesis H0 of equivalent population distributions316

with α = 0.05. We use an unpaired Welch’s t-317

test since sample variances are not equal (WELCH,318

1947). We cannot reject the hypothesis for any of319

the pairs i.e. p > 0.05. In other words, for all320

models, there is not enough evidence to say that321

eliciting completions is more difficult.322

Additionally, we observe that the ease of elic-323

iting the completions changes depending on the324

prompt template. We conducted our initial ex-325

ploratory experiments in the chat setting with a chat326

prompt template. We notice that the model (WHP327

+chat) reveals all unlearned information with man-328

ually paraphrased prompts. Furthermore, when329

using the example prompts in the corresponding330

Hugging Face repository (Eldan and Russinovich,331

2023b), the model (WHP ) would often begin the332

response with a double new line (\n\n). We sus-333

pect that the provided unlearned model is overfit334

to “prompt\n\n completion”. To run our evalua-335

tion in the most favorable setting, we report all336

three. Our results show that attacking is the easiest337

for WHP +chat, and the most difficult for WHP338

+\n\n. Given these discrepancies, and the lack of a339

standard WHP dataset, we believe it is not a good340

unlearning benchmark, despite its popularity.341

Also, in our dataset there are three challenging342

outlier prompts that require 16 soft tokens, un-343

like other prompts. Filtering these out results in344

4.05, 4.60, 1.61 average required tokens for WHP ,345

WHP +\n\n, and WHP +chat respectively.346

TOFU. For TOFU , we follow the same setup as for347

WHP– we initialize soft tokens using random hard348

tokens, and append them; we then train the soft349

prompt using AdamW for up to 3000 iterations;350

using learning 0.005, and βs = (0.9, 0.999); we351

double the soft tokens if the optimization fails; we352

rerun the experiments five times and report the353

averages across all prompts. In Table 3, we report354

the number of soft tokens required to elicit the355

completions. f∅ refers to the unmodified baseline356

model, fft corresponds to the models fine-tuned357

on TOFU , followed by the unlearned models.358

For all methods, we can elicit the completions359

with ≈ 3 appended soft tokens. Similarly to WHP ,360

for all possible pairs of models (within the same361

architecture), we conduct a t-test under the null hy-362

Prompt Model
template Llama2-WHP Llama3

N/A N/A 5.61± 6.32

WHP 4.63± 3.69 N/A
WHP +\n\n 6.50± 5.13 N/A
WHP +chat 4.12± 5.53 N/A

Table 2: Number of soft tokens required to elicit a com-
pletion for a fixed number of iterations. Soft tokens are
appended to the prompt. Results are averaged over all
prompts in the WHP set and over five runs for each
prompt. When we increase the maximum iterations to
10, 000 we can elicit all completions with 1− 2 soft to-
kens. We do not report the results for Llama2 hf because
it was used to generated the data. For comparison we
also report the results for Llama3 without any prompt
template (N/A).

Unlearning method
Model

Llama2 Llama3
f∅ (none) 3.07±3.25 3.11±3.15
fft (none) 2.95±3.35 3.21±3.19

fu−IDK 3.40±3.20 3.33±3.09
fu−GA 3.34±3.97 3.21±3.87
fu−GDF 3.06±3.34 3.11±3.40
fu−KL 3.08±3.31 3.12±3.17
fu−NPO 3.11±3.27 3.12±3.27

fu−NPO−GDF 3.15±3.24 3.16±3.16
fu−NPO−KL 3.23±3.62 3.24±3.57

Table 3: Number of soft tokens required to elicit a com-
pletion for a fixed number of iterations. Soft tokens are
appended to the prompt. Results are averaged over all
prompts in the TOFU set and over five runs for each
prompt. When we increase the maximum iterations to
10, 000 we can elicit all completions with 1 − 2 soft
tokens.

pothesis H0 of equivalent population distributions 363

with α = 0.05. We use an unpaired Welch’s t-test 364

since sample variances are not equal. 365

We cannot reject the hypothesis for any of the 366

pairs i.e. p > 0.05; fu−IDK vs fft (for Llama2) 367

gives the lowest p-value of 0.509. In other words, 368

for all models (regardless if trained on TOFU , or 369

used unlearning method), there is not enough ev- 370

idence to say that eliciting completions is more 371

difficult. 372

One could argue that used unlearning methods 373

are not effective (when comparing fft vs fu−∗), 374

hence they require similar numbers of soft tokens.3 375

3Most of these approaches have been in fact been shown
ineffective, and susceptible to simple paraphrasing.
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However, the same holds when compared to f∅.376

