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Abstract

Streaming generation models are utilized across
fields, with the Transducer architecture being pop-
ular in industrial applications. However, its input-
synchronous decoding mechanism presents chal-
lenges in tasks requiring non-monotonic align-
ments, such as simultaneous translation. In this re-
search, we address this issue by integrating Trans-
ducer’s decoding with the history of input stream
via a learnable monotonic attention. Our approach
leverages the forward-backward algorithm to infer
the posterior probability of alignments between
the predictor states and input timestamps, which
is then used to estimate the monotonic context rep-
resentations, thereby avoiding the need to enumer-
ate the exponentially large alignment space during
training. Extensive experiments show that our
MonoAttn-Transducer effectively handles non-
monotonic alignments in streaming scenarios, of-
fering a robust solution for complex generation
tasks. Code is available at https://github.
com/ictnlp/MonoAttn-Transducer.

1. Introduction
Streaming generation is a widely studied problem in fields
such as speech recognition (Raffel et al., 2017; Zhang et al.,
2020; Seide et al., 2024), simultaneous translation (Cho &
Esipova, 2016; Gu et al., 2017; Seamless Communication
et al., 2023), and speech synthesis (Ma et al., 2020a; Zhang
et al., 2024; Wang et al., 2024). Unlike modern turn-based
large language models, streaming models need to start gen-
erating the output before the input is completely read. This
necessitates a careful balance between generation quality
and latency.
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Popular streaming generation methods can be broadly
divided into two categories: Attention-based Encoder-
Decoder (AED; Bahdanau et al., 2015) and Transducer
(Graves, 2012). Streaming AED models adapt the conven-
tional sequence-to-sequence framework (Bahdanau, 2014)
to support streaming generation. They often rely on an exter-
nal policy module to determine the READ/WRITE actions
in inference and to direct the scope of cross-attention in
training. Examples include Wait-k policy (Ma et al., 2019)
and monotonic attention-based methods (Raffel et al., 2017;
Arivazhagan et al., 2019; Ma et al., 2020d; 2023a). On the
other hand, Transducer models connect the encoder and
predictor through a joiner rather than using cross-attention.
The joiner is designed to synchronize the encoder and pre-
dictor by expanding its output vocabulary to include a blank
symbol ϵ, which indicates a READ action. Due to the
decoupling of the predictor state from the encoder state,
READ/WRITE states in Transducer can be represented by
a two-dimensional lattice. This allows for the computation
of total probabilities using the forward-backward algorithm
(Graves, 2012), facilitating end-to-end optimization. Bene-
fited from joint optimization of all potential policies during
training, Transducer often demonstrates better performance
compared to AED models (Xue et al., 2022; Wang et al.,
2023).

During the decoding process of Transducer, each target
token is explicitly aligned with a corresponding source to-
ken. This input-synchronous decoding property makes the
architecture well-suited for tasks like speech recognition,
where the input and output align monotonically. However,
it poses challenges for non-monotonic alignment tasks such
as simultaneous translation (Chuang et al., 2021; Shao &
Feng, 2022; Ma et al., 2023b;c). Due to the decoupled de-
sign, Transducer models have limited ability to attend to
the input stream history during decoding, making it hard to
manage reorderings. To address this issue, recent research
(Liu et al., 2021; Tang et al., 2023) has started to explore
the incorporation of cross-attention mechanism to enhance
the capacity for handling complex non-monotonicity. De-
spite these efforts, the integration of cross-attention presents
significant challenges. By integrating the predictor states
with source history through attention, the representation of
predictor states becomes relevant not only to the encoder
states but also to the specific READ/WRITE path history
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(Tang et al., 2023). This results in an exponentially large
state space for Transducer, hindering the application of the
forward-backward algorithm for end-to-end training.

In this research, we present an efficient training algo-
rithm for Transducer models to learn the monotonic cross-
attention mechanism. This allows Transducer’s predictor
to access source history in real-time inference, improving
its ability to handle tasks with non-monotonic alignments.
We leverage the forward-backward algorithm to infer the
posterior probability of alignments between predictor and
encoder states in training. This derived posterior alignment
enables the estimation of context representation for each
predictor state using expected soft attention. In this way,
Transducer models adaptively adjust the scope of attention
based on their predictions, avoiding the need to enumerate
the exponentially large alignment space during training.

We conduct experiments on both speech-to-text/speech si-
multaneous translation to demonstrate the generality of our
approach across various modalities. MonoAttn-Transducer
shows significant improvements in generation quality with-
out a noticeable increase in latency in both ideal and
computation-aware settings (§5). Further analysis reveals
that MonoAttn-Transducer is particularly effective in han-
dling samples with higher levels of non-monotonicity (§6).

2. Background
2.1. Streaming Generation

Streaming generation models typically process a stream-
ing input x = {x1, ..., xT } and generate a target sequence
y = {y1, ..., yU} in a streaming manner. To measure the
amount of source information utilized during generation, a
monotonic non-decreasing function g(u) is introduced to
represent the number of observed source tokens at the time
of generating yu.

