
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOWARDS ADVERSARIALLY ROBUST CLIP: A HIER-
ARCHICAL MODEL FUSION METHOD USING OPTIMAL
TRANSPORT

Anonymous authors
Paper under double-blind review

ABSTRACT

In recent years, multimodal models such as CLIP have achieved impressive per-
formance but remain vulnerable to adversarial perturbations. Although adversar-
ial training can enhance robustness, it often leads to overfitting toward specific
attack types. One solution for improving generalization is to integrate multiple
diverse and adversarially trained submodels, but this strategy could incur high
test-time cost. To achieve a promising tradeoff between robust generalization and
efficiency, we consider to design an optimal transport (OT) based model fusion
method, which is called “HOT-CLIP (Hierarchical Optimal Transport Fusion for
CLIP)”. Although several OT based model fusion methods have been proposed
before, they cannot be easily adapted to solve our problem, since they may suffer
the issues like parameter misalignment when dealing with highly diverse and mul-
timodal submodels. Our proposed method constructs diverse submodels by vary-
ing both attack methods and textual prompts, and integrates them via a hierarchical
two-level OT fusion method. The intra-attack fusion first aligns and merges mod-
els within the same attack family, and the inter-attack fusion subsequently com-
bines these aligned models across different attacks. Through this carefully crafted
fusion strategy, HOT-CLIP can significantly improve the accuracy for alignment
and reduce the total occupied memory. More importantly, the obtained robust
visual encoder can be deployed without additional inference-time cost. In our
experiments, the results on multiple vision-language tasks demonstrate that HOT-
CLIP can greatly enhance the model’s adversarial robustness while maintaining
competitive clean accuracy.

1 INTRODUCTION

The rapid advancement of large vision–language models (LVLMs) (Zhang et al., 2024) has signif-
icantly reshaped the landscape of artificial intelligence. By jointly learning from visual and textual
modalities, LVLMs demonstrate strong generalization ability across a wide range of downstream
tasks, including image classification (Radford et al., 2021), image retrieval (Li et al., 2022), im-
age captioning (Hu et al., 2022), and multimodal reasoning (Yin et al., 2024). A key step in this
progress is the development of alignment models (Radford et al., 2021; Li et al., 2022). Among
them, Contrastive Language–Image Pretraining (CLIP) (Radford et al., 2021) is a representative
framework that leverages large-scale contrastive pretraining on image–text pairs to align visual and
textual representations effectively.

Although CLIP demonstrates remarkable performance across a wide range of large vision–language
tasks, it still faces significant challenges in robustness and reliability. In particular, CLIP’s vision
encoder is vulnerable to adversarial perturbations: even small, carefully crafted changes to the input
image can induce substantial misalignment between visual and textual representations, ultimately
leading to errors in downstream tasks. Prior work suggests that this vulnerability may be partly
attributed to the high dimensionality and local linearity of deep visual feature spaces (Goodfellow
et al., 2015). This vulnerability is especially concerning in safety-critical domains such as medical
imaging (Javed et al., 2024) and autonomous driving (Rossolini et al., 2023), where incorrect pre-
dictions may cause severe consequences. Figure 1 provides an example to illustrate the adversarial
impact on image captioning performance.
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Figure 1: The adversarial images are generated using
the PGD attack under the ℓ∞ norm with ϵ = 2/255, and
the mistaken captions are obtained by applying LLaVA
to these perturbed inputs.

To address these vulnerabilities, various de-
fense strategies have been explored. “Test-
time” defenses attempt to mitigate adversarial
effects without modifying the training process.
One recently proposed approach is CIDER (Xu
et al., 2024), which detects adversarial images
by measuring the semantic distance between
the original and denoised inputs. Another ex-
ample, SmoothVLM (Sun et al., 2024) intro-
duces controlled noise to mitigate the effects of
localized adversarial perturbations. However,
since test-time defenses do not modify model
parameters, they are often limited in their abil-
ity to address the underlying vulnerabilities of CLIP’s vision encoder.

A more effective strategy is adversarial training, where models are explicitly optimized on adver-
sarial examples to improve robustness (Madry et al., 2018; Schlarmann et al., 2024). For exam-
ple, RobustCLIP (Schlarmann et al., 2024) incorporates adversarial perturbations during training
to maintain alignment, while Sim-CLIP (Hossain & Imteaj, 2024b) enforces representation consis-
tency between clean and perturbed samples. However, adversarial training is often prone to over-
fitting to specific attack patterns and exhibits limited generalization to unseen perturbations (Rice
et al., 2020). To overcome the limited generalization of adversarial training, ensemble-based meth-
ods (Dong et al., 2020; Hu et al., 2024; Zhang et al., 2025a) have been explored to improve robust-
ness by combining multiple models, which can collectively handle a wider variety of perturbations.
However, conventional ensemble methods are challenging to deploy on LVLMs, as these models
already impose substantial computational demands (Zhang et al., 2025b), and ensembling will fur-
ther introduce significant additional memory and inference overhead. Beyond ensembling, model
fusion techniques (Smith & Gashler, 2017) aim to integrate the parameters of multiple networks
rather than merely combining their outputs. The major difference between ensembling and fusion is
that ensembling scales inference cost with the number of submodels, while fusion only produces a
single model.

Nevertheless, the challenge of standard fusion methods (e.g., weight averaging) (Smith & Gash-
ler, 2017) is the lack of one-to-one correspondence between the parameters from different models.
Namely, for two different models, the neurons respectively locating in the same position of them
may not be functionally similar (a simple example is given in Figure 2 of Section 2). Thus, it is
necessary to align the neurons before parameter averaging. Optimal Transport (OT) (Peyré & Cu-
turi, 2019), as formally defined in Section 2, provides a principled metric that quantifies the distance
between two probability distributions by computing the minimal cost of transporting one distribu-
tion to match the other. In the context of model fusion, OT can be used to compute a transport
matrix T that aligns neurons across models before performing averaging-based fusion (Singh &
Jaggi, 2020; Imfeld et al., 2024). Although OT can partially mitigate the parameter misalignment
issue, its effectiveness might be constrained when applied to highly diverse models. This is because
standard OT establishes correspondences based on geometric distances in parameter space (e.g., Eu-
clidean or cosine), which may not really capture the semantic consistency (Chuang et al., 2023).
Consequently, parameters that are close under such geometric measures can still encode distinct un-
derlying features, particularly when the models are trained under different conditions (e.g., different
data distributions or architectures).

In summary, applying OT Fusion to adversarially trained CLIP submodels is not straightforward,
due to a challenging dilemma. On the one hand, to ensure model’s robustness, the submod-
els need to be as diverse as possible, since submodels trained under different adversarial attacks
develop distinct mappings in the input space, resulting in diverse representations. This diversity pro-
duces complementary decision boundaries across submodels, collectively enhancing the final fused
model’s robustness to a wider range of adversarial perturbations. On the other hand, to ensure the
accuracy of OT Fusion, the submodels need to be as similar as possible. As explained above,
OT primarily aligns parameters based on geometric metrics rather than semantic consistency, which
may reduce its effectiveness when the submodels are highly diverse.

Our contributions. To achieve a pleasant trade-off between the above two aspects, we propose
Hierarchical Optimal Transport Fusion method for CLIP (HOT-CLIP), a novel framework that con-
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structs diverse adversarial submodels and hierarchically fuses them via optimal transport to produce
a single robust CLIP visual encoder. To the best of our knowledge, this is also the first work to
investigate model fusion problem in the context of adversarial robustness.

– HOT-CLIP adopts a carefully crafted two-stage procedure, which first constructs diverse adver-
sarial submodels, and then hierarchically fuses them into a single robust visual encoder. Stage 1
constructs a set of diverse submodels by varying both the adversarial attack settings used during
training (training data) and the textual prompts (training labels). This diversity ensures that the re-
sulting submodels capture complementary robustness patterns. Stage 2 hierarchically fuses these
submodels via optimal transport, effectively balancing the trade-off between submodel diversity and
alignment. It first aligns and fuses models within the same attack family (intra-attack), consolidat-
ing prompt-induced diversity while ensuring that the models are sufficiently similar for effective
OT alignment. It then fuses the resulting models across different attacks (inter-attack), integrating
attack-based diversity to produce the final robust model.

