ASYMMETRIC EFFECTS OF SELF-CORRECTIVE LEARN-ING ON CHAIN-OF-THOUGHT REASONING FOR EFFICIENT POLICY ADAPTATION

Anonymous authors

000

001

002

004

006

008 009 010

011 012

013

014

015

016

017

018

019

021

023

025

026

027

028

029

031

032

033

035

037

040

041

042

043

044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Recent advances in language model (LM)-powered agents have demonstrated the potential to tackle complex embodied tasks by grounding the models' commonsense world knowledge in the interactive physical environments in which the agents operate. However, these LM-based agents' adaptation to a stream of diverse tasks over time remains challenging, particularly under limited supervision and resource constraints. In this paper, we present BiCL, an embodied task adaptation framework that addresses the problem of continual LM finetuning across diverse tasks and adaptation stages using only a small dataset per task and a small LM (i.e., with 0.5B parameters). We devise bidirectional CoT learning, which jointly optimizes chain-of-thought (CoT) reasoning and reflexive reasoning through per-task bidirectional supervision: few-shot CoT guidance and rationale-wise correction. The latter enables the model to revise its prior rationale trajectories for new tasks, while the former strengthens multi-step task-specific reasoning through minimal demonstrations. This dual optimization allows the agent to adapt more efficiently through forward knowledge transfer over time, ultimately yielding asymmetric effects by fostering robust CoT reasoning at inference without requiring explicit reflection. Furthermore, we implement rationale-wise test-time scaling, a mechanism that dynamically adjusts the depth of CoT reasoning based on the model's confidence in actions inferred from its own rationales. Through extensive experiments on VirtualHome and ALFWorld, we demonstrate performance superiority over other LM-based planning and continual task adaptation approaches, while achieving strong efficiency in computation, data usage and model parameters.

1 Introduction

In real-world applications, embodied agents are required to adapt to a stream of tasks over time, as everyday embodied tasks continually shift in surrounding objects, their relations, required skills, and environmental dynamics (Powers et al., 2022; Li et al., 2024a). Recent advances in language model (LM)-powered embodied agents have demonstrated strong capabilities in tackling such openended embodied tasks by grounding the commonsense world knowledge encapsulated in pre-trained models to interactive environments (Ahn et al., 2022; Yao et al., 2023; Shinn et al., 2023). Yet, these approaches remain underexplored for efficient task adaptation, particularly in scenarios involving limited data supervision and smaller LMs with restricted reasoning capabilities.

A straightforward solution is to perform either CoT prompting with in-context samples (Huang et al., 2023; Yao et al., 2023) or CoT distillation (i.e., supervised finetuning with rationales) (Choi et al., 2024; DeepSeek-AI et al., 2025) on each discretely incoming stream of task-specific data. However, in practice, limited task-specific supervision, combined with the capacity constraints of small LMs, poses significant challenges for task adaptation. Through our experiments, we observe that in-context CoT prompting approaches (e.g., ReAct (Yao et al., 2023), SayCan (Ahn et al., 2022)) exhibit degraded performance, when applied to small LMs (as shown in Table 1). Furthermore, CoT distillation (e.g., TAIL-Distill (Liu et al., 2024)) yields suboptimal performance under limited data conditions (as shown in Table 2). This highlights the need for effective forward knowledge transfer across adaptation stages, where each stage handles a distinct task, especially in scenarios with limited supervision and small LMs. Lastly, self-correction mechanisms (i.e., refining initially generated

rationales based on feedback) may offer a potential solution to mitigate suboptimal reasoning in small LMs. However, their performance (e.g., Self-Correction (Welleck et al., 2023)) remains limited due to the absence of precise feedback at inference (as shown in Table 3), and they nearly double the inference cost, which is a critical drawback for the practical deployment of embodied agents.

To address this, we introduce the notion of bidirectional CoT learning, a simple yet efficient strategy for embodied task adaptation. Specifically, at each task adaptation stage, the learning process involves dual supervision: learning CoT reasoning through distillation of multi-step rationales, and learning reflexive reasoning through the correction of prior rationales generated by a previously learned policy. This process is efficiently conducted at each stage, using only few-shot demonstrations, specifically task-specific CoT rationales. Reflexive reasoning parallels how humans draw rationales from prior thoughts while actively identifying and correcting discrepancies between earlier reasoning and new contexts, a form of metacognitive behavior that fosters more transferable knowledge in response to evolving scenarios (Yeung & Summerfield, 2012). It extends beyond CoT finetuning by incorporating a reflexive mechanism that delivers richer supervision, allowing agents to internalize refined task-specific knowledge. In this way, bidirectional CoT learning produces asymmetric effects, reinforcing CoT reasoning via internalized reflexive knowledge and thereby delivering consistently robust performance without explicit reflection at inference.

To this end, we present the BiCL framework, designed for efficient task adaptation in embodied agents through *bidirectional CoT learning*. At each adaptation stage, we first retrieve the most relevant previously learned policy by comparing the rationales from previous stages with those derived from the current stage's demonstrations. The current policy is initialized with the retrieved prior one and then optimized using bidirectional objectives: generating rationales via CoT reasoning, and correcting rationales generated by the prior policy via reflexive reasoning, both guided by few-shot demonstrations. Following this adaptation, inference is conducted solely through CoT reasoning, without explicitly invoking reflexive reasoning. To improve efficiency, we also devise *rationale-wise test-time scaling* which dynamically determines when to terminate CoT reasoning based on the model's confidence in the predicted actions conditioned on generated rationales.

