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Abstract
In node classification using graph neural net-
works (GNNs), a typical model generates logits
for different class labels at each node. A softmax
layer often outputs a label prediction based on
the largest logit. We demonstrate that it is pos-
sible to infer hidden graph structural informa-
tion from the dataset using these logits. We in-
troduce the key notion of label non-uniformity,
which is derived from the Wasserstein distance
between the softmax distribution of the logits
and the uniform distribution. We demonstrate that
nodes with small label non-uniformity are harder
to classify correctly. We theoretically analyze how
the label non-uniformity varies across the graph,
which provides insights into boosting the model
performance: increasing training samples with
high non-uniformity or dropping edges to reduce
the maximal cut size of the node set of small
non-uniformity. These mechanisms can be easily
added to a base GNN model. Experimental re-
sults demonstrate that our approach improves the
performance of many benchmark base models.

1. Introduction
Graph neural networks (GNNs) are neural networks that
learn from graph-structured data (Defferrard et al., 2016). A
problem of interest is the node classification problem. In a
graph, one is given the labels of a subset of nodes and must
predict the labels of remaining nodes using features associ-
ated with each node. Through many years of development,
numerous GNN models have been proposed to tackle the
node classification problem. Though many more recent ap-
proaches (e.g., Kang et al. (2021); Rusch et al. (2022); Song
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et al. (2022); Yang et al. (2021); Zhao et al. (2023); Zhao &
Akoglu (2020); Zhu et al. (2020)) have sophisticated mech-
anisms, they are influenced by earlier models such as GCN
(Defferrard et al., 2016) and GAT (Velic̄ković et al., 2018).
Quite a few important features of these primitive models are
inherited by their up-to-date counterparts.

We briefly recall a few features of a model such as GCN that
are most relevant. The basic idea of a GNN model is to gen-
erate an embedding of nodes in an appropriate geodesic met-
ric space such as Euclidean space. Nodes are subsequently
grouped into different classes using a union of hyperplanes.
Such a strategy is realized by applying a message-passing
algorithm. In each iteration of the algorithm, each node up-
dates its feature vector by using a weighted average of the
feature vectors from its neighbors. The generated embed-
ding is then input to fully connected layers that output logits,
which after normalization via softmax, are interpreted as
probability weights of the label classes. The predicted la-
bel of each node is the class with the largest probability.
Geometric information (e.g., hyperbolicity Gulcehre et al.
(2019); Zhang et al. (2021); Zhu et al. (2020)) on the graph
plays a fundamental role in the process as we need to utilize
the local neighborhood of each node.

On the other hand, there is hidden graph structural informa-
tion crucial to the success of the classification task. For ex-
ample, we may be interested to know what are the boundary
nodes (i.e., those nodes that have neighbors with different
classes) between different label classes. In this work, we aim
to retrieve such graph structural information using predicted
logits from a model such as GCN. Therefore, in contrast to
the procedure described in the previous paragraph, informa-
tion retrieval is in the reverse direction.

The main tool we use is the notion of non-uniformity of
the probability weights of the label classes derived from
logits, inspired by the idea of distributional graph signals
(Ji et al., 2023a;b). It measures the extent to which the
probability distribution is not uniform. The insight is that
for a node near class boundaries, during training, we have
mixed contributions from different label classes as some
of its neighbors belong to different classes. As message-
passing has a smoothing effect (Oono & Suzuki, 2020), the
resulting predicted logits should reflect the phenomenon
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that several weights for different classes can have similar
values. Therefore, non-uniformity may reveal hidden graph
structural information associated with the embedding of
different node classes in the ambient graph. In this paper,
we theoretically study how the above-mentioned notion of
non-uniformity provides us with graph structural knowl-
edge (e.g., whether a node is close in graph distance to
a class boundary). Based on the findings, we propose a
simple multi-step model with independent modulo compo-
nents, whose effectiveness is demonstrated with numerical
experiments. Proofs of theoretical results are provided in
Appendix B. Our main contributions are summarized as
follows:

• We introduce the notion of label non-uniformity of
probability weights associated with label classes. We
demonstrate experimentally that nodes with small non-
uniformity are harder to classify correctly.

• We analyze locations (with respect to class boundaries)
of nodes with small label non-uniformity and provide
insights to increase their non-uniformity.

• We propose two algorithms to boost the performance
of a given base model: increasing training samples
with high predicted label non-uniformity or dropping
edges to reduce the maximal cut size of a node set
of small non-uniformity. Experiments indicate that by
adding our algorithm modules to a base model, its
performance can be improved.

2. Label non-uniformity and node selection
Suppose G = (V, E) is an undirected graph with V the ver-
tex set and E the edge set. Let dG be the metric with dG(v, v′)
being the length of the shortest path between v, v′ ∈ V .

We consider the node classification problem. Recall that
there is a finite set S of class labels. Each v ∈ V has a
label s ∈ S. For each s ∈ S, let Vs be the set of nodes
with class label s. We want to train a model based on a
training set R to predict the (unknown) labels of a test
set T. To motivate the concepts we want to bring about,
consider a variant of node classification as follows, which is
interesting in its own right. We point out that the problem is
a hypothetical thought experiment, but not the main subject
of the paper. The purpose of the study is to investigate
empirical evidence of the relations among easily classifiable
nodes, the predicted logits, and graph topology.

Problem 1. We use R to train a GCN. For given α ≤ 1, one
is required to choose a subset T′ ⊂ T of size α|T| so that
the test accuracy of the trained model on T′ is maximized.

As a special case, α = 1 is the original node classification
problem. The modified problem essentially asks one to find

Figure 1. Accuracy for M1, M2 respectively on the Cora dataset.

a subset of T with a prescribed size, on which one can make
an accurate prediction. Intuitively, suppose v has label s.
Then it is more likely to predict correctly for v if it is close
in distance to training nodes in Vs. This prompts:

Method 1 (M1: the geometric method). For each node
v ∈ T, we assgin with it a pair of numbers (f1(v), f2(v)),
where f1(v) = minv′∈R dG(v, v

′). For f2, we first find
the set argminv′∈R dG(v, v

′). Then let g(v) be the percent-
age of the largest label class in argminv′∈R dG(v, v

′) and
f2(v) = 1−g(v). We rank T based on the lexographic order
of

(
f1(v), f2(v)

)
and T′ is chosen following the ordering.

The second number f2(v) is the tie-breaker for nodes with
the same f1 value.

We run multiple experiments on the Cora dataset and the
results are shown in Fig. 1 (top). We see that the perfor-
mance pattern as α increases indeed supports the geometric
intuition. However, we may push the intuition further to
enhance the performance. We first introduce the notion of
the boundary of a vertex set. Let V ′ ⊂ V be a subset of
vertices. Its boundary ∂V ′ is:

∂V ′ = {v ∈ V ′ | ∃ v′ /∈ V ′ s.t. (v, v′) ∈ E}.