–Then, we conduct extensive experiments on three representative tasks for vision-language models,
image classification, visual question answering (VQA), and image captioning. Across these tasks,
HOT-CLIP consistently enhances adversarial robustness over existing methods, with relative robust
score improvements of around 2.6% for image classification, around 20.4% for VQA, and around
16.5% for image captioning. At the same time, its clean performance remains highly competitive.
These results demonstrate that HOT-CLIP can effectively navigate the robustness–accuracy trade-
off, and has the potential to establish a new state-of-the-art for adversarially robust multimodal
models.

2 PRELIMINARIES

Due to space constraint, an extended review of related work is presented in the Appendix B. In
this section, we briefly introduce the preliminaries related to our study, including the structure of
CLIP (Radford et al., 2021), adversarial training (Madry et al., 2018), and optimal transport fu-
sion (Peyré & Cuturi, 2019; Singh & Jaggi, 2020).

Let X denote the image space and T denote the text space. CLIP consists of two modality-specific
encoders: an image encoder fθimg : X→Rd and a text encoder fθtxt : T →Rd, where θ denotes the
model parameters. In particular, we denote the parameters of the image and text encoders as θimg
and θtxt, respectively. These encoders map images x∈X and text descriptions t ∈ T into a shared
d-dimensional embedding space.

Definition 2.1 (CLIP Classifier) Consider a K-class classification task. Let C = {c1, c2, . . . , cK}
denote the set of candidate classes, and Y = {1, 2, . . . ,K} denote the corresponding label set. For
each class ck, define a textual prompt tk associated with class ck (e.g., tk = “a photo of ck”). The
CLIP classifier g : X → RK is defined as

g(x)k = cos
(
fθimg(x), fθtxt(tk)

)
, k = 1, . . . ,K, (1)

where fθimg and fθtxt denote the image and text encoders, respectively, x ∈ X is the input image and
cos(·, ·) computes the cosine similarity between normalized embeddings.

Definition 2.2 (Adversarial Example) Given a classifier g : X → RK and a clean input image
x ∈ X with true label y ∈ Y , an adversarial example is a perturbed input

x′ = x+ η, ∥η∥p ≤ ϵ, s.t. argmax g(x′) ̸= y, (2)
where η is a small perturbation constrained within an Lp -ball of radius ϵ, such that the classifier
misclassifies the perturbed input (i.e. g(x′) ̸= y). To obtain such perturbations, adversarial attacks
can be categorized into two types:

(i) Untargeted attack: the adversary aims to maximize the loss for the true label:
η∗ = arg max

∥η∥p≤ϵ
L(g(x+ η), y), (3)

where L is the loss function (e.g. cross-entropy).

(ii) Targeted attack: the adversary seeks to misclassify the input as a specific target class ytarget ̸= y:
η∗ = arg min

∥η∥p≤ϵ
L(g(x+ η), ytarget). (4)
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To defend against such adversarial perturbations, adversarial training (Madry et al., 2018) introduces
these adversarial examples into the learning process. In our setup, only the parameters of the image
encoder are updated, while the text encoder remains frozen. Specifically, the training objective is
formulated as the following min–max optimization:

min
θimg

E(x,y)∼D

[
max

∥η∥p≤ϵ
L
(
g(x+ η; θimg, θtext), y

)]
. (5)

where D is the dataset. The inner maximization identifies the most challenging adversarial pertur-
bations within the allowed ℓp norm bound, while the outer minimization updates the image encoder
to correctly classify these perturbed inputs, thereby enhancing adversarial robustness.

Definition 2.3 (Optimal Transport Distance (Peyré & Cuturi, 2019)) Let µ =
∑n

i=1 αi δ(a
(i))

and ν =
∑m

j=1 βj δ(b
(j)) be two empirical probability measures, where a(i) ∈ P and b(j) ∈ Q are

support points, and δ(·) denotes the Dirac measure assigning unit mass. Here, P and Q represent
the spaces of source and target points (e.g., neuron embeddings to be aligned). We define a transport
cost function C : P×Q → R+, which quantifies the cost of transporting unit mass from a(i) to b(j).
The optimal transport distance between µ and ν is defined as

OT(µ, ν) = min
T∈Π(µ,ν)

E(a,b)∼T [C(a, b) ], (6)

where Π(µ, ν) denotes the set of couplings with marginals µ and ν.

Figure 2: Neuron alignment via OT. Assume the neu-
rons with same color are functionally similar. The orig-
inal models “A” and “B” exhibit a permutation in neu-
ron correspondence (left figure); for example, the first
neuron in the first layer of A is blue, but the neuron in
the same position of B is yellow. In the middle figure,
we align the first layer via OT; then, the second layer is
aligned in the right figure.

In the above definition, the minimizer T ∗ ∈
Π(µ, ν), called the optimal transport plan, de-
fines a minimal-cost correspondence between
the support points of µ and ν. In the con-
text of model fusion, T ∗ can be used to align
neurons or parameter vectors across models,
providing a principled way to combine them
while minimizing misalignment. Based on op-
timal transport, OT Fusion (Singh & Jaggi,
2020) aligns two (or more) neural networks in
a layer-wise manner. In each layer, neurons are
treated as points (a and b), with their associated
weights or activations serving as feature rep-
resentations. Assuming a uniform probability
measure over neurons (µ and ν), the OT prob-
lem is solved between corresponding layers to
obtain the transport matrix. The transport ma-
trix is then used to align the current layer, and
the aligned weights are subsequently averaged to produce the fused layer. Applying this procedure
sequentially across layers yields a coherent fusion of the models. In Figure 2, we provide a simple
two-layer example, and the full details of OT Fusion are shown in Appendix C.1.

3 METHODOLOGY

In this section, we first present the high-level idea of our method in Section 3.1, and then detail
the technical components, including the construction of diverse submodels and the hierarchical OT
Fusion in Sections 3.2 and 3.3, respectively.

3.1 OVERVIEW OF OUR METHOD

Our goal is to enhance the robustness of CLIP’s visual encoder against adversarial perturbations.
The key idea is to leverage diversity among adversarially trained submodels and integrate them
through OT Fusion. Figure 3 illustrates the overall framework.

Stage 1: Diverse Adversarial Submodels Construction. According to the adversarial training ob-
jective introduced in Definition 2.2, the parameters of a model are influenced by multiple factors,
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Figure 3: Overview of HOT-CLIP. Diverse submodels are first constructed along two axes: prompt-based
diversity (n different textual templates) and attack-based diversity (m different adversarial attacks). The hier-
archical OT Fusion method is then applied to integrate these n×m submodels. In the Intra-attack OT Fusion
stage, submodels within the same attack family but with different prompts are aligned and fused via optimal
transport. In the Inter-attack OT Fusion stage, the first-level fused models from different attack families are
further integrated, yielding the final robust visual encoder.

such as the training data, model architecture, and optimization algorithm. Among these, training
data plays a particularly crucial role, as variations in data directly affect the learned decision bound-
aries and representations. In our study, all submodels share the same architecture and optimization
algorithm, and the diversity arises solely from the differences between those specifically “modified”
data distributions. Concretely, we train the submodels on adversarial examples generated by differ-
ent attack algorithms, so that the desired robustness can be diversified across multiple perturbation
types. Additionally, a single text template is often insufficient to fully capture the alignment between
images and textual labels; for example, the original CLIP (Radford et al., 2021) used about 80 tem-
plates. To further enhance the diversity, we vary both the adversarial attack settings and the textual
prompts, so that the submodels are trained under different distributions of adversarial examples and
supervision.