Through evaluation on VirtualHome (Puig et al., 2018) and ALFWorld (Shridhar et al., 2021) benchmarks, we demonstrate the effectiveness of BiCL over existing LM-based planning and continual task adaptation baselines across four aspects. (i) Continual few-shot adaptation performance: BiCL achieves robust task success, with an average improvement of 18.54% over the most competitive baseline SeqFT-Distill (Shridhar et al., 2023) on the unseen category in the continual 5-shot adaptation setting (see Table 2). (ii) Computational efficiency: BiCL substantially reduces the computation cost of CoT reasoning, lowering the number of generated tokens by 46.01% (see Table 6), while still outperforming the Self-Correction (Welleck et al., 2023), which requires nearly twice as many rationale generation for refinement, with an average improvement of 25.78% (see Table 3). (iii) Data efficiency: BiCL demonstrates strong data efficiency, outperforming SeqFT-Distill trained with twice the demonstrations by 7.50% and TAIL-Distill (Liu et al., 2024) by 18.75% on the unseen category (see Table 4). (iv) Parameter efficiency: despite using a significantly smaller 0.5B LM, BiCL shows only a moderate performance gap of 9.57% on average compared to a large language model (LLM)based planner using GPT-40 (Achiam et al., 2023), indicating strong performance efficiency relative to its size. In contrast, other baselines suffer substantially larger degradations (see Table 1). Thanks to these advantages, BiCL effectively enables embodied agents to continuously adapt to a series of new tasks in dynamic environments, even under limited per-task data and resource-constrained settings where only a small LM can be used. The contributions of our work are summarized as follows.

- We present the BiCL framework, designed to address the challenges of embodied task adaptation under constrained data and resource settings.
- We devise bidirectional CoT learning, a novel joint training strategy that combines CoT reasoning
 and reflexive reasoning, supervised respectively by few-shot CoT guidance and rationale-wise
 correction of prior knowledge. Notably, this yields asymmetric effects, strengthening CoT reasoning
 at inference without requiring explicit reflection.
- We introduce *rationale-wise test-time scaling*, by which the depth of CoT reasoning is dynamically adjusted. This mechanism improves computational efficiency and enhances task success, thereby removing the need for explicit self-correction.
- Through extensive experiments on VirtualHome and ALFWorld benchmarks, we demonstrate both the performance superiority and data efficiency of BiCL in task adaptation.

2 RELATED WORK

Embodied task planning has gained significant attention, driven by the advancements in LM's reasoning capabilities (Jiang et al., 2022; Driess et al., 2023; Huang et al., 2022a; 2023; Ahn et al., 2022). In parallel, several works have focused on leveraging a stream of datasets to progressively learn diverse tasks over time (Liu et al., 2024; Schmied et al., 2023; Kim et al., 2024). Recently, a growing body of work has explored distilling such reasoning capabilities from LLMs into smaller models (Choi et al., 2024; Li et al., 2023; Shridhar et al., 2023; DeepSeek-AI et al., 2025). Building on this line of research, our work seeks to equip LM-based agents with robust CoT reasoning through bidirectional CoT learning, enabling effective adaptation to a stream of new tasks under limited supervision and model capacity. Further details on related work are provided in Appendix A.

3 PRELIMINARIES

3.1 PROBLEM FORMULATION

We consider a stream of few-shot demonstrations $\{\mathcal{D}_1, \mathcal{D}_2, ..., \mathcal{D}_H\}$, where i-th stage demonstrations \mathcal{D}_i contain expert transitions. Each transition $d=(\mathcal{T},o,a,\mathcal{Z})$ is represented as a tuple of task \mathcal{T} , observation o, action (plan) a, and a rationale set \mathcal{Z} . A task is defined by an underlying instructional template in language, serving as a generalizable form. Similar to the formulation in (Kim et al., 2024), each task either allows linguistic or object-level variations while maintaining consistent behavioral semantics, or accommodates behavioral variations under the same environmental conditions. For example, the i-th stage task \mathcal{T}_i might include instructions such as "clean an apple and put in the cabinet", "clean a towel and put in the washing machine", and other variations that share similar behavioral patterns, which the agent is expected to follow. The observation captures the currently perceptible information from the environment, rendering the partially-observable nature of embodied task planning. The observation is represented as a set of triplets, each consisting of a source entity, a relation, and a target entity, e.g., (apple, on, table). The rationale set $\mathcal{Z} = \{z_k\}_{k=1}^N$ contains key elements essential for embodied task planning (Yao et al., 2023; Choi et al., 2024), such as target object locations and sub-goals.

Formally, let $\{\mathcal{T}_1, \mathcal{T}_2, \dots, \mathcal{T}_H\}$ be the sequence of adaptation tasks and $\mathbf{SR}(\pi, \mathcal{T}_i) \in [0, 1]$ the task success rate of policy π on task \mathcal{T}_i . The objective of continual adaptation is to find

$$\pi^* = \operatorname*{arg\,max}_{\pi} \sum_{i=1}^{H} \mathbf{SR}(\pi, \mathcal{T}_i). \tag{1}$$

i.e., the policy that maximizes the cumulative task success rate across all H stages.

3.2 CONTINUAL TASK ADAPTATION WITH PRE-TRAINED MODELS

To continuously adapt to tasks while leveraging the knowledge embedded in pre-trained models, recent works adopt parameter-efficient tuning modules in LMs (Liu et al., 2024; Schmied et al., 2023). Following this approach, we implement an embodied agent policy using Low-Rank Adaptation (LoRA) (Hu et al., 2022), where trainable adapter parameters θ are integrated with frozen LM parameters θ_{LM} , i.e., $\pi(\cdot; \theta_{LM}, \theta)$. For simplicity, we use the notation $\pi(\cdot; \theta)$, omitting θ_{LM} . Furthermore, we structure the embodied agent using separate modules for reasoning and planning, corresponding to a reasoning-policy and a planning-policy, each formed by distinct adapters θ_z and θ_p , respectively. The reasoning-policy is responsible for rationale generation, while the planning-policy produces actions based on the generated rationales.