Another insight on graph structure we may leverage is that
when we want to determine the class label s of v ∈ Vs, it is
likely that we are less certain if v is closer to the boundary

2



Leveraging Label Non-Uniformity for NC in GNNs

∂Vs. This is because there are nodes with different class
labels nearby (in dG).

An immediate challenge to exploit the above insight is that
before knowing the true labels of all the nodes, ∂Vs is usu-
ally obscure to us. Hence, we need to find a way to estimate:
for any given v with label s, how far away it is from ∂Vs

without knowing the label s. For this, we make use of the
concept of non-uniformity associated with label distribution.

Recall that from the logits of the base model trained on R,
we may apply softmax to obtain a vector of numbers µv

with µv(s) ∈ [0, 1], s ∈ S for each v ∈ V . Moreover, S is
a finite set and

∑
s∈S µv(s) = 1, therefore µv(s) can be

interpreted as the probability weight of node v having label
s. Following Ji et al. (2023b), the label non-uniformity at v
is defined by

w(v) =
∑
s∈S

∣∣∣∣µv(s)−
1

|S|

∣∣∣∣. (1)

The notion is derived from the 2-Wasserstein distance (Ji
et al., 2023b; Villani, 2009) between µv and the uniform
distribution. We justify in Appendix B. The function w(·) is
the key player of our approach suggested by our title.

We propose to use w(v) to measure whether v is close in dis-
tance to some class boundary. Nodes closer to class bound-
aries are expected to be harder to classify. This prompts the
following approach to Problem 1.
Method 2 (M2: distribution non-uniformity). In training,
we obtain a probability distribution µv on S for each v ∈ V
(in the last layer). We rank T according to non-uniformity
w(v) and T′ is chosen following the ordering.

The results for the approach M2 are also shown in Fig. 1
(bottom). It has a much better performance, which is also
more consistent. In the following, we summarize obser-
vations from the experiments that eventually lead to our
proposed GNN model.

(a) Using the non-uniformity w(·), we can reasonably
identify nodes whose labels are correctly predicted.

(b) Comparing M1 and M2, we notice the correctly labeled
nodes are not necessarily close to training nodes in R.

In the next section, we theoretically justify our graph struc-
tural intuition regarding the function of label non-uniformity
w(·). Moreover, we propose a new GNN model based on
the theoretical findings.

3. Label non-uniformity and graph structural
information

As we speculate in the previous section, we want to analyze
the non-uniformity w(v) in view of the structural informa-

tion of G in this section. Intuitively, if node v has large
non-uniformity w(v), its distribution weights µv(s), s ∈ S
are either close to 0 or 1. As w(·) is computed from µv, to
study w(·), we may instead analyze µv in this section.

3.1. Flow of probability weights

For an overview, we first understand the flow of probability
weights from a subset of nodes to another by analyzing
the solution of an optimization problem. The study allows
us to acquire geometric information such as the location of
class boundaries using the weights. Furthermore, we analyze
how to create a bottleneck near class boundaries to widen
the difference in probability weights for nodes near class
boundaries with different labels.

For the graph G = (V, E), let LG be the Laplacian of G. To
simplify the analysis, we study one class label at a time. Fix
a class label s ∈ S and consider the graph signal of prob-
ability weights (µv(s))v∈V . We expect a model to make
an accurate fitting on the training set R, therefore it is
reasonable to assume that µv(s) ≈ 1, v ∈ R ∩ Vs and
µv′(s) ≈ 0, v′ ∈ R ∩ Vs′ , s

′ ̸= s.

With this in mind, we assume that there are disjoint non-
empty subsets O0 and O1 of V and an approximation f of
(µv(s))v∈V such that the graph signal f is observed at O =
O0 ∪O1.1 Moreover, fv = 0, v ∈ O0 and fv′ = 1, v′ ∈ O1.
The primary example is O1 ⊂ R ∩ Vs and O0 ⊂ R\Vs. A
smooth interpolation f̃ of f is

f̃ = argmin
f ′:f ′v=fv,v∈O

f ′
⊺
LGf

′.

This is the well-studied Laplacian quadratic form, and its
use in interpolating graph signals is justified in Ando &
Zhang (2007); Narang et al. (2013); Shuman et al. (2013);
Zhou et al. (2004); Zhu et al. (2003). We shall justify
(in Appendix B) that if f is a good approximation of
(µv(s))v∈V , then they have similar smooth interpolations.
We use f̃ as a proxy of the true f and hence (µv(s))v∈V
on the entire graph, based on the assumption that f and
(µv(s))v∈V are smooth. Therefore, we have reduced the
study of (µv(s))v∈V to that of f̃ , and the fundamental result
is the following averaging property.
Lemma 1. For every v /∈ O, let dv be its degree. We have

f̃v =
1

dv

∑
(v,v′)∈E

f̃v′ . (2)

As a consequence, we can view O0 and O1 analogous to
the poles in a magnet, illustrated in Fig. 2 (a). To be more
precise, for each v ∈ V , define the level-component Cv of v
w.r.t. f̃ to be the connected component of {v′ ∈ V | f̃v′ =

f̃v} containing v. Then the following holds.

1To avoid cluttered notations, we omit s from the symbol f .
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Theorem 1. For each v ∈ V , there is a path P =
{v0, . . . , vm} such that the following holds:

(a) v0 ∈ O0 and vm ∈ O1.

(b) f̃ is strictly increasing on P: f̃vi < f̃vi+1
, 1 ≤ i < m.

(c) P ∩ Cv ̸= ∅.

The definition of a level-component is for the technical is-
sue that there might be neighboring nodes with the same f̃
value. Disregarding this technicality, intuitively, Theorem 1
claims that f̃ values at nodes close to O0 should be close
to 0 and gradually increase to 1 along the path P . The fol-
lowing corollary of the theorem describes the signal pattern
emanating from O1 as illustrated in Fig. 2(b).

G

O1

O0

(a) (b)

O1

O0

G

Figure 2. The Venn diagrams illustrate Theorem 1 and Corollary 1.
In (a), the arrows are paths along which f̃ increases. In (b), if we
color the graph according to f̃ value, then it should be layered as
shown.

Corollary 1. Suppose for any u, v /∈ O0 ∪ O1, we have
f̃u ̸= f̃v. For any 0 < r < 1, define Vr = {v ∈ V | f̃v ≤ r}
and let GVr be its induced subgraph. Denote the complement
of Vr by Vc

r . If GVr0
is connected for some r0, then so is GVr

for any r ≥ r0. Similarly, if GVc
r0

is connected for some r0,
then so is GVc

r
for any r ≤ r0.

Intuitively, the corollary describes the picture that if GVr0
is

connected, then GVr
must “grow” from GVr0

for any r ≥ r0.
We have seen an overall pattern of f̃ on G. Next, we study
more refined details of its values along a set boundary.