Stage 2: Hierarchical OT Fusion. Directly fusing these diverse adversarially trained CLIP sub-
models may be suboptimal. Theoretically, the parameters that are close under geometric measures
can encode distinct underlying features, particularly for diversely trained submodels (Chuang et al.,
2023; Nguyen et al., 2023; Ormaniec et al., 2025). Even using OT (as illustrated in Figure 2), the
highly diverse submodels could still yield non-ignorable error for the final fusion. Moreover, simul-
taneously fusing all submodels can take a rather large amount of memory space, as a great number
of parameters need to be stored and aligned within the same period during the fusion. To neatly
circumvent “direct” OT Fusion, we propose a hierarchical two-level OT Fusion framework. The
key idea is to control both the similarity and the number of submodels involved at each fusion step,
thereby improving alignment quality while keeping memory usage manageable. At the first level,
submodels trained under the same adversarial attack but with different textual prompts are grouped
and fused via OT. This ensures high internal homogeneity within each group and limits the number
of models fused simultaneously. At the second level, the first-level fused models, already aligned in
the label space, are further integrated across different attacks. By progressively fusing more homo-
geneous submodels, this hierarchical design can effectively preserve parameter alignment, leverages
complementary robustness, and maintains an affordable memory size.

3.2 CONSTRUCTION OF DIVERSE ADVERSARIAL SUBMODELS

We construct a set of diverse submodels by varying both the attack settings used during adversarial
training and the textual prompts used for image–text alignment.

Attack-based diversity. As discussed in Section 3.1, adversarial training typically improves robust-
ness against the specific perturbations seen during training but generalizes poorly to unseen attacks.
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To mitigate this limitation, we construct submodels under different adversarial settings. Formally,
let A denote a set of adversarial attack methods. Given a clean dataset D and an attack method
a ∈ A, we define the attack-specific dataset as

D(a)
adv = {(x+ ηa(x), y) | (x, y) ∈ D} (7)

where ηa denotes the perturbation generated under method a (e.g., FGSM (Goodfellow et al., 2015),
PGD (Madry et al., 2018), MIM (Dong et al., 2018)) with its own radius ϵ and norm constraint.
Training a visual encoder on D(a)

adv yields a submodel specialized to adversarial perturbations of a.

Prompt-based diversity. Beyond attack-based diversity, CLIP-style models also rely on text–image
alignment, which introduces another source of diversity. We consider multiple textual prompt sets
T . For a given prompt set t ∈ T , the prompt-specific dataset is defined as

D(t)
prompt = {(x, y(t)) | (x, y) ∈ D}, (8)

where y(t) is the textual representation for class y under prompt t. This generates the submodels
with different label alignment characteristics in the embedding space.

For each combination of attack a ∈ A and prompt t ∈ T , we define a fully diversified dataset that
integrates D(a)

adv and D(t)
prompt:

D(a,t)
div = {(x+ ηa(x), y

(t)) | (x, y) ∈ D}. (9)

Then, we train a submodel f (a,t)
θimg

on D(a,t)
div , where only the parameters θimg of the image encoder

are updated and the text encoder θtext remains fixed. The resulting family of submodels is M =

{f (a,t)
θimg

| a ∈ A, t ∈ T }.

3.3 HIERARCHICAL OT FUSION

We then introduce the two-level fusion procedure, consisting of the L-level (Language-level) fusion
and the V-level (Visual-level) fusion. At the L-level, submodels trained under the same adversarial
attack but using different textual prompts are fused. This step consolidates the diversity arising
from multiple prompts. At the V-level, the resulting L-level fused models are further fused across
different adversarial attacks, integrating the diversity introduced by varying attack methods. Due to
the space limit, we leave the full HOT-CLIP algorithm to Appendix C.

L-Level: Intra-attack Fusion. For a fixed attack a∈A, the set of submodelsMa={f (a,t)
θimg
| t∈T }

share similar robustness properties but differ in feature alignment due to different textual prompts.
The L-level fused model f̄ (a)

θimg
is obtained by averaging the weights of submodels, after aligning them

to an “anchor” model (which can be any arbitrary submodel selected fromMa). Formally, for each
layer ℓ, the fused weight is

W
(a)
ℓ =

1

|T |
∑
t∈T

W
(a,t),aligned
ℓ , (10)

where W
(a,t),aligned
ℓ denotes the aligned weights of submodel f (a,t)

θimg
. To obtain the aligned weights

W
(a,t),aligned
ℓ , we first align the columns of the current layer’s weight W (a,t)

ℓ using the transport
matrix from the previous layer, T (a,t)

ℓ−1 . These partially aligned weights are then used to compute

the transport matrix T
(a,t)
ℓ for the current layer, which is subsequently applied to align the rows of

W
(a,t)
ℓ , yielding the fully aligned weights W (a,t),aligned

ℓ . Formally, W (a,t),aligned
ℓ is calculated by

W
(a,t),aligned
ℓ = T

(a,t)⊤
ℓ W

(a,t)
ℓ T

(a,t)
ℓ−1 , (11)

The right multiplication by T
(a,t)
ℓ−1 aligns the columns of W (a,t)

ℓ to the anchor model, while the left

multiplication by T
(a,t)
ℓ

⊤
aligns the rows with respect to the anchor model. For more details, please

see Appendix C.1.
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V-Level: Inter-attack Fusion. After intra-attack fusion, we obtain a set of fused models corre-
sponding to each attack method, denoted as {f̄ (a)

θimg
| a ∈ A}. We then apply OT Fusion to these

models. Specifically, we compute the OT matrix T (a) between the layers of each submodel and
an arbitrarily selected anchor from {f̄ (a)

θimg
| a ∈ A}. For a given layer ℓ, the aligned weights are

obtained as

W
(a),aligned
ℓ = T

(a)⊤
ℓ W

(a)
ℓ T

(a)
ℓ−1, (12)

where W (a)
ℓ denotes the weight matrix of layer ℓ in f̄

(a)
θimg

, T (a)
ℓ−1 is the transport map from the previous

layer, and T
(a)⊤
ℓ is the transpose of the current layer’s transport map. Similar to the L-level fusion,

the right multiplication by T
(a)
ℓ−1 aligns the columns of W (a)

ℓ with the anchor model, while the left

multiplication by T
(a)⊤
ℓ aligns the rows. The aligned weights are then averaged across all attack-

specific models:

W fused
ℓ =

1

|A|
∑
a∈A

W
(a),aligned
ℓ . (13)

Repeating this procedure for all layers yields the final robust model f̄θimg , which integrates both
prompt-level and attack-level diversity.

Memory usage during the fusion. By controlling the diversity at each step, this hierarchical ap-
proach could ensure that only relatively similar submodels are aligned at a time. Specifically, the
peak memory size occupied by the submodels is lowered fromO(|A||T | ·U) for naive global fusion
to O(max{|A|, |T |} · U), where U denotes the memory usage of a single submodel; the detailed
analysis is provided in Appendix C.2.

4 EXPERIMENTS

In this section, we evaluate the adversarial robustness of CLIP’s visual encoder enhanced with our
hierarchical OT Fusion (HOT-CLIP) framework. We conduct experiments on three representative
multimodal tasks (zero-shot image classification (Radford et al., 2021), visual question answering
(VQA) (Goyal et al., 2017), and image captioning (Hu et al., 2022)) under diverse adversarial attack
scenarios.

4.1 EXPERIMENTAL SETUP

Implementation Details. We adopt a two-stage training pipeline that combines the construction
of diverse adversarial submodels and hierarchical OT fusion, using CLIP (Radford et al., 2021)
with ViT-L/14 visual encoders as the backbone. First, we construct diverse adversarial submod-
els by training CLIP for two epochs on ImageNet, where each submodel is adversarially trained
under a specific attack method (e.g., FGSM (Goodfellow et al., 2015), PGD (Madry et al., 2018),
MIM (Dong et al., 2018)) and with a textual prompt randomly sampled from the 80 templates intro-
duced in (Radford et al., 2021). Next, we perform the hierarchical OT fusion. Within each attack
family, submodels trained with different textual prompts are fused via OT, where layer-wise weight
matrices are represented as neuron embeddings and the Sinkhorn algorithm (Cuturi, 2013) is used
to compute the transport plan. The resulting fused model is fine-tuned for one epoch under the cor-
responding attack setting with a standard text template (“a photo of a . . . ”). Finally, the first-level
fused models from different attacks are integrated through OT Fusion, followed by an additional one
epoch of unsupervised adversarial fine-tuning. Further details for hyperparameters and implemen-
tation are deferred to Appendix C.1.