2.2. Transducer

Transducer model (Graves, 2012) comprises three compo-
nents: an encoder, a predictor, and a joiner. The encoder
unidirectionally encodes the received input prefix x1:t into
a context representation ht. The predictor functions sim-
ilarly to an autoregressive language model, encoding the
dependencies between tokens in the generated prefix y1:u
into su. The joiner makes predictions based on the cur-
rent source representation ht and target representation su.
If the model needs to READ more information to update
the source representation for continued generation, a blank
token ϵ is generated. Otherwise, a WRITE operation is
performed, and the generated token is fed back into the pre-
dictor to obtain a new target representation. Each time ht or
su is updated, the joiner performs a prediction step until the
entire source has been processed. The encoder and predictor

are usually modeled using either a recurrent neural network
(Graves, 2012) or Transformer layers (Zhang et al., 2020).
The joiner is typically composed of a feed-forward network.

Since explicit alignment information for parallel pairs is
not available during training, it is necessary to solve for
the total probabilities of all READ/WRITE paths that can
generate the target to perform maximum likelihood esti-
mation. Given that the state space of Transducer form a
two-dimensional lattice, the forward-backward algorithm
can be utilized to compute the total probability. Define the
forward and backward variables as:

α(t, u) := p(y1:u|x1:t)

β(t, u) := p(yu+1:U |xt:T )
(1)

The forward and backward variables for all 1 ≤ t ≤ T and
0 ≤ u ≤ U can be calculated recursively:

α(t, u)

= α(t− 1, u)p(ϵ|t− 1, u) + α(t, u− 1)p(yu|t, u− 1)

β(t, u)

= β(t+ 1, u)p(ϵ|t, u) + β(t, u+ 1)p(yu+1|t, u)
(2)

with initial condition α(1, 0) = 1 and β(T,U) = p(ϵ|T,U).
p(v|t, u) denotes the probability of generating token v from
ht and su, v ∈ V ∪ {ϵ}. The total output probability is:

p(y|x) = α(T,U)p(ϵ|T,U). (3)

By leveraging the forward-backward algorithm, Transducer
models are trained to implicitly acquire the READ/WRITE
policy from the data.

3. Method
In this section, we provide a detailed introduction to our
proposed MonoAttn-Transducer.

3.1. Overview

MonoAttn-Transducer works similarly to standard Trans-
ducer, with the key difference being that its predictor can
attend to the encoder history using monotonic attention.
During streaming generation, the scope of monotonic atten-
tion includes all source context representations that have
already appeared. Formally, when the predictor encodes
the u-th target state, it depends on the representations of
previous target states and the existing source context:

su = fθ(s0:u−1, h1:g(u)), (4)

where 1 ≤ u ≤ U and g(u) denotes the number of ob-
served source tokens at the time of generating yu. The
edge case s0 is defined as s0 = fθ(h1). In both Transducer
and MonoAttn-Transducer, token yu is generated based
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on source representation hg(u) and target representation
su−1. Given su−1 can only attend to source contexts up to
g(u− 1) through monotonic attention, related information
in xg(u−1)+1:g(u) should ideally be encoded within hg(u).

3.2. Training Algorithm

Training MonoAttn-Transducer is challenging as it expo-
nentially expands Transducer’s state space. To address this
issue, we firstly leverage the forward-backward algorithm to
compute the posterior probability of aligning target represen-
tation su with source representation ht (i.e., the probability
of generating token yu immediately after reading xt). This
posterior alignment is then used to estimate the expected
context vector in the monotonic cross-attention for each pre-
dictor state in training. Detailed explanations are provided
in the following.

3.2.1. POSTERIOR ALIGNMENT

Suppose we have a probability lattice p(v|t, u), representing
the probability of generating token v from ht and su, for
1 ≤ t ≤ T , 0 ≤ u ≤ U , and v ∈ V ∪ {ϵ}. The posterior
probability of generating yu at the moment xt is read can
be represented by:

πu,t =
p(y1:u−1|x1:t)p(yu|t, u− 1)p(yu+1:U |xt:T )

p(y1:U |x1:T )
(5)

with the edge case:

π0,t =

{
1 t = 1

0 t ̸= 1
(6)

which implies that the predictor state s0 is generated imme-
diately after the first source token arrives. Using the forward
and backward variables introduced in Section 2.2, Eq. 5 can
be concisely expressed as follows:

πu,t =
α(t, u− 1)p(yu|t, u− 1)β(t, u)

α(T,U)p(ϵ|T,U)
. (7)

This guarantees that the posterior alignment probability for
all pairs (t, u) can be solved in O(TU) time using the above
forward-backward algorithm, facilitating the calculation of
the expected context representation introduced later.

3.2.2. MONOTONIC ATTENTION

The incorporation of monotonic attention makes the
representation of predictor states relevant to specific
READ/WRITE history, leading to a prohibitively large state
space for enumerating alignments. Therefore, we turn to
estimate the context vector in monotonic attention based on
the posterior alignment probability during training. This
approach enables the model to adaptively adjust the scope
of cross-attention according to its prediction. Consequently,

MonoAttn-Transducer learns a monotonic attention mecha-
nism while maintaining the same time and space complexity
as Transducer.

