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ABSTRACT

Recent advances in language model (LM)-powered agents have demonstrated the
potential to tackle complex embodied tasks by grounding the models’ common-
sense world knowledge in the interactive physical environments in which the agents
operate. However, these LM-based agents’ adaptation to a stream of diverse tasks
over time remains challenging, particularly under limited supervision and resource
constraints. In this paper, we present BiCL, an embodied task adaptation frame-
work that addresses the problem of continual LM finetuning across diverse tasks
and adaptation stages using only a small dataset per task and a small LM (i.e., with
0.5B parameters). We devise bidirectional CoT learning, which jointly optimizes
chain-of-thought (CoT) reasoning and reflexive reasoning through per-task bidi-
rectional supervision: few-shot CoT guidance and rationale-wise correction. The
latter enables the model to revise its prior rationale trajectories for new tasks, while
the former strengthens multi-step task-specific reasoning through minimal demon-
strations. This dual optimization allows the agent to adapt more efficiently through
forward knowledge transfer over time, ultimately yielding asymmetric effects by
fostering robust CoT reasoning at inference without requiring explicit reflection.
Furthermore, we implement rationale-wise test-time scaling, a mechanism that
dynamically adjusts the depth of CoT reasoning based on the model’s confidence
in actions inferred from its own rationales. Through extensive experiments on
VirtualHome and ALFWorld, we demonstrate performance superiority over other
LM-based planning and continual task adaptation approaches, while achieving
strong efficiency in computation, data usage and model parameters.

1 INTRODUCTION

In real-world applications, embodied agents are required to adapt to a stream of tasks over time, as
everyday embodied tasks continually shift in surrounding objects, their relations, required skills,
and environmental dynamics (Powers et al., 2022; Li et al., 2024a). Recent advances in language
model (LM)-powered embodied agents have demonstrated strong capabilities in tackling such open-
ended embodied tasks by grounding the commonsense world knowledge encapsulated in pre-trained
models to interactive environments (Ahn et al., 2022; Yao et al., 2023; Shinn et al., 2023). Yet, these
approaches remain underexplored for efficient task adaptation, particularly in scenarios involving
limited data supervision and smaller LMs with restricted reasoning capabilities.

A straightforward solution is to perform either CoT prompting with in-context samples (Huang
et al., 2023; Yao et al., 2023) or CoT distillation (i.e., supervised finetuning with rationales) (Choi
et al., 2024; DeepSeek-AI et al., 2025) on each discretely incoming stream of task-specific data.
However, in practice, limited task-specific supervision, combined with the capacity constraints of
small LMs, poses significant challenges for task adaptation. Through our experiments, we observe
that in-context CoT prompting approaches (e.g., ReAct (Yao et al., 2023), SayCan (Ahn et al., 2022))
exhibit degraded performance, when applied to small LMs (as shown in Table 1). Furthermore, CoT
distillation (e.g., TAIL-Distill (Liu et al., 2024)) yields suboptimal performance under limited data
conditions (as shown in Table 2). This highlights the need for effective forward knowledge transfer
across adaptation stages, where each stage handles a distinct task, especially in scenarios with limited
supervision and small LMs. Lastly, self-correction mechanisms (i.e., refining initially generated

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

rationales based on feedback) may offer a potential solution to mitigate suboptimal reasoning in small
LMs. However, their performance (e.g., Self-Correction (Welleck et al., 2023)) remains limited due
to the absence of precise feedback at inference (as shown in Table 3), and they nearly double the
inference cost, which is a critical drawback for the practical deployment of embodied agents.

To address this, we introduce the notion of bidirectional CoT learning, a simple yet efficient strategy
for embodied task adaptation. Specifically, at each task adaptation stage, the learning process involves
dual supervision: learning CoT reasoning through distillation of multi-step rationales, and learning
reflexive reasoning through the correction of prior rationales generated by a previously learned
policy. This process is efficiently conducted at each stage, using only few-shot demonstrations,
specifically task-specific CoT rationales. Reflexive reasoning parallels how humans draw rationales
from prior thoughts while actively identifying and correcting discrepancies between earlier reasoning
and new contexts, a form of metacognitive behavior that fosters more transferable knowledge in
response to evolving scenarios (Yeung & Summerfield, 2012). It extends beyond CoT finetuning by
incorporating a reflexive mechanism that delivers richer supervision, allowing agents to internalize
refined task-specific knowledge. In this way, bidirectional CoT learning produces asymmetric effects,
reinforcing CoT reasoning via internalized reflexive knowledge and thereby delivering consistently
robust performance without explicit reflection at inference.

To this end, we present the BiCL framework, designed for efficient task adaptation in embodied agents
through bidirectional CoT learning. At each adaptation stage, we first retrieve the most relevant
previously learned policy by comparing the rationales from previous stages with those derived from
the current stage’s demonstrations. The current policy is initialized with the retrieved prior one
and then optimized using bidirectional objectives: generating rationales via CoT reasoning, and
correcting rationales generated by the prior policy via reflexive reasoning, both guided by few-shot
demonstrations. Following this adaptation, inference is conducted solely through CoT reasoning,
without explicitly invoking reflexive reasoning. To improve efficiency, we also devise rationale-wise
test-time scaling which dynamically determines when to terminate CoT reasoning based on the
model’s confidence in the predicted actions conditioned on generated rationales.

Through evaluation on VirtualHome (Puig et al., 2018) and ALFWorld (Shridhar et al., 2021) bench-
marks, we demonstrate the effectiveness of BiCL over existing LM-based planning and continual task
adaptation baselines across four aspects. (i) Continual few-shot adaptation performance: BiCL
achieves robust task success, with an average improvement of 18.54% over the most competitive
baseline SeqFT-Distill (Shridhar et al., 2023) on the unseen category in the continual 5-shot adaptation
setting (see Table 2). (ii) Computational efficiency: BiCL substantially reduces the computation
cost of CoT reasoning, lowering the number of generated tokens by 46.01% (see Table 6), while
still outperforming the Self-Correction (Welleck et al., 2023), which requires nearly twice as many
rationale generation for refinement, with an average improvement of 25.78% (see Table 3). (iii) Data
efficiency: BiCL demonstrates strong data efficiency, outperforming SeqFT-Distill trained with twice
the demonstrations by 7.50% and TAIL-Distill (Liu et al., 2024) by 18.75% on the unseen category
(see Table 4). (iv) Parameter efficiency: despite using a significantly smaller 0.5B LM, BiCL shows
only a moderate performance gap of 9.57% on average compared to a large language model (LLM)-
based planner using GPT-4o (Achiam et al., 2023), indicating strong performance efficiency relative
to its size. In contrast, other baselines suffer substantially larger degradations (see Table 1). Thanks to
these advantages, BiCL effectively enables embodied agents to continuously adapt to a series of new
tasks in dynamic environments, even under limited per-task data and resource-constrained settings
where only a small LM can be used. The contributions of our work are summarized as follows.

• We present the BiCL framework, designed to address the challenges of embodied task adaptation
under constrained data and resource settings.

• We devise bidirectional CoT learning, a novel joint training strategy that combines CoT reasoning
and reflexive reasoning, supervised respectively by few-shot CoT guidance and rationale-wise
correction of prior knowledge. Notably, this yields asymmetric effects, strengthening CoT reasoning
at inference without requiring explicit reflection.

• We introduce rationale-wise test-time scaling, by which the depth of CoT reasoning is dynamically
adjusted. This mechanism improves computational efficiency and enhances task success, thereby
removing the need for explicit self-correction.

• Through extensive experiments on VirtualHome and ALFWorld benchmarks, we demonstrate both
the performance superiority and data efficiency of BiCL in task adaptation.
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2 RELATED WORK

Embodied task planning has gained significant attention, driven by the advancements in LM’s
reasoning capabilities (Jiang et al., 2022; Driess et al., 2023; Huang et al., 2022a; 2023; Ahn et al.,
2022). In parallel, several works have focused on leveraging a stream of datasets to progressively
learn diverse tasks over time (Liu et al., 2024; Schmied et al., 2023; Kim et al., 2024). Recently, a
growing body of work has explored distilling such reasoning capabilities from LLMs into smaller
models (Choi et al., 2024; Li et al., 2023; Shridhar et al., 2023; DeepSeek-AI et al., 2025). Building
on this line of research, our work seeks to equip LM-based agents with robust CoT reasoning through
bidirectional CoT learning, enabling effective adaptation to a stream of new tasks under limited
supervision and model capacity. Further details on related work are provided in Appendix A.

3 PRELIMINARIES

3.1 PROBLEM FORMULATION

We consider a stream of few-shot demonstrations {D1,D2, ...,DH}, where i-th stage demonstrations
Di contain expert transitions. Each transition d = (T , o, a,Z) is represented as a tuple of task T ,
observation o, action (plan) a, and a rationale set Z . A task is defined by an underlying instructional
template in language, serving as a generalizable form. Similar to the formulation in (Kim et al., 2024),
each task either allows linguistic or object-level variations while maintaining consistent behavioral
semantics, or accommodates behavioral variations under the same environmental conditions. For
example, the i-th stage task Ti might include instructions such as “clean an apple and put in the
cabinet”, “clean a towel and put in the washing machine”, and other variations that share similar
behavioral patterns, which the agent is expected to follow. The observation captures the currently
perceptible information from the environment, rendering the partially-observable nature of embodied
task planning. The observation is represented as a set of triplets, each consisting of a source entity,
a relation, and a target entity, e.g., (apple, on, table). The rationale set Z = {zk}Nk=1 contains key
elements essential for embodied task planning (Yao et al., 2023; Choi et al., 2024), such as target
object locations and sub-goals.

