

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TOWARDS ADVERSARILY ROBUST CLIP: A HIER- ARCHICAL MODEL FUSION METHOD USING OPTIMAL TRANSPORT

Anonymous authors

Paper under double-blind review

ABSTRACT

In recent years, multimodal models such as CLIP have achieved impressive performance but remain vulnerable to adversarial perturbations. Although adversarial training can enhance robustness, it often leads to overfitting toward specific attack types. One solution for improving generalization is to integrate multiple diverse and adversarially trained submodels, but this strategy could incur high test-time cost. To achieve a promising tradeoff between robust generalization and efficiency, we consider to design an optimal transport (OT) based model fusion method, which is called “HOT-CLIP (Hierarchical Optimal Transport Fusion for CLIP)”. Although several OT based model fusion methods have been proposed before, they cannot be easily adapted to solve our problem, since they may suffer the issues like parameter misalignment when dealing with highly diverse and multimodal submodels. Our proposed method constructs diverse submodels by varying both attack methods and textual prompts, and integrates them via a hierarchical two-level OT fusion method. The intra-attack fusion first aligns and merges models within the same attack family, and the inter-attack fusion subsequently combines these aligned models across different attacks. Through this carefully crafted fusion strategy, HOT-CLIP can significantly improve the accuracy for alignment and reduce the total occupied memory. More importantly, the obtained robust visual encoder can be deployed without additional inference-time cost. In our experiments, the results on multiple vision-language tasks demonstrate that HOT-CLIP can greatly enhance the model’s adversarial robustness while maintaining competitive clean accuracy.

1 INTRODUCTION

The rapid advancement of large vision–language models (LVLMs) (Zhang et al., 2024) has significantly reshaped the landscape of artificial intelligence. By jointly learning from visual and textual modalities, LVLMs demonstrate strong generalization ability across a wide range of downstream tasks, including image classification (Radford et al., 2021), image retrieval (Li et al., 2022), image captioning (Hu et al., 2022), and multimodal reasoning (Yin et al., 2024). A key step in this progress is the development of **alignment** models (Radford et al., 2021; Li et al., 2022). Among them, Contrastive Language–Image Pretraining (CLIP) (Radford et al., 2021) is a representative framework that leverages large-scale contrastive pretraining on image–text pairs to align visual and textual representations effectively.

Although CLIP demonstrates remarkable performance across a wide range of large vision–language tasks, it still faces significant challenges in robustness and reliability. In particular, CLIP’s vision encoder is vulnerable to adversarial perturbations: even small, carefully crafted changes to the input image can induce substantial misalignment between visual and textual representations, ultimately leading to errors in downstream tasks. Prior work suggests that this vulnerability may be partly attributed to the high dimensionality and local linearity of deep visual feature spaces (Goodfellow et al., 2015). This vulnerability is especially concerning in safety-critical domains such as medical imaging (Javed et al., 2024) and autonomous driving (Rossolini et al., 2023), where incorrect predictions may cause severe consequences. Figure 1 provides an example to illustrate the adversarial impact on image captioning performance.

To address these vulnerabilities, various defense strategies have been explored. “Test-time” defenses attempt to mitigate adversarial effects without modifying the training process. One recently proposed approach is CIDEr (Xu et al., 2024), which detects adversarial images by measuring the semantic distance between the original and denoised inputs. Another example, SmoothVLM (Sun et al., 2024) introduces controlled noise to mitigate the effects of localized adversarial perturbations. However, since test-time defenses do not modify model parameters, they are often limited in their ability to address the underlying vulnerabilities of CLIP’s vision encoder.

A more effective strategy is *adversarial training*, where models are explicitly optimized on adversarial examples to improve robustness (Madry et al., 2018; Schlarmann et al., 2024). For example, RobustCLIP (Schlarmann et al., 2024) incorporates adversarial perturbations during training to maintain alignment, while Sim-CLIP (Hossain & Imteaj, 2024b) enforces representation consistency between clean and perturbed samples. However, adversarial training is often prone to overfitting to specific attack patterns and exhibits limited generalization to unseen perturbations (Rice et al., 2020). To overcome the limited generalization of adversarial training, ensemble-based methods (Dong et al., 2020; Hu et al., 2024; Zhang et al., 2025a) have been explored to improve robustness by combining multiple models, which can collectively handle a wider variety of perturbations. However, conventional ensemble methods are challenging to deploy on LVLMs, as these models already impose substantial computational demands (Zhang et al., 2025b), and ensembling will further introduce significant additional memory and inference overhead. Beyond ensembling, **model fusion** techniques (Smith & Gashler, 2017) aim to integrate the parameters of multiple networks rather than merely combining their outputs. The major difference between ensembling and fusion is that ensembling scales inference cost with the number of submodels, while fusion only produces a single model.

Nevertheless, the challenge of standard fusion methods (e.g., weight averaging) (Smith & Gashler, 2017) is the lack of one-to-one correspondence between the parameters from different models. Namely, for two different models, the neurons respectively located in the same position of them may not be functionally similar (a simple example is given in Figure 2 of Section 2). Thus, it is necessary to align the neurons before parameter averaging. **Optimal Transport (OT)** (Peyré & Cuturi, 2019), as formally defined in Section 2, provides a principled metric that quantifies the distance between two probability distributions by computing the minimal cost of transporting one distribution to match the other. In the context of model fusion, OT can be used to compute a transport matrix T that aligns neurons across models before performing averaging-based fusion (Singh & Jaggi, 2020; Imfeld et al., 2024). Although OT can partially mitigate the parameter misalignment issue, its effectiveness might be constrained when applied to highly diverse models. This is because standard OT establishes correspondences based on geometric distances in parameter space (e.g., Euclidean or cosine), which may not really capture the semantic consistency (Chuang et al., 2023). Consequently, parameters that are close under such geometric measures can still encode distinct underlying features, particularly when the models are trained under different conditions (e.g., different data distributions or architectures).

In summary, applying OT Fusion to adversarially trained CLIP submodels is not straightforward, due to a challenging dilemma. **On the one hand, to ensure model’s robustness, the submodels need to be as diverse as possible**, since submodels trained under different adversarial attacks develop distinct mappings in the input space, resulting in diverse representations. This diversity produces complementary decision boundaries across submodels, collectively enhancing the final fused model’s robustness to a wider range of adversarial perturbations. **On the other hand, to ensure the accuracy of OT Fusion, the submodels need to be as similar as possible**. As explained above, OT primarily aligns parameters based on geometric metrics rather than semantic consistency, which may reduce its effectiveness when the submodels are highly diverse.

Our contributions. To achieve a pleasant trade-off between the above two aspects, we propose Hierarchical Optimal Transport Fusion method for CLIP (HOT-CLIP), a novel framework that con-

Figure 1: The *adversarial images* are generated using the PGD attack under the ℓ_∞ norm with $\epsilon = 2/255$, and the *mistaken captions* are obtained by applying LLaVA to these perturbed inputs.

108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161

structs diverse adversarial submodels and hierarchically fuses them via optimal transport to produce a single robust CLIP visual encoder. To the best of our knowledge, this is also the first work to investigate model fusion problem in the context of adversarial robustness.

– HOT-CLIP adopts a carefully crafted two-stage procedure, which first constructs diverse adversarial submodels, and then hierarchically fuses them into a single robust visual encoder. Stage 1 constructs a set of diverse submodels by varying both the adversarial attack settings used during training (training data) and the textual prompts (training labels). This diversity ensures that the resulting submodels capture complementary robustness patterns. Stage 2 hierarchically fuses these submodels via optimal transport, effectively balancing the trade-off between submodel diversity and alignment. It first aligns and fuses models within the same attack family (intra-attack), consolidating prompt-induced diversity while ensuring that the models are sufficiently similar for effective OT alignment. It then fuses the resulting models across different attacks (inter-attack), integrating attack-based diversity to produce the final robust model.

– Then, we conduct extensive experiments on three representative tasks for vision-language models, image classification, visual question answering (VQA), and image captioning. Across these tasks, HOT-CLIP consistently enhances adversarial robustness over existing methods, with relative robust score improvements of around 2.6% for image classification, around 20.4% for VQA, and around 16.5% for image captioning. At the same time, its clean performance remains highly competitive. These results demonstrate that HOT-CLIP can effectively navigate the robustness–accuracy trade-off, and has the potential to establish a new state-of-the-art for adversarially robust multimodal models.

2 PRELIMINARIES

Due to space constraint, an extended review of related work is presented in the Appendix B. In this section, we briefly introduce the preliminaries related to our study, including the structure of CLIP (Radford et al., 2021), adversarial training (Madry et al., 2018), and optimal transport fusion (Peyré & Cuturi, 2019; Singh & Jaggi, 2020).

Let \mathcal{X} denote the image space and \mathcal{T} denote the text space. CLIP consists of two modality-specific encoders: an image encoder $f_{\theta_{\text{img}}} : \mathcal{X} \rightarrow \mathbb{R}^d$ and a text encoder $f_{\theta_{\text{txt}}} : \mathcal{T} \rightarrow \mathbb{R}^d$, where θ denotes the model parameters. In particular, we denote the parameters of the image and text encoders as θ_{img} and θ_{txt} , respectively. These encoders map images $x \in \mathcal{X}$ and text descriptions $t \in \mathcal{T}$ into a shared d -dimensional embedding space.

Definition 2.1 (CLIP Classifier). Consider a K -class classification task. Let $\mathcal{C} = \{c_1, c_2, \dots, c_K\}$ denote the set of candidate classes, and $\mathcal{Y} = \{1, 2, \dots, K\}$ denote the corresponding label set. For each class c_k , define a textual prompt t_k associated with class c_k (e.g., $t_k = \text{"a photo of } c_k\text{"}$). The CLIP classifier $g : \mathcal{X} \rightarrow \mathbb{R}^K$ is defined as

$$g(x)_k = \cos(f_{\theta_{\text{img}}}(x), f_{\theta_{\text{txt}}}(t_k)), \quad k = 1, \dots, K, \quad (1)$$

where $f_{\theta_{\text{img}}}$ and $f_{\theta_{\text{txt}}}$ denote the image and text encoders, respectively, $x \in \mathcal{X}$ is the input image and $\cos(\cdot, \cdot)$ computes the cosine similarity between normalized embeddings.

Definition 2.2 (Adversarial Example). Given a classifier $g : \mathcal{X} \rightarrow \mathbb{R}^K$ and a clean input image $x \in \mathcal{X}$ with true label $y \in \mathcal{Y}$, an adversarial example is a perturbed input

$$x' = x + \eta, \quad \|\eta\|_p \leq \epsilon, \quad \text{s.t. } \text{argmax } g(x') \neq y, \quad (2)$$

where η is a small perturbation constrained within an L_p -ball of radius ϵ , such that the classifier misclassifies the perturbed input (i.e. $g(x') \neq y$). To obtain such perturbations, adversarial attacks can be categorized into two types:

(i) **Untargeted attack:** the adversary aims to maximize the loss for the true label:

$$\eta^* = \arg \max_{\|\eta\|_p \leq \epsilon} \mathcal{L}(g(x + \eta), y), \quad (3)$$

where \mathcal{L} is the loss function (e.g. cross-entropy).

(ii) **Targeted attack:** the adversary seeks to misclassify the input as a specific target class $y_{\text{target}} \neq y$:

$$\eta^* = \arg \min_{\|\eta\|_p \leq \epsilon} \mathcal{L}(g(x + \eta), y_{\text{target}}). \quad (4)$$

To defend against such adversarial perturbations, adversarial training (Madry et al., 2018) introduces these adversarial examples into the learning process. In our setup, only the parameters of the image encoder are updated, while the text encoder remains frozen. Specifically, the training objective is formulated as the following min–max optimization:

$$\min_{\theta_{img}} \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\max_{\|\eta\|_p \leq \epsilon} \mathcal{L}(g(x + \eta; \theta_{img}, \theta_{text}), y) \right]. \quad (5)$$

where \mathcal{D} is the dataset. The inner maximization identifies the most challenging adversarial perturbations within the allowed ℓ_p norm bound, while the outer minimization updates the image encoder to correctly classify these perturbed inputs, thereby enhancing adversarial robustness.

Definition 2.3 (Optimal Transport Distance (Peyré & Cuturi, 2019)). *Let $\mu = \sum_{i=1}^n \alpha_i \delta(a^{(i)})$ and $\nu = \sum_{j=1}^m \beta_j \delta(b^{(j)})$ be two empirical probability measures, where $a^{(i)} \in \mathcal{P}$ and $b^{(j)} \in \mathcal{Q}$ are support points, and $\delta(\cdot)$ denotes the Dirac measure assigning unit mass. Here, \mathcal{P} and \mathcal{Q} represent the spaces of source and target points (e.g., neuron embeddings to be aligned). We define a transport cost function $C : \mathcal{P} \times \mathcal{Q} \rightarrow \mathbb{R}^+$, which quantifies the cost of transporting unit mass from $a^{(i)}$ to $b^{(j)}$. The optimal transport distance between μ and ν is defined as*

$$OT(\mu, \nu) = \min_{T \in \Pi(\mu, \nu)} \mathbb{E}_{(a,b) \sim T} [C(a, b)], \quad (6)$$

where $\Pi(\mu, \nu)$ denotes the set of couplings with marginals μ and ν .