Formally, given the energy eu,t for the pair consisting of en-
coder state ht and predictor state su, as well as the posterior
alignment probability πu,t, the expected context representa-
tion cu for predictor state su can be expressed as:

cu =

T∑
t=1

πu,t

t∑
t′=1

exp (eu,t′)∑t
t′′=1 exp (eu,t′′)

ht′ . (8)

This indicates that the expected context representation cu
is a weighted sum of context representations under various
amount of source information, with the weights given by the
posterior alignment probability πu,t. The nested summation
operations in Eq. 8 may lead to an increase in computational
complexity. Fortunately, Arivazhagan et al. (2019) suggests
that it can be rewritten as:

ϕu,t =

T∑
t′=t

πu,t′ exp (eu,t)∑t′

t′′=1 exp (eu,t′′)

cu =

T∑
t=1

ϕu,tht

(9)

Eq. 9 can then be computed efficiently using cumulative
sum operations (Arivazhagan et al., 2019). Then in training,
Eq. 4 can be estimated as

su = fθ(s0:u−1, cu). (10)

3.2.3. TRAINING WITH PRIOR ALIGNMENT

The above algorithm facilitates MonoAttn-Transducer in
learning monotonic cross-attention with posterior alignment
probability. However, this presents a chicken-and-egg para-
dox: the posterior alignment is derived from an output prob-
ability lattice constructed using an estimated context rep-
resentation, while the context vector is, in turn, estimated
using a posterior alignment. We address this problem by
using a prior alignment to construct a prior output proba-
bility lattice. This lattice is then used to infer the posterior
alignment and train MonoAttn-Transducer’s monotonic at-
tention.

There are several options for the prior alignment pu,t. The
simplest one is the uniform distribution, which assigns an
equal probability of being generated at any timestep for all
the target tokens:

puniu,t =
1

T
, 1 ≤ t ≤ T, 1 ≤ u ≤ U. (11)

The edge case puni0,t is similar to the situation of π0,t, where
all the probability mass is concentrated at t = 1.
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However, it is preferable to select a more reasonable prior.
An ideal prior alignment should ensure that the posterior
alignment, derived from the lattice constructed using the
prior, can accurately estimate the expected context represen-
tation. In streaming generation tasks, even though there may
be reorderings in the mapping from source to target, a cer-
tain level of monotonic alignment is generally maintained.
Therefore, we propose introducing a prior distribution pdiau,t ,
which assumes that the number of tokens generated for each
READ action is uniformly distributed:

wu,t = exp (−|u− t · U
T

|)

pdiau,t =
wu,t∑T

t′=1 wu,t′

(12)

for 1 ≤ t ≤ T, 1 ≤ u ≤ U . The edge case pdia0,t is handled
in the same manner as puni0,t . This prior assumes a uniform
mapping between the source and target, such that each target
token is most likely generated at the time its corresponding
source token is read. The probability decreases as the time
difference from this moment increases.

3.2.4. CHUNK SYNCHRONIZATION

In speech audio, there often exists strong temporal depen-
dencies between adjacent frames. Therefore, a chunk size
C is typically set, and the streaming model makes decisions
only after receiving a speech chunk (Ma et al., 2020c). In
terms of Transducer models, when a READ action is taken,
the source representation is updated after a new speech
chunk is read. The new source representation is then set as
the representation of the last frame in the chunk (Liu et al.,
2021; Tang et al., 2023). In such a situation, the receptive
field of MonoAttn-Transducer’s cross-attention for predic-
tor state su encompasses all hidden states in the received
chunks, i.e., h1:C·g̃(u), where g̃(u) denotes the number of
received chunks when generating token yu. To bridge the
gap between training and inference, the posterior alignment
probability utilized in training process is adjusted by trans-
ferring all the probability mass on encoder states within a
chunk to the last state in the chunk:

π̃u,t =

{∑d·C
t′=(d−1)·C+1 πu,t′ t = d · C

0 t ̸= d · C

for d = 1, 2, 3, . . .

(13)

The prior alignment probability is adjusted in the same
manner. We detail the entire training process in Alg. 1.

4. Related Work
Our work is closely related to researches in designing cross-
attention modules for Transducer models. Prabhavalkar
et al. (2017) pioneered the use of attention to link the predic-
tor and encoder. However, their design requires the entire

Algorithm 1 Training Algorithm of MonoAttn-Transducer
Input: Source x, Target y, Chunk Size C
Output: Training Loss L

1: Compute prior alignment pdiau,t (Eq. 12)
2: Compute chunk-synchronized prior alignment p̃diau,t

based on chunk size C (Eq. 13)
3: Estimate context cprioru with p̃diau,t (Eq. 9)
4: Forward MonoAttn-Transducer with cprioru

5: Infer posterior alignment πu,t (Eq. 7)
6: Compute chunk-synchronized posterior alignment π̃u,t

based on chunk size C (Eq. 13)
7: Estimate context cu with π̃u,t (Eq. 9)
8: Forward MonoAttn-Transducer with cu
9: Calculate total output probability L (Eq. 3)