Formally, let {T1, T2, . . . , TH} be the sequence of adaptation tasks and SR(π, Ti) ∈ [0, 1] the task
success rate of policy π on task Ti. The objective of continual adaptation is to find

π∗ = argmax
π

H∑
i=1

SR(π, Ti). (1)

i.e., the policy that maximizes the cumulative task success rate across all H stages.

3.2 CONTINUAL TASK ADAPTATION WITH PRE-TRAINED MODELS

To continuously adapt to tasks while leveraging the knowledge embedded in pre-trained models,
recent works adopt parameter-efficient tuning modules in LMs (Liu et al., 2024; Schmied et al., 2023).
Following this approach, we implement an embodied agent policy using Low-Rank Adaptation
(LoRA) (Hu et al., 2022), where trainable adapter parameters θ are integrated with frozen LM param-
eters θLM, i.e., π(·; θLM, θ). For simplicity, we use the notation π(·; θ), omitting θLM. Furthermore,
we structure the embodied agent using separate modules for reasoning and planning, corresponding
to a reasoning-policy and a planning-policy, each formed by distinct adapters θz and θp, respectively.
The reasoning-policy is responsible for rationale generation, while the planning-policy produces
actions based on the generated rationales.

4 BICL FRAMEWORK

To address the challenge of embodied task adaptation across sequential stages, we present the BiCL
framework comprising of (i) bidirectional CoT learning and (ii) rationale-wise test-time scaling,
as depicted in Figure 1, where each stage receives few-shot demonstrations D. (i) For adaptation,
we first select a base reasoning-policy by evaluating the similarity between rationales generated by
previously learned policies and those in the current stage’s demonstrations. The selected one is used to
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Figure 1: BiCL framework: In (i-1), the most relevant reasoning-policy is selected from the adapter
pool to serve as the base one. In (i-2), the reasoning-policy is then finetuned through bidirectional
joint optimization on CoT reasoning and reflexive reasoning losses. (a) The former loss is supervised
by multi-step rationales in few-shot demonstrations, and (b) the latter loss is formalized as the
correction of base rationales generated by the base reasoning-policy. In (ii), the CoT reasoning depth
is dynamically adjusted based on the planning-policy’s confidence in predicted actions.

initialize the reasoning-policy for the current adaptation stage. Then, the reasoning-policy is finetuned
through jointly optimizing CoT reasoning and reflexive reasoning objectives. CoT reasoning is
trained using rationales derived from demonstrations, while reflexive reasoning is formulated as the
correction of base rationales generated by the selected base reasoning-policy, guided by feedback.
The planning-policy predicts actions, conditioned on incrementally accumulated rationales. (ii) For
inference, we dynamically scale the CoT reasoning process based on the planning-policy’s confidence.
The following two subsections describe how these two procedures are performed within a single stage
with demonstrations Di to enable task adaptation, where the stage notation i is omitted for simplicity.

4.1 BIDIRECTIONAL COT LEARNING

Base reasoning-policy selection. At the beginning of each adaptation stage, we select a reasoning-
policy πz learned from the previous stage to serve as the base reasoning-policy. Such base reasoning-
policy is chosen by evaluating the similarity between rationales zk ∈ Z in the demonstrations and
the rationales z̄k generated by each candidate reasoning-policy formed by an adapter θ̄z ∈ Θ in the
adapter pool Θ. Note that the adapter pool contains the adapters learned up to the current stage. Then,
the reasoning-policy maximizing the sentence embedding similarity SIM is chosen as

θ′z = argmax
θ̄z∈Θ

∑
(x,Z)∈D

N∑
k=1

SIM (zk, z̄k) where z̄k ∼ πz(·|x, qk; θ̄z). (2)

Here and in what follows, x = (T , o, h) denotes a triple of task T , observation o, and action history
h, and qk is the query for k-th rationale generation. The base reasoning-policy πz(·; θ′z) is used to
generate base rationales for subsequent correction and to initialize the adapter for the current stage.

CoT reasoning loss. To equip the reasoning-policy with CoT reasoning capabilities, we train it to
generate rationales segment by segment. The loss for CoT reasoning is then defined as

LCoT(θz) = E
(x,Z)∼D

[
N∑

k=1

− log πz(zk|x, qk; θz)

]
. (3)

Reflexive reasoning loss. In addition to CoT reasoning, the reasoning-policy is trained to incremen-
tally correct base rationales z′k ∼ πz(·|x, qk; θ′z) using feedback, focusing on one specific rationale at
each correction step. The feedback f(zk, z

′
k) is provided in natural language, categorized as “Major

revision”, “Moderate revision”, and “Minor revision”. This categorization is determined based on
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Algorithm 1 BiCL framework: bidirectional CoT learning
1: Input: a stream of few-shot demonstrations {D1,D2, ...,DH}
2: Initialize adapter pool Θ = ∅
3: for each adaptation stage i← 1, ..., H do
4: Select adapter from adapter pool for base reasoning-policy πz(·; θ′z) using equation 2
5: Initialize adapters for the current stage θz ← θ′z , θp
6: while not converged do
7: Sample a batch of {(T , o, a,Z)} ∼ Di

8: Generate base rationales z′k ∼ πz(·|x, qk; θ′z) through the base reasoning-policy
9: Update reasoning-policy πz(·; θz) using loss Lreasoning in equation 5

10: Update planning-policy πp(·; θp) using loss Lplanning in equation 6
11: Add adapters to adapter pool Θ← Θ ∪ {θz}

the sentence similarity SIM(zk, z
′
k) between the base rationale z′k and its corresponding rationale zk

from the demonstrations. Then, the loss for reflexive reasoning is defined as

Lreflexive(θz) = E
(x,Z)∼D

[
N∑

k=1

− log πz(zk|z′k, x, qk, f(zk, z′k), z1:k−1; θz)

]
(4)

where zi:j = {zi, . . . , zj} denotes the sequence of previous rationales, and zj:k = ∅ if j > k.

This bidirectional CoT learning strategy extends beyond mere CoT learning by systematically
incorporating feedback-driven adjustment into reflexive reasoning steps, which identify discrepancies
in prior knowledge. This enables the agent to further enhance task-specific knowledge, effectively
improving its CoT reasoning capabilities. Accordingly, the final loss for the reasoning-policy πz is
defined as

Lreasoning(θz) = LCoT(θz) + Lreflexive(θz). (5)

Planning loss. To predict actions based on the rationales, we optimize the planning-policy πp via
an action reconstruction loss, where the policy is incrementally conditioned on the first k rationales.
This encourages the planning-policy to integrate partial reasoning signals. The loss is defined as

Lplanning(θp) = E
(x,a,Z)∼D

[
N∑

k=1

− log πp(a|x, z1:k; θp)

]
(6)

where x = (T , o, h). At the end of the adaptation, the adapter θz is added to the adapter pool Θ for
use in subsequent adaptation stages. Algorithm 1 lists the adaptation procedures of BiCL.

4.2 RATIONALE-WISE TEST-TIME SCALING

As the full set of rationales may be unnecessary for action prediction, depending on task complex-
ity (Yao et al., 2023), we devise a test-time scaling mechanism in which the CoT reasoning depth is
dynamically adjusted. At each CoT reasoning step k, the planning policy’s confidence in its predicted
action, conditioned on the first k rationales z1:k, is evaluated to determine whether to terminate or
proceed to the next CoT reasoning step. Specifically, if the confidence on the predicted action does
not exceed a predefined threshold δk at k-th reasoning step, an additional rationale zk+1 is generated;
otherwise, the corresponding action a is used. Thus, rationale-wise test-time scaling is performed as

TTS(k) =
{

generate next rationale zk+1 if log πp(a|x, z1:k; θp)/|a| ≤ δk
use a otherwise

(7)

where |a| is the token length of action a. The threshold is computed for each k using the demonstra-
tions by measuring the mean log-probability of the ground-truth action when the trained planning-
policy is conditioned on the rationales z1:k. This allows for efficient use of computational resources
by adaptively scaling the CoT reasoning depth. The complete procedure for rationale-wise test-time
scaling in BiCL is provided in Algorithm 3 in Appendix C.9.
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5 EXPERIMENTS

5.1 EXPERIMENT SETTINGS

Environments. For evaluation, we use VirtualHome (Puig et al., 2018) and ALFWorld (Shridhar
et al., 2021). To configure the continual task adaptation setups, we follow the approach outlined
in Kim et al. (2024). Specifically, in Behavior Incremental Learning (Beh-IL), the agent is tasked
to incrementally learn new behaviors, while in Environment Incremental Learning (Env-IL), the
agent is tasked to incrementally learn to perform behaviors in novel indoor scenes. We evaluate
performance on two task categories. In the Seen category, instructions and indoor scenes are identical
to those in the demonstrations, with variations only in the initial positions of objects. In the Unseen
category, both instructions and indoor scenes are varied. Further details are in Appendix B.

Datasets. Our default few-shot setting uses 20 expert demonstrations per adaptation stage, while
more constrained scenarios use only 5 demonstrations. The rationales in these demonstrations can be
either annotated by humans or generated by language models; for annotation consistency and quality
in datasets, we rely on GPT-4o-mini (Achiam et al., 2023) in our implementation.

Evaluation metrics. We use two metrics from Shridhar et al. (2020) to evaluate performance for
embodied task planning. Success rate (SR) measures the proportion of episodes the agent completes
successfully. Goal success rate (GC) measures the proportion of satisfied sub-goals out of all given
goals. For both, we report the average performance achieved by the agent after each adaptation stage.