In the above definition, the minimizer $T^* \in \Pi(\mu, \nu)$, called the *optimal transport plan*, defines a minimal-cost correspondence between the support points of μ and ν . In the context of model fusion, T^* can be used to align neurons or parameter vectors across models, providing a principled way to combine them while minimizing misalignment. Based on optimal transport, OT Fusion (Singh & Jaggi, 2020) aligns two (or more) neural networks in a layer-wise manner. In each layer, neurons are treated as points (a and b), with their associated weights or activations serving as feature representations. Assuming a uniform probability measure over neurons (μ and ν), the OT problem is solved between corresponding layers to obtain the transport matrix. The transport matrix is then used to align the current layer, and the aligned weights are subsequently averaged to produce the fused layer. Applying this procedure sequentially across layers yields a coherent fusion of the models. In Figure 2, we provide a simple two-layer example, and the full details of OT Fusion are shown in Appendix C.1.

3 METHODOLOGY

In this section, we first present the high-level idea of our method in Section 3.1, and then detail the technical components, including the construction of diverse submodels and the hierarchical OT Fusion in Sections 3.2 and 3.3, respectively.

3.1 OVERVIEW OF OUR METHOD

Our goal is to enhance the robustness of CLIP’s visual encoder against adversarial perturbations. The key idea is to leverage diversity among adversarially trained submodels and integrate them through OT Fusion. Figure 3 illustrates the overall framework.

Stage 1: Diverse Adversarial Submodels Construction. According to the adversarial training objective introduced in Definition 2.2, the parameters of a model are influenced by multiple factors, such as the training data, model architecture, and optimization algorithm. Among these, training

Figure 2: Neuron alignment via OT. Assume the neurons with same color are functionally similar. The original models “A” and “B” exhibit a permutation in neuron correspondence (left figure); for example, the first neuron in the first layer of A is blue, but the neuron in the same position of B is yellow. In the middle figure, we align the first layer via OT; then, the second layer is aligned in the right figure.

Figure 2: Neuron alignment via OT. Assume the neurons with same color are functionally similar. The original models “A” and “B” exhibit a permutation in neuron correspondence (left figure); for example, the first neuron in the first layer of A is blue, but the neuron in the same position of B is yellow. In the middle figure, we align the first layer via OT; then, the second layer is aligned in the right figure.

Figure 3: Overview of HOT-CLIP. Diverse submodels are first constructed along two axes: prompt-based diversity (n different textual templates) and attack-based diversity (m different adversarial attacks). The hierarchical OT Fusion method is then applied to integrate these $n \times m$ submodels. In the Intra-attack OT Fusion stage, submodels within the same attack family but with different prompts are aligned and fused via optimal transport. In the Inter-attack OT Fusion stage, the first-level fused models from different attack families are further integrated, yielding the final robust visual encoder.

data plays a particularly crucial role, as variations in data directly affect the learned decision boundaries and representations. In our study, all submodels share the same architecture and optimization algorithm, and the **diversity** arises solely from the differences between those specifically “modified” data distributions. Concretely, we train the submodels on adversarial examples generated by different attack algorithms, so that the desired robustness can be diversified across multiple perturbation types. Additionally, a single text template is often insufficient to fully capture the alignment between images and textual labels; for example, the original CLIP (Radford et al., 2021) used about 80 templates. To further enhance the diversity, we vary both the adversarial attack settings and the textual prompts, so that the submodels are trained under different distributions of adversarial examples and supervision.

Stage 2: Hierarchical OT Fusion. Directly fusing these diverse adversarially trained CLIP submodels may be suboptimal. Theoretically, the parameters that are close under geometric measures can encode distinct underlying features, particularly for diversely trained submodels (Chuang et al., 2023; Nguyen et al., 2023; Ormaniec et al., 2025). Even using OT (as illustrated in Figure 2), the highly diverse submodels could still yield non-ignorable error for the final fusion. Moreover, simultaneously fusing all submodels can take a rather large amount of memory space, as a great number of parameters need to be stored and aligned within the same period during the fusion. To neatly circumvent “direct” OT Fusion, we propose a hierarchical two-level OT Fusion framework. The key idea is to control both the similarity and the number of submodels involved at each fusion step, thereby improving alignment quality while keeping memory usage manageable. At the first level, submodels trained under the same adversarial attack but with different textual prompts are grouped and fused via OT. This ensures high internal homogeneity within each group and limits the number of models fused simultaneously. At the second level, the first-level fused models, already aligned in the label space, are further integrated across different attacks. By progressively fusing more homogeneous submodels, this hierarchical design can effectively preserve parameter alignment, leverages complementary robustness, and maintains an affordable memory size.

3.2 CONSTRUCTION OF DIVERSE ADVERSARIAL SUBMODELS

We construct a set of diverse submodels by varying both the attack settings used during adversarial training and the textual prompts used for image–text alignment.

Attack-based diversity. As discussed in Section 3.1, adversarial training typically improves robustness against the specific perturbations seen during training but generalizes poorly to unseen attacks. To mitigate this limitation, we construct submodels under different adversarial settings. Formally,

270 let \mathcal{A} denote a set of adversarial attack methods. Given a clean dataset \mathcal{D} and an attack method
 271 $a \in \mathcal{A}$, we define the attack-specific dataset as
 272

$$273 \quad \mathcal{D}_{\text{adv}}^{(a)} = \{(x + \eta_a(x), y) \mid (x, y) \in \mathcal{D}\} \quad (7)$$

275 where η_a denotes the perturbation generated under method a (e.g., FGSM (Goodfellow et al., 2015),
 276 PGD (Madry et al., 2018), MIM (Dong et al., 2018)) with its own radius ϵ and norm constraint.
 277 Training a visual encoder on $\mathcal{D}_{\text{adv}}^{(a)}$ yields a submodel specialized to adversarial perturbations of a .

278 **Prompt-based diversity.** Beyond attack-based diversity, CLIP-style models also rely on text–image
 279 alignment, which introduces another source of diversity. We consider multiple textual prompt sets
 280 \mathcal{T} . For a given prompt set $t \in \mathcal{T}$, the prompt-specific dataset is defined as
 281

$$282 \quad \mathcal{D}_{\text{prompt}}^{(t)} = \{(x, y^{(t)}) \mid (x, y) \in \mathcal{D}\}, \quad (8)$$

283 where $y^{(t)}$ is the textual representation for class y under prompt t . This generates the submodels
 284 with different label alignment characteristics in the embedding space.
 285

286 For each combination of attack $a \in \mathcal{A}$ and prompt $t \in \mathcal{T}$, we define a fully diversified dataset that
 287 integrates $\mathcal{D}_{\text{adv}}^{(a)}$ and $\mathcal{D}_{\text{prompt}}^{(t)}$:

$$289 \quad \mathcal{D}_{\text{div}}^{(a,t)} = \{(x + \eta_a(x), y^{(t)}) \mid (x, y) \in \mathcal{D}\}. \quad (9)$$

290 Then, we train a submodel $f_{\theta_{\text{img}}}^{(a,t)}$ on $\mathcal{D}_{\text{div}}^{(a,t)}$, where only the parameters θ_{img} of the image encoder
 291 are updated and the text encoder θ_{text} remains fixed. The resulting family of submodels is $\mathcal{M} =$
 292 $\{f_{\theta_{\text{img}}}^{(a,t)} \mid a \in \mathcal{A}, t \in \mathcal{T}\}$.
 293

295 3.3 HIERARCHICAL OT FUSION

296 We then introduce the two-level fusion procedure, consisting of the L-level (Language-level) fusion
 297 and the V-level (Visual-level) fusion. At the L-level, submodels trained under the same adversarial
 298 attack but using different textual prompts are fused. This step consolidates the diversity arising
 299 from multiple prompts. At the V-level, the resulting L-level fused models are further fused across
 300 different adversarial attacks, integrating the diversity introduced by varying attack methods. Due to
 301 the space limit, we leave the full HOT-CLIP algorithm to Appendix C.
 302

303 **L-Level: Intra-attack Fusion.** For a fixed attack $a \in \mathcal{A}$, the set of submodels $\mathcal{M}_a = \{f_{\theta_{\text{img}}}^{(a,t)} \mid t \in \mathcal{T}\}$
 304 share similar robustness properties but differ in feature alignment due to different textual prompts.
 305 The L-level fused model $\bar{f}_{\theta_{\text{img}}}^{(a)}$ is obtained by averaging the weights of submodels, after aligning them
 306 to an “anchor” model (which can be any arbitrary submodel selected from \mathcal{M}_a). Formally, for each
 307 layer ℓ , the fused weight is
 308

$$310 \quad W_{\ell}^{(a)} = \frac{1}{|\mathcal{T}|} \sum_{t \in \mathcal{T}} W_{\ell}^{(a,t), \text{aligned}}, \quad (10)$$

312 where $W_{\ell}^{(a,t), \text{aligned}}$ denotes the aligned weights of submodel $f_{\theta_{\text{img}}}^{(a,t)}$. To obtain the aligned weights
 313 $W_{\ell}^{(a,t), \text{aligned}}$, we first align the columns of the current layer’s weight $W_{\ell}^{(a,t)}$ using the transport
 314 matrix from the previous layer, $T_{\ell-1}^{(a,t)}$. These partially aligned weights are then used to compute
 315 the transport matrix $T_{\ell}^{(a,t)}$ for the current layer, which is subsequently applied to align the rows of
 316 $W_{\ell}^{(a,t)}$, yielding the fully aligned weights $W_{\ell}^{(a,t), \text{aligned}}$. Formally, $W_{\ell}^{(a,t), \text{aligned}}$ is calculated by
 317

$$319 \quad W_{\ell}^{(a,t), \text{aligned}} = T_{\ell}^{(a,t)\top} W_{\ell}^{(a,t)} T_{\ell-1}^{(a,t)}, \quad (11)$$

321 The right multiplication by $T_{\ell-1}^{(a,t)}$ aligns the columns of $W_{\ell}^{(a,t)}$ to the anchor model, while the left
 322 multiplication by $T_{\ell}^{(a,t)\top}$ aligns the rows with respect to the anchor model. For more details, please
 323 see Appendix C.1.

324 **V-Level: Inter-attack Fusion.** After intra-attack fusion, we obtain a set of fused models corresponding to each attack method, denoted as $\{\bar{f}_{\theta_{\text{img}}}^{(a)} \mid a \in \mathcal{A}\}$. We then apply OT Fusion to these
 325 models. Specifically, we compute the OT matrix $T^{(a)}$ between the layers of each submodel and
 326 an arbitrarily selected anchor from $\{\bar{f}_{\theta_{\text{img}}}^{(a)} \mid a \in \mathcal{A}\}$. For a given layer ℓ , the aligned weights are
 327 obtained as
 328

$$W_{\ell}^{(a),\text{aligned}} = T_{\ell}^{(a)\top} W_{\ell}^{(a)} T_{\ell-1}^{(a)}, \quad (12)$$

329 where $W_{\ell}^{(a)}$ denotes the weight matrix of layer ℓ in $\bar{f}_{\theta_{\text{img}}}^{(a)}$, $T_{\ell-1}^{(a)}$ is the transport map from the previous
 330 layer, and $T_{\ell}^{(a)\top}$ is the transpose of the current layer's transport map. Similar to the L-level fusion,
 331 the right multiplication by $T_{\ell-1}^{(a)}$ aligns the columns of $W_{\ell}^{(a)}$ with the anchor model, while the left
 332 multiplication by $T_{\ell}^{(a)\top}$ aligns the rows. The aligned weights are then averaged across all attack-
 333 specific models:
 334

$$W_{\ell}^{\text{fused}} = \frac{1}{|\mathcal{A}|} \sum_{a \in \mathcal{A}} W_{\ell}^{(a),\text{aligned}}. \quad (13)$$

335 Repeating this procedure for all layers yields the final robust model $\bar{f}_{\theta_{\text{img}}}$, which integrates both
 336 prompt-level and attack-level diversity.
 337