4 BICL FRAMEWORK

To address the challenge of embodied task adaptation across sequential stages, we present the BiCL framework comprising of (i) bidirectional CoT learning and (ii) rationale-wise test-time scaling, as depicted in Figure 1, where each stage receives few-shot demonstrations \mathcal{D} . (i) For adaptation, we first select a base reasoning-policy by evaluating the similarity between rationales generated by previously learned policies and those in the current stage's demonstrations. The selected one is used to

Figure 1: BiCL framework: In (i-1), the most relevant reasoning-policy is selected from the adapter pool to serve as the base one. In (i-2), the reasoning-policy is then finetuned through bidirectional joint optimization on CoT reasoning and reflexive reasoning losses. (a) The former loss is supervised by multi-step rationales in few-shot demonstrations, and (b) the latter loss is formalized as the correction of base rationales generated by the base reasoning-policy. In (ii), the CoT reasoning depth is dynamically adjusted based on the planning-policy's confidence in predicted actions.

initialize the reasoning-policy for the current adaptation stage. Then, the reasoning-policy is finetuned through jointly optimizing CoT reasoning and reflexive reasoning objectives. CoT reasoning is trained using rationales derived from demonstrations, while reflexive reasoning is formulated as the correction of base rationales generated by the selected base reasoning-policy, guided by feedback. The planning-policy predicts actions, conditioned on incrementally accumulated rationales. (ii) For inference, we dynamically scale the CoT reasoning process based on the planning-policy's confidence. The following two subsections describe how these two procedures are performed within a single stage with demonstrations \mathcal{D}_i to enable task adaptation, where the stage notation i is omitted for simplicity.

4.1 BIDIRECTIONAL COT LEARNING

Base reasoning-policy selection. At the beginning of each adaptation stage, we select a reasoning-policy π_z learned from the previous stage to serve as the base reasoning-policy. Such base reasoning-policy is chosen by evaluating the similarity between rationales $z_k \in \mathcal{Z}$ in the demonstrations and the rationales \bar{z}_k generated by each candidate reasoning-policy formed by an adapter $\bar{\theta}_z \in \Theta$ in the adapter pool Θ . Note that the adapter pool contains the adapters learned up to the current stage. Then, the reasoning-policy maximizing the sentence embedding similarity SIM is chosen as

$$\theta'_{z} = \underset{\bar{\theta}_{z} \in \Theta}{\arg \max} \sum_{(x, \mathcal{Z}) \in \mathcal{D}} \sum_{k=1}^{N} \text{SIM}(z_{k}, \bar{z}_{k}) \text{ where } \bar{z}_{k} \sim \pi_{z}(\cdot | x, q_{k}; \bar{\theta}_{z}). \tag{2}$$

Here and in what follows, $x = (\mathcal{T}, o, h)$ denotes a triple of task \mathcal{T} , observation o, and action history h, and q_k is the query for k-th rationale generation. The base reasoning-policy $\pi_z(\cdot; \theta_z')$ is used to generate base rationales for subsequent correction and to initialize the adapter for the current stage.

CoT reasoning loss. To equip the reasoning-policy with CoT reasoning capabilities, we train it to generate rationales segment by segment. The loss for CoT reasoning is then defined as

$$\mathcal{L}_{\text{CoT}}(\theta_z) = \mathbb{E}_{(x,\mathcal{Z}) \sim \mathcal{D}} \left[\sum_{k=1}^{N} -\log \pi_z(z_k | x, q_k; \theta_z) \right]. \tag{3}$$

Reflexive reasoning loss. In addition to CoT reasoning, the reasoning-policy is trained to incrementally correct base rationales $z_k' \sim \pi_z(\cdot|x,q_k;\theta_z')$ using feedback, focusing on one specific rationale at each correction step. The feedback $f(z_k,z_k')$ is provided in natural language, categorized as "Major revision", "Moderate revision", and "Minor revision". This categorization is determined based on

Algorithm 1 BiCL framework: bidirectional CoT learning

- 1: **Input:** a stream of few-shot demonstrations $\{\mathcal{D}_1, \mathcal{D}_2, ..., \mathcal{D}_H\}$
- 218 2: Initialize adapter pool $\Theta = \emptyset$

- 219 3: **for** each adaptation stage $i \leftarrow 1, ..., H$ **do**220 4: Select adapter from adapter pool for her
 - 4: Select adapter from adapter pool for base reasoning-policy $\pi_z(\cdot; \theta_z')$ using equation 2
 - 5: Initialize adapters for the current stage $\theta_z \leftarrow \theta_z'$, θ_p
 - 6: **while** not converged **do**
- 223 7: Sample a batch of $\{(\mathcal{T}, o, a, \mathcal{Z})\} \sim \mathcal{D}_i$
 - 8: Generate base rationales $z_k' \sim \pi_z(\cdot|x, q_k; \theta_z')$ through the base reasoning-policy
 - 9: Update reasoning-policy $\pi_z(\cdot; \theta_z)$ using loss $\mathcal{L}_{\text{reasoning}}$ in equation 5
 - 10: Update planning-policy $\pi_p(\cdot; \theta_p)$ using loss $\mathcal{L}_{\text{planning}}$ in equation 6
 - 11: Add adapters to adapter pool $\Theta \leftarrow \Theta \cup \{\theta_z\}$

the sentence similarity $SIM(z_k, z_k')$ between the base rationale z_k' and its corresponding rationale z_k from the demonstrations. Then, the loss for reflexive reasoning is defined as

$$\mathcal{L}_{\text{reflexive}}(\theta_z) = \mathbb{E}_{(x,\mathcal{Z}) \sim \mathcal{D}} \left[\sum_{k=1}^{N} -\log \pi_z(z_k | z_k', x, q_k, f(z_k, z_k'), z_{1:k-1}; \theta_z) \right]$$
(4)

where $z_{i:j} = \{z_i, \dots, z_j\}$ denotes the sequence of previous rationales, and $z_{j:k} = \emptyset$ if j > k.