Baselines. We compare our method against recent state-of-the-art approaches that aim to improve
the adversarial robustness of vision–language models: TeCoA (Mao et al., 2023), which provides a
systematic analysis of adversarial robustness in CLIP-like models and proposes tailored fine-tuning
strategies to improve zero-shot performance under adversarial settings. FARE (Schlarmann et al.,
2024), which introduces adversarial perturbations directly into the visual embedding space and fine-
tunes the image encoder in an unsupervised manner.
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Table 1: Clean and adversarial evaluation on image classification datasets of CLIP model.
Models are trained on ImageNet, all other datasets are zero-shot. Robustness is assessed using
AutoAttack with the l∞ norm and perturbation bound ϵ = 2/255 and ϵ = 4/255 .The last column
shows the average accuracy across datasets. Bold indicates the best performance in each column.
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TeCoA 77.4 77.3 35.3 80.6 51.0 39.5 24.0 13.2 40.5 73.1 54.5 49.8 77.3 93.9 56.2
FARE 69.2 84.0 63.1 76.7 57.2 44.0 20.2 23.3 57.1 80.9 57.2 50.2 87.5 96.7 61.9
HOT-CLIP 69.9 85.1 64.0 78.7 60.0 46.2 18.0 21.8 56.9 80.8 59.9 49.6 87.1 96.3 62.5

ϵ
=

2
/
2
5
5 CLIP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0

TeCoA 62.5 70.0 17.5 60.9 34.0 27.2 14.4 5.7 24.1 58.8 44.0 47.2 68.3 87.4 44.4
FARE 52.1 76.8 29.8 56.5 36.2 28.4 12.2 8.0 28.3 61.0 41.9 50.2 71.5 89.7 45.9
HOT-CLIP 53.4 79.5 31.8 58.3 37.2 31.8 12.4 8.1 29.7 60.9 44.6 49.6 71.2 91.0 47.1

ϵ
=

4
/
2
5
5 CLIP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

TeCoA 48.2 61.4 8.7 37.3 20.2 17.6 11.6 2.3 12.5 41.5 34.5 38.1 55.7 74.6 33.1
FARE 33.0 64.6 12.5 34.5 20.5 17.0 11.2 2.0 12.3 40.4 31.3 50.2 50.5 74.6 32.4
HOT-CLIP 34.7 66.5 15.8 38.1 20.9 19.6 10.3 2.9 12.5 39.4 32.8 49.6 51.8 77.0 33.7

4.2 EVALUATION ON PERFORMANCE

Zero-shot Image Classification. We evaluate clean and robust accuracies of the CLIP models on
ImageNet and 13 zero-shot datasets mentioned in Appendix D. For each dataset, class names are
combined with a predefined set of prompt templates. Zero-shot classification is then performed as
described in Definition 2.1. To evaluate the adversarial robustness of the models, we adopt AutoAt-
tack (Croce & Hein, 2020) under the ℓ∞ norm with perturbation radii of ϵ = 2/255 and ϵ = 4/255,
each run for 100 iterations. As shown in Table 1, HOT-CLIP achieves the second-best clean ac-
curacy among all methods, slightly lower than the original CLIP. Under adversarial perturbations,
it achieves a relative improvement in robustness of 2.6% at ϵ = 2/255 and 1.8% at ϵ = 4/255.
These results indicate that our method improves adversarial robustness while maintaining competi-
tive clean accuracy on image classification.

Image Captioning. We further evaluate our method on image captioning, where the model gener-
ates natural language descriptions of images. We report the results using the CIDEr score (Vedan-
tam et al., 2015), a widely adopted metric for measuring the quality of generated captions. The
experiments are conducted on COCO (Lin et al., 2014) and Flickr30k (Young et al., 2014), using
two representative LVLMs: OpenFlamingo-9B (OF) (Alayrac et al., 2022) and LLaVA-1.5-7B (Liu
et al., 2023). For clean evaluation, we use the full validation sets; for adversarial evaluation, we
randomly sample 500 images from each dataset, using a similar evaluation setup as Schlarmann
& Hein (2023). The adversarial robustness is tested with AutoAttack (Croce & Hein, 2020) under
the ℓ∞ norm with ϵ ∈ {2/255, 4/255}, using 100 iterations. As shown in Table 2, HOT-CLIP con-
sistently improves robustness across both datasets. For LLaVA-7B, HOT-CLIP achieves a relative
improvement of 26.7% at ϵ = 2/255 and 16.5% at ϵ = 4/255; for OF-9B, the corresponding rel-
ative gains are 13.4% and 13.3%. These results demonstrate that HOT-CLIP effectively enhances
adversarial robustness in image captioning while preserving competitive clean performance.

VQA. We also evaluate our method on the task of Visual Question Answering, where the model is
required to provide accurate answers to natural language questions based on image inputs. For
evaluation, we consider two widely used VQA benchmarks: VQAv2 (Goyal et al., 2017) and
TextVQA (Singh et al., 2019). Adversarial evaluation uses the same model and attack settings as
in the image captioning experiments, i.e., OpenFlamingo-9B and LLaVA-1.5-7B, with AutoAttack
under the ℓ∞ norm (ϵ = 2/255 and 4/255, 100 iterations). Table 3 reports the VQA accuracy un-
der clean and adversarial settings, showing that HOT-CLIP consistently enhances robustness across
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Table 2: Evaluation of LVLMs using different CLIP encoders on image captioning. Results are
reported for OpenFlamingo and LLaVA on two image captioning datasets, measured using CIDEr.
The last column shows the average CIDEr score across datasets. Bold indicates the best performance
in each column.

VLM Vision
encoder

COCO Flickr30k Average over datasets

clean ϵ = 2
255

ϵ = 4
255

clean ϵ = 2
255

ϵ = 4
255

clean ϵ = 2
255

ϵ = 4
255

L
L

aV
A

-7
B CLIP 122.2 3.2 2.4 79.1 1.4 0.9 100.6 2.3 1.65

TeCoA 93.9 40.8 16.9 50.9 26.3 16.5 72.4 33.5 16.7
FARE 105.8 50.1 33.2 64.7 28.5 20.1 85.2 39.3 26.6
HOT-CLIP 110.4 56.5 35.5 74.6 43.1 26.5 92.5 49.8 31.0

O
F-

9B

CLIP 85.2 1.6 1.3 63.8 0.6 0.5 74.5 1.1 0.9
TeCoA 73.5 31.6 21.2 43.5 10.4 10.2 58.5 21.0 15.7
FARE 81.5 33.2 22.8 54.6 16.1 10.5 68.0 24.6 16.6
HOT-CLIP 87.9 36.7 26.0 55.2 19.1 11.7 71.5 27.9 18.8

Table 3: Evaluation of LVLMs using different CLIP encoders on VQA. Results are reported on
VQAv2 and TextVQA, measured by accuracy. The last column shows the average accuracy across
datasets. Bold indicates the best performance in each column.

VLM Vision
encoder

TextVQA VQAv2 Average over datasets

clean ϵ = 2
255

ϵ = 4
255

clean ϵ = 2
255

ϵ = 4
255

clean ϵ = 2
255

ϵ = 4
255

L
L

aV
A

-7
B CLIP 37.8 0.2 0.0 72.4 2.6 0.2 55.1 1.4 0.1

TeCoA 19.4 12.8 8.9 63.4 40.4 29.5 41.4 26.6 19.2
FARE 27.5 15.4 9.1 65.6 40.9 29.7 46.5 28.1 19.4
HOT-CLIP 25.3 17.7 12.8 68.8 43.8 34.6 47.0 30.7 23.7

O
F-

9B

CLIP 21.0 0.0 0.0 46.2 3.7 0.5 33.6 1.9 0.2
TeCoA 12.4 2.9 1.8 45.6 25.5 22.3 29.0 14.2 12.1
FARE 17.0 3.5 2.6 43.2 24.0 20.7 30.1 13.7 11.6
HOT-CLIP 22.5 5.2 5.0 51.5 29.1 24.0 37.0 17.1 14.5

both benchmarks while maintaining competitive clean performance. For LLaVA-7B, HOT-CLIP
achieves a relative improvement of 9.2% at ϵ = 2/255 and 22.2% at ϵ = 4/255; for OF-9B, the
corresponding relative gains are 20.4% and 19.8%.