338 **Memory usage during the fusion.** By controlling the diversity at each step, this hierarchical
 339 approach could ensure that only relatively similar submodels are aligned at a time. Specifically, the
 340 peak memory size occupied by the submodels is lowered from $\mathcal{O}(|\mathcal{A}||\mathcal{T}| \cdot U)$ for naive global fusion
 341 to $\mathcal{O}(\max\{|\mathcal{A}|, |\mathcal{T}|\} \cdot U)$, where U denotes the memory usage of a single submodel; the detailed
 342 analysis is provided in Appendix C.3.
 343

344 To illustrate some theoretical intuition for why the hierarchical fusion behaves reasonably, we in-
 345 clude the Lemma 3.1, which provides an upper bound on the distance between the hierarchical fused
 346 center and the global Wasserstein barycenter (Aguech & Carlier, 2011). This bound suggests that the
 347 hierarchical fused center remains controlled by the average distance of the individual submodels to
 348 the global barycenter. We add the proof in Appendix C.2.
 349

350 **Lemma 3.1.** *Let $\mu_{a,t}$ denote the submodels trained under attack type a and prompt variant t . Let μ_a^*
 351 be the intra-attack OT barycenter, μ_{hier}^* the hierarchical barycenter obtained from $\{\mu_a^*\}$, and μ_{global}^*
 352 the global Wasserstein barycenter computed over all submodels. Let W_c denote the Wasserstein
 353 distance. Then*

$$W_c(\mu_{\text{hier}}^*, \mu_{\text{global}}^*) \leq \frac{4}{|\mathcal{AT}|} \sum_{a,t} W_c(\mu_{a,t}, \mu_{\text{global}}^*).$$

4 EXPERIMENTS

360 In this section, we evaluate the adversarial robustness of CLIP's visual encoder enhanced with our
 361 hierarchical OT Fusion (HOT-CLIP) framework. We conduct experiments on three representative
 362 multimodal tasks (zero-shot image classification (Radford et al., 2021), visual question answering
 363 (VQA) (Goyal et al., 2017), and image captioning (Hu et al., 2022)) under diverse adversarial attack
 364 scenarios.
 365

4.1 EXPERIMENTAL SETUP

366 **Implementation Details.** We adopt a two-stage training pipeline that combines the construction
 367 of diverse adversarial submodels and hierarchical OT fusion, using CLIP (Radford et al., 2021)
 368 with ViT-L/14 visual encoders as the backbone. First, we construct diverse adversarial submodels
 369 by training CLIP for two epochs on ImageNet, where each submodel is adversarially trained
 370 under a specific attack method (e.g., FGSM (Goodfellow et al., 2015), PGD (Madry et al., 2018),
 371 MIM (Dong et al., 2018)) and with a textual prompt randomly sampled from the 80 templates intro-
 372 duced in (Radford et al., 2021). Next, we perform the hierarchical OT fusion. Within each attack
 373 family, submodels trained with different textual prompts are fused via OT, where layer-wise weight
 374 matrices are represented as neuron embeddings and the Sinkhorn algorithm (Cuturi, 2013) is used
 375 to compute the transport plan. The resulting fused model is fine-tuned for one epoch under the cor-
 376 responding attack setting with a standard text template (“a photo of a ...”). Finally, the first-level
 377

Table 1: Clean and adversarial evaluation on image classification datasets of CLIP model.
 Models are trained on ImageNet, all other datasets are zero-shot. Robustness is assessed using AutoAttack with the l_∞ norm and perturbation bound $\epsilon = 2/255$ and $\epsilon = 4/255$. The last column shows the average accuracy across datasets. Bold indicates the best performance in each column.

Eval.	Vision encoder	Zero-shot datasets													Avg.	
		ImageNet	CaTech	Cars	CIFAR10	CIFAR100	DTD	EuroSAT	FGVC	Flowers	ImageNet-R	ImageNet-S	PCAM	OxfordPets	STL-10	
clean	CLIP	74.9	82.6	78.6	95.6	72.7	55.7	63.5	33.3	79.8	87.7	58.6	52.2	92.1	99.6	73.3
	TeCoA	77.4	77.3	35.3	80.6	51.0	39.5	24.0	13.2	40.5	73.1	54.5	49.8	77.3	93.9	56.2
	FARE	69.2	84.0	63.1	76.7	57.2	44.0	20.2	23.3	57.1	80.9	57.2	50.2	87.5	96.7	61.9
	HOT-CLIP	69.9	85.1	64.0	78.7	60.0	46.2	18.0	21.8	56.9	80.8	59.9	49.6	87.1	96.3	62.5
$\epsilon = 2/255$	CLIP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0
	TeCoA	62.5	70.0	17.5	60.9	34.0	27.2	14.4	5.7	24.1	58.8	44.0	47.2	68.3	87.4	44.4
	FARE	52.1	76.8	29.8	56.5	36.2	28.4	12.2	8.0	28.3	61.0	41.9	50.2	71.5	89.7	45.9
	HOT-CLIP	53.4	79.5	31.8	58.3	37.2	31.8	12.4	8.1	29.7	60.9	44.6	49.6	71.2	91.0	47.1
$\epsilon = 4/255$	CLIP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	TeCoA	48.2	61.4	8.7	37.3	20.2	17.6	11.6	2.3	12.5	41.5	34.5	38.1	55.7	74.6	33.1
	FARE	33.0	64.6	12.5	34.5	20.5	17.0	11.2	2.0	12.3	40.4	31.3	50.2	50.5	74.6	32.4
	HOT-CLIP	34.7	66.5	15.8	38.1	20.9	19.6	10.3	2.9	12.5	39.4	32.8	49.6	51.8	77.0	33.7

fused models from different attacks are integrated through OT Fusion, followed by an additional one epoch of unsupervised adversarial fine-tuning. Further details for hyperparameters and implementation are deferred to Appendix C.1.

Baselines. We compare our method against recent state-of-the-art approaches that aim to improve the adversarial robustness of vision–language models: TeCoA (Mao et al., 2023), which provides a systematic analysis of adversarial robustness in CLIP-like models and proposes tailored fine-tuning strategies to improve zero-shot performance under adversarial settings. FARE (Schlarmann et al., 2024), which introduces adversarial perturbations directly into the visual embedding space and fine-tunes the image encoder in an unsupervised manner.

4.2 EVALUATION ON PERFORMANCE

Zero-shot Image Classification. We evaluate clean and robust accuracies of the CLIP models on ImageNet and 13 zero-shot datasets mentioned in Appendix D. For each dataset, class names are combined with a predefined set of prompt templates. Zero-shot classification is then performed as described in Definition 2.1. To evaluate the adversarial robustness of the models, we adopt AutoAttack (Croce & Hein, 2020) under the ℓ_∞ norm with perturbation radii of $\epsilon = 2/255$ and $\epsilon = 4/255$, each run for 100 iterations. As shown in Table 1, HOT-CLIP achieves the second-best clean accuracy among all methods, slightly lower than the original CLIP. Under adversarial perturbations, it achieves a relative improvement in robustness of 2.6% at $\epsilon = 2/255$ and 1.8% at $\epsilon = 4/255$. These results indicate that our method improves adversarial robustness while maintaining competitive clean accuracy on image classification.

Image Captioning. We further evaluate our method on image captioning, where the model generates natural language descriptions of images. We report the results using the CIDEr score (Vedantam et al., 2015), a widely adopted metric for measuring the quality of generated captions. The experiments are conducted on COCO (Lin et al., 2014) and Flickr30k (Young et al., 2014), using two representative LVLMs: OpenFlamingo-9B (OF) (Alayrac et al., 2022) and LLaVA-1.5-7B (Liu et al., 2023). For clean evaluation, we use the full validation sets; for adversarial evaluation, we randomly sample 500 images from each dataset, using a similar evaluation setup as Schlarmann & Hein (2023). The adversarial robustness is tested with AutoAttack (Croce & Hein, 2020) under the ℓ_∞ norm with $\epsilon \in \{2/255, 4/255\}$, using 100 iterations. As shown in Table 2, HOT-CLIP consistently improves robustness across both datasets. For LLaVA-7B, HOT-CLIP achieves a relative

432
 433 **Table 2: Evaluation of LVLMs using different CLIP encoders on image captioning.** Results are
 434 reported for OpenFlamingo and LLaVA on two image captioning datasets, measured using CIDEr.
 435 The last column shows the average CIDEr score across datasets. Bold indicates the best performance
 436 in each column.

437 VLM	438 Vision 439 encoder	440 COCO			441 Flickr30k			442 Average over datasets		
		443 clean	444 $\epsilon = \frac{2}{255}$	445 $\epsilon = \frac{4}{255}$	446 clean	447 $\epsilon = \frac{2}{255}$	448 $\epsilon = \frac{4}{255}$	449 clean	450 $\epsilon = \frac{2}{255}$	451 $\epsilon = \frac{4}{255}$
452 LLaVA-7B	CLIP	122.2	3.2	2.4	79.1	1.4	0.9	100.6	2.3	1.65
	TeCoA	93.9	40.8	16.9	50.9	26.3	16.5	72.4	33.5	16.7
	FARE	105.8	50.1	33.2	64.7	28.5	20.1	85.2	39.3	26.6
	HOT-CLIP	110.4	56.5	35.5	74.6	43.1	26.5	92.5	49.8	31.0
453 OF-9B	CLIP	85.2	1.6	1.3	63.8	0.6	0.5	74.5	1.1	0.9
	TeCoA	73.5	31.6	21.2	43.5	10.4	10.2	58.5	21.0	15.7
	FARE	81.5	33.2	22.8	54.6	16.1	10.5	68.0	24.6	16.6
	HOT-CLIP	87.9	36.7	26.0	55.2	19.1	11.7	71.5	27.9	18.8

452 **Table 3: Evaluation of LVLMs using different CLIP encoders on VQA.** Results are reported on
 453 VQAv2 and TextVQA, measured by accuracy. The last column shows the average accuracy across
 454 datasets. Bold indicates the best performance in each column.

455 VLM	456 Vision 457 encoder	458 TextVQA			459 VQAv2			460 Average over datasets		
		461 clean	462 $\epsilon = \frac{2}{255}$	463 $\epsilon = \frac{4}{255}$	464 clean	465 $\epsilon = \frac{2}{255}$	466 $\epsilon = \frac{4}{255}$	467 clean	468 $\epsilon = \frac{2}{255}$	469 $\epsilon = \frac{4}{255}$
470 LLaVA-7B	CLIP	37.8	0.2	0.0	72.4	2.6	0.2	55.1	1.4	0.1
	TeCoA	19.4	12.8	8.9	63.4	40.4	29.5	41.4	26.6	19.2
	FARE	27.5	15.4	9.1	65.6	40.9	29.7	46.5	28.1	19.4
	HOT-CLIP	25.3	17.7	12.8	68.8	43.8	34.6	47.0	30.7	23.7
471 OF-9B	CLIP	21.0	0.0	0.0	46.2	3.7	0.5	33.6	1.9	0.2
	TeCoA	12.4	2.9	1.8	45.6	25.5	22.3	29.0	14.2	12.1
	FARE	17.0	3.5	2.6	43.2	24.0	20.7	30.1	13.7	11.6
	HOT-CLIP	22.5	5.2	5.0	51.5	29.1	24.0	37.0	17.1	14.5

472 improvement of 26.7% at $\epsilon = 2/255$ and 16.5% at $\epsilon = 4/255$; for OF-9B, the corresponding relative
 473 gains are 13.4% and 13.3%. These results demonstrate that HOT-CLIP effectively enhances
 474 adversarial robustness in image captioning while preserving competitive clean performance.

475 **VQA.** We also evaluate our method on the task of Visual Question Answering, where the model is
 476 required to provide accurate answers to natural language questions based on image inputs. For
 477 evaluation, we consider two widely used VQA benchmarks: VQAv2 (Goyal et al., 2017) and
 478 TextVQA (Singh et al., 2019). Adversarial evaluation uses the same model and attack settings as
 479 in the image captioning experiments, i.e., OpenFlamingo-9B and LLaVA-1.5-7B, with AutoAttack
 480 under the ℓ_∞ norm ($\epsilon = 2/255$ and $4/255$, 100 iterations). Table 3 reports the VQA accuracy under
 481 clean and adversarial settings, showing that HOT-CLIP consistently enhances robustness across
 482 both benchmarks while maintaining competitive clean performance. For LLaVA-7B, HOT-CLIP
 483 achieves a relative improvement of 9.2% at $\epsilon = 2/255$ and 22.2% at $\epsilon = 4/255$; for OF-9B, the
 484 corresponding relative gains are 20.4% and 19.8%.

485 **Summary of other experimental results.** Due to space constraint, additional ablation studies and
 486 extended evaluations are provided in Appendix E. We conduct ablation studies to examine the effects
 487 of backbone choice, submodel pool composition, adversarial training strength, and fusion strategies.
 488 We further evaluate our method on additional tasks, including targeted attacks and hallucination phe-
 489 nomena in large vision-language models. The results demonstrate that our framework consistently
 490 enhances adversarial robustness across tasks and configurations, while remaining effective across
 491 different model architectures.