3.2. Weights near a boundary

To gain further insights, we describe another consequence
of the averaging property in this subsection. For any subset
V0 ⊂ V , in addition to its boundary ∂V0, we define Γ(V0) ⊂
E to be the set of edges (v, v′) with v ∈ V0 and v′ ∈ V1,
where V1 = V\V0. Moreover, we introduce the quantity

A(f̃ ,V0) =
∑

v∈∂V0,
(v,v′)∈Γ(V0)

f̃v

as a weighted sum of f̃v, v ∈ ∂V0.

Theorem 2. Suppose V0 and V1 = V\V0 are disjoint sub-
sets of V such that Oi is contained in the interior Vi\∂Vi

of Vi, i = 0, 1. Assume that 0 < f̃v < 1 for v /∈ O and let
a = minv/∈O f̃v and b = minv/∈O{1− f̃v}. Then

A(f̃ ,V0) ≤ A(f̃ ,V1)−max(b|Γ(O1)|, a|Γ(O0)|). (3)

Theorem 2 claims that if the graph is partitioned into two
parts V0,V1 (e.g., V1 consists of nodes with class label s,
where s is as in the first paragraph of this section) containing
O0 and O1 respectively, then the weighted sum of the values
of f̃ along the boundary on the O0 side are smaller than
those along the boundary on the O1 side. To find the average
difference, it suffices to divide both sides of (3) by |Γ(V0)|,
as both A(f̃ ,V0) and A(f̃ ,V1) have |Γ(V0)| terms in their
respective summation. Increasing the average f̃ difference
is exactly what we are aiming for from Section 2: reduce
the number of nodes with small non-uniformity.

G

O1

O0

(a) (b)

G

O1

O0

O0 O0

O1

O1

G

O1

O0

(c)

Figure 3. The Venn diagram illustrates that to differentiate nodes
using f̃ value along the boundary, we may either increase the size
of O0 and O1 as in (b) or create a bottleneck as in (c).

From Theorem 1 and Theorem 2, we have an overall picture:

(a) By Theorem 1, the values of f̃ gradually increase from
nodes near O0 to those near O1. The boundary should
be more likely to occur at nodes with f̃ further away
from 0 and 1.

(b) By Theorem 2, to make f̃ closer to 0 or 1 on average
even near class boundaries, we may try two options
(illustrated in Fig. 3): (i) enlarge O1 and O0, or (ii) re-
duce the size of Γ(Vi), i = 0, 1, i.e., we want to create
a bottleneck. We discuss the second option further in
the next subsection.

3.3. Graph bottleneck

The Cheeger constant or edge expansion (Mohar, 1989)
h(G) is usually used to measure the “bottleneck size” of a
connected graph G:

h(G) = min
V′⊂V

|Γ(V ′)|
min(|V ′|, |V ′c|)

.
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Other related concepts are the max-cut size C(G) and min-
cut size c(G). Recall that a cut is Γ(V ′) for ∅ ̸= V ′ ⊂ V
such that V ′c ̸= ∅. Then C(G) (resp. c(G)) is the largest
(resp. smallest) among the size of every cut of G.

For any V ′ ⊂ V , let GV′ be its induced subgraph. We say
a numerical invariant is independent of GV′ if it does not
change, even if the edge set of GV′ is modified. As we shall
see, the proposed method requires one to modify the edge set
of GV′ . Therefore, this notion of independence is important
for theoretical results.

Theorem 3. For V ′ ⊂ V , suppose GV′c has 2-connected
components U0, U1, whose respective neighbors in V ′ are
disjoint. Then there are constants c0, c1 > 0 independent
of GV′ such that: if C(GV′) < c0, then h(G) ≤ C(GV′)/c1.
Moreover, if U ⊂ V realizes h(G), then U ∩ V ′ ̸= ∅ and
Uc ∩ V ′ ̸= ∅.

The constants c0 and c1 are made explicit in the proof (cf.
Appendix B). In particular, they are related to the cut size of
U0 and U1, as expected. The appendix contains additional
discussions and illustrations.

Theorem 3 essentially says that to create a bottleneck of
the graph, we may reduce the cut size of a separating sub-
graph, i.e., a subgraph that separates the ambient graph
into two connected components. This subgraph consists of
nodes near class boundaries in our setup. This idea inspires
Algorithm 2 in the next section.

4. Utilizing label non-uniformity
In Section 2, we use hypothetical experiments on Problem 1
to motivate the study of non-uniformity w(·) in Section 3.
Our experiments on Problem 1 suggest that nodes with large
non-uniformity are those that we can classify more accu-
rately. Based on the theoretical insights derived in Section 3,
we now propose a model that increases the number of nodes
with large non-uniformity in the training set, which leads to
a boost in the model performance in testing.

As alluded to in the last paragraph of Section 3.2, we can
achieve our goal by (i) introducing more nodes in the train-
ing set with accurate labels (cf. Fig. 3(b)), or (ii) creating a
bottleneck near class boundaries (cf. Fig. 3(c)). Both are as-
sociated with the non-uniformity function w(·) in (1). How-
ever, w(·) is used in different ways in these two approaches.
In view of the experimental and theoretical findings in the
previous sections, for (i), we prioritize nodes with large non-
uniformity, while for (ii), we consider nodes with smaller
non-uniformity as candidates for boundary nodes. The algo-
rithms are presented in Algorithms 1 and 2.

To give some intuitions, in Algorithm 1, we use w(·) to se-
lect nodes with possibly high prediction accuracy. These are
then included in the new training set R′ with their predicted

Algorithm 1 Supplement the training set R using w(·)

(a) Pick a base GNN model M (e.g., GCN, GAT) and
train the model M to obtain the label class probability
µv(s), where s ∈ S are the label classes, for each node
v ∈ V . Compute w(v) =

∑
s∈S |µv(s)− 1

|S| |.

(b) Order the test nodes v in T in decreasing order accord-
ing to w(v).

(c) For a hyperparameter η0, we form V ′ by taking η0 frac-
tion of nodes with the largest w(·) values, i.e., nodes
higher in the ordering above.

(d) Nodes in V ′ are added to the training set R with their
predicted test labels in (a) to form R′, so that no
ground-truth information is leaked.

(e) Retrain M with R′

Algorithm 2 Edge dropping using w(·)

(a) Same as Algorithm 1(a) and (b).

(b) For a hyperparameter η1, we form V ′ by taking η1
fraction of nodes with the smallest w(·) values, i.e.,
nodes lower in the ordering above.

(c) Construct GV′ the induced subgraph of V ′ in G. Let
TV′ be a spanning tree of GV′ and Ec

V′ be the edges of
GV′ outside TV′ .

(d) For a second hyperparameter η2, we randomly remove
η2 fractions of edges in Ec

V′ (cf. Fig. 4).

(e) Let G′ be the resulting graph on V with the following
edge sets: (i) those outside GV′ , (ii) those in TV′ and
(iii) remaining edges in Ec

V′ after dropping.

(f) Retrain M on G′.