This bidirectional CoT learning strategy extends beyond mere CoT learning by systematically incorporating feedback-driven adjustment into reflexive reasoning steps, which identify discrepancies in prior knowledge. This enables the agent to further enhance task-specific knowledge, effectively improving its CoT reasoning capabilities. Accordingly, the final loss for the reasoning-policy π_z is defined as

$$\mathcal{L}_{\text{reasoning}}(\theta_z) = \mathcal{L}_{\text{CoT}}(\theta_z) + \mathcal{L}_{\text{reflexive}}(\theta_z). \tag{5}$$

Planning loss. To predict actions based on the rationales, we optimize the planning-policy π_p via an action reconstruction loss, where the policy is incrementally conditioned on the first k rationales. This encourages the planning-policy to integrate partial reasoning signals. The loss is defined as

$$\mathcal{L}_{\text{planning}}(\theta_p) = \mathbb{E}_{(x,a,\mathcal{Z}) \sim \mathcal{D}} \left[\sum_{k=1}^{N} -\log \pi_p(a|x, z_{1:k}; \theta_p) \right]$$
 (6)

where $x = (\mathcal{T}, o, h)$. At the end of the adaptation, the adapter θ_z is added to the adapter pool Θ for use in subsequent adaptation stages. Algorithm 1 lists the adaptation procedures of BiCL.

4.2 RATIONALE-WISE TEST-TIME SCALING

As the full set of rationales may be unnecessary for action prediction, depending on task complexity (Yao et al., 2023), we devise a test-time scaling mechanism in which the CoT reasoning depth is dynamically adjusted. At each CoT reasoning step k, the planning policy's confidence in its predicted action, conditioned on the first k rationales $z_{1:k}$, is evaluated to determine whether to terminate or proceed to the next CoT reasoning step. Specifically, if the confidence on the predicted action does not exceed a predefined threshold δ_k at k-th reasoning step, an additional rationale z_{k+1} is generated; otherwise, the corresponding action a is used. Thus, rationale-wise test-time tes

$$TTS(k) = \begin{cases} \text{generate next rationale } z_{k+1} & \text{if } \log \pi_p(a|x, z_{1:k}; \theta_p)/|a| \le \delta_k \\ \text{use } a & \text{otherwise} \end{cases}$$
 (7)

where |a| is the token length of action a. The threshold is computed for each k using the demonstrations by measuring the mean log-probability of the ground-truth action when the trained planning-policy is conditioned on the rationales $z_{1:k}$. This allows for efficient use of computational resources by adaptively scaling the CoT reasoning depth. The complete procedure for rationale-wise test-time scaling in BiCL is provided in Algorithm 3 in Appendix C.9.

5 EXPERIMENTS

5.1 EXPERIMENT SETTINGS

Environments. For evaluation, we use VirtualHome (Puig et al., 2018) and ALFWorld (Shridhar et al., 2021). To configure the continual task adaptation setups, we follow the approach outlined in Kim et al. (2024). Specifically, in **Behavior Incremental Learning (Beh-IL)**, the agent is tasked to incrementally learn new behaviors, while in **Environment Incremental Learning (Env-IL)**, the agent is tasked to incrementally learn to perform behaviors in novel indoor scenes. We evaluate performance on two task categories. In the **Seen** category, instructions and indoor scenes are identical to those in the demonstrations, with variations only in the initial positions of objects. In the **Unseen** category, both instructions and indoor scenes are varied. Further details are in Appendix B.

Datasets. Our default few-shot setting uses 20 expert demonstrations per adaptation stage, while more constrained scenarios use only 5 demonstrations. The rationales in these demonstrations can be either annotated by humans or generated by language models; for annotation consistency and quality in datasets, we rely on GPT-40-mini (Achiam et al., 2023) in our implementation.

Evaluation metrics. We use two metrics from Shridhar et al. (2020) to evaluate performance for embodied task planning. **Success rate** (**SR**) measures the proportion of episodes the agent completes successfully. **Goal success rate** (**GC**) measures the proportion of satisfied sub-goals out of all given goals. For both, we report the average performance achieved by the agent after each adaptation stage.

Baselines. We compare with several LM-based planning and continual task adaptation baselines. (i) ReAct (Yao et al., 2023) interleaves rationale generation and action prediction for embodied planning. (ii) SayCan (Ahn et al., 2022) integrates action feasibility into ReAct. (iii) TAIL-Distill (Liu et al., 2024) employs task-specific adapters for each adaptation stage. We implement two variants for comparison: TAIL-Action, which is trained only on state-action pairs from demonstrations; TAIL-Distill, which additionally incorporates rationales as BiCL. (iv) SeqFT-Distill (Shridhar et al., 2023) uses CoT reasoning to distill step-by-step rationales, with each distilled policy for the current stages initializing the next stage. (v) CAMA-Distill (Kim et al., 2024) replays action logits from previous stages and dynamically adjusts their update weights and fine-tunes with rationales. Note that ReAct and SayCan use the same rationale-annotated demonstrations as BiCL, but as in-context examples, while the other baselines (except for TAIL-Action) exploit these demonstrations for CoT reasoning distillation. At inference, all methods rely solely on CoT reasoning without explicit reflection. Additionally, we compare against (vi) LLM-Planner (Huang et al., 2023), which uses LLMs (e.g. GPT-40), prompted with expert demonstrations as in-context examples.