486

487

Table 4: Comparison of training cost, fusion efficiency, and memory usage.

488

489

490

491

492

493

494

495

we have added a detailed comparison of training time, fusion time, and memory usage across baselines, including HOT-CLIP, Direct OT Fusion, and FARE. All GPU hours are measured on NVIDIA RTX 4090 GPUs. The results are summarized in Table 4.

496

497

498

499

500

501

502

503

504

505

In the training phase, our method involves fine-tuning 9 sub-models for 2 epochs on 1M images with 10-step adversarial attacks (e.g., PGD). This represents only about 1.4% of the computational cost of training the original CLIP model (trained for 32 epochs on 400M images). Moreover, the training of all sub-models is fully parallelizable, so with sufficient resources, the wall-clock time can be reduced to that of training a single sub-model. We believe this one-time training investment is both manageable and justified, as it produces a single and robust model that supports efficient inference.

506

507

508

509

510

511

512

513

In the fusion phase, the hierarchical structure itself acts as an optimization, effectively reducing memory requirements from $O(|\mathcal{A}||\mathcal{T}| \cdot U)$ to $O(\max\{|\mathcal{A}|, |\mathcal{T}|\} \cdot U)$ (the details are analyzed in Appendix C.3). We also employ the Sinkhorn algorithm to efficiently approximate the optimal transport solutions, significantly accelerating the computation while maintaining stability. In our experiments, each fusion stage—either intra-attack or inter-attack—typically completes in approximately 20 minutes, with peak memory usage reduced from 641GB to 178GB. We consider this computational overhead to be reasonable in practice, given the resulting robustness and inference efficiency.

514

515

5 CONCLUSION AND FUTURE WORK

516

The proposed HOT-CLIP framework enhances the adversarial robustness of large vision-language models by constructing diverse submodels across different adversarial attacks and textual prompts, and integrating them via hierarchical OT Fusion. Experiments on zero-shot image classification, VQA, and image captioning demonstrate consistent improvements in robustness under strong adversarial perturbations, while preserving competitive performance on clean data. Although leveraging multiple submodels increases computational cost during training, the hierarchical fusion ensures that inference-time overhead remains comparable to a single backbone, making the method practical for deployment. We think a promising direction for future work is to extend HOT-CLIP towards cross-modal joint defenses, examining the potential of hierarchical fusion for the simultaneous enhancement of robustness across multiple modalities.

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 REFERENCES
541

542 Martial Agueh and Guillaume Carlier. Barycenters in the wasserstein space. *SIAM Journal on*
543 *Mathematical Analysis*, 43(2):904–924, 2011.

544 Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
545 Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
546 model for few-shot learning. *Advances in neural information processing systems*, 35:23716–
547 23736, 2022.

548 Yuki Arase, Han Bao, and Sho Yokoi. Unbalanced optimal transport for unbalanced word alignment.
549 In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual*
550 *Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 3966–
551 3986, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.219. URL <https://aclanthology.org/2023.acl-long.219/>.

552 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
553 Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.

554 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
555 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
556 for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF conference on computer*
557 *vision and pattern recognition*, pp. 24185–24198, 2024.

558 Ching-Yao Chuang, Stefanie Jegelka, and David Alvarez-Melis. Infoot: Information maximizing
559 optimal transport. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
560 Sivan Sabato, and Jonathan Scarlett (eds.), *International Conference on Machine Learning, ICML*
561 *2023, 23-29 July 2023, Honolulu, Hawaii, USA*, volume 202 of *Proceedings of Machine Learn-*
562 *ing Research*, pp. 6228–6242. PMLR, 2023. URL <https://proceedings.mlr.press/v202/chuang23a.html>.

563 Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
564 scribing textures in the wild. In *Proceedings of the IEEE conference on computer vision and*
565 *pattern recognition*, pp. 3606–3613, 2014.

566 Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
567 feature learning. In *Proceedings of the fourteenth international conference on artificial intelli-*
568 *gence and statistics*, pp. 215–223. JMLR Workshop and Conference Proceedings, 2011.

569 Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
570 of diverse parameter-free attacks. In *International conference on machine learning*, pp. 2206–
571 2216. PMLR, 2020.

572 Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. *Advances in neural*
573 *information processing systems*, 26, 2013.

574 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
575 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
576 pp. 248–255. Ieee, 2009.

577 Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li.
578 Boosting adversarial attacks with momentum. In *2018 IEEE Conference on Computer Vision*
579 *and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018*, pp. 9185–
580 9193. Computer Vision Foundation / IEEE Computer Society, 2018. doi: 10.1109/CVPR.
581 2018.00957. URL http://openaccess.thecvf.com/content_cvpr_2018/html/Dong_Boosting_Adversarial_Attacks_CVPR_2018_paper.html.

582 Yinpeng Dong, Zhijie Deng, Tianyu Pang, Jun Zhu, and Hang Su. Adversarial distributional training
583 for robust deep learning. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
584 Balcan, and Hsuan-Tien Lin (eds.), *Advances in Neural Information Processing Systems 33: An-*
585 *nual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,*
586 *2020, virtual*, 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/5de8a36008b04a6167761fa19b61aa6c-Abstract.html>.

594 Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training
 595 examples: An incremental bayesian approach tested on 101 object categories. *Computer vision*
 596 and *Image understanding*, 106(1):59–70, 2007.

597

598 Shanghua Gao, Zhong-Yu Li, Ming-Hsuan Yang, Ming-Ming Cheng, Junwei Han, and Philip H. S.
 599 Torr. Large-scale unsupervised semantic segmentation. *IEEE Trans. Pattern Anal. Mach. Intell.*,
 600 45(6):7457–7476, 2023. doi: 10.1109/TPAMI.2022.3218275. URL <https://doi.org/10.1109/TPAMI.2022.3218275>.

601

602 Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
 603 examples. In Yoshua Bengio and Yann LeCun (eds.), *3rd International Conference on Learning
 604 Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceed-
 605 ings*, 2015. URL <http://arxiv.org/abs/1412.6572>.

606

607 Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa
 608 matter: Elevating the role of image understanding in visual question answering. In *Proceedings
 609 of the IEEE conference on computer vision and pattern recognition*, pp. 6904–6913, 2017.

610

611 Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
 612 and deep learning benchmark for land use and land cover classification. *IEEE Journal of Selected
 613 Topics in Applied Earth Observations and Remote Sensing*, 12(7):2217–2226, 2019.

614

615 Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
 616 Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, and Justin Gilmer.
 617 The many faces of robustness: A critical analysis of out-of-distribution generalization. In *2021
 618 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada,
 October 10-17, 2021*, pp. 8320–8329. IEEE, 2021. doi: 10.1109/ICCV48922.2021.00823. URL
<https://doi.org/10.1109/ICCV48922.2021.00823>.

619

620 Md Zarif Hossain and Ahmed Imteaj. Securing vision-language models with a robust encoder
 621 against jailbreak and adversarial attacks. In *2024 IEEE International Conference on Big Data
 622 (BigData)*, pp. 6250–6259. IEEE, 2024a.

623

624 Md Zarif Hossain and Ahmed Imteaj. Sim-clip: Unsupervised siamese adversarial fine-tuning for
 625 robust and semantically-rich vision-language models. *arXiv preprint arXiv:2407.14971*, 2024b.

626

627 Xiaowei Hu, Zhe Gan, Jianfeng Wang, Zhengyuan Yang, Zicheng Liu, Yumao Lu, and Lijuan Wang.
 628 Scaling up vision-language pre-training for image captioning. In *Proceedings of the IEEE/CVF
 629 conference on computer vision and pattern recognition*, pp. 17980–17989, 2022.

630

631 Zhaozhe Hu, Jia-Li Yin, Bin Chen, Luojun Lin, Bo-Hao Chen, and Ximeng Liu. MEAT: median-
 632 ensemble adversarial training for improving robustness and generalization. In *IEEE International
 633 Conference on Acoustics, Speech and Signal Processing, ICASSP 2024, Seoul, Republic of Korea,
 April 14-19, 2024*, pp. 5600–5604. IEEE, 2024. doi: 10.1109/ICASSP48485.2024.10446117.
 634 URL <https://doi.org/10.1109/ICASSP48485.2024.10446117>.

635

636 Moritz Imfeld, Jacopo Graldi, Marco Giordano, Thomas Hofmann, Sotiris Anagnostidis, and
 637 Sidak Pal Singh. Transformer fusion with optimal transport. In *The Twelfth International Con-
 638 ference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenRe-
 639 view.net, 2024. URL <https://openreview.net/forum?id=LjeqMvQopen>.

640

641 Haseeb Javed, Shaker El-Sappagh, and Tamer Abuhmed. Robustness in deep learning models for
 642 medical diagnostics: security and adversarial challenges towards robust ai applications. *Artificial
 643 Intelligence Review*, 58(1):12, 2024.

644

645 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
 646 categorization. In *2013 IEEE International Conference on Computer Vision Workshops, ICCV
 647 Workshops 2013, Sydney, Australia, December 1-8, 2013*, pp. 554–561. IEEE Computer Society,
 648 2013. doi: 10.1109/ICCVW.2013.77. URL <https://doi.org/10.1109/ICCVW.2013.77>.

649

650 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 651 2009.

648 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
 649 training for unified vision-language understanding and generation. In *International conference on*
 650 *machine learning*, pp. 12888–12900. PMLR, 2022.

651 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 652 pre-training with frozen image encoders and large language models. In *International conference*
 653 *on machine learning*, pp. 19730–19742. PMLR, 2023a.

654 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evalu-
 655 ating object hallucination in large vision-language models. In Houda Bouamor, Juan Pino,
 656 and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural*
 657 *Language Processing, EMNLP 2023, Singapore, December 6-10, 2023*, pp. 292–305. Associa-
 658 tion for Computational Linguistics, 2023b. doi: 10.18653/V1/2023.EMNLP-MAIN.20. URL
 659 <https://doi.org/10.18653/v1/2023.emnlp-main.20>.

660 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 661 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European*
 662 *conference on computer vision*, pp. 740–755. Springer, 2014.

663 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances*
 664 *in neural information processing systems*, 36:34892–34916, 2023.

665 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *7th International*
 666 *Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019*.
 667 OpenReview.net, 2019. URL <https://openreview.net/forum?id=Bkg6RiCqY7>.

668 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
 669 Towards deep learning models resistant to adversarial attacks. In *6th International Conference*
 670 *on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,*
 671 *Conference Track Proceedings*. OpenReview.net, 2018. URL <https://openreview.net/forum?id=rJzIBfZAb>.

672 Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
 673 visual classification of aircraft. *arXiv preprint arXiv:1306.5151*, 2013.

674 Chengzhi Mao, Scott Geng, Junfeng Yang, Xin Wang, and Carl Vondrick. Understanding zero-
 675 shot adversarial robustness for large-scale models. In *The Eleventh International Conference on*
 676 *Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023.
 677 URL <https://openreview.net/forum?id=P4bXCawRi5J>.

678 Igor Melnyk, Youssef Mroueh, Brian Belgodere, Mattia Rigotti, Apoorva Nitsure, Mikhail
 679 Yurochkin, Kristjan Greenewald, Jiri Navratil, and Jarret Ross. Distributional preference align-
 680 ment of LLMs via optimal transport. In *The Thirty-eighth Annual Conference on Neural*
 681 *Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=2LctgfN6Ty>.

682 Dang Nguyen, Trang Nguyen, Khai Nguyen, Dinh Q. Phung, Hung Hai Bui, and Nhat Ho. On
 683 cross-layer alignment for model fusion of heterogeneous neural networks. In *IEEE Interna-
 684 tional Conference on Acoustics, Speech and Signal Processing ICASSP 2023, Rhodes Island,*
 685 *Greece, June 4-10, 2023*, pp. 1–5. IEEE, 2023. doi: 10.1109/ICASSP49357.2023.10097156.
 686 URL <https://doi.org/10.1109/ICASSP49357.2023.10097156>.

687 Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large num-
 688 ber of classes. In *Sixth Indian Conference on Computer Vision, Graphics & Image Processing*,
 689 *ICVGIP 2008, Bhubaneswar, India, 16-19 December 2008*, pp. 722–729. IEEE Computer Soci-
 690 ety, 2008. doi: 10.1109/ICVGIP.2008.47. URL [https://doi.org/10.1109/ICVGIP.](https://doi.org/10.1109/ICVGIP.2008.47)
 691 2008.47.

692 Weronika Ormaniec, Michael Vollenweider, and Elisa Hoskovec. Fusion of graph neural networks
 693 via optimal transport. *arXiv preprint arXiv:2503.21579*, 2025.