Summary of other experimental results. Due to space constraint, additional ablation studies and
extended evaluations are provided in Appendix E. We conduct ablation studies to examine the effects
of backbone choice, submodel pool composition, adversarial training strength, and fusion strategies.
We further evaluate our method on additional tasks, including targeted attacks and hallucination phe-
nomena in large vision-language models. The results demonstrate that our framework consistently
enhances adversarial robustness across tasks and configurations, while remaining effective across
different model architectures.

5 CONCLUSION AND FUTURE WORK

The proposed HOT-CLIP framework enhances the adversarial robustness of large vision-language
models by constructing diverse submodels across different adversarial attacks and textual prompts,
and integrating them via hierarchical OT Fusion. Experiments on zero-shot image classification,
VQA, and image captioning demonstrate consistent improvements in robustness under strong ad-
versarial perturbations, while preserving competitive performance on clean data. Although leverag-
ing multiple submodels increases computational cost during training, the hierarchical fusion ensures
that inference-time overhead remains comparable to a single backbone, making the method practi-
cal for deployment. We think a promising direction for future work is to extend HOT-CLIP towards
cross-modal joint defenses, examining the potential of hierarchical fusion for the simultaneous en-
hancement of robustness across multiple modalities.
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A THE USE OF LLMS

A large language model (LLM) was employed for language polishing and grammar correction. All
scientific ideas, experimental design, analysis, and conclusions were generated solely by the authors.
The LLM did not contribute to any research ideation or content creation.

B RELATED WORKS

In this section, we review three main lines of research related to our study: large vision-language
models (LVLMs), adversarial robustness of LVLMs, and optimal transport-based fusion methods.

Large Vision-Language Models In recent years, a number of large vision-language models have
been released, demonstrating the rapid progress of multimodal learning. Representative open-source
efforts include Flamingo (Alayrac et al., 2022), LLaVA (Liu et al., 2023), and more recently Qwen-
VL(Bai et al., 2023) and InternVL (Chen et al., 2024), which extend large language models with
visual perception capabilities. Despite architectural differences, most LVLMs adopt CLIP (Radford
et al., 2021) or its variants as the vision-language alignment backbone. While these models provide
transferable multimodal features for diverse downstream applications, they remain vulnerable to
adversarial perturbations, raising concerns for deployment in safety-critical scenarios.

Adversarial Robustness of LVLMs Adversarial robustness in LVLMs has attracted increasing at-
tention, as perturbations applied to visual, textual or jointly across both modalities can severely
disrupt cross-modal representations. In this work, we focus on adversarial perturbations in the vi-
sual modality. Since the high-dimensional and continuous nature of visual data (Ye et al., 2025),
and the strong transferability of visual adversarial examples (Waseda et al., 2023), make defending
against visual attacks particularly challenging. Furthermore, in many LVLMs applications (such as
medical imaging (Javed et al., 2024) and autonomous driving (Rossolini et al., 2023)), visual in-
puts often serve as the primary source of information for model decision-making. Existing defense
strategies against visual modalities attacks can be grouped into two main categories: inference-phase
defenses and training-phase defenses (Ye et al., 2025). Inference-phase defenses mitigate vulnera-
bilities at deployment time, typically by perturbing images before model inference (Xu et al., 2024;
Sun et al., 2024). These approaches are attractive for their plug-and-play nature, but often can-
not fundamentally eliminate the vulnerability of the vision encoder to adversarial perturbations.
In contrast, training-phase defenses aim to improve robustness during model development, most
commonly through adversarial fine-tuning (Schlarmann et al., 2024; Hossain & Imteaj, 2024b;a).
While effective against certain attacks, such methods often struggle to generalize to unseen pertur-
bations due to overfitting to specific attack (Rice et al., 2020). Our work falls within the scope of
training-phase defenses, extending adversarial fine-tuning with an optimal transport–based fusion
mechanism. Our proposed approach belongs to the category of training-phase defenses, extending
adversarial fine-tuning with an optimal transport–based fusion mechanism.

Optimal Transport Fusion OT Fusion is a layer-wise model fusion technique that utilizes optimal
transport to align neurons across the models before averaging their associated parameters (Singh
& Jaggi, 2020). This technique has recently been extended to a variety of architectures, including
transformers (Imfeld et al., 2024) and graph neural networks (Ormaniec et al., 2025). Beyond archi-
tectural adaptations, FedSKF (Zhou & Wang, 2024) introduces OT Fusion for knowledge integration
in federated class-incremental learning, which aligns feature distributions between client and server
models to mitigate data heterogeneity. Despite its success in model integration, OT Fusion has seen
limited investigation in the context of adversarial robustness, which motivates our study.

Optimal Transport (OT) OT has been widely adopted in various alignment tasks, including doc-
ument alignment Wang et al. (2024) and word alignment Arase et al. (2023). Melnyk et al. (2024)
proposed AOT, an OT-based framework that aligns reward distributions for large language models
by enforcing distributional preference dominance. OT also offers new perspectives on existing tech-
niques. For example, recent studies (Shi et al., 2023; 2024) show that Contrastive Learning (CL)
and the CLIP model can be reformulated as (Inverse) OT problems, where common objectives such
as InfoNCE loss can be interpreted as instances of (Inverse) OT for aligning sample similarities.
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Algorithm 1 Hierarchical OT Fusion for CLIP Visual Encoder
Require: Clean dataset D = {(x, y)}; attack set A; template set T ; standard template t0; layer

indices ℓ = 1 . . . L.
Ensure: Fused visual encoder f̄θimg (text encoder frozen).

1: for each a ∈ A do
2: for each t ∈ T do
3: Construct diversified dataset: D(a,t)

div ← {(x+ δa(x), y
(t)) : (x, y) ∈ D}.

4: Train submodel M (a,t) ← AdversarialTrain(D(a,t)
div ) with frozen text encoder.

5: Store layer weights {W (a,t)
ℓ }Lℓ=1.

6: end for
7: end for
8: Level 1: Prompt-level fusion within each attack
9: for each a ∈ A do

10: Select anchor model M (a,tanchor).
11: for ℓ = 1 to L do
12: for each t ∈ T do
13: Align columns of weights: W̃ (a,t)

ℓ ←W
(a,t)
ℓ T

(a,t)
ℓ−1

14: Compute OT plan: T (a,t)
ℓ ← ComputeOT(W̃ (a,t)

ℓ ,W
(a,tanchor)
ℓ ).

15: Align weights: W (a,t),aligned
ℓ ← (T

(a,t)
ℓ )⊤W

(a,t)
ℓ T

(a,t)
ℓ−1 .

16: end for
17: Average aligned weights: W (a)

ℓ ← 1
|T |

∑
t∈T W

(a,t),aligned
ℓ .

18: end for
19: Assemble fused model M̄ (a) with {W (a)

ℓ }.
20: Fine-tune M̄ (a) on D(a,t0)

div .
21: end for
22: Level 2: Attack-level fusion across attacks
23: Select anchor attack aanchor.
24: for ℓ = 1 to L do
25: for each a ∈ A do
26: Align columns of weights: W̃ (a)

ℓ ←W
(a)
ℓ T

(a)
ℓ−1

27: Compute OT plan: T (a)
ℓ ← ComputeOT(W̃ (a)

ℓ ,W
(aanchor)
ℓ ).

28: W
(a),aligned
ℓ ← (T

(a)
ℓ )⊤W

(a)
ℓ T

(a)
ℓ−1.

29: end for
30: W fused

ℓ ← 1
|A|

∑
a∈A W

(a),aligned
ℓ .

31: end for
32: Assemble final fused model f̄θimg with {W fused

ℓ }Lℓ=1.
33: return f̄θimg .

C ALGORITHM

In this section, we provide the detailed procedure of our HOT-CLIP in Algorithm 1. Concretely, we
first adversarially train a diverse set of submodels, each under a specific attack method and textual
template. Within each attack family, the submodels are aligned at the neuron level using optimal
transport maps and then averaged to obtain an intra-attack fused model, which is further fine-tuned
under the corresponding attack setting. (The procedure relies on computing optimal transport maps
through the subroutine ComputeOT(.), whose implementation details are provided in Appendix C.1.)
In the second stage, the intra-attack fused models are again aligned and averaged across different
attacks, followed by an additional round of fine-tuning to adapt the final visual encoder. This step-
by-step process complements the high-level overview in the main text by making the construction,
alignment, and fusion operations explicit.
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C.1 DETAILS OF OPTIMAL TRANSPORT FUSION

In this section, we introduce the details of OT Fusion (Singh & Jaggi, 2020) and Transformer-
specific OT Fusion (Imfeld et al., 2024), following the methodologies of Singh & Jaggi (2020)
and Imfeld et al. (2024).