Implementation details. For finetuning LM-based policies, we employ Qwen2.5-0.5B (Yang et al., 2024) with LoRA adapters (Hu et al., 2022). We also use a language embedding model of paraphrase-MiniLM-L6-v2 (Reimers & Gurevych, 2019) and TF-IDF score (Ramos et al., 2003) to compute the sentence similarity for base reasoning-policy selection and feedback provision.

5.2 Main results

Table 1 shows the continual few-shot adaptation performance of BiCL and the baselines under two different setups (Beh-IL and Env-IL) in VirtualHome and ALFWorld. BiCL w/o TTS refers to BiCL without *rationale-wise test-time scaling* in Section 4.2. As shown, BiCL consistently yields robust performance across all cases. In the seen category, it achieves average improvements of 18.39% in SR and 11.65% in GC over the most competitive baseline SeqFT-Distill, and in the unseen category, BiCL outperforms SeqFT-Distill by 17.36% in SR and 12.32% in GC on average. When compared to LLM-Planner utilizing GPT-40, BiCL exhibits a modest performance gap, 9.57% in SR and 9.59% in GC, despite only using a 0.5B-parameter model. In contrast, SeqFT-Distill suffers substantially larger drops of 27.45% in SR and 21.58% in GC. These results highlight the strong efficiency of BiCL under limited model capacity.

In addition, we validate the effectiveness of *rationale-wise test-time scaling*, as BiCL achieves slightly higher performance over its variant (BiCL w/o TTS), with an average SR increase of 6.68% in the seen category and 6.05% in the unseen. We conjecture that due to limited data at each stage, certain rationales might be under-optimized. Thus, by allowing the model to terminate reasoning early when confidence is sufficiently high, the agent can make decisions more reliably.

Table 1: Continual 20-shot adaptation performance in VirtualHome and ALFWorld: The baselines and BiCL are evaluated in two setups (Beh-IL and Env-IL). The continual adaptation is structured over four stages, where each has 20 demos. The SR and GC are reported in 95% confidence intervals. The best performance in each case among small LM-based approaches is highlighted in **bold**. Except for LLM-Planner employing GPT-40, all methods use the same small LM of Qwen2.5-0.5B.

	Behavio	r Increment	al Learning ((Beh-IL)	Environm	ntal Learnin	al Learning (Env-IL)	
Method	Se	en	Uns	seen	Seen		Unseen	
	SR (%)	GC (%)	SR (%)	GC (%)	SR (%)	GC (%)	SR (%)	GC (%)
Benchmark: VirtualHome								
LLM-Planner (GPT-4o)	81.63±1.63	$91.79{\scriptstyle\pm0.87}$	76.44 ±1.90	90.11 ±0.99	88.38±1.43	$92.88{\scriptstyle\pm0.80}$	70.26±2.14	80.31±1.51
ReAct	12.06±1.40	30.10±1.58	8.65 ± 0.00	26.31±1.38	20.07±1.89	40.46 ±1.67	13.96±1.67	33.23±1.63
SayCan	46.50 ± 2.16	65.25 ± 1.62	37.96 ± 2.04	56.76 ± 1.70	60.00±1.89	73.99 ± 1.37	48.64±1.50	67.11 ± 1.08
TAIL-Action	55.00 ± 2.29	69.58 ± 1.74	33.45 ± 2.22	52.45 ± 1.94	61.56±1.85	78.24 ± 1.23	36.21 ± 1.42	58.93 ± 1.11
TAIL-Distill	$60.25{\scriptstyle\pm2.20}$	73.44 ± 1.66	$46.29{\scriptstyle\pm2.25}$	62.68 ± 1.90	71.88±1.70	83.98 ± 1.11	43.78±1.45	63.91 ± 1.10
SeqFT-Distill	65.75 ± 2.20	79.09 ± 1.52	48.68 ± 2.30	64.11 ± 1.92	78.13±1.53	87.66 ± 1.00	57.89±1.43	73.04 ± 1.43
CAMA-Distill	$59.13{\scriptstyle\pm2.22}$	$71.28{\scriptstyle\pm1.74}$	$44.28{\scriptstyle\pm2.28}$	$59.60{\scriptstyle\pm1.96}$	77.81±1.56	$87.69{\scriptstyle\pm0.96}$	$43.46{\scriptstyle\pm1.45}$	$63.27{\scriptstyle\pm1.10}$
BiCL w/o TTS	76.13±1.91	83.87±1.39	60.29±2.32	69.13 ±1.97	85.94±1.29	91.56±0.84	62.81±2.58	75.37±1.02
BiCL	$\textbf{81.38} {\pm} 1.74$	$85.81 {\pm} 1.36$	$64.03 {\scriptstyle\pm2.29}$	$\textbf{71.60} {\pm} 1.94$	94.06 ±0.76	$96.13 {\scriptstyle\pm0.52}$	71.99 ±1.27	$80.56 \!\pm\! 0.97$
Benchmark: ALFWorld	l							
LLM-Planner (GPT-4o)	91.75±0.98	94.63 ±0.71	86.75 ±1.83	88.88 ±1.50	92.58±1.07	93.95±0.81	95.63±0.92	$95.78 {\pm} 0.68$
ReAct	0.00±0.00	4.34±0.36	0.00±0.00	2.24±0.21	0.00±0.00	1.07±0.19	0.00±0.00	0.70±0.13
SayCan	22.81 ± 1.15	47.89 ± 1.41	0.63 ± 0.21	23.28 ± 1.53	21.88±1.40	44.08 ± 1.67	4.38 ± 0.00	22.50 ± 1.59
TAIL-Distill	53.91 ± 1.65	59.69 ± 1.44	39.53 ± 2.16	46.95 ± 2.01	58.79±2.01	68.13 ± 1.64	31.41±2.45	46.40 ± 2.17
TAIL-Action	56.11 ± 1.78	68.71 ± 1.44	37.97 ± 2.50	55.72 ± 2.12	47.56±2.13	63.23 ± 1.69	24.63 ± 2.24	43.06 ± 2.05
SeqFT-Distill	64.30 ± 1.70	$71.85{\scriptstyle\pm1.44}$	47.97 ± 2.42	57.98 ± 2.16	61.91±2.06	70.71 ± 1.72	39.22 ± 2.47	51.24 ± 2.23
CAMA-Distill	$53.20{\scriptstyle\pm1.64}$	$59.05 {\pm} 1.48$	$38.59{\scriptstyle\pm2.27}$	$45.95{\scriptstyle\pm2.11}$	55.76±2.08	$65.37{\scriptstyle\pm1.70}$	$34.38{\scriptstyle\pm2.46}$	$46.05{\scriptstyle\pm2.24}$
BiCL w/o TTS	81.64±1.46	85.21±1.24	64.84±2.52	72.67±2.34	73.24±1.80	78.87±1.45	51.09±2.58	63.19±2.21
BiCL	$\textbf{85.70} {\pm} 1.34$	$\textbf{88.37} {\scriptstyle\pm1.15}$	$\textbf{70.78} \scriptstyle{\pm 2.41}$	77.38 ±1.99	82.52 ±1.57	$\textbf{85.61} {\pm} 1.28$	56.41 ±2.56	66.12 ±2.14