Baselines. We compare with several LM-based planning and continual task adaptation baselines. (i)
ReAct (Yao et al., 2023) interleaves rationale generation and action prediction for embodied planning.
(ii) SayCan (Ahn et al., 2022) integrates action feasibility into ReAct. (iii) TAIL-Distill (Liu et al.,
2024) employs task-specific adapters for each adaptation stage. We implement two variants for
comparison: TAIL-Action, which is trained only on state-action pairs from demonstrations; TAIL-
Distill, which additionally incorporates rationales as BiCL. (iv) SeqFT-Distill (Shridhar et al., 2023)
uses CoT reasoning to distill step-by-step rationales, with each distilled policy for the current stages
initializing the next stage. (v) CAMA-Distill (Kim et al., 2024) replays action logits from previous
stages and dynamically adjusts their update weights and fine-tunes with rationales. Note that ReAct
and SayCan use the same rationale-annotated demonstrations as BiCL, but as in-context examples,
while the other baselines (except for TAIL-Action) exploit these demonstrations for CoT reasoning
distillation. At inference, all methods rely solely on CoT reasoning without explicit reflection.
Additionally, we compare against (vi) LLM-Planner (Huang et al., 2023), which uses LLMs (e.g.
GPT-4o), prompted with expert demonstrations as in-context examples.

Implementation details. For finetuning LM-based policies, we employ Qwen2.5-0.5B (Yang et al.,
2024) with LoRA adapters (Hu et al., 2022). We also use a language embedding model of paraphrase-
MiniLM-L6-v2 (Reimers & Gurevych, 2019) and TF-IDF score (Ramos et al., 2003) to compute the
sentence similarity for base reasoning-policy selection and feedback provision.

5.2 MAIN RESULTS

Table 1 shows the continual few-shot adaptation performance of BiCL and the baselines under two
different setups (Beh-IL and Env-IL) in VirtualHome and ALFWorld. BiCL w/o TTS refers to BiCL
without rationale-wise test-time scaling in Section 4.2. As shown, BiCL consistently yields robust
performance across all cases. In the seen category, it achieves average improvements of 18.39% in
SR and 11.65% in GC over the most competitive baseline SeqFT-Distill, and in the unseen category,
BiCL outperforms SeqFT-Distill by 17.36% in SR and 12.32% in GC on average. When compared to
LLM-Planner utilizing GPT-4o, BiCL exhibits a modest performance gap, 9.57% in SR and 9.59%
in GC, despite only using a 0.5B-parameter model. In contrast, SeqFT-Distill suffers substantially
larger drops of 27.45% in SR and 21.58% in GC. These results highlight the strong efficiency of
BiCL under limited model capacity.

In addition, we validate the effectiveness of rationale-wise test-time scaling, as BiCL achieves slightly
higher performance over its variant (BiCL w/o TTS), with an average SR increase of 6.68% in the
seen category and 6.05% in the unseen. We conjecture that due to limited data at each stage, certain
rationales might be under-optimized. Thus, by allowing the model to terminate reasoning early when
confidence is sufficiently high, the agent can make decisions more reliably.
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Table 1: Continual 20-shot adaptation performance in VirtualHome and ALFWorld: The baselines
and BiCL are evaluated in two setups (Beh-IL and Env-IL). The continual adaptation is structured
over four stages, where each has 20 demos. The SR and GC are reported in 95% confidence intervals.
The best performance in each case among small LM-based approaches is highlighted in bold. Except
for LLM-Planner employing GPT-4o, all methods use the same small LM of Qwen2.5-0.5B.

Method
Behavior Incremental Learning (Beh-IL) Environment Incremental Learning (Env-IL)

Seen Unseen Seen Unseen
SR (%) GC (%) SR (%) GC (%) SR (%) GC (%) SR (%) GC (%)

Benchmark: VirtualHome
LLM-Planner (GPT-4o) 81.63±1.63 91.79±0.87 76.44±1.90 90.11±0.99 88.38±1.43 92.88±0.80 70.26±2.14 80.31±1.51

ReAct 12.06±1.40 30.10±1.58 8.65±0.00 26.31±1.38 20.07±1.89 40.46±1.67 13.96±1.67 33.23±1.63

SayCan 46.50±2.16 65.25±1.62 37.96±2.04 56.76±1.70 60.00±1.89 73.99±1.37 48.64±1.50 67.11±1.08

TAIL-Action 55.00±2.29 69.58±1.74 33.45±2.22 52.45±1.94 61.56±1.85 78.24±1.23 36.21±1.42 58.93±1.11

TAIL-Distill 60.25±2.20 73.44±1.66 46.29±2.25 62.68±1.90 71.88±1.70 83.98±1.11 43.78±1.45 63.91±1.10

SeqFT-Distill 65.75±2.20 79.09±1.52 48.68±2.30 64.11±1.92 78.13±1.53 87.66±1.00 57.89±1.43 73.04±1.43

CAMA-Distill 59.13±2.22 71.28±1.74 44.28±2.28 59.60±1.96 77.81±1.56 87.69±0.96 43.46±1.45 63.27±1.10

BiCL w/o TTS 76.13±1.91 83.87±1.39 60.29±2.32 69.13±1.97 85.94±1.29 91.56±0.84 62.81±2.58 75.37±1.02

BiCL 81.38±1.74 85.81±1.36 64.03±2.29 71.60±1.94 94.06±0.76 96.13±0.52 71.99±1.27 80.56±0.97

Benchmark: ALFWorld
LLM-Planner (GPT-4o) 91.75±0.98 94.63±0.71 86.75±1.83 88.88±1.50 92.58±1.07 93.95±0.81 95.63±0.92 95.78±0.68

ReAct 0.00±0.00 4.34±0.36 0.00±0.00 2.24±0.21 0.00±0.00 1.07±0.19 0.00±0.00 0.70±0.13

SayCan 22.81±1.15 47.89±1.41 0.63±0.21 23.28±1.53 21.88±1.40 44.08±1.67 4.38±0.00 22.50±1.59

TAIL-Distill 53.91±1.65 59.69±1.44 39.53±2.16 46.95±2.01 58.79±2.01 68.13±1.64 31.41±2.45 46.40±2.17

TAIL-Action 56.11±1.78 68.71±1.44 37.97±2.50 55.72±2.12 47.56±2.13 63.23±1.69 24.63±2.24 43.06±2.05

SeqFT-Distill 64.30±1.70 71.85±1.44 47.97±2.42 57.98±2.16 61.91±2.06 70.71±1.72 39.22±2.47 51.24±2.23

CAMA-Distill 53.20±1.64 59.05±1.48 38.59±2.27 45.95±2.11 55.76±2.08 65.37±1.70 34.38±2.46 46.05±2.24

BiCL w/o TTS 81.64±1.46 85.21±1.24 64.84±2.52 72.67±2.34 73.24±1.80 78.87±1.45 51.09±2.58 63.19±2.21

BiCL 85.70±1.34 88.37±1.15 70.78±2.41 77.38±1.99 82.52±1.57 85.61±1.28 56.41±2.56 66.12±2.14

Table 2: Continual 5-shot adaptation performance

Method
VirtualHome Beh-IL ALFWorld Env-IL

Seen Unseen Seen Unseen
SR (%) GC (%) SR (%) GC (%) SR (%) GC (%) SR (%) GC (%)

TAIL-Distill 53.87±2.11 69.88±1.62 38.54±2.12 58.45±1.81 33.57±1.81 49.18±1.62 29.64±2.06 45.40±1.95

SeqFT-Distill 49.96±2.21 63.99±1.71 41.35±2.17 62.38±1.75 35.54±1.86 51.93±1.67 28.66±2.20 45.34±2.04

CAMA-Distill 45.65±2.19 65.27±2.12 36.42±2.12 57.86±1.79 29.55±1.57 44.17±1.46 21.61±1.68 38.30±1.72

BiCL w/o TTS 66.33±2.14 77.77±1.57 52.27±2.25 66.33±1.92 57.86±2.01 68.42±1.67 48.21±2.58 60.10±2.16

BiCL 73.68±1.92 80.99±1.47 54.56±2.29 67.38±1.97 68.48±1.89 76.09±1.52 53.66±2.55 64.20±2.12

In these experiments, ReAct exhibits the lowest performance mainly due to the limited reasoning
capabilities of the small LMs it relies on. SayCan achieves better performance by integrating action
feasibility into embodied planning. In contrast, TAIL-Distill and SeqFT-Distill leverage LLM-
generated rationales to distill CoT reasoning capabilities, resulting in improved planning performance.
While CAMA-Distill preserves knowledge acquired from previous stages via logit replay, it still
underperforms compared to BiCL due to a lack of effective reasoning knowledge transfer across
stages. BiCL effectively transfers reasoning knowledge through bidirectional CoT learning, which
strengthens CoT reasoning by correcting the prior knowledge in response to novel tasks.

In Table 2, we evaluate the performance under a more constrained few-shot setting, using 5 demon-
strations per stage. As shown, BiCL outperforms SeqFT-Distill by 29.12% higher SR and 19.5%
higher GC in the seen category and 18.54% higher SR and 12.14% higher GC in the unseen. This
result further highlights the superiority of BiCL in scenarios with severely limited supervision.

5.3 ANALYSIS AND ABLATION STUDIES

Does BiCL enable computationally efficient yet effective inference? In Table 3, we evaluate w/
self-correct, a variant of BiCL that performs explicit reflection on the initially generated rationales
at inference. We also compare against Self-Correction (Welleck et al., 2023), which is trained to
correct its own generated rationales (unlike BiCL, which is trained to correct rationales produced
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by prior policies). As shown, explicit reflection yields modest gains over BiCL w/o TTS, with
a 2.19% SR increase in the seen category and 1.86% in the unseen, but at the cost of generating
twice as many rationales. BiCL achieves superior performance across all cases, outperforming Self-
Correction by 25.78% SR in the seen category and 22.74% in the unseen. The limited effectiveness
of explicit correction is attributed to the lack of precise feedback available at inference time, and the
results highlight that bidirectional CoT learning offers greater benefits than correcting a model’s own
rationales. Moreover, BiCL delivers clear computational efficiency, reducing rationale generation to
one-quarter of that required by Self-Correction. This efficiency gain arises because BiCL eliminates
the need for explicit reflection and dynamically adjusts the depth of CoT reasoning.