694 Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In *2012*
 695 *IEEE conference on computer vision and pattern recognition*, pp. 3498–3505. IEEE, 2012.

702 Gabriel Peyré and Marco Cuturi. Computational optimal transport. *Found. Trends Mach. Learn.*,
 703 11(5-6):355–607, 2019. doi: 10.1561/2200000073. URL <https://doi.org/10.1561/2200000073>.

704

705 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable visual models from natural language supervision. In Marina Meila and Tong Zhang (eds.), *Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event*, volume 139 of *Proceedings of Machine Learning Research*, pp. 8748–8763. PMLR, 2021. URL <http://proceedings.mlr.press/v139/radford21a.html>.

706

707

708

709

710

711

712

713 Leslie Rice, Eric Wong, and Zico Kolter. Overfitting in adversarially robust deep learning. In *International conference on machine learning*, pp. 8093–8104. PMLR, 2020.

714

715 Giulio Rossolini, Federico Nesti, Gianluca D’amico, Saasha Nair, Alessandro Biondi, and Giorgio Buttazzo. On the real-world adversarial robustness of real-time semantic segmentation models for autonomous driving. *IEEE Transactions on Neural Networks and Learning Systems*, 2023.

716

717

718 Christian Schlarmann and Matthias Hein. On the adversarial robustness of multi-modal foundation models. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 3677–3685, 2023.

719

720

721

722 Christian Schlarmann, Naman Deep Singh, Francesco Croce, and Matthias Hein. Robust CLIP: unsupervised adversarial fine-tuning of vision embeddings for robust large vision-language models. In *Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=WLPhywf1si>.

723

724

725

726

727 Liangliang Shi, Gu Zhang, Haoyu Zhen, Jintao Fan, and Junchi Yan. Understanding and generalizing contrastive learning from the inverse optimal transport perspective. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp. 31408–31421. PMLR, 23–29 Jul 2023. URL <https://proceedings.mlr.press/v202/shi23j.html>.

728

729

730

731

732

733 Liangliang Shi, Jack Fan, and Junchi Yan. Ot-clip: understanding and generalizing clip via optimal transport. In *Proceedings of the 41st International Conference on Machine Learning, ICML’24*. JMLR.org, 2024.

734

735

736

737 Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh, and Marcus Rohrbach. Towards vqa models that can read. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 8317–8326, 2019.

738

739

740 Sidak Pal Singh and Martin Jaggi. Model fusion via optimal transport. *Advances in Neural Information Processing Systems*, 33:22045–22055, 2020.

741

742

743 Joshua Smith and Michael Gashler. An investigation of how neural networks learn from the experiences of peers through periodic weight averaging. In *2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)*, pp. 731–736. IEEE, 2017.

744

745

746 Jiachen Sun, Changsheng Wang, Jiongxiao Wang, Yiwei Zhang, and Chaowei Xiao. Safeguarding vision-language models against patched visual prompt injectors. *CoRR*, abs/2405.10529, 2024. doi: 10.48550/ARXIV.2405.10529. URL <https://doi.org/10.48550/arXiv.2405.10529>.

747

748

749

750 Jiachen Sun, Changsheng Wang, Jiongxiao Wang, Yiwei Zhang, and Chaowei Xiao. Safeguarding vision-language models against patched visual prompt injectors. *CoRR*, abs/2405.10529, 2024. doi: 10.48550/ARXIV.2405.10529. URL <https://doi.org/10.48550/arXiv.2405.10529>.

751

752

753

754 Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. Cider: Consensus-based image description evaluation. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 4566–4575, 2015.

755

756 Bastiaan S Veeling, Jasper Linmans, Jim Winkens, Taco Cohen, and Max Welling. Rotation equivariant cnns for digital pathology. In *International Conference on Medical image computing and computer-assisted intervention*, pp. 210–218. Springer, 2018.

756 Xiaotian Wang, Takehito Utsuro, and Masaaki Nagata. Document alignment based on overlapping
 757 fixed-length segments. In Xiyan Fu and Eve Fleisig (eds.), *Proceedings of the 62nd Annual Meet-*
 758 *ing of the Association for Computational Linguistics (Volume 4: Student Research Workshop)*, pp.
 759 51–61, Bangkok, Thailand, August 2024. Association for Computational Linguistics. ISBN 979-
 760 8-89176-097-4. doi: 10.18653/v1/2024.acl-srw.10. URL <https://aclanthology.org/2024.acl-srw.10/>.

762 Futa Waseda, Sosuke Nishikawa, Trung-Nghia Le, Huy H. Nguyen, and Isao Echizen. Closer look
 763 at the transferability of adversarial examples: How they fool different models differently. In
 764 *IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2023, Waikoloa, HI,*
 765 *USA, January 2-7, 2023*, pp. 1360–1368. IEEE, 2023. doi: 10.1109/WACV56688.2023.00141.
 766 URL <https://doi.org/10.1109/WACV56688.2023.00141>.

767 Yue Xu, Xiuyuan Qi, Zhan Qin, and Wenjie Wang. Cross-modality information check for detecting
 768 jailbreaking in multimodal large language models. In *Findings of the Association for Compu-*
 769 *tational Linguistics: EMNLP 2024*, pp. 13715–13726, 2024.

771 Mang Ye, Xuankun Rong, Wenke Huang, Bo Du, Nenghai Yu, and Dacheng Tao. A survey
 772 of safety on large vision-language models: Attacks, defenses and evaluations. *arXiv preprint*
 773 *arXiv:2502.14881*, 2025.

774 Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on
 775 multimodal large language models. *National Science Review*, 11(12):nwae403, 2024.

777 Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From image descriptions to visual
 778 denotations: New similarity metrics for semantic inference over event descriptions. *Transactions*
 779 *of the association for computational linguistics*, 2:67–78, 2014.

780 Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu. Vision-language models for vision tasks: A
 781 survey. *IEEE transactions on pattern analysis and machine intelligence*, 46(8):5625–5644, 2024.

782 Wanlin Zhang, Weichen Lin, Ruomin Huang, Shihong Song, and Hu Ding. To tackle adversarial
 783 transferability: A novel ensemble training method with fourier transformation. In *The Thirteenth*
 784 *International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*.
 785 OpenReview.net, 2025a. URL <https://openreview.net/forum?id=KW8yzAOIZr>.

787 Xuange Zhang, Dengjie Li, Bo Liu, Zenghao Bao, Yao Zhou, Baisong Yang, Zhongying Liu, Yujie
 788 Zhong, Zheng Zhao, and Tongtong Yuan. Himix: Reducing computational complexity in large
 789 vision-language models. *CoRR*, abs/2501.10318, 2025b. doi: 10.48550/ARXIV.2501.10318.
 790 URL <https://doi.org/10.48550/arXiv.2501.10318>.

791 Minghui Zhou and Xiangfeng Wang. Fedskf: Selective knowledge fusion via optimal transport in
 792 federated class incremental learning. *Electronics*, 13(9):1772, 2024.

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A THE USE OF LLMs
811812
813 A large language model (LLM) was employed for language polishing and grammar correction. All
814 scientific ideas, experimental design, analysis, and conclusions were generated solely by the authors.
815 The LLM did not contribute to any research ideation or content creation.816
817 B RELATED WORKS
818819 In this section, we review three main lines of research related to our study: large vision-language
820 models (LVLMs), adversarial robustness of LVLMs, and optimal transport-based fusion methods.
821822 **Large Vision-Language Models** In recent years, a number of large vision-language models have
823 been released, demonstrating the rapid progress of multimodal learning. Representative open-source
824 efforts include Flamingo (Alayrac et al., 2022), LLaVA (Liu et al., 2023), and more recently Qwen-
825 VL(Bai et al., 2023) and InternVL (Chen et al., 2024), which extend large language models with
826 visual perception capabilities. Despite architectural differences, most LVLMs adopt CLIP (Radford
827 et al., 2021) or its variants as the vision-language alignment backbone. While these models provide
828 transferable multimodal features for diverse downstream applications, they remain vulnerable to
829 adversarial perturbations, raising concerns for deployment in safety-critical scenarios.
830831 **Adversarial Robustness of LVLMs** Adversarial robustness in LVLMs has attracted increasing at-
832 tention, as perturbations applied to visual, textual or jointly across both modalities can severely
833 disrupt cross-modal representations. In this work, we focus on adversarial perturbations in the vi-
834 sual modality. Since the high-dimensional and continuous nature of visual data (Ye et al., 2025),
835 and the strong transferability of visual adversarial examples (Waseda et al., 2023), make defending
836 against visual attacks particularly challenging. Furthermore, in many LVLMs applications (such as
837 medical imaging (Javed et al., 2024) and autonomous driving (Rossolini et al., 2023)), visual in-
838 puts often serve as the primary source of information for model decision-making. Existing defense
839 strategies against visual modalities attacks can be grouped into two main categories: inference-phase
840 defenses and training-phase defenses (Ye et al., 2025). Inference-phase defenses mitigate vulnera-
841 bilities at deployment time, typically by perturbing images before model inference (Xu et al., 2024;
842 Sun et al., 2024). These approaches are attractive for their plug-and-play nature, but often can-
843 not fundamentally eliminate the vulnerability of the vision encoder to adversarial perturbations.
844 In contrast, training-phase defenses aim to improve robustness during model development, most
845 commonly through adversarial fine-tuning (Schlarmann et al., 2024; Hossain & Imteaj, 2024b;a).
846 While effective against certain attacks, such methods often struggle to generalize to unseen pertur-
847 bations due to overfitting to specific attack (Rice et al., 2020). Our work falls within the scope of
848 training-phase defenses, extending adversarial fine-tuning with an optimal transport-based fusion
849 mechanism. Our proposed approach belongs to the category of training-phase defenses, extending
adversarial fine-tuning with an optimal transport-based fusion mechanism.850 **Optimal Transport Fusion** OT Fusion is a layer-wise model fusion technique that utilizes optimal
851 transport to align neurons across the models before averaging their associated parameters (Singh
852 & Jaggi, 2020). This technique has recently been extended to a variety of architectures, including
853 transformers (Imfeld et al., 2024) and graph neural networks (Ormaniec et al., 2025). Beyond archi-
854 tectural adaptations, FedSKF (Zhou & Wang, 2024) introduces OT Fusion for knowledge integration
855 in federated class-incremental learning, which aligns feature distributions between client and server
856 models to mitigate data heterogeneity. Despite its success in model integration, OT Fusion has seen
857 limited investigation in the context of adversarial robustness, which motivates our study.858 **Optimal Transport (OT)** OT has been widely adopted in various alignment tasks, including doc-
859 ument alignment Wang et al. (2024) and word alignment Arase et al. (2023). Melnyk et al. (2024)
860 proposed AOT, an OT-based framework that aligns reward distributions for large language models
861 by enforcing distributional preference dominance. OT also offers new perspectives on existing tech-
862 niques. For example, recent studies (Shi et al., 2023; 2024) show that Contrastive Learning (CL)
863 and the CLIP model can be reformulated as (Inverse) OT problems, where common objectives such
as InfoNCE loss can be interpreted as instances of (Inverse) OT for aligning sample similarities.

864 **Algorithm 1** Hierarchical OT Fusion for CLIP Visual Encoder

865 **Require:** Clean dataset $\mathcal{D} = \{(x, y)\}$; attack set \mathcal{A} ; template set \mathcal{T} ; standard template t_0 ; layer

866 indices $\ell = 1 \dots L$.

867 **Ensure:** Fused visual encoder $\bar{f}_{\theta_{\text{img}}}$ (text encoder frozen).

868 1: **for** each $a \in \mathcal{A}$ **do**

869 2: **for** each $t \in \mathcal{T}$ **do**

870 3: Construct diversified dataset: $\mathcal{D}_{\text{div}}^{(a,t)} \leftarrow \{(x + \delta_a(x), y^{(t)}) : (x, y) \in \mathcal{D}\}$.

871 4: Train submodel $M^{(a,t)} \leftarrow \text{AdversarialTrain}(\mathcal{D}_{\text{div}}^{(a,t)})$ with frozen text encoder.

872 5: Store layer weights $\{W_\ell^{(a,t)}\}_{\ell=1}^L$.

873 6: **end for**

874 7: **end for**

875 8: **Level 1: Prompt-level fusion within each attack**

876 9: **for** each $a \in \mathcal{A}$ **do**

877 10: Select anchor model $M^{(a,t_{\text{anchor}})}$.

878 11: **for** $\ell = 1$ to L **do**

879 12: **for** each $t \in \mathcal{T}$ **do**

880 13: Align columns of weights: $\tilde{W}_\ell^{(a,t)} \leftarrow W_\ell^{(a,t)} T_{\ell-1}^{(a,t)}$

881 14: Compute OT plan: $T_\ell^{(a,t)} \leftarrow \text{ComputeOT}(\tilde{W}_\ell^{(a,t)}, W_\ell^{(a,t_{\text{anchor}})})$.