Table 2: Continual 5-shot adaptation performance

	VirtualHome Beh-IL			ALFWorld Env-IL				
Method	Se	en	Uns	seen	Se	en	Uns	seen
	SR (%)	GC (%)	SR (%)	GC (%)	SR (%)	GC (%)	SR (%)	GC (%)
TAIL-Distill	53.87±2.11	69.88 ±1.62	38.54±2.12	58.45±1.81	33.57±1.81	49.18±1.62	29.64±2.06	45.40±1.95
SeqFT-Distill	49.96 ± 2.21	63.99 ± 1.71	41.35 ± 2.17	$62.38{\scriptstyle\pm1.75}$	35.54±1.86	51.93 ± 1.67	28.66 ± 2.20	45.34 ± 2.04
CAMA-Distill	45.65 ± 2.19	65.27 ± 2.12	36.42 ± 2.12	57.86 ± 1.79	29.55±1.57	44.17 ± 1.46	21.61 ± 1.68	38.30 ± 1.72
BiCL w/o TTS BiCL	66.33±2.14 73.68 ±1.92	77.77±1.57 80.99 ±1.47	52.27±2.25 54.56±2.29	$66.33{\scriptstyle\pm1.92}\atop\textbf{67.38}{\scriptstyle\pm1.97}$	57.86±2.01 68.48±1.89	$68.42{\scriptstyle\pm1.67}\atop\textbf{76.09}{\scriptstyle\pm1.52}$	48.21±2.58 53.66 ±2.55	60.10±2.16 64.20±2.12

In these experiments, ReAct exhibits the lowest performance mainly due to the limited reasoning capabilities of the small LMs it relies on. SayCan achieves better performance by integrating action feasibility into embodied planning. In contrast, TAIL-Distill and SeqFT-Distill leverage LLM-generated rationales to distill CoT reasoning capabilities, resulting in improved planning performance. While CAMA-Distill preserves knowledge acquired from previous stages via logit replay, it still underperforms compared to BiCL due to a lack of effective reasoning knowledge transfer across stages. BiCL effectively transfers reasoning knowledge through *bidirectional CoT learning*, which strengthens CoT reasoning by correcting the prior knowledge in response to novel tasks.

In Table 2, we evaluate the performance under a more constrained few-shot setting, using 5 demonstrations per stage. As shown, BiCL outperforms SeqFT-Distill by 29.12% higher SR and 19.5% higher GC in the seen category and 18.54% higher SR and 12.14% higher GC in the unseen. This result further highlights the superiority of BiCL in scenarios with severely limited supervision.

5.3 Analysis and ablation studies

Does BiCL enable computationally efficient yet effective inference? In Table 3, we evaluate *w/self-correct*, a variant of BiCL that performs explicit reflection on the initially generated rationales at inference. We also compare against Self-Correction (Welleck et al., 2023), which is trained to correct its *own* generated rationales (unlike BiCL, which is trained to correct rationales produced

by *prior* policies). As shown, explicit reflection yields modest gains over BiCL w/o TTS, with a 2.19% SR increase in the seen category and 1.86% in the unseen, but at the cost of generating twice as many rationales. BiCL achieves superior performance across all cases, outperforming Self-Correction by 25.78% SR in the seen category and 22.74% in the unseen. The limited effectiveness of explicit correction is attributed to the lack of precise feedback available at inference time, and the results highlight that bidirectional CoT learning offers greater benefits than correcting a model's own rationales. Moreover, BiCL delivers clear computational efficiency, reducing rationale generation to one-quarter of that required by Self-Correction. This efficiency gain arises because BiCL eliminates the need for explicit reflection and dynamically adjusts the depth of CoT reasoning.