Table 3: Computational efficiency in BiCL measured by SR (%)

Method ALFWorld Beh-IL ALFWorld Env-IL Generated
RationalesSeen Unseen Seen Unseen

BiCL 85.70±1.34 70.78±2.41 82.52±1.57 56.41±2.56 49%

w/o TTS 81.64±1.46 (-4.06) 64.84±2.52 (-5.59) 73.24±1.80 (-9.28) 51.09±2.58 (-5.32) 100%
w/o TTS & w/ self-correct 83.83±1.36 (-1.87) 66.09±2.51 (-4.69) 75.10±1.76 (-7.42) 53.59±2.59 (-2.82) 200%

Self-Correction 56.48±1.68 (-29.22) 44.06±2.31 (-26.72) 63.18±2.03 (-22.34) 37.66±2.53 (-18.75) 200%

Does BiCL enable data-efficient adaptation? In Table 4, we compare against SeqFT-Distill and
TAIL-Distill, which is most competitive comparisons, under two data augmentation settings in
ALFWorld. 2× denotes training with twice the number of expert demonstrations, each augmented
with a single set of rationales. aug denotes using the original number of expert demonstrations,
but augmenting each demonstration with two sets of rationales. Note that BiCL is trained with the
original number of expert demonstrations with a single set of rationales. As shown, despite using
less reasoning data, BiCL outperforms the augmentation-based variants: it improves SR by 14.84%
and 15.47% on the seen and unseen categories of ALFWorld-Beh-IL, and by 17.87% and 15.47% on
those of ALFWorld-Env-IL, respectively, over the SeqFT-Distill (aug) setting. Moreover, relative to
the SeqFT-Distill (2×), BiCL achieves a slight average SR improvement of 8.79% for the seen and
7.50% for the unseen category, despite using only half the data. This strong data efficiency of BiCL
is attributed to the bidirectional CoT learning strategy which effectively transfers prior knowledge.

Table 4: Data-efficient adaptation in BiCL measured by SR (%)

Method ALFWorld Beh-IL ALFWorld Env-IL
Seen Unseen Seen Unseen

BiCL 85.70±1.34 70.78±2.41 82.52±1.57 56.41±2.56

SeqFT-Distill (2×) 78.67±1.43 (-7.03) 63.28±2.49 (-7.50) 71.97±1.79 (-10.55) 48.91±2.62 (-7.50)
TAIL-Distill (2×) 66.56±1.56 (-19.14) 50.16±2.37 (-20.62) 61.72±1.95 (-20.80) 39.53±2.49 (-16.88)

SeqFT-Distill (aug) 70.86±1.63 (-14.84) 55.31±2.54 (-15.47) 64.65±1.96 (-17.87) 40.94±2.60 (-15.47)
TAIL-Distill (aug) 62.19±1.73 (-23.51) 48.28±2.37 (-22.50) 61.04±1.98 (-21.48) 40.63±2.48 (-15.78)

Does reflexive reasoning contribute to forward transfer? In Table 5, we evaluate two ablated
variants of BiCL in ALFWorld. w/o reflexive uses the base reasoning-policy as the initialization for
the current stage’s policy, but is optimized without the reflexive reasoning loss in equation 4. w/o
base does not leverage the base reasoning-policy in any form. BiCL, with the reflexive reasoning loss,
achieves relative gains in SR of 15.78% and 16.87% for the seen and unseen categories of ALFWorld
Beh-IL, and 17.36% and 11.25% on those of ALFWorld Env-IL, respectively, over the w/o reflexive
variant. Furthermore, ablating the base reasoning-policy initialization (i.e., the w/o base variant)
incurs, on average, an additional performance degradation in SR of 6.73% for the seen and 8.83% for
the unseen category relative to w/o reflexive. This reveals that BiCL effectively leverages knowledge
acquired from prior tasks through reflexive reasoning and base reasoning-policy selection.

How does rationale-wise test-time scaling adapt to the complexity of an instruction? In Table 6,
we report the average plan length required for task completion and the percentage of the rationale zk
at which reasoning is terminated. We also report the percentage of reduction in reasoning tokens. For
this, we analyze instruction templates in VirtualHome. As shown, for tasks requiring shorter plans
(e.g., TURNON and OPEN), the reasoning process often stops at earlier rationales. In contrast, more
complex tasks (e.g., PUTIN and PLACEON) tend to require late-stage rationales such as z4 and z5,
which focus on sub-goal decomposition and next-step justification. Moreover, the tokens required
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Table 5: Forward knowledge transfer in BiCL measured by SR (%)

Method ALFWorld Beh-IL ALFWorld Env-IL
Seen Unseen Seen Unseen

BiCL 85.70±1.34 70.78±2.41 82.52±1.57 56.41±2.56

w/o reflexive 69.92±1.64 (-15.78) 53.91±2.64 (-16.87) 65.16±1.96 (-17.36) 45.16±2.61 (-11.25)
w/o base 65.16±1.72 (-20.54) 47.66±2.58 (-23.12) 56.47±2.02 (-26.05) 33.75±2.46 (-22.66)

for reasoning are reduced to 46.05% on average. This suggests that the test-time reasoning control
dynamically adjusts the depth, enabling more efficient inference.

Table 6: Rationale-wise test-time scaling with respect to instruction complexity

Instruction Template Plan Length z1 z2 z3 z4 z5 Tokens Reduced
TURNON 3.80 49.4% 4.5% 14.8% 7.2% 24.1% 51.1%
OPEN 3.78 48.8% 7.0% 5.3% 12.4% 26.5% 48.7%
PLACEON 6.63 35.7% 11.6% 9.8% 18.6% 24.3% 44.4%
PUTIN 6.95 38.1% 7.8% 3.5% 12.7% 37.8% 40.0%

Additionally, in Figure 15 (see Appendix D), we evaluate the effect of rationale-wise test-time scaling
by applying the same scaling mechanism used in BiCL to SeqFT-Distill. As shown, performance
rather decreases for the baseline, as it is trained to predict actions based on the entire rationale set. In
contrast, BiCL employs the loss in equation 6, which is optimized to predict actions conditioned on
incrementally generated rationales, enabling effective decision-making even from partial rationales.

Does selecting the most similar prior reasoning-policy yield better performance? In Table 7, we
evaluate two variants of BiCL that use alternative base reasoning-policy selection strategies under the
5-shot setting. Argmin selects the policy with the lowest rationale similarity, while Random simply
uses the random one. These variants do not employ test-time scaling (i.e., TTS in equation 7), thereby
isolating the effect of base reasoning-policy selection on the quality of generated rationales. As
shown, BiCL w/o TTS which selects the most similar one yields the highest performance, achieving
an average SR increase of 5.67% in the seen category and 5.90% in the unseen compared to Argmin.
Since the current stage’s reasoning policy is initialized from the chosen base reasoning-policy,
selecting the most similar predecessor provides a strong prior that facilitates efficient adaptation.

Table 7: Effect of base policy selection strategy of BiCL

Method
VirtualHome Beh-IL ALFWorld Env-IL

Seen Unseen Seen Unseen
SR (%) GC (%) SR (%) GC (%) SR (%) GC (%) SR (%) GC (%)

Argmin 60.23±2.09 74.74±1.54 49.12±2.17 66.61±1.82 51.07±1.95 63.59±1.61 43.30±2.47 56.18±2.14

Random 62.35±2.04 74.50±1.56 50.79±2.19 66.08±1.86 54.64±1.94 66.29±1.65 42.64±2.45 57.51±2.10

BiCL w/o TTS 66.33±2.14 77.77±1.57 52.27±2.25 66.33±1.92 57.86±2.01 68.42±1.67 48.21±2.58 60.10±2.16

6 CONCLUSION AND LIMITATIONS

We presented the BiCL framework tailored for efficient task adaptation of LM-based embodied agents,
particularly in scenarios with online access only to limited demonstrations and small LMs. Specifi-
cally, our bidirectional CoT learning strategy enables effective forward knowledge transfer across
adaptation stages, by jointly optimizing CoT reasoning and reflexive reasoning objectives. Notably, it
facilitates robust CoT reasoning at inference without requiring explicit reflection steps. Furthermore,
the rationale-wise test-time scaling mechanism focuses on sufficiently confident rationales, thereby
enabling not only more efficient planning but also improved overall performance.

Limitations. Our focus is primarily on forward knowledge transfer, leveraging prior reasoning to
enhance current learning in a sequential task adaptation setting. Accordingly, BiCL does not explicitly
consider backward knowledge transfer, where knowledge gained from new tasks could refine earlier
policies or rationales. Such backward transfer can be addressed by leveraging rehearsal methods (see
Appendix D.6), which retain demonstrations across adaptation stages to update the prior policies.
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A RELATED WORK

Embodied task planning. Recently, embodied task planning has gained significant attention, driven
by the advancements in LMs’ reasoning capabilities (Jiang et al., 2022; Driess et al., 2023; Huang
et al., 2022a; 2023). These advancements empower agents to handle complex scenarios such as
everyday household tasks, enabling them to produce appropriate plans to accomplish given tasks.
SayCan (Ahn et al., 2022) is one of the pioneering works leveraging LMs for embodied tasks,
exploiting skill affordance functions to guide the generation of feasible actions. Meanwhile, several
works explore the integration of various sources of feedback to either replan or refine decision-
making (Huang et al., 2022b; Shinn et al., 2023; Oh et al., 2023). In parallel, DeDer (Choi et al.,
2024) distills the reasoning capabilities of LLMs into small LMs through a two-tier hierarchy, tailored
for embodied agents operating on resource-constrained devices. While our work shares a similar
objective, we focus on enabling LM-based agents to efficiently adapt to new tasks under limited
supervision and model capacity.