C.1.1 OPTIMAL TRANSPORT FUSION

We provide a more formal description of the OT Fusion procedure. Consider two submodels A and
B, and suppose we are at layer ℓ, with neurons in previous layers already aligned.

Step 1: Define probability measures. We define probability measures over neurons at layer ℓ
for the two models as µ(ℓ) =

(
α(ℓ), X(ℓ)

)
, ν(ℓ) =

(
β(ℓ), Y (ℓ)

)
, where X(ℓ) = {x(ℓ)

1 , . . . , x
(ℓ)

n(ℓ)}
and Y (ℓ) = {y(ℓ)1 , . . . , y

(ℓ)

m(ℓ)} are the neuron weight vectors of models A and B. We use uniform
histograms as initialization: α(ℓ) ← 1

n(ℓ)1n(ℓ) , β(ℓ) ← 1
m(ℓ)1m(ℓ) .

Step 2: Propagate alignment from previous layer. To ensure consistency, we first align the
incoming edge weights for layer ℓ using the transport plan from the previous layer, T (ℓ−1). Formally,

W̃
(ℓ,ℓ−1)
A ← W

(ℓ,ℓ−1)
A T (ℓ−1) diag

(
1

β(ℓ−1)

)
, (14)

where W
(ℓ,ℓ−1)
A is the weight matrix between layers ℓ − 1 and ℓ in model A. This step aligns the

current layer’s weights, W (ℓ,ℓ−1)
A , based on the transport map of the preceding layer, so that the

subsequent computation of the optimal transport map for this layer is meaningful.

Step 3: Solve optimal transport at current layer. Given a ground cost DS(·, ·) (we use Euclidean
distance), the transport plan T (ℓ) is obtained by solving

T (ℓ) ← OT
(
µ(ℓ), ν(ℓ);DS

)
, (15)

We solve the OT problem for the current layer using the Sinkhorn algorithm (Cuturi, 2013)

Step 4: Align neurons and fuse. Using T (ℓ), we align model A’s weights with respect to model
B:

W
(ℓ,ℓ−1)
A,aligned ← diag(1/β(ℓ))T (ℓ)⊤ W̃

(ℓ,ℓ−1)
A . (16)

Finally, the fused weights are obtained as

W
(ℓ,ℓ−1)
F ← 1

2

(
W

(ℓ,ℓ−1)
A,aligned + W

(ℓ,ℓ−1)
B

)
. (17)

Then, the above procedure is applied sequentially across all layers.

C.1.2 TRANSFORMER FUSION

In Transformers, the flow of transportation maps (TMs) becomes more complex due to structure of
Transformers (residual connections, multi-head attention, and normalization layers). In this section,
we introduce the OT Fusion of transformer (Imfeld et al., 2024).

Residual Connections. For a residual block, the outputs of the main branch and the skip branch
are summed. Thus, the outgoing TM depends on both incoming TMs. We use a weighted averaging
strategy:

T
(ℓ)
out = T

(ℓ)
main diag(1− γ(ℓ)) + T (ℓ)

res diag(γ(ℓ)), (18)

where γ(ℓ) is a weighting vector that controls the relative contribution of the main branch and the
skip (residual) branch.
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Multi-Head Attention. Multi-head attention introduces additional challenges for OT Fusion, as
transport maps must be propagated consistently across the query (WQ), key (WK), value (WV ), and
output (WO) projections. Recall that the attention mechanism is defined as

Attention(Q,K, V ) = softmax
(
QK⊤
√
dk

)
V, (19)

where Q = XWQ, K = XWK , and V = XWV . We adopt the following alignment strategy: (i)
Propagation across Q, K, and V : The transport maps for WQ, WK , and WV are inherited directly
from the previous layer, which applies equally to the multi-head case. (ii) Handling WO under
hard alignment: The output projection WO depends jointly on the aligned Q, K, and V branches.
Under hard alignment, we enforce TQ = TK = TQK so that the permutation cancels inside the
softmax operation, leaving the attention scores unchanged:

softmax
(
(QTQ)(KTQ)

⊤
√
dk

)
= softmax

(
QK⊤
√
dk

)
. (20)

In this case, only the transport map of V is propagated to WO. (iii) Cross-head alignment: Because
there is no guarantee of one-to-one correspondence between heads across models, we adopt a cross-
head alignment strategy. Specifically, the projection matrices for each head {W i

Q,W
i
K ,W i

V } are
concatenated across all heads to form unified matrices WQ,WK ,WV . OT Fusion is then applied to
these concatenated matrices. Finally, the transport map TV is propagated to WO.

Feed-Forward Networks, Layer Normalization, and Embeddings. Each feed-forward sublayer
is treated as a standard linear layer. Layer normalization contains only per-dimension affine parame-
ters (α, β), which are aligned directly using the incoming transport map. For positional embeddings,
which are added residually, we apply the same fusion strategies as used for residual connections.

C.2 ANALYSIS OF MEMORY USAGE

Let |A| denote the number of adversarial attack types, |T | denote the number of textual prompts
and U represent the memory usage of a single submodel. According to the method of align to an
anchor model, In naive global fusion, all |A| · |T | submodels are aligned and stored simultaneously,
resulting in a peak memory complexity of O(|A||T | · U).

In our two-level hierarchical OT Fusion framework, fusion is performed progressively: Intra-attack
fusion (L-level): For each attack a ∈ A, only the |T | submodels corresponding to different prompts
are fused at a time. Once fused, the intermediate result replaces the original submodels, so the
memory required at any step is proportional to {|T |}. Inter-attack fusion (V-level): The first-
level fused models, one per attack type, are further integrated. Again, the number of models stored
simultaneously is bounded by {|A|}.
Since the fusion is hierarchical and progressive, the peak memory usage at any step never exceeds
O(max{|A|, |T |} · U).

D DETAILS OF IMPLEMENTATION

In this section, we detail the implementation and training setup. All models use CLIP (Radford
et al., 2021) with a ViT-L/14 visual encoder, initialized from the official OpenAI checkpoint on
Hugging Face. Finetuning is performed on 8 NVIDIA RTX 4090 GPUs with PyTorch 2.5 and
CUDA 12.4, using AdamW (Loshchilov & Hutter, 2019) with a learning rate of 1 × 10−5, weight
decay 0.01, and batch size 128 (16 per GPU). Each submodel is adversarially fine-tuned for 2 epochs
on ImageNet under ℓ∞ perturbations (ϵ = 4/255). For each attack method (FGSM (Goodfellow
et al., 2015), PGD (Madry et al., 2018), and MIM (Dong et al., 2018)), we train three submodels per
attack, each using a textual prompt randomly sampled from 80 templates following standard CLIP
practice (Radford et al., 2021), to ensure diverse adversarial examples. For OT Fusion, neurons in
each linear layer are represented by their incoming weight vectors, which are ℓ2-normalized prior
to computing pairwise distances. The ground cost is defined as the squared Euclidean distance.
Transport matrices are computed using the Sinkhorn (Cuturi, 2013) algorithm in the stabilized log-
domain, with entropic regularization τ = 8 × 10−2. Each submodel is aligned to an anchor model
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Table 4: Hyperparameters used in our experiments.
Stage Parameter Value

Backbone & Setup

Visual Encoder CLIP ViT-L/14 (OpenAI)
Hardware 8× NVIDIA RTX 4090 GPUs

Framework PyTorch 2.5,CUDA 12.4
Batch Size 128 (16 per GPU)

Adversarial Training

Epochs 2
Dataset ImageNet
Attacks FGSM, PGD, MIM

Perturbation ℓ∞, ϵ = 4/255
Optimizer AdamW

Learning Rate 1× 10−5

Weight Decay 0.01

OT Fusion

Representation weight vectors
Solver Sinkhorn ( τ = 8× 10−2)

Ground metric squared Euclidean distance
Measure uniform

trained with the standard template (“This is a photo of a ”). During intra-attack fusion, the fused
model is fine-tuned for 1 epoch with the corresponding attack and the standard template. During
inter-attack fusion, the model undergoes 1 epoch of unsupervised adversarial fine-tuning, while
reusing the same optimizer and learning rate schedule. A summary of all settings is provided in
Table 4.