882 15: Align weights: $W_\ell^{(a,t),\text{aligned}} \leftarrow (T_\ell^{(a,t)})^\top W_\ell^{(a,t)} T_{\ell-1}^{(a,t)}$.

883 16: **end for**

884 17: Average aligned weights: $W_\ell^{(a)} \leftarrow \frac{1}{|\mathcal{T}|} \sum_{t \in \mathcal{T}} W_\ell^{(a,t),\text{aligned}}$.

885 18: **end for**

886 19: Assemble fused model $\bar{M}^{(a)}$ with $\{W_\ell^{(a)}\}$.

887 20: Fine-tune $\bar{M}^{(a)}$ on $\mathcal{D}_{\text{div}}^{(a,t_0)}$.

888 21: **end for**

889 22: **Level 2: Attack-level fusion across attacks**

890 23: Select anchor attack a_{anchor} .

891 24: **for** $\ell = 1$ to L **do**

892 25: **for** each $a \in \mathcal{A}$ **do**

893 26: Align columns of weights: $\tilde{W}_\ell^{(a)} \leftarrow W_\ell^{(a)} T_{\ell-1}^{(a)}$

894 27: Compute OT plan: $T_\ell^{(a)} \leftarrow \text{ComputeOT}(\tilde{W}_\ell^{(a)}, W_\ell^{(a_{\text{anchor}})})$.

895 28: $W_\ell^{(a),\text{aligned}} \leftarrow (T_\ell^{(a)})^\top W_\ell^{(a)} T_{\ell-1}^{(a)}$.

896 29: **end for**

897 30: $W_\ell^{\text{fused}} \leftarrow \frac{1}{|\mathcal{A}|} \sum_{a \in \mathcal{A}} W_\ell^{(a),\text{aligned}}$.

898 31: **end for**

899 32: Assemble final fused model $\bar{f}_{\theta_{\text{img}}}$ with $\{W_\ell^{\text{fused}}\}_{\ell=1}^L$.

900 33: **return** $\bar{f}_{\theta_{\text{img}}}$.

902

903

904

905

C ALGORITHM

909 In this section, we provide the detailed procedure of our HOT-CLIP in Algorithm 1. Concretely, we

910 first adversarially train a diverse set of submodels, each under a specific attack method and textual

911 template. Within each attack family, the submodels are aligned at the neuron level using optimal

912 transport maps and then averaged to obtain an intra-attack fused model, which is further fine-tuned

913 under the corresponding attack setting. (The procedure relies on computing optimal transport maps

914 through the subroutine $\text{ComputeOT}(\cdot)$, whose implementation details are provided in Appendix C.1.)

915 In the second stage, the intra-attack fused models are again aligned and averaged across different

916 attacks, followed by an additional round of fine-tuning to adapt the final visual encoder. This step-

917 by-step process complements the high-level overview in the main text by making the construction,

alignment, and fusion operations explicit.

918 C.1 DETAILS OF OPTIMAL TRANSPORT FUSION
919920 In this section, we introduce the details of OT Fusion (Singh & Jaggi, 2020) and Transformer-
921 specific OT Fusion (Imfeld et al., 2024), following the methodologies of Singh & Jaggi (2020)
922 and Imfeld et al. (2024).923 C.1.1 OPTIMAL TRANSPORT FUSION
924925 We provide a more formal description of the OT Fusion procedure. Consider two submodels A and
926 B , and suppose we are at layer ℓ , with neurons in previous layers already aligned.
927928 **Step 1: Define probability measures.** We define probability measures over neurons at layer ℓ
929 for the two models as $\mu^{(\ell)} = (\alpha^{(\ell)}, X^{(\ell)})$, $\nu^{(\ell)} = (\beta^{(\ell)}, Y^{(\ell)})$, where $X^{(\ell)} = \{x_1^{(\ell)}, \dots, x_{n^{(\ell)}}^{(\ell)}\}$
930 and $Y^{(\ell)} = \{y_1^{(\ell)}, \dots, y_{m^{(\ell)}}^{(\ell)}\}$ are the neuron weight vectors of models A and B . We use uniform
931 histograms as initialization: $\alpha^{(\ell)} \leftarrow \frac{1}{n^{(\ell)}} \mathbf{1}_{n^{(\ell)}}$, $\beta^{(\ell)} \leftarrow \frac{1}{m^{(\ell)}} \mathbf{1}_{m^{(\ell)}}$.
932933 **Step 2: Propagate alignment from previous layer.** To ensure consistency, we first align the
934 incoming edge weights for layer ℓ using the transport plan from the previous layer, $T^{(\ell-1)}$. Formally,
935

936
$$\widetilde{W}_A^{(\ell, \ell-1)} \leftarrow W_A^{(\ell, \ell-1)} T^{(\ell-1)} \text{diag}\left(\frac{1}{\beta^{(\ell-1)}}\right), \quad (14)$$

937 where $W_A^{(\ell, \ell-1)}$ is the weight matrix between layers $\ell - 1$ and ℓ in model A . This step aligns the
938 current layer's weights, $W_A^{(\ell, \ell-1)}$, based on the transport map of the preceding layer, so that the
939 subsequent computation of the optimal transport map for this layer is meaningful.
940941 **Step 3: Solve optimal transport at current layer.** Given a ground cost $D_S(\cdot, \cdot)$ (we use Euclidean
942 distance), the transport plan $T^{(\ell)}$ is obtained by solving
943

944
$$T^{(\ell)} \leftarrow \text{OT}\left(\mu^{(\ell)}, \nu^{(\ell)}; D_S\right), \quad (15)$$

945 We solve the OT problem for the current layer using the Sinkhorn algorithm (Cuturi, 2013)
946947 **Step 4: Align neurons and fuse.** Using $T^{(\ell)}$, we align model A 's weights with respect to model
948 B :
949

950
$$W_{A, \text{aligned}}^{(\ell, \ell-1)} \leftarrow \text{diag}(1/\beta^{(\ell)}) T^{(\ell)\top} \widetilde{W}_A^{(\ell, \ell-1)}. \quad (16)$$

951 Finally, the fused weights are obtained as
952

953
$$W_F^{(\ell, \ell-1)} \leftarrow \frac{1}{2} \left(W_{A, \text{aligned}}^{(\ell, \ell-1)} + W_B^{(\ell, \ell-1)} \right). \quad (17)$$

954 Then, the above procedure is applied sequentially across all layers.
955956 C.1.2 TRANSFORMER FUSION
957958 In Transformers, the flow of transportation maps (TMs) becomes more complex due to structure of
959 Transformers (residual connections, multi-head attention, and normalization layers). In this section,
960 we introduce the OT Fusion of transformer (Imfeld et al., 2024).
961962 **Residual Connections.** For a residual block, the outputs of the main branch and the skip branch
963 are summed. Thus, the outgoing TM depends on both incoming TMs. We use a weighted averaging
964 strategy:
965

966
$$T_{\text{out}}^{(\ell)} = T_{\text{main}}^{(\ell)} \text{diag}(1 - \gamma^{(\ell)}) + T_{\text{res}}^{(\ell)} \text{diag}(\gamma^{(\ell)}), \quad (18)$$

967 where $\gamma^{(\ell)}$ is a weighting vector that controls the relative contribution of the main branch and the
968 skip (residual) branch.
969

972 **Multi-Head Attention.** Multi-head attention introduces additional challenges for OT Fusion, as
 973 transport maps must be propagated consistently across the query (W_Q), key (W_K), value (W_V), and
 974 output (W_O) projections. Recall that the attention mechanism is defined as
 975

$$976 \text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^\top}{\sqrt{d_k}}\right)V, \quad (19)$$

977 where $Q = XW_Q$, $K = XW_K$, and $V = XW_V$. We adopt the following alignment strategy: **(i)**
 978 **Propagation across Q , K , and V :** The transport maps for W_Q , W_K , and W_V are inherited directly
 979 from the previous layer, which applies equally to the multi-head case. **(ii) Handling W_O under**

980 **hard alignment:** The output projection W_O depends jointly on the aligned Q , K , and V branches.
 981 Under hard alignment, we enforce $T_Q = T_K = T_{QK}$ so that the permutation cancels inside the
 982 softmax operation, leaving the attention scores unchanged:
 983

$$984 \text{softmax}\left(\frac{(QT_Q)(KT_Q)^\top}{\sqrt{d_k}}\right) = \text{softmax}\left(\frac{QK^\top}{\sqrt{d_k}}\right). \quad (20)$$

985 In this case, only the transport map of V is propagated to W_O . **(iii) Cross-head alignment:** Because
 986 there is no guarantee of one-to-one correspondence between heads across models, we adopt a cross-
 987 head alignment strategy. Specifically, the projection matrices for each head $\{W_Q^i, W_K^i, W_V^i\}$ are
 988 concatenated across all heads to form unified matrices W_Q, W_K, W_V . OT Fusion is then applied to
 989 these concatenated matrices. Finally, the transport map T_V is propagated to W_O .
 990

991 **Feed-Forward Networks, Layer Normalization, and Embeddings.** Each feed-forward sublayer
 992 is treated as a standard linear layer. Layer normalization contains only per-dimension affine parame-
 993 ters (α, β) , which are aligned directly using the incoming transport map. For positional embeddings,
 994 which are added residually, we apply the same fusion strategies as used for residual connections.
 995

996 C.2 PROOF OF LEMMA 3.1

997 In this section, we provide the proof of lemma 3.1
 998

1000 *Proof.* To understand why the hierarchical barycenter μ_{hier}^* is close to the global barycenter μ_{global}^* ,
 1001 let's reason step by step.
 1002

1003 First, recall that the triangle inequality allows us to break a distance into two parts. Intuitively,
 1004 the distance between the hierarchical barycenter and the global barycenter can be bounded by the
 1005 distance from the hierarchical barycenter to each group barycenter, plus the distance from each
 1006 group barycenter to the global barycenter:
 1007

$$1008 W_c(\mu_{\text{hier}}^*, \mu_{\text{global}}^*) \leq \frac{1}{|\mathcal{A}|} \sum_a [W_c(\mu_{\text{hier}}^*, \mu_a^*) + W_c(\mu_a^*, \mu_{\text{global}}^*)]. \quad (21)$$

1011 Next, we use the key property of a barycenter: by definition, μ_{hier}^* minimizes the average distance
 1012 to all group barycenters. This implies that the sum of distances from μ_{hier}^* to each μ_a^* is no larger
 1013 than the sum of distances from the global barycenter to each μ_a^* :
 1014

$$1015 \sum_a W_c(\mu_{\text{hier}}^*, \mu_a^*) \leq \sum_a W_c(\mu_{\text{global}}^*, \mu_a^*). \quad (22)$$

1017 Plugging this into the previous inequality gives a first bound on the hierarchical-global distance:
 1018

$$1019 W_c(\mu_{\text{hier}}^*, \mu_{\text{global}}^*) \leq \frac{2}{|\mathcal{A}|} \sum_a W_c(\mu_a^*, \mu_{\text{global}}^*). \quad (23)$$

1022 Now we examine each group barycenter μ_a^* . Similarly, applying the triangle inequality at this intra-
 1023 group level gives:
 1024

$$1025 W_c(\mu_a^*, \mu_{\text{global}}^*) \leq \frac{1}{|\mathcal{T}|} \sum_t [W_c(\mu_a^*, \mu_{a,t}) + W_c(\mu_{a,t}, \mu_{\text{global}}^*)]. \quad (24)$$

1026 Combining (24) with (23), we propagate the bound from the group level to the individual submodels:
 1027

$$1028 \quad W_c(\mu_{\text{hier}}^*, \mu_{\text{global}}^*) \leq \frac{2}{|\mathcal{AT}|} \sum_a \sum_t \left[W_c(\mu_a^*, \mu_{a,t}) + W_c(\mu_{a,t}, \mu_{\text{global}}^*) \right]. \quad (25)$$

1031 Finally, by the barycenter property within each group, the distance from the group barycenter to its
 1032 submodels is at most the distance from the submodels to the global barycenter:
 1033

$$1034 \quad \sum_t W_c(\mu_a^*, \mu_{a,t}) \leq \sum_t W_c(\mu_{\text{global}}^*, \mu_{a,t}). \quad (26)$$

1036 Substituting this inequality, we obtain a simple bound that directly relates the hierarchical barycenter
 1037 to all individual submodels:
 1038

$$1039 \quad W_c(\mu_{\text{hier}}^*, \mu_{\text{global}}^*) \leq \frac{4}{|\mathcal{AT}|} \sum_{a,t} W_c(\mu_{a,t}, \mu_{\text{global}}^*), \quad (27)$$

1041 which intuitively shows that if each submodel is close to the global barycenter, then the hierarchical
 1042 OT fusion will also remain close.
 1043