Continual task adaptation. In the domain of continual task adaptation, prior works (Gao et al., 2021;
Wan et al., 2024) have focused on leveraging a stream of datasets to progressively learn diverse tasks
over time. TAIL (Liu et al., 2024) and L2M (Schmied et al., 2023) adopt parameter-efficient tuning
methods to harness the knowledge embedded in pre-trained models for efficient adaptation in robotic
manipulation tasks. CAMA (Kim et al., 2024) proposes a framework for continual embodied planning,
where model updates are guided by previously stored logits to prevent catastrophic forgetting. Our
work distinguishes itself by structuring robust CoT reasoning within LM-based policies, particularly
in resource-constrained settings.

Reasoning distillation and self-correction of LMs. With the growing reasoning capabilities of
LLMs, recent efforts have explored distilling these abilities into smaller models. A common strategy
involves extracting CoT rationales from LLMs and using them as supervision signals to train smaller
LMs (Li et al., 2023; Wang et al., 2023; Li et al., 2024b; Shridhar et al., 2023; DeepSeek-AI et al.,
2025). Furthermore, self-correction mechanisms have emerged as a promising approach to mitigate
flawed reasoning in LMs (Saunders et al., 2022). These typically leverage previous responses to
bootstrap feedback for self-improvement (Madaan et al., 2023; Sun et al., 2024) or incorporate
external feedback from additional knowledge sources (Gou et al., 2024; Shinn et al., 2023). Self-
Correction (Welleck et al., 2023) and Aligner (Ji et al., 2024) decouple the initial response generator
from a separate corrector, which is trained to refine outputs based on feedback. Unlike previous
works that treat CoT reasoning and self-correction as separate capabilities, our BiCL framework
aims to enhance CoT reasoning itself through reflexive reasoning. In BiCL, reflexive reasoning
internalizes task-specific knowledge by identifying and correcting prior rationales, thus providing
richer supervision and enhancing CoT reasoning capabilities for the current task.

B BENCHMARK ENVIRONMENTS

B.1 VIRTUALHOME

VirtualHome (Puig et al., 2018) is a Unity-based simulation environment where an agent interacts
with household objects to accomplish given instructions. There are 50 different house settings in
VirtualHome, each with different room layouts and object positions. The environment features a wide
variety of real-life objects, making it challenging for embodied agents.

Instruction. We configure four instruction templates, each with a unique goal to accomplish:
TURNON, OPEN, PLACEON, PUTIN. In Table 8, we provide an example for each instruction
template.

Observation. We use a Sentence-BERT (Reimers & Gurevych, 2019) to retrieve the top-k most
relevant triples from the environment knowledge graph based on the given instruction. This setup
follows similar practices in recent works in embodied agents (Choi et al., 2024; Yoo et al., 2024). In
Figure 2, we provide an example of observation.

Action. The available actions include: walk, open, switch, grab, place on, and put in. The first four
actions take a single argument (e.g. walk kitchen, grab apple), while the last two actions require two
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Table 8: An example for each instruction template in VirtualHome

Instruction template Example

TURNON Turn on tv

OPEN Open cabinet

PLACEON Place apple on sofa

PUTIN Put mug in microwave

(character, inside, kitchen), (character, hold, none), (kitchen,
adjacent, bedroom), (kitchen, adjacent, livingroom), (bath-
room, adjacent, bedroom), (tv, inside, bedroom), (hanger, in-
side, bedroom), (powersocket, inside, kitchen), (wineglass, in-
side, kitchen), (kitchencabinet, inside, kitchen), (salmon, inside,
kitchen) ...

Figure 2: Observation example for “Turn on tv” task

arguments (e.g. place apple on sofa, put mug in microwave). In Table 9, we present the format of
each action along with a corresponding example.

Table 9: Format and example of each action in VirtualHome

Action Format Example

walk walk [object or room] walk kitchen

open open [object] open cabinet

switch switch [object] switch tv

grab grab [object] grab apple

place on place [object] on [object] place apple on sofa

put in put [object] in [object] put mug in microwave

Continual task adaptation. We configure two continual adaptation setups similar to CAMA (Kim
et al., 2024). For Behavior Incremental Learning (Beh-IL), the agent incrementally learns new
behaviors; for Environment Incremental Learning (Env-IL), the agent incrementally learns to perform
behaviors in novel indoor scenes. In Figure 3, we illustrate these two continual adaptation setups.

For Beh-IL, we utilize the four instruction templates described above, assigning each as the primary
behavior for a different learning stage. Experiments are conducted across four randomly ordered
sequences of tasks, and evaluated under Seen and Unseen categories. For the Seen category, we
use the same tasks and the same room layouts as those used for training; while for the Unseen
category, we introduce variations in room layouts, instructions, and initial object positions. The
specific sequences used for Beh-IL in VirtualHome are detailed in Figure 4.

For Env-IL, we utilize the diverse room layouts provided by VirtualHome, each featuring differ-
ent object and furniture arrangements. Experiments are conducted across four randomly ordered
sequences of these room layouts, and the Seen and Unseen categories are constructed in the same
manner as in Beh-IL. The room sequences used for Env-IL in VirtualHome are detailed in Figure 5.

For the continual few-shot adaptation setting, we double the length of each sequence.

Expert demonstrations. To construct few-shot demonstrations, we emulate a rule-based expert that
generates an optimal plan based on the given instruction. For each adaptation stage, we collect 20
expert demonstrations, varying the initial positions of the agent and objects, as well as the instructions.
For the more constrained continual few-shot adaptation settings, we use 5 expert demonstrations.
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Figure 3: Continual adaptation setups: The top line illustrates Beh-IL, where the agent is tasked to
incrementally learn new behaviors. The bottom line illustrates Env-IL, where the agent is tasked to
perform behaviors in novel indoor scenes.

1. TURNON → OPEN → PLACEON → PUTIN

2. OPEN → TURNON → PUTIN → PLACEON

3. PLACEON → OPEN → TURNON → PUTIN

4. PUTIN → OPEN → PLACEON → TURNON

Figure 4: Continual adaptation sequence for Beh-IL in VirtualHome

1. ROOM 20 → ROOM 01 → ROOM 34 → ROOM 26
2. ROOM 01 → ROOM 20 → ROOM 26 → ROOM 34
3. ROOM 34 → ROOM 01 → ROOM 20 → ROOM 26
4. ROOM 26 → ROOM 01 → ROOM 34 → ROOM 20

Figure 5: Continual adaptation sequence for Env-IL in VirtualHome

B.2 ALFWORLD

ALFWorld (Shridhar et al., 2021) is a text-based environment designed for embodied task planning,
featuring numerous household tasks brought from ALFRED (Shridhar et al., 2020) benchmark. It
supports complex task compositions and is widely used to evaluate instruction-following agents under
partially observable settings.

Instruction. We configure four instruction templates, each with a unique goal to accomplish: HEAT,
CLEAN, PICK2&PLACE, PICK&PLACE. In Table 10, we provide an example for each instruction
template.

Observation. The observation settings are identical to VirtualHome in Section B.1. In Figure 6, we
provide an example of observation.

(character, inside, bedroom), (character, hold, keychain 1)
(character, close, armchair 1), (laptop 1, inside, armchair 1),
(lightswitch 1, is, visible), (cellphone 3, inside, bed 1), (cd 2,
inside, garbagecan 1), (pillow 1, inside, bed 1), (cd 1, inside,
dresser 1), (alarmclock 2, inside, dresser 1), (cabinet 1, is, visi-
ble) ...

Figure 6: Observation example for task “Put a keychain in/on armchair”
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Table 10: An example for each instruction template in ALFWorld

Instruction template Example

HEAT Heat some plate in microwave and put it in/on shelf

CLEAN Clean some fork in sinkbasin and put it in/on sidetable

PICK2&PLACE Find two newspaper and put them in/on armchair

PICK&PLACE Put a keychain in/on armchair

Action. The available actions include: go to, take from, put in/on, heat with, and clean with. The
go to action takes a single argument specifying the destination (e.g. go to shelf 1), while the other
actions require two arguments (e.g. take potato 1 from countertop 3, clean spoon 1 with sinkbasin 1).
In Table 11, we provide the format of each action along with a corresponding example.

Table 11: Format and example of each action in ALFWorld

Action Format Example

go to go to [object] go to shelf 1

take from take [object] from [object] take potato 1 from countertop 3

put in/on put [object] in/on [object] put newspaper 1 in/on ottoman 1

heat with heat [object] with [object] heat potato 3 with microwave 1

clean with clean [object] with [object] clean spoon 1 with sinkbasin 1

Continual task adaptation setup. As in VirtualHome, we configure two continual task adaptation
setups in ALFWorld, similar to CAMA (Kim et al., 2024).

For Beh-IL, we utilize the four instruction templates, assigning each as the primary behavior for an
adaptation stage. The specific sequences used for Beh-IL in ALFWorld are detailed in Figure 7.

1. HEAT → PICK2&PLACE → PICK&PLACE → CLEAN

2. PICK2&PLACE → CLEAN → HEAT → PICK&PLACE

3. PICK&PLACE → PICK2&PLACE → CLEAN → HEAT

4. CLEAN → HEAT → PICK2&PLACE → PICK&PLACE

Figure 7: Continual adaptation sequence for Beh-IL in ALFWorld

For Env-IL, we utilize different room types in ALFWorld, including bathroom, bedroom, livingroom,
and kitchen. The specific sequences used for Env-IL in ALFWorld are detailed in Figure 8.