Table 3: Computational efficiency in BiCL measured by SR (%)

Method	ALFWor	ld Beh-IL	ALFWor	Generated	
Troutou	Seen	Unseen	Seen	Unseen	Rationales
BiCL	85.70 ±1.34	70.78 ±2.41	82.52 ±1.57	56.41 ±2.56	49%
w/o TTS w/o TTS & w/ self-correct Self-Correction	81.64±1.46 (-4.06) 83.83±1.36 (-1.87) 56.48±1.68 (-29.22)	64.84±2.52 (-5.59) 66.09±2.51 (-4.69) 44.06±2.31 (-26.72)	73.24±1.80 (-9.28) 75.10±1.76 (-7.42) 63.18±2.03 (-22.34)	51.09±2.58 (-5.32) 53.59±2.59 (-2.82) 37.66±2.53 (-18.75)	100% 200% 200%

Does BiCL enable data-efficient adaptation? In Table 4, we compare against SeqFT-Distill and TAIL-Distill, which is most competitive comparisons, under two data augmentation settings in ALFWorld. $2\times$ denotes training with twice the number of expert demonstrations, each augmented with a single set of rationales. *aug* denotes using the original number of expert demonstrations, but augmenting each demonstration with two sets of rationales. Note that BiCL is trained with the original number of expert demonstrations with a single set of rationales. As shown, despite using less reasoning data, BiCL outperforms the augmentation-based variants: it improves SR by 14.84% and 15.47% on the seen and unseen categories of ALFWorld-Beh-IL, and by 17.87% and 15.47% on those of ALFWorld-Env-IL, respectively, over the SeqFT-Distill (*aug*) setting. Moreover, relative to the SeqFT-Distill ($2\times$), BiCL achieves a slight average SR improvement of 8.79% for the seen and 7.50% for the unseen category, despite using only half the data. This strong data efficiency of BiCL is attributed to the *bidirectional CoT learning* strategy which effectively transfers prior knowledge.

Table 4: Data-efficient adaptation in BiCL measured by SR (%)

Method	ALFWor	ld Beh-IL	Beh-IL ALFWorld Env-IL		
	Seen	Seen Unseen		Unseen	
BiCL	85.70 ±1.34	70.78 ±2.41	82.52 ±1.57	56.41 ±2.56	
	78.67±1.43 (-7.03) 66.56±1.56 (-19.14)	63.28±2.49 (-7.50) 50.16±2.37 (-20.62)	71.97±1.79 (-10.55) 61.72±1.95 (-20.80)	48.91±2.62 (-7.50) 39.53±2.49 (-16.88)	
SeqFT-Distill (aug) TAIL-Distill (aug)	70.86±1.63 (-14.84) 62.19±1.73 (-23.51)	55.31±2.54 (-15.47) 48.28±2.37 (-22.50)	64.65±1.96 (-17.87) 61.04±1.98 (-21.48)	40.94±2.60 (-15.47) 40.63±2.48 (-15.78)	

Does reflexive reasoning contribute to forward transfer? In Table 5, we evaluate two ablated variants of BiCL in ALFWorld. *w/o reflexive* uses the base reasoning-policy as the initialization for the current stage's policy, but is optimized without the reflexive reasoning loss in equation 4. *w/o base* does not leverage the base reasoning-policy in any form. BiCL, with the reflexive reasoning loss, achieves relative gains in SR of 15.78% and 16.87% for the seen and unseen categories of ALFWorld Beh-IL, and 17.36% and 11.25% on those of ALFWorld Env-IL, respectively, over the *w/o reflexive* variant. Furthermore, ablating the base reasoning-policy initialization (i.e., the *w/o base* variant) incurs, on average, an additional performance degradation in SR of 6.73% for the seen and 8.83% for the unseen category relative to *w/o reflexive*. This reveals that BiCL effectively leverages knowledge acquired from prior tasks through reflexive reasoning and base reasoning-policy selection.

How does rationale-wise test-time scaling adapt to the complexity of an instruction? In Table 6, we report the average plan length required for task completion and the percentage of the rationale z_k at which reasoning is terminated. We also report the percentage of reduction in reasoning tokens. For this, we analyze instruction templates in VirtualHome. As shown, for tasks requiring shorter plans (e.g., Turnon and Open), the reasoning process often stops at earlier rationales. In contrast, more complex tasks (e.g., Putin and Placeon) tend to require late-stage rationales such as z_4 and z_5 , which focus on sub-goal decomposition and next-step justification. Moreover, the tokens required

Table 5: Forward knowledge transfer in BiCL measured by SR (%)

4	34
4	35
4	36
4	37

Method	ALFWor	ld Beh-IL	ALFWorld Env-IL		
	Seen	Unseen	Seen	Unseen	
BiCL	85.70 ±1.34	70.78 ±2.41	82.52 ±1.57	56.41 ±2.56	
w/o reflexive w/o base	69.92±1.64 (-15.78) 65.16±1.72 (-20.54)	53.91±2.64 (-16.87) 47.66±2.58 (-23.12)	65.16±1.96 (-17.36) 56.47±2.02 (-26.05)	45.16±2.61 (-11.25) 33.75±2.46 (-22.66)	

for reasoning are reduced to 46.05% on average. This suggests that the test-time reasoning control dynamically adjusts the depth, enabling more efficient inference.