□

1047 C.3 ANALYSIS OF MEMORY USAGE

1048 Let $|\mathcal{A}|$ denote the number of adversarial attack types, $|\mathcal{T}|$ denote the number of textual prompts
 1049 and U represent the memory usage of a single submodel. According to the method of align to an
 1050 anchor model, In naive global fusion, all $|\mathcal{A}| \cdot |\mathcal{T}|$ submodels are aligned and stored simultaneously,
 1051 resulting in a peak memory complexity of $\mathcal{O}(|\mathcal{A}| |\mathcal{T}| \cdot U)$.
 1052

1053 In our two-level hierarchical OT Fusion framework, fusion is performed progressively: **Intra-attack**
 1054 **fusion (L-level):** For each attack $a \in \mathcal{A}$, only the $|\mathcal{T}|$ submodels corresponding to different prompts
 1055 are fused at a time. Once fused, the intermediate result replaces the original submodels, so the
 1056 memory required at any step is proportional to $\{|\mathcal{T}|\}$. **Inter-attack fusion (V-level):** The first-
 1057 level fused models, one per attack type, are further integrated. Again, the number of models stored
 1058 simultaneously is bounded by $\{|\mathcal{A}|\}$.
 1059

1060 Since the fusion is hierarchical and progressive, the peak memory usage at any step never exceeds
 $\mathcal{O}(\max\{|\mathcal{A}|, |\mathcal{T}|\} \cdot U)$.
 1061

1062 D DETAILS OF IMPLEMENTATION

1064 In this section, we detail the implementation and training setup. All models use CLIP (Radford
 1065 et al., 2021) with a ViT-L/14 visual encoder, initialized from the official OpenAI checkpoint on
 1066 Hugging Face. Finetuning is performed on 8 NVIDIA RTX 4090 GPUs with PyTorch 2.5 and
 1067 CUDA 12.4, using AdamW (Loshchilov & Hutter, 2019) with a learning rate of 1×10^{-5} , weight
 1068 decay 0.01, and batch size 128 (16 per GPU). Each submodel is adversarially fine-tuned for 2 epochs
 1069 on ImageNet under ℓ_∞ perturbations ($\epsilon = 4/255$). For each attack method (FGSM (Goodfellow
 1070 et al., 2015), PGD (Madry et al., 2018), and MIM (Dong et al., 2018)), we train three submodels per
 1071 attack, each using a textual prompt randomly sampled from 80 templates following standard CLIP
 1072 practice (Radford et al., 2021), to ensure diverse adversarial examples. For OT Fusion, neurons in
 1073 each linear layer are represented by their incoming weight vectors, which are ℓ_2 -normalized prior
 1074 to computing pairwise distances. The ground cost is defined as the squared Euclidean distance.
 1075 Transport matrices are computed using the Sinkhorn (Cuturi, 2013) algorithm in the stabilized log-
 1076 domain, with entropic regularization $\tau = 8 \times 10^{-2}$. Each submodel is aligned to an anchor model
 1077 trained with the standard template (“This is a photo of a ”). During intra-attack fusion, the fused
 1078 model is fine-tuned for 1 epoch with the corresponding attack and the standard template. During
 1079 inter-attack fusion, the model undergoes 1 epoch of unsupervised adversarial fine-tuning, while
 reusing the same optimizer and learning rate schedule. A summary of all settings is provided in
 Table 5.

1080

1081

Table 5: Hyperparameters used in our experiments.

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

We evaluate our models across three tasks: image classification, image captioning, and visual question answering (VQA), considering both clean performance and adversarial robustness. Across all tasks, we adopt AutoAttack (Croce & Hein, 2020) under the ℓ_∞ norm with perturbation radii $\epsilon = 2/255$ and $\epsilon = 4/255$, each run for 100 iterations. This provides a standardized and reliable evaluation of robustness against adversarial perturbations.

1102

1103

1104

1105

1106

Image classification. This task requires assigning a semantic label to each input image. We evaluate clean and robust accuracy on ImageNet and 13 additional zero-shot datasets (details in Section 4.1). For each dataset, class names are combined with a predefined set of prompt templates, and zero-shot classification is performed as described in Section 2. Accuracy is reported as the proportion of correctly classified images.

1107

1108

1109

1110

1111

Image captioning. Here, the model generates natural language descriptions conditioned on an image. We evaluate performance on the COCO (Lin et al., 2014) and Flickr30k (Young et al., 2014) datasets using the CIDEr score (Vedantam et al., 2015), a consensus-based metric that measures the similarity of generated captions to human-written references. For image captioning, OpenFlamingo-9B (OF) (Alayrac et al., 2022) is evaluated in a zero-shot setting without additional in-context exemplars, whereas LLaVA-1.5-7B (Liu et al., 2023) is evaluated using its default system prompt and captioning prompt. Clean evaluation uses the full validation sets, and adversarial evaluation is conducted on 500 randomly sampled images per dataset, following Schlarmann & Hein (2023).

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Visual question answering. This task requires the model to answer natural language questions based on an image. We evaluate on two widely used benchmarks, VQAv2 (Goyal et al., 2017) and TextVQA (Singh et al., 2019). Performance is measured by VQA accuracy, which computes the proportion of model predictions that match human-annotated answers, thereby reflecting both linguistic and visual reasoning ability. The same LVLMs and evaluation settings as in the captioning task are used.

Datasets. (1) For zero-shot image classification, we use ImageNet (Deng et al., 2009), Caltech-101 (Fei-Fei et al., 2007), Cars (Krause et al., 2013), CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019), FGVC Aircraft (Maji et al., 2013), Flowers (Nilsback & Zisserman, 2008), ImageNet-R (Hendrycks et al., 2021), ImageNet-S (Gao et al., 2023), PCAM (Veeling et al., 2018), Oxford Pets (Parkhi et al., 2012), STL-10 (Coates et al., 2011). (2) For visual question answering (VQA), we use TextVQA (Singh et al., 2019) and VQAv2 (Goyal et al., 2017). (3) For image captioning, we use COCO (Lin et al., 2014) and Flickr30k (Young et al., 2014). For classification and VQA, we report the accuracies under clean and adversarial inputs. For image captioning, we use CIDEr (Vedantam et al., 2015) to evaluate the quality of generated captions under attack.

1134

1135 Table 6: Comparison of fusion strategies on zero-shot image classification. Robustness is measured
1136 using AutoAttack with ℓ_∞ perturbations bounded by $\epsilon = 2/255$ and $\epsilon = 4/255$. Bold numbers
1137 indicate the best performance in each column.

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

strategy	Zero-shot datasets														
	<i>ImageNet</i>	<i>CalTech</i>	<i>Cars</i>	<i>CIFAR10</i>	<i>CIFAR100</i>	<i>DTD</i>	<i>EuroSAT</i>	<i>FGVC</i>	<i>Flowers</i>	<i>ImageNet-R</i>	<i>ImageNet-S</i>	<i>PCAM</i>	<i>OxfordPets</i>	<i>STL-10</i>	
clean	Direct Average	69.3	85.6	63.9	76.4	58.7	44.5	17.9	23.0	57.0	81.3	60.0	49.5	86.2	96.1
	Direct OTFusion	69.2	85.0	65.0	76.4	58.6	44.7	17.6	22.5	56.8	82.0	59.7	49.5	86.2	96.2
	HOT-CLIP	69.9	85.1	64.0	78.7	60.0	46.2	18.0	21.8	56.9	80.8	59.9	49.6	87.1	96.3
$\epsilon = 2/255$	Direct Average	52.8	78.2	30.0	56.9	36.1	30.6	12.5	8.0	27.8	60.5	43.2	49.5	70.9	90.0
	Direct OTFusion	52.5	78.4	30.2	56.2	35.7	30.7	12.1	8.0	28.1	60.2	43.6	49.5	71.1	90.1
	HOT-CLIP	53.4	79.5	31.8	58.3	37.2	31.8	12.4	8.1	29.7	60.9	44.6	49.6	71.2	91.0
$\epsilon = 4/255$	Direct Average	31.8	63.7	15.1	36.2	19.9	19.2	9.6	2.0	12.2	39.0	31.6	49.5	51.0	74.9
	Direct OTFusion	32.0	64.3	15.1	36.3	20.4	19.0	9.5	2.0	12.0	38.9	30.5	49.5	51.0	75.0
	HOT-CLIP	34.7	66.5	15.8	38.1	20.9	19.6	10.3	2.9	12.5	39.4	32.8	49.6	51.8	77.0

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1154 Table 7: Comparison of fusion strategies on image captioning and VQA. Robustness is measured using
1155 AutoAttack with ℓ_∞ perturbations bounded by $\epsilon = 2/255$ and $\epsilon = 4/255$. Bold numbers indicate
1156 the best performance in each column..

VLM strategy	COCO		Flickr30		TextVQA		VQAv2	
	clean	$\epsilon = \frac{2}{255}$	clean	$\epsilon = \frac{2}{255}$	clean	$\epsilon = \frac{2}{255}$	clean	$\epsilon = \frac{2}{255}$
LLaVA	Direct Average	114.7	46.6	30.8	73.9	36.7	26.1	24.7
	Direct OTFusion	113.5	47.7	30.9	73.7	37.2	25.0	25.3
	HOT-CLIP	110.4	56.5	35.5	74.6	43.1	26.5	25.3
							17.7	12.8
								68.8
								43.8
								34.6

E ADDITIONAL EXPERIMENTS RESULTS

E.1 ABLATION STUDIES

Ablation on Fusion Strategies. To evaluate the effectiveness of our hierarchical OT Fusion design, we compare three different fusion strategies on three vision-language tasks: zero-shot image classification, image captioning, and visual question answering. The first strategy, Direct Average, simply averages the parameters of all submodels without any alignment. The second strategy, Direct OT Fusion, applies optimal transport to align all submodels simultaneously before averaging. The third strategy, Hierarchical OT Fusion (HOT-CLIP), performs two-level fusion: intra-attack alignment followed by inter-attack integration. For each task, we report both clean and robust performance, with robustness evaluated using AutoAttack under the ℓ_∞ norm with $\epsilon = 2/255$. Results in Table 6 and Table 7 indicate that Direct Average and Direct OT Fusion often suffers from misalignment across diverse submodels, leading to degraded clean accuracy and limited robustness gains. In contrast, HOT-CLIP consistently improves robustness while maintaining or slightly enhancing clean performance. This highlights the advantage of controlling submodel similarity at each fusion stage, demonstrating that hierarchical fusion is crucial for effectively leveraging diverse adversarially trained submodels.

Ablation on the Number of Submodels Following the fusion strategy, we investigate how the size and composition of the submodel pool affect the performance, we vary: the number of families K (corresponding to distinct attack methods), and the number of submodels per family J (corresponding to different prompt variants per attack). We examine several configurations: 3×3 , 2×3 , 1×3 , and 3×1 , where the first number denotes K and the second J . All other settings follow Section 5.1 unless specified otherwise. We report CIDEr score and VQA accuracy for image captioning

1188
 1189 Table 8: Clean and adversarial zero-shot performance on Image Captioning and VQA for different
 1190 submodel pool configurations.

VLM	Num.	COCO				Flickr30				TextVQA				VQAv2			
		clean	$\epsilon = \frac{2}{255}$	$\epsilon = \frac{4}{255}$	clean	$\epsilon = \frac{2}{255}$	$\epsilon = \frac{4}{255}$	clean	$\epsilon = \frac{2}{255}$	$\epsilon = \frac{4}{255}$	clean	$\epsilon = \frac{2}{255}$	$\epsilon = \frac{4}{255}$	clean	$\epsilon = \frac{2}{255}$	$\epsilon = \frac{4}{255}$	
LLaVA	(1 \times 3)	108.4	49.6	30.1	74.4	40.0	26.6	25.3	17.7	8.8	67.8	44.9	31.3				
	(2 \times 3)	113.6	49.7	30.9	73.7	37.2	25.0	25.0	18.7	8.8	67.9	43.2	31.4				
	(3 \times 3)	110.4	56.5	35.5	74.6	43.1	26.5	25.3	17.7	12.8	68.8	43.8	34.6				
	(3 \times 1)	110.6	52.2	32.3	74.5	39.2	27.3	26.3	17.7	9.2	67.8	44.2	31.9				

1200 Table 9: Comparison of HOT-CLIP with different adversarial training strengths on image captioning
 1201 and VQA tasks.