1. BEDROOM → BATHROOM → LIVINGROOM → KITCHEN

2. BATHROOM → BEDROOM → KITCHEN → LIVINGROOM

3. LIVINGROOM → BATHROOM → BEDROOM → KITCHEN

4. KITCHEN → BATHROOM → LIVINGROOM → BEDROOM

Figure 8: Continual adaptation sequence for Env-IL in ALFWorld

Expert demonstrations. To construct the training demonstrations, we utilize the expert provided
in ALFWorld. For each adaptation stage, we utilize 20 expert demonstrations, varying the initial
positions of the agent and objects, as well as the instructions. For the more constrained continual
few-shot adaptation setting, we use 5 expert demonstrations.
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C IMPLEMENTATION DETAILS

In this section, we provide the rationale annotation strategy and implementation details of BiCL
and the baselines. All experiments are conducted on a system equipped with an Intel(R) Core(TM)
i9-10980XE CPU and an NVIDIA RTX A6000 GPU. We use GPT-4o-mini (Achiam et al., 2023) for
rationale annotation and Qwen2.5-0.5B (Yang et al., 2024) as the pre-trained LM of the policies.

C.1 RATIONALE ANNOTATION

In our implementation, rationales Z = {z1, ..., zN} are annotated through LLMs, such as GPT-4o-
mini (Achiam et al., 2023) for each observation and action pair (o, a). For this, we define a set of
Markov Decision Process-featured queries Q = {q1, ..., qN}, specifically designed to extract key
elements necessary for embodied task planning, such as the location of the target object, the status
of the agent, sub-goals, available actions, and expected returns (Choi et al., 2024). We generate 5
multi-step (N = 5) rationales, and Table 12 summarizes the key element extracted by each query.

Table 12: Key elements extracted by each query

Query Key elements

q1 physical location and status of the agent

q2 physical location and status of observations relevant to the task

q3 summarization of previous action history, if available

q4 sub-goals needed to complete the task

q5 reasoning about the next action to take

Specifically, we prompt the LLM ΨLLM with queries Q, along with the task T , observation o, action
history h(= a1:t), and current action a(= at) to sample the rationale set, i.e., Z ∼ ΨLLM(Q, x, a),
where x = (T , o, h). Next, we prompt the policy π(·|θLM) (i.e., the pre-trained LM without any
attached adapters) with the observation and rationale set to obtain logits for the available actions
ā ∈ A. If the logit corresponding to the ground-truth action a ranks within the top-k action logits,
the rationale set Z is stored in a buffer B. This process is repeated I times with varying temperature
and nucleus sampling parameters to generate multiple rationale sets.

B =

I⋃
i=1

{Z|a ∈ top-kā∈A (π(ā|o,Z; θLM))},

where Z ∼ ΨLLM(Q, x, a).

(8)

Subsequently, we prompt each rationale set stored in the buffer to the policy to obtain logits for the
ground-truth future plan p(= at:T ). We then select the rationale set that yields the highest logit as the
final rationale set for reasoning-policy training.

Z = argmax
Zi∈B

π(p|T , o,Zi; θLM). (9)

This entire procedure is performed for each transition in the demonstrations D to annotate rationales
for each sample. Algorithm 2 lists the procedure of rationale annotation. Moreover, Figure 9 presents
an example of rationales annotated by the LLM for VirtualHome.

C.2 LLM-PLANNER

LLM-Planner (Huang et al., 2023) leverages the in-context learning capability of language models
by prompting few-shot demonstrations. Specifically, two demonstrations are sampled based on
the task similarity, which is computed by Jaccard distance. For inference, LLM-Planner employs
an action-level decoding strategy to select actions from the set of valid ones (Hazra et al., 2024).
Figure 10 presents the prompt template used for LLM-Planner.
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Algorithm 2 Rationale annotation
1: Input: demonstrations D, LLM ΨLLM, pre-trained LM parameters θLM
2: for each (T , o, a) ∈ D do
3: Initialize buffer B = ∅
4: for i← 1, ..., I do
5: Z ∼ ΨLLM(Q, x, a)
6: if a ∈ top-kā∈A(π(ā|o,Z; θLM)) then
7: B ← B ∪ {Z}
8: Z = argmaxZi∈B π(p|T , o,Zi; θLM)
9: Augment demonstrations D with (T , o, a,Z)

[Instruction] Place book on coffeetable

[Observation] (character, inside, kitchen), (character, hold, book), (kitchen, adjacent, bed-
room), (kitchen, adjacent, livingroom), (coffeetable, inside, livingroom),
(book, is, closed), (character, close, paper), (pie, inside, kitchen), (face-
cream, inside, bathroom), (closetdrawer, inside, livingroom) ...

[History] (step 1, walk bedroom), (step 2, walk kitchen),
(step 3, walk book), (step 4, grab book)

[Action] walk livingroom

[Rationales] The character is currently inside the kitchen, holding a closed book. The
coffeetable is located inside the livingroom, which is adjacent to the
kitchen. Previously, the character walked from the bedroom to the kitchen,
grabbed the book, and is now preparing to move it. To complete the
instruction of placing the book on the coffeetable, the character needs
to walk to the livingroom next. Since the livingroom is adjacent to the
kitchen, the character can proceed there to fulfill the instruction.

Figure 9: Example of rationales for VirtualHome

C.3 REACT

ReAct (Yao et al., 2023) generates rationales and actions in an interleaved manner. To allow the LM to
better leverage its reasoning capabilities, we prompt it with few-shot in-context CoT demonstrations.
In Figure 11, we show the prompt template used for ReAct.

C.4 SAYCAN

SayCan (Ahn et al., 2022) incorporates an additional module that accounts for affordance scores
when selecting actions. This module re-weights the action logits based on predicted affordance scores,
ensuring the feasibility of plans and preventing the agent from selecting invalid actions in the current
state. In our implementation, we replace this module by heuristically providing only executable
actions, filtered based on their feasibility from the current state.

C.5 TAIL

TAIL (Liu et al., 2024) employs parameter-efficient fine-tuning methods to address the continual
task adaptation problem. For each adaptation stage, a LoRA adapter is newly initialized and trained
on the demonstrations through supervised finetuning. Based on this, we implement two variants
for comparison. TAIL-Action is trained solely on state-action pairs without utilizing rationale
supervision. TAIL-Distill leverages rationales to supervise both reasoning and planning policies.
The same CoT reasoning loss defined in Equation (3) for BiCL is used to train the reasoning-policy
for TAIL-Distill. At inference, rationales are generated segment-by-segment through the reasoning-
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Interact with a household to solve a task. Following are the only actions available:
go to [recep]: move to a receptacle/location
take [obj] from [recep]: pick up an object from a receptacle
put [obj] in/on [recep]: place an object inside or on top of a receptacle
heat [obj] with [recep]: heat an object using a receptacle
clean [obj] with [recep]: clean an object using a receptacle

Here are some examples.

Your task is to: put a pencil in/on desk.
(character, inside, bedroom), (book 3, inside, desk 1), (laptop 1, inside, desk 1), (pencil
2, inside, garbagecan 1), (pencil 1, inside, sidetable 1), (alarmclock 1, inside, desk 1),
(remotecontrol 1, inside, desk 1), (alarmclock 2, inside, desk 1), (book 2, inside, desk 1)
> go to sidetable 1
...
[Few-shot Demonstration 2]
...
[Few-shot Demonstration N]

Here is the task.

Your task is to: put a pencil in/on desk.
(character, inside, bedroom), (pen 1, inside, desk 1), (laptop 1, inside, desk 1), (pencil 2,
inside, sidetable 1), (pencil 3, inside, shelf 1), (keychain 3, inside, desk 1), (box 1, inside,
desk 1), (pen 2, inside, desk 1), (book 1, inside, desk 1), (cd 1, inside, garbagecan 1), (cd 2,
is, visible), (blinds 1, is, visible), (chair 1, is, visible)
> action:

Figure 10: Prompt example used for LLM-Planner in ALFWorld

policy, and subsequently used to generate actions through the planning-policy. The hyperparameter
settings for TAIL are summarized in Table 13.

Table 13: Hyperparameter settings for TAIL

Hyperparameter Value

Total epochs 80
Batch size 4
Learning rate 1.41e-5
LoRA alpha 32
LoRA rank 16

C.6 SEQFT-DISTILL

Unlike TAIL, which randomly initializes model parameters for each adaptation stage, SeqFT-Distill
uses the policy learned from the most recent adaptation stage as the initialization point. This ensures
implicit knowledge transfer across stages through model parameters. For reasoning distillation, we
employ both reasoning and planning policies as BiCL. We use the same hyperparameter settings as
in Table 13 for SeqFT-Distill.

C.7 CAMA-DISTILL

CAMA-Distill (Kim et al., 2024) addresses the continual learning problem in embodied tasks by
introducing a method to update stored past logits in episodic memory. To accommodate reasoning
distillation, we adopt the same two-tier policy architecture as BiCL. A small subset of previous
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Interact with a household to solve a task. Following are the only actions available:
walk [object or room]: walk to object or room
open [object]: open an object
switch [object]: switch on an object
grab [object]: grab an object
place [object] on [recep]: put holding on top of an object
put [object] in [recep]: put holding inside of an object

Here are some examples.

Your task is to: Turn on tv.
(character, inside, bedroom), (character, hold, none), (bedroom, adjacent, bathroom),
(bedroom, adjacent, kitchen), (kitchen, adjacent, livingroom), (tv, inside, livingroom),
(milkshake, inside, livingroom), (curtains, inside, bathroom), (barsoap, inside, bathroom),
(fryingpan, inside, kitchen), (kitchencounterdrawer, inside, kitchen)
> think: The character is currently inside the bedroom, which is adjacent to both the
bathroom and the kitchen. The TV is located in the living room, which is adjacent to the
kitchen but not directly accessible from the bedroom. There have been no prior actions taken
that would influence the current state. To turn on the TV, the character needs to walk to the
kitchen first, and then from there, proceed to the living room. Given the adjacency of the
kitchen to the living room, the next step involves moving towards the kitchen to ultimately
reach the TV.
OK.
> walk kitchen
...
[Few-shot Demonstration 2]
...
[Few-shot Demonstration N]

Here is the task.