GV ′ TV ′

E c
V ′: dashed

Drop 50% of Ec
V ′

Figure 4. The edge dropping step.

test labels as the “ground-truth”. Since the predicted test
labels are mostly accurate, the larger training set is expected
to lead to better model performance during testing. In Al-
gorithm 2, we use w(·) to identify a set of nodes close in
distance to class boundaries. Edge dropping aims to reduce
the maximal cut size of this set, which may create a graph
bottleneck in view of Section 3.3. On the new graph G′, the
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base model is expected to learn embeddings that are easier
to distinguish among different classes.

We remark that each algorithm can be applied as a stand-
alone module to any chosen base model, or combined to-
gether, which we do in our experiments. The combined
approach means that we retrain M, the base model, with
G′ in step (e) of Algorithm 2 as the graph and R′ in step
(d) of Algorithm 1 as the training set in the last step. An
illustration is shown in Fig. 5.

For Algorithm 1, the final test accuracy is obtained by tal-
lying the accuracy of all the nodes in T, i.e., the predicted
labels of nodes in R′\R are from the initial step (a). In
Algorithm 2(c), we propose not dropping any edge from a
spanning tree so that the number of connected components
remains the same after edge dropping, which also holds true
for the combined approach.

G

Base model

Training data

Logits

max

Output

w(·)

G G ′

Training data

+

+

Base model

Supplemented

training data

Algo. 1

Algo. 2

Figure 5. The figure is the scheme of the proposed model. We see
that there are two separate modules (in the dashed blue boxes
corresponding to the two algorithms. They can be applied either
separately or jointly to the base model.

RELATED WORK

From Section 3, our approach is based on the study of geo-
metric information, more precisely the graph structural in-
formation, associated with features and model output. This
is not the sole work that emphasizes the importance of geo-
metric knowledge regarding both graph topology and fea-
ture embedding. For example, one group of works (Chami
et al., 2019; Gulcehre et al., 2019; Zhang et al., 2021) ar-
gue that each graph can be associated with a measure of
hyperbolicity (Bridson & Haefliger, 1999), and therefore a
graph with small hyperbolicity should be studied using hy-
perbolic geometry (Bachmann et al., 2019). There are also
hybrid models combining both hyperbolic and Euclidean
geometries (Zhu et al., 2020). Some works (Bodnar et al.,
2021; Ebli et al., 2020; Lee et al., 2022) use the concept of
simplicial complexes that generalizes graphs to account for

higher-order relations among nodes. Our model is different
in the sense that our objective is not to find a geometric
space best suited for the dataset including both the graph
and features. There are also works that tweak the graph
topology. For example, DropEdge (Rong et al., 2020) pro-
poses to randomly drop a fraction of edges in each iteration
to alleviate the side-effects of oversmoothing Chen et al.
(2020); NT & Maehara (2019); Oono & Suzuki (2020). A
similar goal is pursued in Luo et al. (2021) by filtering out
task-specific noisy edges. Our objective, however, is to infer
hidden graph structural information associated with label
class boundaries. Algorithm 1 is similar to self-training (Li
et al., 2018) by using a part of the test nodes for training
(cf. Appendix D). However, we select test nodes based on
the newly introduced w(·), which is different from Li et al.
(2018). Moreover, though Algorithm 1 and Algorithm 2
are different in nature, they are coherently derived from the
same theoretical analysis.

5. Experiments
In this section, we evaluate the proposed model.

5.1. Node classification results

We perform experiments on the node classification problem.
The datasets used are Cora, Citeseer, Pubmed, (Amazon)
Photo, CS, Airport, and Disease (Chami et al., 2019; Fey &
Lenssen, 2019; Namata et al., 2012; Sen et al., 2008; Shchur
et al., 2018; Zhang & Chen, 2018). Our approach requires
a base model. We use GCN (Defferrard et al., 2016), GAT
(Velic̄ković et al., 2018), DropEdge (Rong et al., 2020),
GIL (Zhu et al., 2020), GraphCON (Rusch et al., 2022),
MaskGAE (Li et al., 2022). We call our model the graph
neural network using w(·) (wGNN), though the name does
not explicitly refer to the base model being used. We single
out discussions of heterophilic graphs in Section 5.2. More
comparisons are given in Appendix D.

There are 3 hyperparameters: η0 in Algorithm 1 and η1, η2
in Algorithm 2. They are tuned using a grid search (of 0.1
in stepsize) based on the accuracy of the validation set. We
propose two ways to apply Algorithm 2. The more princi-
pled way is to apply the same base model for Algorithm 1
and Algorithm 2. On the other hand, for any dataset, we can
also apply Algorithm 2 using a fixed model such as GCN
once to generate G′, which is stored for any other models on
the same dataset. This is a compromise that is very efficient.
We justify this procedure in Section 5.4.2. Other details re-
garding datasets and source code are in Appendix C. The
results are shown in Table 1. In all cases, our model shows
a performance improvement. We perform statistical tests
and notice that the p-value of 37 among 42 (about 88%)
comparisons is < 0.05, i.e., the improvement of wGNN is
significant.
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Table 1. Node classification result. Performance score averaged over ten runs. The best performance is boldfaced. MaskGAE uses a
non-standard split for CS, and the results are to show improvements only and are not used for comparison with other benchmarks.

Method CS Photo Cora Citeseer Pubmed Airport Disease

GCN 88.14± 0.42 90.66± 0.52 80.65± 0.49 71.23± 0.66 79.03± 0.38 85.08± 2.02 87.68± 3.67
wGNN 89.29± 0.14 92.35± 0.18 83.12± 0.31 73.95± 0.46 80.48± 0.25 87.77± 1.57 89.02± 4.33
GAT 88.51± 0.73 90.36± 0.85 81.91± 0.48 70.21± 0.52 78.91± 0.42 91.23± 3.40 83.74± 2.31
wGNN 89.64± 0.38 91.82± 0.25 84.84± 0.50 72.85± 0.49 79.59± 0.28 93.18± 1.22 86.42± 1.00
DropEdge 88.27± 0.43 90.49± 0.64 81.00± 0.55 70.72± 0.56 79.18± 0.33 86.80± 1.50 87.72± 2.60
wGNN 88.92± 0.27 92.09± 0.24 83.89± 0.36 73.13± 0.22 80.20± 0.21 87.17± 1.59 92.32± 0.43
MaskGAE* 92.72± 0.11 91.55± 0.23 82.03± 0.76 70.10± 1.37 80.11± 0.51 70.56± 1.25 70.51± 3.57
wGNN 95.16± 0.68 93.50± 0.28 82.85± 0.26 72.38± 0.97 81.78± 0.22 85.62± 1.00 71.77± 4.26
GIL 88.69± 0.93 89.60± 1.30 79.65± 1.38 66.43± 1.56 77.18± 1.00 90.34± 1.29 89.96± 1.02
wGNN 91.44± 0.18 91.88± 0.32 83.16± 0.53 69.51± 0.45 80.73± 0.34 91.15± 1.05 92.01± 0.27
GraphCON 90.19± 0.70 90.04± 0.54 82.36± 0.84 70.80± 1.40 79.11± 1.78 57.32± 1.87 70.32± 4.45
wGNN 93.03± 0.64 93.08± 0.37 85.23± 0.69 71.40± 0.87 79.70± 1.07 63.82± 1.81 71.73± 3.18

5.2. Heterophilic graphs

Recall that for a dataset, the graph is heterophilic if there are
many edges connecting nodes with different label classes.
In this subsection, we study the performance of wGNN
on datasets Texas and Chameleon (Zhu et al., 2021) with
heterophilic graphs. In addition to the base models in Sec-
tion 5.1, we also consider ACM-GCN (Luan et al., 2022),
which is dedicated to addressing graph heterophily. We first
show the results in Table 2. Similar to Section 5.1, each
wGNN is paired with its base model. We see that wGNN is
able to improve all the base models, including ACM-GCN.