VLM	Strength	COCO				Flickr30				TextVQA				VQAv2			
		clean	$\epsilon = \frac{2}{255}$	$\epsilon = \frac{4}{255}$	clean	$\epsilon = \frac{2}{255}$	$\epsilon = \frac{4}{255}$	clean	$\epsilon = \frac{2}{255}$	$\epsilon = \frac{4}{255}$	clean	$\epsilon = \frac{2}{255}$	$\epsilon = \frac{4}{255}$	clean	$\epsilon = \frac{2}{255}$	$\epsilon = \frac{4}{255}$	
LLaVA	2/255	111.9	48.1	33.0	73.7	43.1	24.0	25.3	17.7	9.8	66.8	44.9	32.2				
	4/255	110.4	56.5	35.5	74.6	43.1	26.5	25.3	17.7	12.8	68.8	43.8	34.6				

1208
 1209 and VQA tasks, respectively. As shown in Table 8, increasing the number of families K generally
 1210 improves robustness, indicating the benefit of incorporating diverse attack types. Adding more sub-
 1211 models per family (J) also enhances performance, demonstrating that prompt diversity contributes
 1212 to more robust feature representations. Notably, the 3×3 configuration achieves the highest overall
 1213 gains across all tasks.

1214
 1215 **Ablation on Adversarial Training Strength.** We further study the impact of adversarial training
 1216 strength on the robustness of our approach. Specifically, we train submodels with perturbation radii
 1217 $\epsilon_{\text{train}} \in \{2/255, 4/255\}$ under the ℓ_∞ norm, keeping all other training settings fixed. Evaluation is
 1218 conducted on ImageNet using AutoAttack at $\epsilon_{\text{eval}} = 2/255$ and $\epsilon_{\text{eval}} = 4/255$, in addition to clean
 1219 accuracy. As shown in Table 9, models adversarially trained with $\epsilon_{\text{train}} = 2/255$ achieve higher
 1220 clean performance but are less robust under stronger attacks, while those trained with $\epsilon_{\text{train}} = 4/255$
 1221 exhibit the opposite trend.

1222
 1223 **Ablation Studies on Visual Encoder Backbone.** To evaluate the general applicability of our HOT-
 1224 CLIP framework, we replace the CLIP ViT-L/14 visual encoder with the smaller CLIP ViT-B/32,
 1225 while keeping all other training and hierarchical OT Fusion settings unchanged. The resulting mod-
 1226 els are evaluated on zero-shot image classification. As shown in Table 10, models using ViT-B/32
 1227 achieve lower absolute accuracy than ViT-L/14 due to reduced capacity (e.g., 63.5% vs 71.2% on
 1228 ImageNet). Nonetheless, our hierarchical OT Fusion consistently improves robustness, increasing
 1229 accuracy by approximately 4.2% over the ViT-B/32 baseline and 3.8% over the ViT-L/14 baseline
 1230 under adversarial evaluation. These results indicate that HOT-CLIP effectively generalizes across
 1231 different visual encoder backbones while providing tangible robustness gains.

1232
 1233 **Extended Robustness Evaluation Across Models, Attacks, and Norms** To more comprehensively
 1234 evaluate the generality and stability of our proposed method, we extend our analysis beyond the pri-
 1235 mary setup in the main paper. Specifically, we conduct three additional sets of experiments to exam-
 1236 ine whether our approach remains effective across different model architectures, attack algorithms,
 1237 and perturbation metrics. We first apply our method to the BLIP2 (Li et al., 2023a) architecture by
 1238 replacing its default vision encoder with our HOT-CLIP. We evaluate performance on COCO and
 1239 Flickr30k image captioning, as well as TextVQA and VQAv2. As shown in Table 11, HOT-CLIP
 1240 provides consistent robustness improvements, demonstrating that our framework is compatible with
 1241 LVLMs beyond CLIP-based architectures. To further assess the robustness of our method under
 1242 different adversarial attack, we additionally evaluate the models using PGD attacks. The results in
 1243 Table 12 show that our method consistently improves robustness under both AutoAttack and PGD,
 1244 confirming the stability of our approach across different attack algorithms. Finally, we evaluate ro-
 1245 bustness under L_2 -bounded AutoAttacks using two perturbation budgets ($\epsilon = 0.5$ and $\epsilon = 1.0$). As

1242
 1243 Table 10: Zero-shot classification performance and adversarial robustness of CLIP models visual
 1244 encoder ViT-B/32. Robustness is measured using AutoAttack with ℓ_∞ perturbations bounded by
 1245 $\epsilon = 2/255$.

Eval.	Vision encoder	Zero-shot datasets												Avg.		
		<i>ImageNet</i>	<i>CalTech</i>	<i>Cars</i>	<i>CIFAR10</i>	<i>CIFAR100</i>	<i>DTD</i>	<i>EuroSAT</i>	<i>FGVC</i>	<i>Flowers</i>	<i>ImageNet-R</i>	<i>ImageNet-S</i>	<i>PCAM</i>	<i>OxfordPets</i>		
clean	CLIP	59.3	82.1	60.8	89.2	59.1	46.3	53.6	20.3	68.5	65.6	41.2	62.8	88.9	97.5	63.9
	TeCoA	55.9	71.4	14.3	70.6	40.2	26.7	20.1	6.0	27.3	48.3	27.5	49.4	72.0	86.9	44.0
	FARE	48.7	80.6	34.2	68.1	46.0	34.7	16.0	11.2	38.0	48.3	34.3	49.4	78.9	89.2	48.4
	HOT-CLIP	50.3	80.8	34.9	70.7	47.2	35.4	16.6	11.7	36.5	50.8	34.3	49.5	79.0	90.3	49.1
$\epsilon = 2/255$	CLIP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	TeCoA	39.1	64.0	5.0	49.2	25.7	19.5	13.6	2.0	13.0	31.2	18.9	49.1	56.0	74.3	32.9
	FARE	29.6	67.0	12.9	47.2	27.6	22.8	12.9	3.7	14.1	29.2	20.8	49.4	50.0	77.3	33.1
	HOT-CLIP	30.6	67.1	11.5	49.5	29.0	24.3	13.7	3.8	15.2	31.2	22.5	49.6	51.8	77.4	34.0

1260
 1261 Table 11: **Evaluation of BLIP2 with different encoders under AutoAttack.** Results are reported
 1262 for image captioning (CIDEr) on COCO and Flickr30k, and VQA accuracy (%) on TextVQA and
 1263 VQAv2. ϵ indicates the ℓ_∞ perturbation bound.

VLM	Vision encoder	COCO			Flickr30			TextVQA			VQAv2		
		clean	$\epsilon = \frac{2}{255}$	$\epsilon = \frac{4}{255}$	clean	$\epsilon = \frac{2}{255}$	$\epsilon = \frac{4}{255}$	clean	$\epsilon = \frac{2}{255}$	$\epsilon = \frac{4}{255}$	clean	$\epsilon = \frac{2}{255}$	$\epsilon = \frac{4}{255}$
BLIP-2	ViT-L/14	127.7	3.9	2.5	83.3	2.1	1.4	32.3	0.0	0.0	48.4	3.2	0.5
	TeCoA	99.7	45.2	23.1	53.6	30.7	19.8	24.5	8.1	5.2	45.8	25.6	20.1
	FARE	109.6	54.1	35.3	68.4	31.5	22.1	25.9	9.2	5.8	46.3	26.4	20.7
	HOT-CLIP	115.8	58.4	38.8	75.3	44.9	27.2	27.4	11.7	8.3	47.1	28.8	23.9

1272
 1273 shown in Table 13, HOT-CLIP maintains strong robustness under L_2 perturbations, suggesting that
 1274 the benefits of our approach generalize across multiple threat models.

1277 E.2 ADDITIONAL TASK

1278 **Robustness under Stealthy Targeted Attacks.** Stealthy targeted attacks are high-risk adversarial
 1279 scenarios, where the attacker aims to manipulate the model to produce a specific target output while
 1280 the perturbation remains imperceptible to the user (Schlarbmann & Hein, 2023). Such attacks pose
 1281 real-world safety concerns, for example, by guiding users to phishing websites or spreading false
 1282 information. To evaluate the effectiveness of HOT-CLIP under these conditions, we substitute the
 1283 CLIP visual encoder in LLaVA-1.5 7B with our robust versions. We perform ℓ_∞ stealthy targeted
 1284 attacks using APGD (Croce & Hein, 2020) with 500 iterations. Two perturbation radii are consid-
 1285 ered: $\epsilon = 2/255$ and $\epsilon = 4/255$. The target caption is “You are too stupid. I will not answer
 1286 anymore” and is tested on 25 sampled images. An attack is deemed successful if the target string is
 1287 exactly contained in the model’s output. Table 14 reports the attack success rate (ASR) for different
 1288 encoders. The original CLIP encoder is completely susceptible to attacks at $\epsilon = 2/255$, whereas
 1289 HOT-CLIP achieves 0% ASR, demonstrating full robustness. Even at $\epsilon = 4/255$, HOT-CLIP sub-
 1290 stantially mitigates attacks compared to CLIP. Qualitative examples are shown in Fig. 4, illustrating
 1291 that HOT-CLIP maintains high-quality captions while resisting the targeted manipulations. These
 1292 findings extend our main results on general adversarial robustness, confirming that HOT-CLIP not
 1293 only improves zero-shot classification, VQA, and image captioning robustness, but also protects
 1294 LVLMs against realistic high-risk targeted attacks.

1295 **Hallucination Experiments** Large vision-language models (LVLMs) are prone to object hallucin-
 1296 ation, where the model predicts the presence of objects that do not actually appear in the image.

1296
1297 **Table 12: Evaluation of LLaVA with different encoders under PGD attack.** Results are reported
1298 for image captioning (CIDEr) on COCO and Flickr30k, and VQA accuracy (%) on TextVQA and
1299 VQAv2. ϵ indicates the l_∞ perturbation bound. Bold indicates the best performance in each column.

VLM	Vision encoder	COCO		Flickr30			TextVQA			VQAv2			
		clean	$\epsilon = \frac{2}{255}$	clean	$\epsilon = \frac{2}{255}$	clean	$\epsilon = \frac{2}{255}$	clean	$\epsilon = \frac{2}{255}$	clean	$\epsilon = \frac{2}{255}$	clean	$\epsilon = \frac{2}{255}$
LLaVA	VIT-L	122.2	4.6	3.1	79.1	2.2	1.5	37.8	1.2	0.0	72.4	3.7	1.1
	TeCoA	93.9	43.2	18.4	50.9	27.9	17.0	19.4	13.9	9.7	63.4	42.2	31.3
	FARE	105.8	52.4	34.7	64.7	30.6	22.3	27.5	16.3	9.8	65.6	42.6	31.7
	HOT-CLIP	110.4	57.1	39.3	74.6	46.2	28.5	25.3	19.2	13.8	68.8	45.1	36.5

1300
1301
1302
1303
1304
1305
1306
1307
1308
1309 **Table 13: Evaluation of LLaVA with different encoders under AutoAttack.** Results are reported
1310 for image captioning (CIDEr) on COCO and Flickr30k, and VQA accuracy (%) on TextVQA and
1311 VQAv2. ϵ indicates the l_2 perturbation bound.

VLM	Vision encoder	COCO		Flickr30			TextVQA			VQAv2			
		clean	$\epsilon = 0.5$	clean	$\epsilon = 0.5$	clean	$\epsilon = 0.5$	clean	$\epsilon = 0.5$	clean	$\epsilon = 0.5$	clean	
LLaVA	CLIP	122.2	10.9	3.7	79.1	4.2	2.3	37.8	1.2	0.0	72.4	3.7	1.1
	TeCoA	93.9	56.6	31.7	50.9	32.1	21.7	19.4	14.1	11.5	63.4	45.4	33.2
	FARE	105.8	64.5	42.4	64.7	35.9	23.8	27.5	18.7	12.3	65.6	47.9	34.2
	HOT-CLIP	110.4	70.2	48.1	74.6	52.5	33.4	25.3	21.4	15.6	68.8	48.5	37.3

1312
1313 To assess this issue, we adopt the POPE benchmark (Li et al., 2023b), which formulates hallucina-
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615

1350		
1351		
1352		
1353		
1354		
1355		
1356		
1357		
1358	Target: You are too stupid. I will not answer anymore	
1359		
1360		CLIP: You are too stupid. I will not answer anymore
1361		
1362		HOT-CLIP: A skier in a red and white suit is skiing down a snowy hill.
1363		
1364		
1365		CLIP: You are too stupid. I will not answer anymore
1366		
1367		HOT-CLIP: A horse is standing in the snow next to a fence.
1368		
1369		
1370		

Figure 4: Examples of LLaVA captions under stealthy targeted attacks ($\epsilon = 2/255$).

Table 15: Performance of different visual encoders under POPE sampling strategies.

Visual Encoder	POPE sampling			Mean
	Adversarial	Popular	Random	
TeCoA	70.2	73.6	73.0	72.3
FARE	74.0	77.7	76.8	76.2
HOT-CLIP	74.2	77.9	77.1	76.4