Your task is to: Turn on tv.
(character, close, tv), (character, inside, kitchen), (character, hold, none), (kitchen, adjacent,
bedroom), (kitchen, adjacent, livingroom), (bathroom, adjacent, bedroom), (tv, inside,
kitchen), (clothesshirt, inside, bedroom), (clothespants, inside, bedroom), (clothesshirt,
inside, livingroom), (powersocket, inside, livingroom)
> rationale:
> action:

Figure 11: Prompt example used for ReAct in VirtualHome

demonstrations, along with their corresponding logits, is retained across adaptation stages and used to
supervise the policy alongside the current stage’s demonstrations. We use the same hyperparameter
settings as in Table 13 for CAMA-Distill.

C.8 SELF-CORRECTION

Self-Correction Welleck et al. (2023) explicitly learns to iteratively refine imperfect generations.
To adapt this approach to our setting, we employ sLMs with adapters for both the initial rationale
generator and the corrector. Feedback for correction is obtained in the same way as our setup.
The generated rationale is compared with the ground-truth rationales in the demonstrations using
a combined similarity score based on language embeddings and TF-IDF scores. At inference, the
model first produces an initial rationale and then performs explicit self-correction. At inference,
the surrogate feedback is provided by retrieving the rationale in the demonstrations that is most
semantically similar to the current state.
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Algorithm 3 BiCL framework
1: // Adaptation: bidirectional CoT learning
2: Input: demonstrations for i-th stage Di, adapter pool Θ
3: Select adapter from adapter pool for base reasoning-policy πz(·; θ′z) using (2)
4: Initialize adapters for the current stage θz ← θ′z , θp
5: while not converged do
6: Sample a batch of {(T , o, a,Z)} ∼ Di

7: Generate base rationales z′k ∼ πz(·|x, qk; θ′z) through the base reasoning-policy
8: Update reasoning-policy πz(·; θz) using loss Lreasoning in (5)
9: Update planning-policy πp(·; θp) using loss Lplanning in (6)

10: Add adapters to adapter pool Θ← Θ ∪ {θz}
11: Compute threshold δk for each k using equation 10
12:
13: // Inference: rationale-wise test-time scaling
14: Input: environment Env, task T
15: o0 ← Env.reset()
16: done← false, t← 0, h← ∅
17: while not done do
18: xt ← (T , ot, h)
19: for k ← 1, ..., N do
20: zt,k ∼ πz(·|xt, qk; θz)
21: at ∼ πp(·|xt, zt,1:k; θp)
22: if log πp(at|xt, zt,1:k; θp)/|at| ≥ δk then
23: break
24: ot+1 ← Env.step(at)
25: h← h ∪ {at}, t← t+ 1

C.9 BICL (OURS)

The BiCL framework consists of two main processes: (i) bidirectional CoT learning, and (ii) rationale-
wise test-time scaling. (i) For adaptation, we first select the most relevant previously learned reasoning-
policy to serve as the base one. Then, an LM-based policy is jointly trained via CoT and reflexive
reasoning objectives from few-shot demonstrations, where CoT reasoning is supervised by rationale
distillation and reflexive reasoning by base rationale correction. We use the same hyperparameter
settings as in Table 13 for BiCL. (ii) For inference, the policy solely relies on CoT reasoning, with its
depth dynamically adjusted according to the model’s confidence in predicted actions.

The threshold δk for rationale-wise test-time scaling in equation 7 is derived from the mean and
standard deviation of the log-probability of the ground-truth action when the planning-policy is
conditioned on partial rationales z1:k as

δk = E(x,a,Z)∼D

[
log πp(a|x, z1:k; θp)/|a|

]
+ λstd(x,a,Z)∼D

[
log πp(a|x, z1:k; θp)/|a|

]
(10)

where λ is a hyperparameter, set to −0.524 for VirtualHome and 0.0 for ALFWorld. Thresholds
are computed separately at each adaptation stage, yielding a distinct δk for every reasoning step. A
sensitivity analysis of this threshold is provided in Section D.7.

The entire procedure for BiCL is summarized in Algorithm 3, and examples of the planning, correction
and reasoning prompts are illustrated in Figures 12, 13, and 14, respectively.
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### Human:
Following are the only actions available:
walk [object or room]: walk to object or room
open [object]: open an object
switch [object]: switch on an object
grab [object]: grab an object
place [object] on [recep]: put holding on top of an object
put [object] in [recep]: put holding inside of an object

In order to complete the given instruction, what should be the next immediate action?
Instruction: Open stove
State: (character, inside, kitchen), (character, hold, none), (kitchen, adjacent, bedroom),
(kitchen, adjacent, livingroom), (bathroom, adjacent, bedroom), (stove, is, closed), (stove,
inside, kitchen), (stove, is, off), (toaster, is, off), (closetdrawer, inside, bedroom)
Previous Actions: No action history.
Rationale: The character is currently inside the kitchen, situated near the closed stove. The
stove, which needs to be opened, is located inside the kitchen and adjacent to a bedroom.
There is no previous action history to consider. To complete the instruction, the character
must first walk to the stove. Thus, the logical next action should be walk to stove.

### Assistant:

Figure 12: Planning prompt example used for BiCL in VirtualHome

### Human:
Instruction: heat some cup in microwave and put it in/on sidetable
State: (character, inside, kitchen), (microwave 1, is, visible), (cup 2, inside, countertop 1),
(cup 1, inside, sinkbasin 1), (peppershaker 1, inside, sidetable 1), (pot 2, inside, stoveburner
4), (bread 1, inside, countertop 1), (soapbottle 1, inside, garbagecan 1), (spoon 1, is, visible)
Previous Actions: No action history.
Reasoning Trace: The character is currently inside the kitchen. The cup 2 is located on
countertop 1, while the microwave 1 is also visible in the kitchen. There is no previous
action history to summarize. To complete the instruction, the character needs to first go to
countertop 1, retrieve cup 2, heat it in the microwave, and then place it on sidetable 1.
Rationale: Heat some cup in microwave and put it in/on sidetable.
There are many errors in the Think. You need a major revision in the Think. You should
provide exactly 1 sentence response that only incorporate: reasoning for what should do
next.

### Assistant:

Figure 13: Correction prompt example used for BiCL in ALFWorld
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[Query 1]
### Human:
Instruction: Open stove
State: (character, inside, kitchen), (character, hold, none), (kitchen, adjacent, bedroom),
(kitchen, adjacent, livingroom), (bathroom, adjacent, bedroom), (stove, is, closed), (stove,
inside, kitchen), (stove, is, off), (toaster, is, off), (closetdrawer, inside, bedroom)
Previous Actions: No action history.
You should provide exactly 1 sentence response that only incorporate: physical location and
status of the character.

### Assistant:

[Query 2]
### Human:
Instruction: Open stove
State: (character, inside, kitchen), (character, hold, none), (kitchen, adjacent, bedroom),
(kitchen, adjacent, livingroom), (bathroom, adjacent, bedroom), (stove, is, closed), (stove,
inside, kitchen), (stove, is, off), (toaster, is, off), (closetdrawer, inside, bedroom)
Previous Actions: No action history.
You should provide exactly 1 sentence response that only incorporate: physical location and
status of observations that are only related to the instruction.

### Assistant:

[Query 3]
### Human:
Instruction: Open stove
State: (character, inside, kitchen), (character, hold, none), (kitchen, adjacent, bedroom),
(kitchen, adjacent, livingroom), (bathroom, adjacent, bedroom), (stove, is, closed), (stove,
inside, kitchen), (stove, is, off), (toaster, is, off), (closetdrawer, inside, bedroom)
Previous Actions: No action history.
You should provide exactly 1 sentence response that only incorporate: summarization of
previous action histories if previous actions are available.

### Assistant:

[Query 4]
### Human:
Instruction: Open stove
State: (character, inside, kitchen), (character, hold, none), (kitchen, adjacent, bedroom),
(kitchen, adjacent, livingroom), (bathroom, adjacent, bedroom), (stove, is, closed), (stove,
inside, kitchen), (stove, is, off), (toaster, is, off), (closetdrawer, inside, bedroom)
Previous Actions: No action history.
You should provide exactly 1 sentence response that only incorporate: break down the
remaining plan to complete the instruction if remaining plans are required.

### Assistant:

[Query 5]
### Human:
Instruction: Open stove
State: (character, inside, kitchen), (character, hold, none), (kitchen, adjacent, bedroom),
(kitchen, adjacent, livingroom), (bathroom, adjacent, bedroom), (stove, is, closed), (stove,
inside, kitchen), (stove, is, off), (toaster, is, off), (closetdrawer, inside, bedroom)
Previous Actions: No action history.
You should provide exactly 1 sentence response that only incorporate: reasoning for what
should do next.

### Assistant:

Figure 14: Reasoning prompt example used for BiCL in VirtualHome
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D ADDITIONAL EXPERIMENTS

D.1 EFFECT OF SEGMENT-WISE REASONING

In Figure 16, we compare two variants of BiCL with different levels of granularity in their reasoning
processes. Full learns to generate and correct the entire rationale in a single inference step, while
Chunk-wise processes multiple rationales (two or three) at a time. In contrast, BiCL adopts a
segment-wise approach, processing one rationale at an inference step, thus enabling the most fine-
grained control over the reasoning process. As shown, finer-grained reasoning consistently leads to
performance improvements. This is particularly beneficial for smaller LMs, whose limited capacity
benefits from step-by-step guidance.