We offer possible explanations for why wGNN also works
for datasets with heterophilic graphs. In the extreme case
that every edge connects a pair of nodes of different classes,
then we have a k-partite graph, where k is the number of
label classes. Therefore, a heterophilic graph is almost k-
partite with very sparse connections within each of the k-
components. In principle, our approach can also be helpful
for heterophilic graphs. For example, Algorithm 2 reduces
the connections among different components, and message
passings in GNNs rely more on connections within each
component. This is favorable for a shallow GNN model,
where each node aggregates information only from close
neighbors in message passing. Therefore, the predictive
power of the model depends largely on the small neighbor-
hood of each node.

The challenge for a heterophilic graph is that each node is
likely to receive “noisy information” from neighbors be-
longing to different classes, due to a large number of edges
connecting different types of nodes. For wGNN, though
edge dropping cannot add connections between nodes of
the same class, it can reduce connections between nodes
of different classes with a high chance (due to heterophily).
When this happens, during message passing, each node can
potentially receive less “noisy information” from nodes of

Figure 6. An illustration of the edge dropping step Algorithm 2.

different classes. Consequently, the contribution from nodes
of the same class increases. As illustrated in Fig. 6, v ini-
tially aggregates information from one node of class 1 and
two nodes from class 2. After edge dropping in wGNN,
v has only one node from class 2 as a neighbor. Heuristi-
cally, contributions (in fraction) from the same class 1 have
increased by 50%.

In addition, if a base model handles heterophilic edges well,
then wGNN (in particular Algorithm 1) allows us to have
more reliable nodes for each class. In message passing,
each node again receives more reliable information. This
is possibly the reason why wGNN can also improve the
specialized model ACM-GCN.

5.3. Ablation study

Our approach has two submodules Algorithm 1 and Al-
gorithm 2, each of which can be applied as a stand-alone
algorithm to the base model. In this subsection, we per-
form the ablation study to demonstrate that both algorithms
contribute to the observed performance. For clarity, we use
wGNN1 (resp. wGNN2) for the variant that applies Algo-
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Table 2. Results for datasets with heterophilic graphs
GCN wGNN GAT wGNN Dropedge wGNN GIL wGNN GraphCON wGNN ACM-GCN wGNN

Texas 54.60
±6.47

58.11
±9.72

52.70
±8.38

55.94
±9.71

55.95
±6.25

58.11
±9.97

57.84
±5.44

61.89
±6.91

80.81
±4.12

85.95
±4.73

88.38
±3.21

90.27
±4.05

Chameleon 63.62
±3.14

64.45
±2.40

64.25
±3.41

66.12
±2.58

63.57
±1.97

64.61
±2.39

64.41
±1.96

64.89
±1.04

50.77
±2.35

55.53
±2.26

65.92
±2.32

80.79
±1.95

rithm 1 (resp. Algorithm 2) only. The Disease dataset is
excluded from the study because the graph has a tree struc-
ture and Algorithm 2 is not involved. The results are shown
in Table 3. Apart from seeing contributions from both algo-
rithms, Algorithm 1 appears to have a stronger impact.

5.4. Further analysis

In this subsection, we present further analysis of wGNN.

5.4.1. CHOICE OF PARAMETERS

There are 3 hyperparameters η0, η1, η2 in the model. In this
subsection, we study how they impact the model perfor-
mance. It would be cumbersome to present the results for
all possible combinations of η0, η1, η2. Instead, we choose
a few typical combinations to show the overall pattern. We
choose η1 = η2 ∈ [0.1 : 0.1 : 0.8] so that both light
edge drop and heavy edge drop are considered. We let
η0 ∈ {0.2, 0.4, 0.6, 0.8}. GCN is used as the base model
for the study, and heatmaps for the results (Cora and Cite-
seer datasets) are shown in Fig. 7. We see that the model
performance is generally better for larger η0, while the per-
formance can drop if η0 is large enough. Intuitively, if η0 is
too large, then Algorithm 1 may introduce more errors that
may offset any benefits it brings about. On the other hand,
we observe that good choices of η1, η2 that work for all η0
happen at ≈ 0.6,≈ 0.5 for Cora and Citeseer, respectively.
This demonstrates the useful role played by Algorithm 2.

5.4.2. MODEL MISMATCH BETWEEN ALGORITHM 1 AND
ALGORITHM 2

As discussed in Section 5.1, an experimental option is to use
the same G′ generated by Algorithm 2 from a single model
such as GCN for any algorithm on the same dataset. Here,
we analyze this by studying model mismatch between Algo-
rithm 1 and Algorithm 2 using the following experiment.

We use GCN as the base model for Cora and Citeseer
datasets. To apply Algorithm 2 to generate G′, we com-
pare using both GCN and GAT, while the latter accounts for
the model mismatch. The hyperparameter η0 is chosen to
be 0.8 for Cora and 0.6 for Citeseer for better performance,
as we have observed in Fig. 7. The parameters η1 = η2 vary
from 0.1 to 0.8 as in Section 5.4.1.

The results are shown in Fig. 8. We see that for η1 = η2 ≤
0.4, when the accuracies are relatively high, the mismatch

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 0.81

0.815

0.82

0.825

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 0.71

0.715

0.72

0.725

0.73

Figure 7. Performance against parameter choices.

does not have a large impact on the outcome. For large
η1 = η2, there is an expected difference as heavier edge drop
may cause a larger difference in graph topologies. However,
for both experiments, the optimal accuracy does not suffer
much from using a graph with a mismatched generating
base model. Therefore, in practice, we may run Algorithm 2
and store the generated graph as an overhead, in resource-
constrained applications.

5.4.3. BAD BASE MODELS

Our approach relies on a base model. In practice, it is possi-
ble that a base model has poor performance, particularly at
the initial investigation stage of a new dataset. In this sub-
section, we study the performance of our approach if such
a base model is given. The candidates for base models are
plain GAT with more layers. It is observed that the perfor-
mance can be poor if more layers are added without funda-
mentally tweaking the GAT model structure, due to reasons
such as oversmoothing and oversquashing (Topping et al.,
2022). We consider variants of GAT with L = 2 to 8 layers,
with deteriorating performance. We choose η0 = 0.4, 0.8
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Table 3. The ablation study: performance score averaged over ten runs. The best performance is boldfaced.