10: return L

source to be available, limiting it to offline generation. For
streaming generation, the receptive field of attention must
synchronize with the input. This synchronization leads to
an exponentially large state space, which significantly com-
plicates the training process. To mitigate this issue, Liu et al.
(2021) separated the predictor’s cross-attention from its self-
attention, ensuring that cross-attention occurs only after
self-attention. This approach maintains the independence of
predictor states from READ/WRITE path history, allowing
for standard training methods. However, this separation
limits the richness of the predictor’s learned representations.
Alternatively, Tang et al. (2023) proposed updating the rep-
resentation of all predictor states whenever a new source
token is received. While this method also preserves the
independence of predictor states from READ/WRITE path
history, it significantly increases both inference-time compu-
tational complexity and training-time memory requirements.
It necessitates an additional (T − 1) forward passes of the
predictor during decoding, which adversely affects latency-
sensitive streaming generation. Furthermore, the GPU mem-
ory usage for attention during training increases from O(1)
to O(T ), leading to prohibitively high training costs and
limiting the model’s scalability. In contrast to the above, the
proposed MonoAttn-Transducer maintains the same time
complexity and memory overhead as Transducer. A detailed
comparison between these methods is summarized in Table
1.

Our work is also related to researches in designing attention
modules for streaming AED models. These works often
introduce Bernoulli variables to indicate READ/WRITE ac-
tions. The distribution of these variables is used to estimate
monotonic alignment and to compute the expected context
representation in training (Raffel et al., 2017). Depending
on the setting of attention window, these works can be clas-
sified into monotonic hard attention (Raffel et al., 2017),
monotonic chunkwise attention (MoChA; Chiu & Raffel,
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Table 1. Comparison of Transducer-based streaming models. Computational Complexity refers to the number of forward passes executed
by the predictor in inference. Memory Overhead refers to the memory consumption of the attention module in training.

Method Merge Module Computational Complexity Memory Overhead

Transducer (Graves, 2012) Joiner O(U) N/A
CAAT (Liu et al., 2021) Joiner O(U) O(T )
TAED (Tang et al., 2023) Predictor, Joiner O(U + T ) O(T )
MonoAttn-Transducer (Ours) Predictor, Joiner O(U) O(1)

2018), and monotonic infinite lookback attention (MILk;
Arivazhagan et al., 2019). Ma et al. (2020d) subsequently in-
troduced the MILk mechanism to Transformer models, and
Ma et al. (2023a) further proposed a numerically-stable algo-
rithm for estimating monotonic alignment. Unlike the afore-
mentioned works, our approach learns monotonic attention
based on the posterior alignment of Transducer, avoiding
the use of unstable Bernoulli variables.

5. Experiments
We validate the performance of our MonoAttn-Transducer
on two typical streaming generation tasks: speech-to-text
and speech-to-speech simultaneous translation. The differ-
ences in grammatical structures between the source and
target languages often necessitate word reordering during
generating translation. This property makes the simultane-
ous translation task well-suited for evaluating the ability in
handling non-monotonic alignments.

5.1. Experimental Setup

Datasets We conduct experiments on two language pairs of
MuST-C speech-to-text translation datasets: English to Ger-
man (En→De) and English to Spanish (En→Es) (Di Gangi
et al., 2019). For speech-to-speech experiments, we evaluate
models on CVSS-C French to English (Fr→En) dataset (Jia
et al., 2022).

Model Configuration We use the open-source implementa-
tion of Transformer-Transducer (Zhang et al., 2020) from
Liu et al. (2021) as baseline and build our MonoAttn-
Transducer upon it. The speech encoder consists of two
layers of causal 2D-convolution followed by 16 chunk-wise
Transformer layers with pre-norm. Each convolution layer
has a 3×3 kernel with 64 channels and a stride size of 2,
resulting in a downsampling ratio of 4. In chunk-wise Trans-
former layers, the speech encoder can access states from all
previous chunks and one chunk ahead of the current chunk
(Wu et al., 2020; Shi et al., 2021). The chunk size is adjusted
within the set {320, 640, 960, 1280}ms. Offline results are
obtained by setting the chunk size longer than any utterance
in the corpus. Both sinusoidal positional encoding (Vaswani
et al., 2017) and relative positional attention (Shaw et al.,

2018) are incorporated into the speech encoder. Sinusoidal
positional encoding is applied after the convolution layers.
The predictor comprises two autoregressive Transformer
layers with post-norm, utilizing only sinusoidal positional
encoding. The monotonic attention is similar to standard
cross-attention but differs in its receptive field. The joiner
is implemented as a simple FFN. We incorporate the multi-
step decision mechanism (Liu et al., 2021) with a decision
step of 4. All Transformer layers described above are con-
figured with a 512 embedding dimension, 8 attention heads
and a 2048 FFN dimension. The total number of parameters
for the Transducer baseline and MonoAttn-Transducer are
65M and 67M, respectively. More implementation details
are provided in App. A.

