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Abstract

Building next generation generalist systems requires machine
learning to capture data distribution and constraint reason-
ing to ensure structure validity. Nevertheless, effective ap-
proaches are lacking in bridging constraint satisfaction and
machine learning. We propose COnstraint REasoning em-
bedded structured learning (CORE), a scalable constraint rea-
soning and machine learning integrated approach for learn-
ing over structured domains. We propose to embed the rea-
soning module as a layer in the sequential neural networks
for structured prediction and content generation. We evalu-
ate CORE on several applications: vehicle dispatching ser-
vice planning, if-then program synthesis, text2SQL genera-
tion, and constrained image generation. The proposed CORE
module demonstrates superior performance over state-of-the-
art approaches in all the applications. The structures gener-
ated with CORE satisfy 100% of the constraints, when using
exact decision diagrams.

Introduction
The emergence of large-scale constraint reasoning and ma-
chine learning technologies have impacted virtually all ap-
plication domains, including linguistics, operations, and vi-
sion. Constraint reasoning has traditionally been applied
to building prescriptive models that generate solutions for
strategic, tactical, or operational use (Xue, Choi, and Dar-
wiche 2012). It requires a precise problem description and
is usually difficult to be made flexible to the evolving data
distributions. Machine learning, on the other hand, has been
applied primarily to build predictive models, such as classi-
fications or regressions (Bishop 2007). While the structure
of a machine learning model (like a neural net) must be de-
signed, the actual model parameters are learned via gradient
descent. This gives machine learning models the flexibility
to adapt to the evolving data distributions. Nevertheless, it
is difficult to enforce constraints on the output of machine
learning models. Many real-world applications are beyond
the reach of constraint reasoning or machine learning alone.

In our recent line of work (Jiang et al. 2022; Xue and Ho-
eve 2019; Jacobson and Xue 2022), we have been focus-
ing on structured prediction and content generation prob-
lems. Both learning problems require a tight integration of
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Figure 1: (Up) Our proposed CORE framework embeds con-
straint reasoning in into structured learning problems. At a
high level, CORE (in blue colored box) is a fully differen-
tiable layer that filters out the infeasible output from the
structured output to ensure constraint satisfaction. (Bottom)
We demonstrate the effectiveness of CORE on vehicle dis-
patching service, if-then program synthesis, Text2SQL gen-
eration, and constrained image generation tasks.

constraint reasoning and machine learning. Structured pre-
diction and content generation have diverse application do-
mains, ranging from natural language processing (Socher
et al. 2013) to scene generation (Deng et al. 2021; Arad Hud-
son and Zitnick 2021).

We propose Constraint Reasoning embedded Structured
Prediction (CORE), a scalable constraint reasoning and ma-
chine learning integrated approach for learning over the
structured domains. The main idea is to augment structured
predictive models with a constraint reasoning module that
represents physical and operational requirements. See Fig-
ure 1 for our proposed CORE model, which integrates con-
straint reasoning and machine learning for all four applica-
tions. In the first three applications, we embed decision di-
agrams (Akers 1978) as a differentiable module into neural
networks that can enforce constraint satisfaction of the out-
puts during training and testing. A decision diagram (DD)
encodes each solution (an assignment of values to variables
satisfying the constraints) as a path from the root to the ter-
minal in the diagram. DD regards neural network predictions
as the simulation of descending along a path in the decision
diagram. DD filters out variable assignments from the neu-
ral network predictions that violate constraints. For the last



application, we embed a tree search algorithm which carries
out step-by-step reasoning of the spatial positions of every
object into content generation. The spatial reasoning mod-
ule decides the objects’ positions following the output of a
Recurrent Neural Network (RNN) in a process of iterative
refinement. The RNN outputs the bounding boxes for each
object to be generated. When determining one coordinate of
the bounding box, the RNN iteratively halves the range of
the coordinate until it is sufficiently small. During learning,
the RNN is trained to learn implicit spatial knowledge, such
as trees growing from the ground and birds flying in the sky.
During inference, explicit constraints can be enforced by a
forward-checking tree search algorithm, which removes all
those position plans leading to constraint violation.

The applications we consider in this paper all require tight
integration of constraint reasoning and machine learning.
Our first application, vehicle dispatching service planning,
recommends a route that satisfies daily service needs while
meeting driver preferences. Historical data may reveal that
the drivers do not follow common stylized objectives such
as minimizing distance or time. Therefore, standard con-
straint reasoning tools, e.g., solvers for the traveling sales-
man problem, cannot be applied. While we need machine
learning to capture the drivers’ implicit objective functions,
pure machine learning-based approaches are insufficient be-
cause they often generate routes that violate delivery re-
quests. Our second and third applications are program syn-
thesis from natural language, which clearly requires ma-
chine learning to generate structured programs. Neverthe-
less, a pure learning approach cannot enforce the syntactic
and grammar rules of those programs. Our last application
is constrained image generation, which must generate fea-
sible positions for a set of objects to be rendered in the im-
age under user-defined positional constraints. A deep diffu-
sion model can then inpaint the scene with background and
position-organized objects, generating a “realistic” image.
The pure deep generative model tends to fail on the number
of objects, as well as the positional constraints of the objects,
while our reasoning approach does not.

Our proposed CORE framework demonstrates superior
performance against state-of-the-art approaches in all appli-
cations. First, the structures generated by CORE are better
in constraint satisfaction. In vehicle service dispatching, all
CORE generated routes are valid, while a conditional gen-
erative adversarial network (cGAN) without CORE gener-
ates on average less than 1% of valid routes when handling
medium-sized delivery requests. For if-then program syn-
thesis, the percentage of valid programs produced increased
from 88% to 100% with the CORE module incorporated into
the baseline. For Text2SQL, the percentage of valid SQL
queries increased from 83.7% to 100% with CORE incorpo-
rated into the baseline on the testing set. For constrained im-
age generation, the locations of the placed objects satisfy the
given specifications. CORE also improves the learning per-
formance of structured prediction models. We show that the
routes generated by CORE better fulfill drivers’ preferences
than cGAN without CORE. In if-then program synthesis,
CORE module leads to approximately 2.0% improvement in
accuracy compared with the baseline. In Text2SQL genera-

tion, the CORE module improves around 4.2% in execution
accuracy. In constrained image generation, CORE can gener-
ate realistic scene images with all the objects present and po-
sitioned at their natural locations. CORE also works well in
zero-shot transfer learning: it generates good-quality scenes
satisfying constraints unseen from the training set without
retraining or fine-tuning.
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