Figure 15: Effect of test-time scaling Figure 16: Effect of fine-grained reasoning

D.2 PLANNING EFFICIENCY

To assess the planning efficiency beyond the SR reported in Table 1, we report Normalized Plan
Efficiency (NPE) defined as optimal plan length divided by executed plan length (higher is better, and
1.0 indicates an optimal plan) While SR reflects task completion, NPE captures how efficiently the
agent completes the given task. A higher NPE indicates more efficient planning, with a value 1.0
representing a perfectly optimal plan.

In Table 14, we report the NPE of BiCL and the baselines under continual task adaptation setups
in VirtualHome and ALFWorld. As shown, BiCL consistently achieves higher NPE compared to
the baselines, demonstrating its superiority in generating not only successful but also efficient plans.
This is attributed to the enhanced robustness of CoT reasoning, enabled by reflexive reasoning that
corrects prior knowledge to internalize more precise task knowledge across learning stages.

Table 14: Planning efficiency

Method
VirtualHome ALFWorld

Beh-IL Env-IL Beh-IL Env-IL
Seen Unseen Seen Unseen Seen Unseen Seen Unseen

TAIL-Action 0.79±0.02 0.75±0.02 0.80±0.01 0.77±0.01 0.88±0.01 0.84±0.01 0.87±0.01 0.88±0.01

TAIL-Distill 0.80±0.01 0.76±0.02 0.81±0.01 0.73±0.01 0.89±0.01 0.81±0.01 0.91±0.01 0.88±0.01

SeqFT-Distill 0.78±0.01 0.72±0.02 0.84±0.01 0.79±0.01 0.91±0.01 0.84±0.01 0.91±0.01 0.89±0.01

CAMA-Distill 0.79±0.01 0.78±0.01 0.80±0.01 0.75±0.01 0.89±0.01 0.88±0.01 0.89±0.01 0.86±0.01

BiCL w/o TTS 0.84±0.01 0.84±0.01 0.84±0.01 0.81±0.01 0.95±0.00 0.93±0.01 0.94±0.01 0.90±0.01

BiCL 0.85±0.01 0.84±0.01 0.87±0.01 0.81±0.01 0.95±0.00 0.94±0.01 0.95±0.00 0.92±0.01

D.3 CONTINUAL TASK ADAPTABILITY

To further assess continual task adaptability, we evaluate BiCL and the baselines (TAIL-Distill
and SeqFT-Distill) on the complete set of tasks from all stages at each individual adaptation stage.
Here, we compare with BiCL w/o TTS to isolate the effect of test-time scaling, thereby highlighting
the effectiveness of bidirectional CoT learning alone. For tasks from stages not yet encountered,
evaluation is performed using the most recently learned policy. As shown, the success rate (SR)
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increases roughly linearly for all baselines and BiCL as the number of stages grows, indicating that
the agents incrementally acquire new behaviors and adapt to novel scenes. However, the performance
gain of BiCL becomes more pronounced with increasing adaptation stages, achieving a 5.50%
improvement at stage 2 and a 13.96% improvement at stage 4 on the seen category in VirtualHome
Beh-IL compared to SeqFT-Distill. This advantage stems from our bidirectional CoT learning, which
enables more effective forward transfer of previously acquired knowledge to new tasks.

Table 15: Continual Task Adaptability measured by SR (%)

Method Stage 1 Stage 2 Stage 3 Stage 4
Seen Unseen Seen Unseen Seen Unseen Seen Unseen

TAIL-Distill 20.83±0.92 15.21±0.92 33.55±0.87 26.27±1.08 49.80±1.74 36.38±1.83 60.25±2.20 46.29±2.25

SeqFT-Distill 19.13±0.91 13.89±0.87 32.75±1.00 23.81±1.13 49.33±1.67 37.26±1.83 62.17±2.22 46.31±2.22

BiCL w/o TTS 24.63±0.91 19.78±0.98 38.25±1.01 29.42±1.30 56.63±1.61 44.79±1.96 76.13±1.91 60.29±2.32

D.4 EXPERIMENTS WITH LARGER SLMS

To validate that the BiCL framework naturally scales to larger sLMs, we evaluate BiCL and SeqFT-
Distill on VirtualHome Beh-IL using Qwen2.5-1.5B and Qwen2.5-3B in Table 16. Consistent with
the results in Table 1, on Qwen2.5-0.5B, BiCL outperforms the strongest baseline SeqFT-Distill in
the seen category, achieving SR gains of 14.99% on the 1.5B model and 13.75% on the 3B model.
Similarly, in the unseen category, BiCL surpasses SeqFT-Distill with SR improvements of 16.29% on
the 1.5B model and 14.43% on the 3B model. These results demonstrate that BiCL scales robustly,
yielding consistent performance improvements as model size increases.

Table 16: Performance with larger sLMs (0.5B, 1.5B, 3B)

Method Seen Unseen

SR (%) GC (%) SR (%) GC (%)

Model: Qwen2.5-0.5B
BiCL 81.38±1.74 85.81±1.36 64.03±2.28 71.60±3.03
SeqFT-Distill 65.75±2.15 (-15.63) 79.09±1.52 (-6.72) 48.68±2.30 (-15.35) 64.11±1.92 (-7.49)

Model: Qwen2.5-1.5B
BiCL 85.12±1.52 89.28±1.14 68.64±2.12 75.16±1.87
SeqFT-Distill 70.13±2.01 (-14.99) 79.88±1.49 (-9.40) 52.34±2.30 (-16.30) 64.41±1.96 (-10.75)

Model: Qwen2.5-3B
BiCL 87.00±1.37 91.91±0.91 72.37±2.09 78.07±1.80
SeqFT-Distill 73.25±2.08 (-13.75) 83.28±1.43 (-8.63) 57.94±2.34 (-14.43) 69.22±1.92 (-8.85)

D.5 EXPERIMENTS WITH COMPOSITIONAL TASKS

To evaluate on more challenging tasks, we design compositional tasks in VirtualHome, where the
agent should complete the two or three instructions in sequence, such as “Turn on computer, and
turn on radio” (composition of two instructions) or “Put apple in fridge, and turn on stove, and place
paper on bed” (composition of three instructions). As shown in Table 17, BiCL outperforms the most
competitive baseline SeqFT-Distill, achieving a 7.29% SR gain in the seen category and a 15.65%
gain in the unseen category. These results highlight the capability of BiCL to adapt even in complex,
compositional tasks.

D.6 INCORPORATING REHEARSAL STRATEGY FOR BACKWARD TRANSFER

BiCL can be seamlessly extended to support backward transfer through memory-based rehearsal
strategies (Rolnick et al., 2018; Wan et al., 2024). To demonstrate this, we introduce a variant
of BiCL with a rehearsal mechanism (BiCL w/ Rehearsal), in which demonstrations are retained
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Table 17: Performance on Compositional Tasks

Method Seen Unseen

SR (%) GC (%) SR (%) GC (%)

SayCan 22.08±0.98 48.18±0.90 15.84±0.75 45.18±0.80
SeqFT-Distill 48.12±1.64 69.85±1.49 31.00±1.15 57.94±1.29

BiCL w/o TTS 50.59±1.67 73.68±1.63 40.56±1.02 64.12±1.31
BiCL 55.41±1.55 77.13±1.56 46.65±0.92 71.28±1.09

across adaptation stages. After the final stage, BiCL w/ Rehearsal refines earlier policies using the
combined CoT reasoning and reflexive reasoning loss defined in equation 5. For each policy, the
most semantically relevant policy (excluding itself) is chosen from the learned pool as the base
policy, and training is performed on both the original demonstrations for that stage and task-relevant
demonstrations accumulated in the rehearsal buffer.

Table 18 reports results under the continual 5-shot adaptation setup in VirtualHome Beh-IL. As
shown, incorporating rehearsal mechanism improves performance, yielding SR gains of 5.06% in
the seen category and 10.68% in the unseen. These findings demonstrate that BiCL can effectively
leverage memory-based rehearsal to enhance backward transfer.

Table 18: Performance of BiCL with rehearsal mechanism

Method Seen Unseen

SR (%) GC (%) SR (%) GC (%)

BiCL 70.16±2.04 78.83±1.58 47.99±2.20 63.91±1.96

BiCL w/ Rehearsal 75.22±1.82 (+5.06) 81.33±1.48 (+2.50) 58.67±2.31 (+10.68) 68.79±1.98 (+4.88)

D.7 SENSITIVITY TO RATIONALE-WISE TEST-TIME SCALING THRESHOLD

To assess the sensitivity to the threshold δk used for rationale-wise test-time scaling in equation 7, we
vary the threshold levels in VirtualHome Beh-IL by adjusting λ in equation 10. In Table 19, Low
denotes the default threshold setting used in our main experiments. As shown, applying test-time
scaling generally yields higher performance than not applying it. Setting the threshold too low
(e.g., Very Low) prematurely halts CoT reasoning, resulting in a performance drop of 3.76% in the
seen category and 5.84% in the unseen compared to the low (default) setting. Setting the threshold
too high (e.g. Very High) also leads to degradation, with drops of 6.26% in the seen category and
2.49% in the unseen. We conjecture that limited data at each adaptation stage leaves some rationales
under-optimized, and forcing the model to “over think” compounds errors and degrades overall
performance (Liu et al., 2025).

Table 19: Sensitivity analysis on rationale-wise test-time scaling thresholds

Threshold Level Seen SR (%) Unseen SR (%)

w/o TTS 76.13±1.91 60.29±2.32

Very Low 77.62±1.88 57.74±2.29
Low (Default) 81.38±1.74 63.58±2.28
High 79.25±1.82 61.35±2.01
Very High 75.12±1.98 61.09±2.29
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