Evaluation We use SimulEval toolkit (Ma et al., 2020b)
for evaluation. Translation quality is assessed using case-
sensitive detokenized BLEU (Papineni et al., 2002; Post,
2018) and neural-based COMET-22 score. Latency is mea-
sured by word-level Average Lagging (AL; Ma et al., 2019;
2020c) and Length-Adaptive Average Lagging (LAAL; Papi
et al., 2022).1 For speech-to-speech tasks, translation qual-
ity is assessed using ASR-BLEU and latency is measured
by delay of generated waveform chunks (Ma et al., 2022).

5.2. Main Results

We evaluate the performance of MonoAttn-Transducer
against Transducer baseline across various latency condi-
tions obtained by varying the chunk size. In this comparison,
we consider two configurations of MonoAttn-Transducer.
The first, referred to as MonoAttn-Transducer-Posterior,
is trained strictly according to Algorithm 1. The second,
termed MonoAttn-Transducer-Prior, is optimized directly
using prior alignment, without inferring the posterior (cal-
culate total output probability L using cprioru ). Results are
shown in Table 2.

It can be observed that MonoAttn-Transducer-Posterior sig-
nificantly outperforms the Transducer baseline across var-

1Numerical results with more metrics are provided in App. C.
Notably, Table 6 presents a comparison of the computation-aware
latency metrics for AL and LAAL between the Transducer and
MonoAttn-Transducer models.
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Posterior Alignment

i also wanted to understand if wewere making decisions in a way that made us safer

Figure 1. An example of diagonal prior and posterior alignment from MuST-C English-to-Spanish training corpus. The vertical axis
represents the target subword sequence and the horizontal axis represents the speech waveform. Darker areas indicate higher alignment
probabilities. Chunk size in this example is set to 640ms. More examples are provided in App. D.

ious settings of chunk size in both translation directions.
Specifically, in En-Es, it shows an average improvement
of 0.75 BLEU or 0.95 COMET score in generation quality
under different latency conditions. In En-De, it achieves
an even more significant improvement, with an average in-
crease of as much as 2.06 COMET score, while latency
remains nearly unchanged. Further analysis reveals that
the benefits of learning monotonic attention are more pro-
nounced with a larger chunk size. Notably, in scenarios
where latency exceeds 1.5s and during offline generation, the
average improvement reaches 0.88 BLEU or 1.77 COMET
score. This can be attributed to MonoAttn-Transducer bene-
fiting more from monotonic attention to handle reorderings
when it has flexibility to wait for more source information.

Moreover, we have observed some notable results of
MonoAttn-Transducer-Prior. With a larger chunk size, the
performance of MonoAttn-Transducer-Prior is compara-
ble to that of MonoAttn-Transducer-Posterior, and even
slightly outperforming the latter in En-De. However, there
exists a significant performance drop with a smaller chunk
size. Specifically, with a chunk size of 320ms, MonoAttn-
Transducer-Prior’s generation quality is on average 1.03
BLEU lower than Transducer baseline under similar latency
conditions. This phenomenon highlights the importance
of learning monotonic attention through inferring posterior

alignment. From the chunk synchronization mechanism
described in Eq. 13, smaller chunk sizes require finer align-
ment granularity between the predictor and encoder states.
This increased granularity necessitates more precise align-
ment to estimate the expected context representation during
training. Figure 1 provides an example of diagonal prior
and posterior alignment. While the diagonal prior generally
captures the trend of the alignment information, it can be
skewed by the uneven distribution of speech information and
possible local reorderings. In contrast, the inferred posterior
offers a more confident and accurate alignment probability.
For instance, the diagonal prior assigns a high probability to
aligning the word “si (if)” with the timestep preceding the
waveform of “if”, while the inferred posterior corrects this
misalignment. Therefore, learning monotonic attention with
posterior alignment leads to a more accurate estimation of
context representation and improved performance.2 In sub-
sequent experiments, we represent MonoAttn-Transducer
using the results of MonoAttn-Transducer-Posterior.

2We present a comparison between the prior and posterior
under various chunk sizes in App. D. A key observation is that as
the alignment granularity becomes finer, the differences gradually
increases.
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Table 2. Comparison of MonoAttn-Transducer and Transducer across various chunk size settings on MuST-C English to German and
English to Spanish datasets.

En-Es En-De

Chunk Size (ms) 320 640 960 1280 ∞ 320 640 960 1280 ∞

Transducer
LAAL (ms) 1168 1466 1847 2220 - 1258 1563 1942 2312 -
BLEU (↑) 24.33 25.82 26.36 26.40 26.75 19.99 22.10 22.20 22.96 23.10
COMET (↑) 67.94 69.92 70.48 70.65 71.14 62.81 65.01 65.75 66.26 67.03

LAAL (ms) 1230 1475 1837 2204 - 1317 1582 1957 2305 -
MonoAttn-Transducer BLEU (↑) 24.72 26.74 27.05 27.41 27.48 20.22 22.47 22.94 23.74 24.42
(Posterior) COMET (↑) 68.98 70.71 71.21 71.90 72.24 64.24 67.06 68.22 68.54 69.82

LAAL (ms) 1123 1419 1815 2184 - 1231 1535 1929 2286 -
MonoAttn-Transducer BLEU (↑) 23.00 26.46 27.07 27.42 27.48 19.26 22.62 23.51 24.01 24.42
(Prior) COMET (↑) 68.24 70.45 71.33 71.99 72.24 63.85 67.63 68.65 69.27 69.82
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Figure 2. (a), (b): Results of translation quality (BLEU) against latency (Average Lagging, AL) on MuST-C English to German and
English to Spanish datasets. (c): Performance on MuST-C English to Spanish test subsets categorized by non-monotonicity. In the figures
above, MA-T denotes MonoAttn-Transducer.