We evaluate our models across three tasks: image classification, image captioning, and visual ques-
tion answering (VQA), considering both clean performance and adversarial robustness. Across
all tasks, we adopt AutoAttack (Croce & Hein, 2020) under the ℓ∞ norm with perturbation radii
ϵ = 2/255 and ϵ = 4/255, each run for 100 iterations. This provides a standardized and reliable
evaluation of robustness against adversarial perturbations.

Image classification. This task requires assigning a semantic label to each input image. We evaluate
clean and robust accuracy on ImageNet and 13 additional zero-shot datasets (details in Section 4.1).
For each dataset, class names are combined with a predefined set of prompt templates, and zero-
shot classification is performed as described in Section 2. Accuracy is reported as the proportion of
correctly classified images.

Image captioning. Here, the model generates natural language descriptions conditioned on an im-
age. We evaluate performance on the COCO (Lin et al., 2014) and Flickr30k (Young et al., 2014)
datasets using the CIDEr score (Vedantam et al., 2015), a consensus-based metric that measures the
similarity of generated captions to human-written references. For image captioning, OpenFlamingo-
9B (OF) (Alayrac et al., 2022) is evaluated in a zero-shot setting without additional in-context ex-
emplars, whereas LLaVA-1.5-7B (Liu et al., 2023) is evaluated using its default system prompt
and captioning prompt. Clean evaluation uses the full validation sets, and adversarial evaluation is
conducted on 500 randomly sampled images per dataset, following Schlarmann & Hein (2023).

Visual question answering. This task requires the model to answer natural language questions
based on an image. We evaluate on two widely used benchmarks, VQAv2 (Goyal et al., 2017)
and TextVQA (Singh et al., 2019). Performance is measured by VQA accuracy, which computes
the proportion of model predictions that match human-annotated answers, thereby reflecting both
linguistic and visual reasoning ability. The same LVLMs and evaluation settings as in the captioning
task are used.

Datasets. (1) For zero-shot image classification, we use ImageNet (Deng et al., 2009), Caltech-
101 (Fei-Fei et al., 2007), Cars (Krause et al., 2013), CIFAR-10 (Krizhevsky et al., 2009), CIFAR-
100 (Krizhevsky et al., 2009), DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019), FGVC
Aircraft (Maji et al., 2013), Flowers (Nilsback & Zisserman, 2008), ImageNet-R (Hendrycks
et al., 2021), ImageNet-S (Gao et al., 2023), PCAM (Veeling et al., 2018), Oxford Pets (Parkhi
et al., 2012), STL-10 (Coates et al., 2011). (2) For visual question answering (VQA), we use
TextVQA (Singh et al., 2019) and VQAv2 (Goyal et al., 2017). (3) For image captioning, we use
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Table 5: Comparison of fusion strategies on zero-shot image classification. Robustness is measured
using AutoAttack with ℓ∞ perturbations bounded by ϵ = 2/255 and ϵ = 4/255. Bold numbers
indicate the best performance in each column.
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n Direct Average 69.3 85.6 63.9 76.4 58.7 44.5 17.9 23.0 57.0 81.3 60.0 49.5 86.2 96.1
Direct OTFusion 69.2 85.0 65.0 76.4 58.6 44.7 17.6 22.5 56.8 82.0 59.7 49.5 86.2 96.2
HOT-CLIP 69.9 85.1 64.0 78.7 60.0 46.2 18.0 21.8 56.9 80.8 59.9 49.6 87.1 96.3

ϵ
=

2
/
2
5
5 Direct Average 52.8 78.2 30.0 56.9 36.1 30.6 12.5 8.0 27.8 60.5 43.2 49.5 70.9 90.0

Direct OTFusion 52.5 78.4 30.2 56.2 35.7 30.7 12.1 8.0 28.1 60.2 43.6 49.5 71.1 90.1
HOT-CLIP 53.4 79.5 31.8 58.3 37.2 31.8 12.4 8.1 29.7 60.9 44.6 49.6 71.2 91.0

ϵ
=

4
/
2
5
5 Direct Average 31.8 63.7 15.1 36.2 19.9 19.2 9.6 2.0 12.2 39.0 31.6 49.5 51.0 74.9

Direct OTFusion 32.0 64.3 15.1 36.3 20.4 19.0 9.5 2.0 12.0 38.9 30.5 49.5 51.0 75.0
HOT-CLIP 34.7 66.5 15.8 38.1 20.9 19.6 10.3 2.9 12.5 39.4 32.8 49.6 51.8 77.0

Table 6: Comparison of fusion strategies on image caption and VQA. Robustness is measured using
AutoAttack with ℓ∞ perturbations bounded by ϵ = 2/255 and ϵ = 4/255. Bold numbers indicate
the best performance in each column..

VLM strategy
COCO Flickr30 TextVQA VQAv2

clean ϵ= 2
255

ϵ= 4
255

clean ϵ= 2
255

ϵ= 4
255

clean ϵ= 2
255

ϵ= 4
255

clean ϵ= 2
255

ϵ= 4
255

L
L

aV
A Direct Average 114.7 46.6 30.8 73.9 36.7 26.1 24.7 18.4 9.8 67.8 44.2 31.4

Direct OTFusion 113.5 47.7 30.9 73.7 37.2 25.0 25.3 18.7 8.8 67.8 43.2 31.3
HOT-CLIP 110.4 56.5 35.5 74.6 43.1 26.5 25.3 17.7 12.8 68.8 43.8 34.6

COCO (Lin et al., 2014) and Flickr30k (Young et al., 2014). For classification and VQA, we report
the accuracies under clean and adversarial inputs. For image captioning, we use CIDEr (Vedantam
et al., 2015) to evaluate the quality of generated captions under attack.

E ADDITIONAL EXPERIMENTS RESULTS

E.1 ABLATION STUDIES

Ablation on Fusion Strategies. To evaluate the effectiveness of our hierarchical OT Fusion design,
we compare three different fusion strategies on three vision-language tasks: zero-shot image classi-
fication, image captioning, and visual question answering. The first strategy, Direct Average, simply
averages the parameters of all submodels without any alignment. The second strategy, Direct OT
Fusion, applies optimal transport to align all submodels simultaneously before averaging. The third
strategy, Hierarchical OT Fusion (HOT-CLIP), performs two-level fusion: intra-attack alignment
followed by inter-attack integration. For each task, we report both clean and robust performance,
with robustness evaluated using AutoAttack under the ℓ∞ norm with ϵ = 2/255. Results in Ta-
ble 5 and Table 6 indicate that Direct Average and Direct OT Fusion often suffers from misalign-
ment across diverse submodels, leading to degraded clean accuracy and limited robustness gains.
In contrast, HOT-CLIP consistently improves robustness while maintaining or slightly enhancing
clean performance. This highlights the advantage of controlling submodel similarity at each fusion
stage, demonstrating that hierarchical fusion is crucial for effectively leveraging diverse adversari-
ally trained submodels.

Ablation on the Number of Submodels Following the fusion trategy, we investigate how the size
and composition of the submodel pool affect the performance, we vary: the number of families K
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Table 7: Clean and adversarial zero-shot performance on Image Captioning and VQA for different
submodel pool configurations.

VLM Num.
COCO Flickr30 TextVQA VQAv2

clean ϵ= 2
255

ϵ= 4
255

clean ϵ= 2
255

ϵ= 4
255

clean ϵ= 2
255

ϵ= 4
255

clean ϵ= 2
255

ϵ= 4
255

L
L

aV
A

(1 × 3) 108.4 49.6 30.1 74.4 40.0 26.6 25.3 17.7 8.8 67.8 44.9 31.3
(2 × 3) 113.6 49.7 30.9 73.7 37.2 25.0 25.0 18.7 8.8 67.9 43.2 31.4
(3 × 3) 110.4 56.5 35.5 74.6 43.1 26.5 25.3 17.7 12.8 68.8 43.8 34.6
(3 × 1) 110.6 52.2 32.3 74.5 39.2 27.3 26.3 17.7 9.2 67.8 44.2 31.9

Table 8: Comparison of HOT-CLIP with different adversarial training strengths on image captioning
and VQA tasks.