In the next section, we demonstrate that the result377

cannot be attributed to the (in-)effectiveness of the378

unlearning methods but rather the power of STA .379

4.3 Eliciting random strings380

To further show the power of STAs, we use them381

to elicit random strings. Unlike natural text, the382

chance of a random string appearing in the training383

set is negligible. Also, preceding tokens do not384

inform the selection of the next token. In the fol-385

lowing experiments, we pick characters uniformly386

at random in the range 33-126 of the ASCII ta-387

ble (asciitable.com).388

To elicit a random string, we initialize the soft389

prompt using randomly selected tokens. Unlike in390

the WHP and TOFU experiments, there is only the391

soft prompt. We then train the soft prompt using392

AdamW for up to 3000 iterations per soft token;393

using learning rate 0.005, and βs = (0.9, 0.999).394

In Figure 2, we report the longest elicited string395

for a given number of soft tokens. We repeat the ex-396

periment five times – e.g., the first marker implies397

that for each of the five tested random strings of398

length 150, we found an effective soft prompt. We399

observe that not all initializations and seed config-400

urations succeed, in which case a run needs to be401

restarted with a different seed. If the loss plateaus402

around 25% of the iterations, we restart the run.403

However, no single string was restarted more than404

ten times. We experimented with learning rate405

schedulers but they did not improve the search.406

Our results show that STAs can be used to elicit407

completely random strings, thus undermining their408

application for auditing unlearning. Due to lim-409

ited computational resources and long run-times,410

our evaluation is limited to 10 soft tokens, and411

400-character long random strings. This does not412

provide a bound on the longest string that can be413

elicited.414

Next, we aim to answer why eliciting strings415

is possible. Prompt-tuning (Lester et al., 2021)416

is a performance efficient fine-tuning technique in417

which instead of training all weights, one trains418

only a soft prompt added to the input. STAs can be419

viewed as an extreme case of prompt-tuning, where420

instead of training over many prompts, one trains421

an attack per each prompt. Hence, an LLM that422

outputs a completion that it was trained on is an423

expected behavior. We urge against misinterpreting424

the results and declaring techniques ineffective.425
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Figure 2: Numbers of random characters generated for
the given soft prompt length. A single soft token can
force over 150 random characters – more than any text
in the TOFU benchmark. With 10 soft tokens, it is
possible to generate over 400 random characters.

5 Discussion & Conclusion 426

Auditing with hard prompts. Attacks such as 427

greedy coordinate gradient (Zou et al., 2023) op- 428

timize the attack prompt in the hard token space 429

instead of the soft token space. Hence, they are 430

weaker at eliciting completions. On one hand, this 431

might make them more suitable for auditing un- 432

learning. On the other hand, due to their compu- 433

tational requirements, they are often used to force 434

only the beginning of a harmful completion (e.g. 435

Sure, here’s how to build a bomb...) with the hope 436

that the LLM follows. It is unclear whether this 437

would be sufficient to produce specific unlearned 438

passages. We see it as an interesting direction for 439

future work. 440

Unlearning vs jail-breaking. Our findings are 441

applicable to the jail-breaking community as well. 442

Prior work (Zhang et al., 2024d) hinted that un- 443

learning and preventing harmful outputs can be 444

viewed as the same task – removing or suppress- 445

ing particular information. STAs and fine-tuning 446

attacks (Hu et al., 2024) are useful tools for eval- 447

uating LLMs in powerful threat models. It was 448

shown that fine-tuning on benign data, or data un- 449

related to the unlearning records (for jail-breaking 450

and unlearning respectively) can restore undesir- 451

able behavior (Łucki et al., 2024). 452

Variation in gradient-based learning. Prior work 453

showed that removing training records from the 454

training set, and repeating the training can result in 455

the same final model (Thudi et al., 2022) depend- 456

ing on the random seed. Even though a record was 457
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part of the training run, its influence might be min-458

imal, making unlearning unnecessary. Similarly,459

it was shown that SGD has intrinsic privacy guar-460

antees, assuming there exists a group of similar461

records (Hyland and Tople, 2022). Thus, algorith-462

mic auditing of unlearning might not be possible,463

and one would have to rely on verified or attested464

procedures instead (Eisenhofer et al., 2023), regard-465

less of their impact on the model.466

Distinguishing learned soft tokens. Even though,467

in most our results, the number of soft tokens re-468

quired to elicit a completion is the same, we at-469

tempted to distinguish between them. To this end,470

we take all single-token STAs optimized for TOFU471

(Table 3) and assign a label y = {0, 1}: y = 0472

for f∅, and y = 1 for fft and the unlearned mod-473

els. We then train a binary classifier using f∅ and474

fft. While we are able to overfit it and distinguish475

between f∅ and fft, we were not able to train a476

model that would generalize to the unlearned mod-477

els, and decisively assign a class. Our approach478

is similar to Dataset Inference (Maini et al., 2021,479

2024d) which showed there can be distributional480

differences between the models, depending on the481

data they were trained on. Further investigation482

into what soft tokens are learned during the audit483

is an interesting direction for future work.484

6 Conclusion485

In this work, we show that soft token attacks486

(STAs) cannot reliably distinguish between base,487

fine-tuned, and unlearned models. In all cases, the488

auditor can elicit all unlearned information by ap-489

pending optimized soft prompts to the base prompt.490

Additionally, we show that STA with a single soft491

token can elicit 150 random characters, and over492

400 with soft tokens.493

Our work demonstrates that machine unlearn-494

ing in LLMs needs better evaluation frameworks.495

While many unlearning methods can be broken by496

simple paraphrasing of original prompts, or by fine-497

tuning on partial unlearned data or even unrelated498

data, STA misrepresents their efficacy.499

7 Limitations & ethical considerations500

Limitations. Due to computational constraints our501

work is limited to 7-8 billion parameter models.502

Nevertheless, given that LLMs’ expressive power503

increases with size (Kaplan et al., 2020), our re-504

sults should hold for larger LLMs. Our evaluation505

with random strings could be extended to verify if506

there is a clear and generalizable dependency be- 507

tween the number of soft tokens and the maximum 508

number of generated characters. 509

Ethical considerations. In this work, we show 510

that an auditor (a user) with white-box access to 511

the model, and sufficient compute can elicit any 512

text from the LLM. While it does require knowing 513

the target completion for a given prompt, it is likely 514

that partial completions might be enough, thus al- 515

lowing the user to elicit harmful information. This 516

may be particularly dangerous in settings where the 517

user has approximate knowledge of the information 518

that had been scrubbed off the LLM. 519
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