5.3. Comparison with State-of-the-Art

We compare MonoAttn-Transducer with state-of-the-art
open-source approaches in simultaneous translation, includ-
ing Wait-k (Ma et al., 2020c), RealTrans (Zeng et al., 2021),
CAAT (Liu et al., 2021), MU-ST (Zhang et al., 2022), EDAtt
(Papi et al., 2023a), AlignAtt (Papi et al., 2023b), Seg2Seg
(Zhang & Feng, 2023), NAST (Ma et al., 2024) and LLM-
based LSG (Guo et al., 2025). Further details about base-
lines are available in App. B. Results are plotted in Figure 2a
and 2b. We observe that learning monotonic attention signif-
icantly enhances the performance of Transducer, achieving
leading streaming generation quality. Compared to CAAT,
another Transducer-based model, MonoAttn-Transducer
demonstrates superiority in scenarios with less stringent la-
tency requirements. This clearly demonstrates the advantage
of MonoAttn-Transducer’s tightly coupled self-attention and
cross-attention modules in the predictor, which facilitates
the learning of richer representations.

TAED is another Transducer-based model highly relevant to

our work. However, the code and distilled data used to train
TAED in Tang et al. (2023) have not been made publicly
available. This lack of open access hinders a fair compari-
son of TAED with our MonoAttn-Transducer. Despite this,
we attempt to analyze the performance by comparing each
with Transducer baseline in their respective experimental
settings. The comparison is shown in Table 7 in App. C. We
have observed that the improvement from TAED is more
pronounced with smaller chunk sizes, which contrasts with
the results of MonoAttn-Transducer. We speculate that this
is because, in TAED, the representations of all generated
predictor states are updated every time the encoder receives
a new speech chunk. This helps TAED generate more accu-
rate representations when the chunk size is small. However,
this mechanism in TAED incurs an O(T + U) forward
propagation cost during simultaneous inference, which can
significantly increase latency in practice due to heavy com-
putational overhead when the chunk size is small. In con-
trast, MonoAttn-Transducer maintains an O(U) complexity
as Transducer baseline. As shown in Table 6, this property
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Table 3. Performance on CVSS-C French to English speech-to-
speech translation.

Chunk Size (ms) 320 Offline

Transducer ASR-BLEU (↑) 17.1 18.0
LAAL (ms) 984 -
StartOffset (ms) 1520 -

MonoAttn-Transducer
ASR-BLEU (↑) 18.3 19.3
LAAL (ms) 918 -
StartOffset (ms) 1491 -

minimizes the gap between ideal and computation-aware
latency, offering advantages in real-time applications.

5.4. Results of Speech Generation

Speech-to-speech simultaneous translation requires implic-
itly performing ASR, MT and TTS simultaneously, and also
handling the non-monotonic alignments between languages,
making it suitable to evaluate models on streaming speech
generation. We adopted a textless setup in our experiments,
directly modeling the mapping between speech (Zhao et al.,
2024). Results are provided in Table 3.

The results demonstrate that MonoAttn-Transducer signifi-
cantly reduces generation latency (AL). With a chunk size of
320ms, it achieves Transducer’s offline generation quality,
but reducing lagging to 118ms. For offline settings, our ap-
proaches further improves speech generation quality (19.3
vs. 18.0). These results highlight the effectiveness of our
approach in achieving a better quality-latency trade-off also
for streaming speech generation.

6. Analysis
6.1. Handling Non-monotonicity

To illustrate MonoAttn-Transducer’s capability in handling
reorderings through learning monotonic attention, we evalu-
ate its performance against the Transducer baseline across
samples with varying levels of non-monotonicity. Intu-
itively, samples with a higher number of crosses in the
alignments between source transcription and reference text
pose greater challenges. We therefore evenly partition the
test set based on the number of cross-alignments, labeling
them as easy, medium and hard.3 The results are presented
in Figure 2c. We observe that MonoAttn-Transducer shows
a more substantial improvement over Transducer in the
medium and hard subsets across most chunk size settings.
However, with a chunk size of 320ms, the improvement
is particularly notable in the easy subset. These findings

3The easy subset includes samples with a cross count of 1 or
fewer. The medium subset contains samples with a cross count
between 2 and 6. Samples with a cross count greater than 6 are
classified as hard.

highlight the unique capabilities of MonoAttn-Transducer
in managing non-monotonic alignments. As analyzed in
Section 5.2, MonoAttn-Transducer benefits more from learn-
ing monotonic attention with a larger chunk size, and this
enhanced ability is evident in subsets with higher levels
of non-monotonicity. On the other hand, when the chunk
size is extremely small, MonoAttn-Transducer has limited
flexibility to wait for more source information before pro-
cessing, thus showing more significant improvement in the
easy subset under the condition.