Method CS Photo Cora Citeseer Pubmed Airport

wGNN (GCN) 89.29± 0.14 92.35± 0.18 83.12± 0.31 73.95± 0.46 80.48± 0.25 87.77± 1.57
wGNN1 89.29± 0.14 91.93± 0.25 82.88± 0.41 73.55± 0.46 80.36± 0.39 87.55± 1.89
wGNN2 88.54± 0.37 91.23± 0.30 81.10± 0.25 71.98± 0.52 79.19± 0.37 86.07± 1.52
wGNN (GAT) 89.64± 0.38 91.82± 0.25 84.84± 0.50 72.85± 0.49 79.59± 0.28 93.18± 1.22
wGNN1 89.54± 0.33 91.50± 0.35 83.99± 0.29 72.35± 0.50 79.59± 0.28 92.11± 0.95
wGNN2 88.60± 0.66 89.97± 0.86 82.03± 0.63 70.55± 0.62 78.97± 0.32 91.80± 1.07

Figure 8. Performance for model mismatch between Algorithm 1
and Algorithm 2.

and run the experiments fixing η1 = η2 = 0. The results
for the Cora dataset are shown in Fig. 9. Unless L = 8
when the base model accuracy is very low, our approach
can reasonably improve the base model performance. For
example, when L = 7, choosing η0 = 0.4 improves the
accuracy of the based model by ≈ 15%. Moreover, in this
case, η0 = 0.4 is much better than η0 = 0.8, in contrast
to L = 2 when η0 = 0.8 has higher accuracy. This is be-
cause when the base model is highly inaccurate, then we
are likely supplementing “datapoints with bad quality” in
Algorithm 1 if η0 is set to be large. This might also be the
reason that when L = 8, applying our approach alone is
insufficient to enhance the base model performance to a
reasonable level. The findings also suggest w(·) can help
with efficiently selecting useful nodes as long as the base
model has reasonable performance.

Figure 9. Performance based on GAT with L = 2 to 8 layers.

6. Conclusion
In this paper, we study the logits from the intermediate step
of a typical GNN model, using a non-uniformity function.
We gain hidden graph structural insights and propose a GNN
model based on theoretical findings. Our model requires a
base GNN model and we demonstrate with experiments
to show that our approach can significantly improve the
performance of base models in most cases.
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A. List of notations
For easy reference, we list the most used notations in Table 4.

Table 4. List of notations
Graph, Vertex set, Edge set G,V, E

Nodes v, v′

Training, Test sets R,T

Class labels s, s′ ∈ S

Distribution at v µv

Label non-uniformity w(·)

Graph signals f , f ′, f̃

Graph Laplacian LG

Subsets of nodes P,O,V ′,U
Level component of v Cv

Boundary ∂

Induced subgraph GV′

Base GNN model M

B. Theoretical results and discussions
In this appendix, we prove all the results of the paper and present other theoretical findings. We first define the Wasserstein
distance (Villani, 2009) and justify (1).

Definition 1. For two probability distribution µ1, µ2 with finite second momments on a metric space M, the 2-Wasserstein
metric W (µ1, µ2) between µ1, µ2 is defined by

W (µ1, µ2)
2 = inf

γ∈Γ(µ1,µ2)

∫
d(x, y)2 dγ(x, y),

where Γ(µ1, µ2) is the set of couplings of µ1, µ2, i.e., the collection of probability measures on M×M whose marginals
are µ1 and µ2, respectively.

Suppose S = {s1, . . . , sm} is a finite discrete set and d is the discrete metric on S. For distributions µ, ν on S, let
(µ(si))1≤i≤n and (ν(si))1≤i≤n be their respective probability weights.

Lemma 2.

W (µ, ν)2 =
1

2

∑
1≤i≤m

|µ(si)− ν(si)|.

Proof. This is a known result and we present an elementary self-contained proof here. Let γ =
(
γ(si, sj)

)
1≤i,j≤m

be in

12
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Γ(µ, ν). We have ∑
1≤i≤m

∑
1≤j≤m

γ(si, sj)d(si, sj)
2

=
∑

1≤i≤m

∑
1≤j ̸=i≤m

γ(si, sj)

=
∑

1≤i≤m

 ∑
1≤j≤m

γ(si, sj)− γ(si, si)


=

∑
1≤i≤m

(µ(si)− γ(si, si))

≥
∑

1≤i≤m

(µ(si)−min(µ(si), ν(si)).

(4)

As W (µ, ν)2 is defined by taking the infimum of the left-hand side over all γ ∈ Γ(µ, ν), we have W (µ, ν)2 ≥∑
1≤i≤m

(
µ(si) − min(µ(si), ν(si)

)
. By the same argument, we also have W (µ, ν)2 ≥

∑
1≤i≤m

(
ν(si) −

min(µ(si), ν(si)
)
. Summing up these two inequalities, we have

2W (µ, ν)2 ≥
∑

1≤i≤m

(
µ(si) + ν(si)− 2min(µ(si), ν(si)

)
=

∑
1≤i≤m

|µ(si)− ν(si)|.

Therefore, to prove the lemma, it suffices to show that there is a γ such that γ(si, si) = min
(
µ(si), ν(si)

)
. For this, we prove

a slightly more general claim: if non-negative numbers (xi)1≤i≤m and (yi)1≤i≤m satisfy
∑

1≤i≤m xi =
∑

1≤j≤m yi = a,
then there are non-negative (zi,j)1≤i,j≤m such that

∑
1≤j≤m zi,j = xi, 1 ≤ i ≤ m,

∑
1≤i≤m zi,j = yj , 1 ≤ j ≤ m, and

zi,i = min(xi, yi), 1 ≤ i ≤ m.

We prove this by induction on m. The case for m = 1 is trivially true by taking z1,1 = x1 = y1. For m ≥ 2, without loss
of generality, we assume that x1 ≥ y1 and x2 ≤ y2. Then we choose z1,1 = y1, z2,2 = x2, z1,j = 0, 1 < j ≤ m and
zi,2 = 0, 1 ≤ i ̸= 2 ≤ m. As a result, we form another two sequences of non-negative numbers x1 − y1, x3, . . . , xm and
y2 − x2, y3, . . . , ym with both summing to a − x2 − y1. By the induction hypothesis, we are able to find non-negative
(z′i,j)1≤i,j≤m−1 for the two new sequences of length m− 1 each. It suffices to let zi,j = z′i−1,j−1 for i > 1 or j > 2 and
zi,1 = z′i−1,1 for i > 1 (illustrated in Fig. 10). This proves the claim and hence the lemma.

zi,1 zi,j

z′i−1,1 z′i−1,j−1

y1

x2

0

00

0

0

Figure 10. The relations between zi,j and z′i,j .

Regarding non-uniformity defined by (1), it suffices to let µ be µv and ν be the uniform distribution on S. Therefore. w(v)
is nothing but 2W (µv, ν)

2 for the uniform distribution ν on S.