VLM Strength
COCO Flickr30 TextVQA VQAv2

clean ϵ= 2
255

ϵ= 4
255

clean ϵ= 2
255

ϵ= 4
255

clean ϵ= 2
255

ϵ= 4
255

clean ϵ= 2
255

ϵ= 4
255

L
L

aV
A 2/255 111.9 48.1 33.0 73.7 43.1 24.0 25.3 17.7 9.8 66.8 44.9 32.2

4/255 110.4 56.5 35.5 74.6 43.1 26.5 25.3 17.7 12.8 68.8 43.8 34.6

(corresponding to distinct attack methods), and the number of submodels per family J (correspond-
ing to different prompt variants per attack). We examine several configurations: 3× 3, 2× 3, 1× 3,
and 3 × 1, where the first number denotes K and the second J . All other settings follow Section
5.1 unless specified otherwise. We report CIDEr score and VQA accuracy for image captioning
and VQA tasks, respectively. As shown in Table 7, increasing the number of families K generally
improves robustness, indicating the benefit of incorporating diverse attack types. Adding more sub-
models per family (J) also enhances performance, demonstrating that prompt diversity contributes
to more robust feature representations. Notably, the 3× 3 configuration achieves the highest overall
gains across all tasks.

Ablation on Adversarial Training Strength. We further study the impact of adversarial training
strength on the robustness of our approach. Specifically, we train submodels with perturbation radii
ϵtrain ∈ {2/255, 4/255} under the ℓ∞ norm, keeping all other training settings fixed. Evaluation is
conducted on ImageNet using AutoAttack at ϵeval = 2/255 and ϵeval = 4/255, in addition to clean
accuracy. As shown in Table 8, models adversarially trained with ϵtrain = 2/255 achieve higher
clean performance but are less robust under stronger attacks, while those trained with ϵtrain = 4/255
exhibit the opposite trend.

Ablation Studies on Visual Encoder Backbone. To evaluate the general applicability of our HOT-
CLIP framework, we replace the CLIP ViT-L/14 visual encoder with the smaller CLIP ViT-B/32,
while keeping all other training and hierarchical OT Fusion settings unchanged. The resulting mod-
els are evaluated on zero-shot image classification. As shown in Table 9, models using ViT-B/32
achieve lower absolute accuracy than ViT-L/14 due to reduced capacity (e.g., 63.5% vs 71.2% on
ImageNet). Nonetheless, our hierarchical OT Fusion consistently improves robustness, increasing
accuracy by approximately 4.2% over the ViT-B/32 baseline and 3.8% over the ViT-L/14 baseline
under adversarial evaluation. These results indicate that HOT-CLIP effectively generalizes across
different visual encoder backbones while providing tangible robustness gains.

E.2 ADDITIONAL TASK

Robustness under Stealthy Targeted Attacks. Stealthy targeted attacks are high-risk adversarial
scenarios, where the attacker aims to manipulate the model to produce a specific target output while
the perturbation remains imperceptible to the user (Schlarmann & Hein, 2023). Such attacks pose
real-world safety concerns, for example, by guiding users to phishing websites or spreading false
information. To evaluate the effectiveness of HOT-CLIP under these conditions, we substitute the
CLIP visual encoder in LLaVA-1.5 7B with our robust versions. We perform ℓ∞ stealthy targeted
attacks using APGD (Croce & Hein, 2020) with 500 iterations. Two perturbation radii are consid-
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Table 9: Zero-shot classification performance and adversarial robustness of CLIP models visual
encoder ViT-B/32. Robustness is measured using AutoAttack with ℓ∞ perturbations bounded by
ϵ = 2/255.

Eval. Vision
encoder

Zero-shot datasets Avg.
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CLIP 59.3 82.1 60.8 89.2 59.1 46.3 53.6 20.3 68.5 65.6 41.2 62.8 88.9 97.5 63.9
TeCoA 55.9 71.4 14.3 70.6 40.2 26.7 20.1 6.0 27.3 48.3 27.5 49.4 72.0 86.9 44.0
FARE 48.7 80.6 34.2 68.1 46.0 34.7 16.0 11.2 38.0 48.3 34.3 49.4 78.9 89.2 48.4
HOT-CLIP 50.3 80.8 34.9 70.7 47.2 35.4 16.6 11.7 36.5 50.8 34.3 49.5 79.0 90.3 49.1

ϵ
=

2
/
2
5
5 CLIP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

TeCoA 39.1 64.0 5.0 49.2 25.7 19.5 13.6 2.0 13.0 31.2 18.9 49.1 56.0 74.3 32.9
FARE 29.6 67.0 12.9 47.2 27.6 22.8 12.9 3.7 14.1 29.2 20.8 49.4 50.0 77.3 33.1
HOT-CLIP 30.6 67.1 11.5 49.5 29.0 24.3 13.7 3.8 15.2 31.2 22.5 49.6 51.8 77.4 34.0

Table 10: Robustness of LLaVA with different vision encoders under stealthy targeted attacks.
Success rate (%) of APGD attacks across 25 images each, evaluated under ℓ∞ perturbations with
ϵ = 2/255 and ϵ = 4/255.

LLaVA with (ϵ = 2/255) LLaVA with (ϵ = 4/255)
Target CLIP TeCoA FARE HOT-CLIP CLIP TeCoA FARE HOT-CLIP

Attack success number 21/25 0/25 0/25 0/25 25/25 0/25 0/25 0/25

Success rate: 84% 0% 0% 0% 100% 0% 0% 0%

ered: ϵ = 2/255 and ϵ = 4/255. The target caption is “You are too stupid. I will not answer
anymore” and is tested on 25 sampled images. An attack is deemed successful if the target string is
exactly contained in the model’s output. Table 10 reports the attack success rate (ASR) for different
encoders. The original CLIP encoder is completely susceptible to attacks at ϵ = 2/255, whereas
HOT-CLIP achieves 0% ASR, demonstrating full robustness. Even at ϵ = 4/255, HOT-CLIP sub-
stantially mitigates attacks compared to CLIP. Qualitative examples are shown in Fig. 4, illustrating
that HOT-CLIP maintains high-quality captions while resisting the targeted manipulations. These
findings extend our main results on general adversarial robustness, confirming that HOT-CLIP not
only improves zero-shot classification, VQA, and image captioning robustness, but also protects
LVLMs against realistic high-risk targeted attacks.

Hallucination Experiments Large vision-language models (LVLMs) are prone to object halluci-
nation, where the model predicts the presence of objects that do not actually appear in the image.
To assess this issue, we adopt the POPE benchmark (Li et al., 2023), which formulates hallucina-
tion evaluation as a binary decision task: given an image and an object name, the model is asked
to answer whether the object is present (“Yes”) or absent (“No”). POPE contains three subsets:
(i) Random, where objects are randomly sampled; (ii) Popular, focusing on the most frequently
occurring objects in the dataset; and (iii) Adversarial, targeting hard cases constructed from non-co-
occurring object pairs. All images and object names are drawn from the validation split of COCO.
In Table 11, we present the F1-scores of LLaVA-1.5 7B equipped with different vision encoders on
the POPE benchmark. The clean CLIP encoder achieves the strongest performance across all three
POPE splits, while HOT-CLIP remains competitive as the second-best. In contrast, the TeCoA and
FARE models record the lower F1-scores.
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Figure 4: Examples of LLaVA captions under stealthy targeted attacks ( ϵ = 2/255 ).

Table 11: Performance of different visual encoders under POPE sampling strategies.

Visual Encoder POPE sampling Mean
Adversarial Popular Random

TeCoA 70.2 73.6 73.0 72.3
FARE 74.0 77.7 76.8 76.2
HOT-CLIP 74.2 77.9 77.1 76.4
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