6.2. Training Efficiency

Training Time: We analyze each step in Algorithm 1 to
compare the training time differences between MonoAttn-
Transducer and baseline. We observe that Lines 1, 2, 6 in-
volve naive matrix computation without requiring gradients.
The additional time overhead introduced by our method
arises from Lines 3, 4, 5. Specifically, this includes an addi-
tional forward pass of the predictor and the computation for
the posterior alignment. The overhead from the posterior
calculation is approximately equivalent to that incurred dur-
ing loss calculation, as both rely on the forward-backward
algorithm. Empirically, we found MonoAttn-Trasducer is
1.33 times slower than Transducer baseline with the same
configuration on Nvidia L40 GPU.

Memory Consumption: Compared to baseline, the addi-
tional memory overhead of MonoAttn-Transducer comes
solely from its monotonic attention module. The extra for-
ward pass of the predictor is performed without requiring
gradients, so it is excluded from the computation graph.
Empirically, we observed that the peak memory usage of
Transducer baseline is 28GB, while MonoAttn-Transducer
exhibits a slightly higher peak usage of 32GB when the
total number of source frames is fixed at 40,000 on a single
Nvidia L40 GPU.

7. Conclusion
In this paper, we propose an efficient algorithm to handle
the non-monotonicity problem in Transducer-based stream-
ing generation. Extensive experiments demonstrate that our
MonoAttn-Transducer significantly improves the ability in
handling non-monotonic alignments in streaming genera-
tion, offering a robust solution for Transducer-based frame-
works to tackle more complex streaming generation tasks.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Implementation Details

Pre-processing The input speech is represented as 80-dimensional log mel-filterbank coefficients computed every 10ms
with a 25ms window. Global channel mean and variance normalization is applied to the input speech. During training,
SpecAugment (Park et al., 2019) data augmentation with the LB policy is additionally employed. We use SentencePiece
(Kudo & Richardson, 2018) to generate a unigram vocabulary of size 10000 for the source and target text jointly. Sequence-
level knowledge distillation (Kim & Rush, 2016) is applied for fair comparison (Liu et al., 2021). For speech-to-speech
experiments, we resample the source audio to 16kHz and apply identical preprocessing steps as those used in speech-to-text
experiments. For the target speech, we also downsample the audio and extract discrete units utilizing the publicly available
pre-trained mHuBERT model and K-means quantizer.4 No training data manipulation is applied in speech-to-speech
experiments.

Training Details Considering that training MonoAttn-Transducer involves two critical processes: inferring the posterior
alignment and estimating the context vector, instability in either step can lead to training failure. Therefore, we introduce a
curriculum learning strategy for MonoAttn-Transducer. We first pretrain the model in an offline setting. In pretraining, all
predictor states can attend to the complete source input, and the model is trained as an offline Transducer. This pretraining
phase allows the monotonic attention module to warm up by learning full-sentence attention, thereby enhancing its stability
during subsequent adaptation to a streaming scenario. In finetuning, we apply Algorithm 1 to adjust MonoAttn-Transducer
with various chunk size configurations. During both training phases, we set the dropout rate to 0.1, weight decay to 0.01,
and clip gradient norms exceeding 5.0. The dropout rates for activation and attention are both set to 0.1. The pretraining
spans 50k updates with a batch size of 160k tokens. The learning rate gradually warms up to 5e-4 within 4k steps.
Finetuning involves training for 20k updates and other hyper-parameters remain consistent. Throughout the training, we
optimize models using the Adam optimizer (Kingma & Ba, 2015). Automatic mixed precision training is applied. It takes
approximately one day to pretrain in an offline setting and another day for streaming adaptation on a server with 4 Nvidia
L40 GPUs.

B. Baselines
We compare our proposed MonoAttn-Transducer with the following state-of-the-art open-source approaches (without using
pretrained encoder or any data augmentation method for fair comparison).

AED-based Models

Wait-k (Ma et al., 2020c): It executes wait-k policy (Ma et al., 2019) by setting the pre-decision window size to 280 ms.

RealTrans (Zeng et al., 2021): It detects word number in the streaming speech by counting blanks in CTC transcription and
applies wait-k-stride-n strategy accordingly.

MU-ST (Zhang et al., 2022): It trains an external segmentation model, which is then utilized to detect meaningful units for
guiding generation.

Seg2Seg (Zhang & Feng, 2023): It alternates between waiting for a source segment and generating a target segment in an
autoregressive manner.

EDAtt (Papi et al., 2023a): It calculates the attention scores towards the latest received frames of speech, serving as guidance
for an offline-trained translation model during simultaneous inference.

AlignAtt (Papi et al., 2023b): It exploits the attention information to generate source-target alignments that guide the model
during inference. AlignAtt demonstrates superior performance for delays exceeding 2 seconds, whereas our study primarily
focuses on scenarios involving delays shorter than 2 seconds.