We now move on to the results in Section 3 by first proving the averaging property Lemma 1.
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Proof of Lemma 1. Taking partial derivatives of f ′⊤LGf
′ w.r.t. f ′v and setting it to be 0 yield the stated identity.

Next, we need the following result to justify using f and (µv(s))v∈V have similar smooth interpolations, in view of the fact
that f is an approximation of (µv(s))v∈V .

Lemma 3. If G is connected and O is non-empty, then smooth interpolation f 7→ f̃ as a function Rn → Rn is well-defined
and linear.

Proof. To see this, setting the partial derivatives of f ′⊤LGf
′ to be 0 yields a linear relation between g and h, where g (resp.

h) is the subvector of f̃ corresponds to nodes V\O (resp. O). The relation takes the form L1g = L2h, where L1 is the
submatrix of LG whose rows and columns are indexed by V\O. It suffices to show that L1 is invertible. As L1 has a strictly
smaller size, by the eigenvalue interlacing property (Hwang, 2004), we only need to show the case for O = {v} being a
singleton. Let Nv be the neighbors of v ∈ G. Notice that L1 = D + L′, where L′ is the Laplacian of the induced graph G′

on V\{v} and D is the diagonal matrix with 1 at the entries indexed by Nv. If L1x = 0, then xu = 0 for u ∈ Nv and so
does xv′ for any v′ in the connected component of G′ containing u. As G is connected, this forces x to be the zero vector
and the result is proved.

Recall that fv is observed either 0 or 1 at v ∈ O. An immediate consequence of the averaging property is the following.

Corollary 2. For every v ∈ V , 0 ≤ f̃v ≤ 1.

Proof. Suppose on the contrary that there is a v such that f̃v > 1. Without loss of generality, we assume that f̃v =

max{f̃v′ , v′ ∈ V}. By the averaging property, the signal values of all the neighbors of v are the same as f̃v. As G is
connected, the same holds for the value of f̃ at every node of G, which is a contradiction. The same argument shows that
f̃v ≥ 0 for v ∈ V .

Suppose V ′ is a subset of V . We define the contraction G/V′ of G w.r.t. V ′ as follows. The vertex set of G/V′ is (V\V ′)∪{u}.
For (v, v′) ∈ E and v, v′ ∈ V\V ′, the edge (v, v′) remains in G/V′ . For (v, v′) ∈ E and v /∈ V ′, v′ ∈ V ′, there is the edge
(v, u) in G/V′ . Intuitively, we have replaced the entire vertex set V ′ be a single node u, and thus called a contraction.

Lemma 4. G/V′ is connected.

Proof. Consider any two distinct nodes v, v′ ∈ G/V′ . If v ̸= u, v′ ̸= u, then they are connected by a path P in G. In G/V′ ,
they are connected by the path P/(P∩V ′).

Otherwise, without loss of generality, we assume v = u and v′ ̸= u. Let w(·) be any node in V ′ and P be a path connecting
w(·) and v′ in G. Then P/(P∩V′) is a path connecting v = u and v′ in G/V′ .

We can now prove Theorem 1.

Proof. Let G′ be the graph obtained from G be contracting all the level-components of G, one at a time. The graph G′ is
connected by Lemma 4. Denote the vertices of G′ by cv where Cv is a level-component of G. It is possible that cv = cv′ as
long as v′ ∈ Cv . In addition, G is no longer simple as there can be multiple edges between the same pair of nodes. Each edge
in G′ is associated with a unique edge (v, v′) ∈ E . Therefore, for convenience, we remain using (v, v′) for the edge in G′.

The signal f̃ induces a signal f̃ ′ on G′ by f̃ ′cv = f̃v, this is well-defined as f̃ has the same value over a level-component.
Moreover, if cv and cv′ are connected by an edge in G′, then f̃ ′cv ̸= f̃v. We give G′ an orientation by requiring (v, v′) is
oriented from v to v′ if f̃v < f̃v′ , or equivalently f̃ ′cv < f̃ ′cv′ . By the averaging property, if (v, v′) is an oriented edge, then
there is an oriented edge (v′, u′) unless v′ ∈ O1. Similarly, there is also an oriented edge (u, v) unless v ∈ O0. Pairs of
directed edges (u, v) and (v, w) are called matched.

For v ∈ V , we consider cv of G′. We can consecutively find matching edges in both directions until reaching cv0 , v0 ∈ O0

and cvm , vm ∈ O1 respectively. Connected the two paths at cv , we obtain P passing through cv such that consecutive edges
are matched. By construction, P also gives a path (with the same edge labels) that satisfies (a)-(c) for v.

Theorem 1 is used to deduce Corollary 1 as follows.

14



Leveraging Label Non-Uniformity for NC in GNNs

Proof. We assume that GVr0
is connected and r ≥ r0. We prove GVr

is connected by induction on |Vr|−|Vr0 |. If |Vr| = |Vr0 |,
then there is nothing to show. Suppose there is an r0 ≤ r′ < r such that |Vr′ | − |Vr0 | = |Vr| − |Vr0 | − 1. By the induction
hypothesis, GVr′ is connected. Let Vr\Vr′ be the singleton set containing v′.

As we assume that f̃u ̸= f̃v for u, v /∈ O0 ∪ O1, the level-component Cv = {v} for any v /∈ O0 ∪ O1. By Theorem 1, there
is a path P with increasing f̃ value connecting O0 and O1 that passes through v′. The node before P must belong to Vr′ ,
and hence v′ is connected to GVr′ . As a result, GVr is connected.

The proof regarding connectedness of GVc
r

is identical.

We proceed to prove Theorem 2 with the following observation.

Lemma 5. Let O′ be the immediate neighbors of O in V \O. For each v′ ∈ O′, let dv′ be the number of nodes v ∈ O such
that (v, v′) ∈ E . Then we have ∑

v′∈O′

dv′ f̃v′ =
∑

v′∈O′

∑
(v,v′)∈E,v∈O

fv.

Proof. For each v ∈ V\O, by Lemma 1,
∑

(v,v′)∈E f̃v =
∑

(v,v′)∈E f̃v′ . If we sum up these identities, we have∑
v/∈O

∑
(v,v′)∈E

f̃v =
∑
v/∈O

∑
(v,v′)∈E

f̃v′ . (5)

In (5), if both v and v′ are not in O and (v, v′) ∈ E , then f̃v and f̃v′ occur in both sides of (5). Canceling these common
terms, we have

∑
v′∈O′ dv′ f̃v′ =

∑
v′∈O′

∑
(v,v′)∈E,v∈O fv .

The proof does not require that O in Lemma 5 be exactly O0∪O1. The only requirement is that we interpolate f̃ by requiring
that it must agree with observed f at O, so that the averaging property can be applied.