4https://github.com/facebookresearch/fairseq/blob/main/examples/speech_to_speech/docs/
textless_s2st_real_data.md
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CTC-based Models

NAST (Ma et al., 2024): It introduces a streaming generation model with fast computation speed by leveraging a non-
autoregressive transformer and CTC decoding (Graves et al., 2006).

Transducer-based Models

Transducer: It adopts the standard Transducer framework (Graves, 2012) and utilizes Transformer as its backend network
(Zhang et al., 2020).

CAAT (Liu et al., 2021): It incorporates a cross-attention module within Transducer’s joiner to alleviate its strong monotonic
constraint.

LLM-based Models

LSG (Guo et al., 2025): It enables the LLM to devise a streaming generation policy that balances latency and generation
quality by referring a baseline policy.

C. Numerical Results
In addition to Average Lagging (AL; Ma et al., 2020c), we also incorporate Average Proportion (AP; Cho & Esipova, 2016),
Differentiable Average Lagging (DAL; Arivazhagan et al., 2019) and Length-Adaptive Average Lagging (LAAL; Papi et al.,
2022) as metrics to evaluate the latency. AL, DAL and LAAL are all reported with milliseconds. The trade-off between
latency and translation quality is attained by adjusting the chunk size C. The offline results are obtained by setting the chunk
size to be longer than any utterance in the dataset (C = ∞). We use SimulEval v1.1.4 for evaluation in all the experiments.
The numerical results of MonoAttn-Transducer are presented in Table 4 and 5. A comparison of the computation-aware
latency metrics for AL and LAAL between the Transducer and MonoAttn-Transducer models is presented in Table 6.

Table 4. Numerical results of MonoAttn-Transducer on MuST-C English to German dataset.
MonoAttn-Transducer on En→De

C(ms) AP AL DAL LAAL BLEU
320 0.67 1215 1497 1317 20.22
640 0.77 1470 1872 1582 22.47
960 0.83 1860 2309 1957 22.94

1280 0.86 2215 2719 2305 23.74
∞ - - - - 24.42

Table 5. Numerical results of MonoAttn-Transducer on MuST-C English to Spanish dataset.
MonoAttn-Transducer on En→Es

C(ms) AP AL DAL LAAL BLEU
320 0.74 997 1534 1230 24.72
640 0.81 1239 1854 1475 26.74
960 0.88 1606 2304 1837 27.05

1280 0.93 1991 2725 2204 27.41
∞ - - - - 27.48
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Table 6. Comparison of MonoAttn-Transducer and Transducer across various chunk size settings on MuST-C English to German and
English to Spanish datasets.

En-Es En-De

Chunk Size (ms) 320 640 960 1280 320 640 960 1280

Transducer

AL (ms, ↓) 886 1193 1591 1997 1126 1434 1830 2215
AL CA (ms, ↓) 1121 1330 1699 2085 1323 1551 1920 2296
LAAL (ms, ↓) 1168 1466 1847 2220 1258 1563 1942 2312
LAAL CA (ms, ↓) 1381 1589 1944 2300 1444 1673 2028 2389

MonoAttn-Transducer

AL (ms, ↓) 997 1239 1606 1991 1215 1470 1860 2215
AL CA (ms, ↓) 1239 1385 1724 2089 1407 1596 1964 2301
LAAL (ms, ↓) 1230 1475 1837 2204 1317 1582 1957 2305
LAAL CA (ms, ↓) 1453 1607 1945 2295 1501 1702 2056 2387

Table 7. Comparison of results reported in Tang et al. (2023) and our work on MuST-C English to German dataset.

Chunk Size (ms) 160 320 480 640

Transducer BLEU (↑) 20.76 21.80 22.52 23.32
(Tang et al., 2023) AL (ms, ↓) 1282 1252 1306 1498

TAED BLEU (↑) 21.57 22.63 23.48 23.47
(Tang et al., 2023) AL (ms, ↓) 1263 1354 1369 1903

Chunk Size (ms) 320 640 960 1280

Transducer BLEU (↑) 19.99 22.10 22.20 22.96
(Our implementation) AL (ms, ↓) 1126 1434 1830 2215

MonoAttn-Transducer BLEU (↑) 20.22 22.47 22.94 23.74
AL (ms, ↓) 1215 1470 1860 2215

D. Visualization
In this section, we present more examples of diagonal prior and its posterior from training corpus. We have observed that,
even with significant differences in the prior distribution, the posterior remains fairly robust when the chunk size is constant.
The vertical axis represents the target subword sequence and the horizontal axis represents the speech waveform. Darker
areas indicate higher alignment probabilities. We use Montreal Forced Alignment tools (McAuliffe et al., 2017) to obtain
speech-transcription alignments for illustration.
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Figure 3. Chunk size in this example is set to 320ms. (Diagonal Prior)
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Figure 4. Chunk size in this example is set to 640ms. (Diagonal Prior)
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Figure 5. Chunk size in this example is set to 960ms. (Diagonal Prior)
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Figure 6. Chunk size in this example is set to 1280ms. (Diagonal Prior)
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