Proof of Theorem 2. Let G0 (resp. V1) be the induced subgraph of G with nodes ∂V1 ∪ (V \V1) (resp. ∂V0 ∪ (V \V0)). We
apply Lemma 5 to ∂V1 ∪ O0 in G0 and ∂V0 ∪ O1 in G1 respectively to obtain the following identities:

A(f̃ ,V0) +
∑

(v,v′)∈Γ(O0),v∈O0

f̃v′ = A(f̃ ,V1), and (6)

A(f̃ ,V0) +
∑

(v,v′)∈Γ(O1),v∈O1

1 = A(f̃ ,V1) +
∑

(v,v′)∈Γ(O1),v∈O1

f̃v′ . (7)

As 0 < f̃v < 1 for v /∈ O, (6) yields that A(f̃ ,V0) ≤ A(f̃ ,V1)−aΓ(O0), while (7) yields that A(f̃ ,V0) ≤ A(f̃ ,V1)−bΓ(O1).
By combining the two inequalities, we obtain the desired result.

It remains to discuss Theorem 3. We first prove the result.

Proof of Theorem 3. Let U ⊂ V be a subset that realizes h(G). If U ∩ V ′ = ∅ or Uc ∩ V ′ = ∅, we have the following
possibilities.

Case 1: U = U0 or U = U1. For the former, we have

h(G) = |Γ(U0)|
min(|U0|, |U1|+ |V ′|)

≥ |Γ(U0)|
|U0|

.

Similarly, if U = U1, then h(G) ≥ |Γ(U1)|/|U1|.
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(a) (b) (c) (d)

U0

U1

V ′

U0

V ′

U1

V ′ V ′

U0

U1 U2

Figure 11. Illustration of Theorem 3 with Venn diagrams.

Case 2: U is a proper subset of U0. Let U be the complement of U in U0. The set Γ(U) consists of two parts C1 ̸= ∅ and
C2 ⊂ Γ(U). The set C1 is a cut in the induced graph GU0

. Therefore, we may estimate h(G) as follows:

h(G) = |C1|+ |C2|
min(|U|, |U|+ |U1|+ |V ′|)

≥ |C1|
|U|

≥ c(GU0)

|U0|
.

Case 3: U is a proper subset of U0. Similar to Case 2, we have

h(G) ≥ c(GU1)

|U1|
.

On the other hand, let N0 (resp. N1) be union U0 (resp. U1) and its the neighbors contained in V ′. By our assumptions,
N0 ∩N1 = ∅. For U = N0, notice that Γ(U) is a cut of GV′ and we estimate:

h(G) ≤ |Γ(U)|
min(|N0|, |N1|)

≤ C(GV′)

min(|N0|, |N1|)
.

Therefore, if C(GV′) satifies

C(GV′) < c0 = min(|N0|, |N1|)·min(
|Γ(U0)|
|U0|

,
|Γ(U1)|
|U1|

,
c(GU0

)

|U0|
,
c(GU1

)

|U1|
)

( remark: c0 is independent of GV′ ),

then Case 1 - Case 3 are impossible and we must have both U ∩ V ′ ̸= ∅ and Uc ∩ V ′ ̸= ∅. In this case, we have seen that
h(G) ≤ C(GV′)/c1, with c1 = min(|N0|, |N1|).

We illustrate Theorem 3 with Fig. 11. To create a bottleneck for G depicted in (a), we may create a bottleneck in V ′ according
to the theorem as in (b). The conditions of the theorem may not always be satisfied. For example in (c), V ′c can be connected.
In this case, if V ′ is large enough, then including a small number of additional nodes makes the conditions hold. It is also
possible that V ′c has more than two components as in (d), we can then apply Theorem 3 repeatedly each time dealing with
two components.

C. Dataset information and source code
In Table 5, we provide statistics of datasets used in the paper. For data splitting, we follow the cited references. More
specifically, Cora, Citeseer, Pubmed, CS, and Photo use 20 training examples per class, with 500 validation samples and
1000 test samples. Disease and Airport use random 30/10/60, 70/15/15 splits respectively. Both Texas and Chameleon use
48/32/20 split.

In http://github.com/amblee0306/label-non-uniformity-gnn, we provide the source code and instruc-
tions to use the code.
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Table 5. Dataset statistics
Dataset Nodes Edges Classes Features

Cora 2708 5429 7 1433

Citeseer 3327 4732 6 3703

Pubmed 19717 44338 3 500

Photo 7487 119043 8 745

CS 18333 81894 15 6805

Disease 1044 1043 2 1000

Airport 3188 18631 4 4

Texas 183 309 5 1703

Chameleon 2277 36101 4 2325

D. More comparisons
In this appendix, we make direct comparisons with a few more benchmarks: Renode (Chen et al., 2021), Self-train (Li et al.,
2018), and PTDNet (Luo et al., 2021). As the implementations of Renode and PTDNet provided by the respective authors
are both based on GCN, we also use the GCN version of wGNN. Therefore unlike Section 5.1, wGNN and its variants in
this appendix are not based on the models they compare with.

Self-training shares some common features with Algorithm 1 by introducing test nodes to the training set, we compare it
with wGNN1 (cf. Section 5.3) that does not use Algorithm 2. Similarly, PTDNet involves edge dropping (for a different
purpose), and we compare it with wGNN2 without using Algorithm 1. As Algorithm 2 (almost) does not play a role if the
graph is a tree or very sparse, the comparisons between wGNN2 and PTDNet do not consider Diseases and Texas datasets.

Comparison results are shown in Table 6. We see that wGNN (resp. wGNN1) has an overall better performance than Renode
(resp. Self-training). On the other hand, each of wGNN2 and PTDNet has its own advantages over certain datasets. For the
densest datasets Airport, Chameleon, and Photo, wGNN2 has much better performance (each with > 10% improvement).
For sparser graphs, Algorithm 2 does not permit dropping too many edges as we still need to maintain a spanning tree
among nodes selected by w(·), and hence it is less impactful.

Table 6. Comparisons with Renode, Self-train and PTDNet
Cora Citeseer Pubmed CS Photo Airport Disease Texas Chameleon

wGNN 83.12± 0.31 73.95± 0.46 80.48± 0.25 89.29± 0.14 92.35± 0.18 87.77± 1.57 89.02± 4.33 58.11± 9.72 64.45± 2.40
Renode 81.28± 0.75 69.54± 0.79 79.62± 0.38 90.08± 0.56 89.25± 1.20 76.40± 3.73 83.35± 1.26 58.11± 4.72 52.98± 2.84

wGNN1 82.88± 0.41 73.55± 0.46 80.36± 0.39 89.29± 0.14 91.93± 0.25 87.55± 1.89 89.02± 4.33 55.41± 7.35 63.95± 1.94
Self-training 82.27± 0.33 73.24± 0.44 80.32± 0.18 88.92± 0.19 90.62± 0.43 85.69± 0.89 87.18± 1.18 54.14± 7.45 63.97± 2.33

wGNN2 81.10± 0.25 71.98± 0.52 79.19± 0.37 88.54± 0.37 91.23± 0.30 86.07± 1.52 − − 64.28± 1.94
PTDNet 82.80± 2.60 72.70± 1.80 79.80± 2.40 90.37± 0.17 80.11± 0.44 64.28± 1.94 − − 50.35± 1.93
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