Table 6: Rationale-wise test-time scaling with respect to instruction complexity

4	4	5
_	Ī	_
4	4	6
_		

Instruction Template	Plan Length	$ z_1 $	z_2	z_3	z_4	z_5	Tokens Reduced
TURNON	3.80	49.4%	4.5%	14.8%	7.2%	24.1%	51.1%
OPEN	3.78	48.8%	7.0%	5.3%	12.4%	26.5%	48.7%
PLACEON	6.63	35.7%	11.6%	9.8%	18.6%	24.3%	44.4%
PUTIN	6.95	38.1%	7.8%	3.5%	12.7%	37.8%	40.0%

Additionally, in Figure 15 (see Appendix D), we evaluate the effect of *rationale-wise test-time scaling* by applying the same scaling mechanism used in BiCL to SeqFT-Distill. As shown, performance rather decreases for the baseline, as it is trained to predict actions based on the entire rationale set. In contrast, BiCL employs the loss in equation 6, which is optimized to predict actions conditioned on incrementally generated rationales, enabling effective decision-making even from partial rationales.

Does selecting the most similar prior reasoning-policy yield better performance? In Table 7, we evaluate two variants of BiCL that use alternative base reasoning-policy selection strategies under the 5-shot setting. *Argmin* selects the policy with the lowest rationale similarity, while *Random* simply uses the random one. These variants do not employ test-time scaling (i.e., TTS in equation 7), thereby isolating the effect of base reasoning-policy selection on the quality of generated rationales. As shown, BiCL w/o TTS which selects the most similar one yields the highest performance, achieving an average SR increase of 5.67% in the seen category and 5.90% in the unseen compared to *Argmin*. Since the current stage's reasoning policy is initialized from the chosen base reasoning-policy, selecting the most similar predecessor provides a strong prior that facilitates efficient adaptation.

Table 7: Effect of base policy selection strategy of BiCL

	VirtualHome Beh-IL			ALFWorld Env-IL				
Method	Se	een	Un	seen	Se	een	Uns	seen
	SR (%)	GC (%)	SR (%)	GC (%)	SR (%)	GC (%)	SR (%)	GC (%)
Argmin	60.23±2.09	74.74 ±1.54	49.12±2.17	66.61±1.82	51.07±1.95	63.59±1.61	43.30±2.47	56.18 ±2.14
Random	$62.35{\scriptstyle\pm2.04}$	$74.50{\scriptstyle\pm1.56}$	$50.79{\scriptstyle\pm2.19}$	$66.08{\scriptstyle\pm1.86}$	54.64 ±1.94	$66.29{\scriptstyle\pm1.65}$	42.64±2.45	57.51 ± 2.10
BiCL w/o TTS	66.33±2.14	77.77±1.57	52.27 +2.25	66.33±1.92	57.86±2.01	68.42±1.67	48.21+2.58	60.10+2.16

6 CONCLUSION AND LIMITATIONS

We presented the BiCL framework tailored for efficient task adaptation of LM-based embodied agents, particularly in scenarios with online access only to limited demonstrations and small LMs. Specifically, our *bidirectional CoT learning* strategy enables effective forward knowledge transfer across adaptation stages, by jointly optimizing CoT reasoning and reflexive reasoning objectives. Notably, it facilitates robust CoT reasoning at inference without requiring explicit reflection steps. Furthermore, the *rationale-wise test-time scaling* mechanism focuses on sufficiently confident rationales, thereby enabling not only more efficient planning but also improved overall performance.

Limitations. Our focus is primarily on forward knowledge transfer, leveraging prior reasoning to enhance current learning in a sequential task adaptation setting. Accordingly, BiCL does not explicitly consider backward knowledge transfer, where knowledge gained from new tasks could refine earlier policies or rationales. Such backward transfer can be addressed by leveraging rehearsal methods (see Appendix D.6), which retain demonstrations across adaptation stages to update the prior policies.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Micheal Ahn, Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol Hausman, Alexander Herzog, Daniel Ho, Julian Ibarz, Alex Irpan, Eric Jang, Ryan Julian, Dmitry Kalashnikov, Sergey Levine, Yao Lu, Carolina Parada, Kanishka Rao, Pierre Sermanet, Alexander Toshev, Vincent Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Mengyuan Yan, Noah Brown, Michael Ahn, Omar Cortes, Nicolas Sievers, Clayton Tan, Sichun Xu, Diego Reyes, Jarek Rettinghouse, Jornell Quiambao, Peter Pastor, Linda Luu, Kuang-Huei Lee, Yuheng Kuang, Sally Jesmonth, Nikhil J. Joshi, Kyle Jeffrey, Rosario Jauregui Ruano, Jasmine Hsu, Keerthana Gopalakrishnan, Byron David, Andy Zeng, and Chuyuan Kelly Fu. Do as I can, not as I say: Grounding language in robotic affordances. In *Proceedings of the 6th Conference on Robot Learning*, 2022.

Wonje Choi, Woo Kyung Kim, Minjong Yoo, and Honguk Woo. Embodied cot distillation from LLM to off-the-shelf agents. In *Proceedings of the 41st International Conference on Machine Learning*, 2024.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, and S. S. Li. Deepseek-r1: Incentivizing reasoning capability in Ilms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar, Pierre Sermanet, Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc Toussaint, Klaus Greff, Andy Zeng, Igor Mordatch, and Pete Florence. Palm-e: An embodied multimodal language model. In *Proceedings of the 40th International Conference on Machine Learning*, 2023.

Chongkai Gao, Haichuan Gao, Shangqi Guo, Tianren Zhang, and Feng Chen. CRIL: continual robot imitation learning via generative and prediction model. In *Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems*, 2021.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu Chen. CRITIC: large language models can self-correct with tool-interactive critiquing. In *Proceedings of the 12th International Conference on Learning Representations*, 2024.

Rishi Hazra, Pedro Zuidberg Dos Martires, and Luc De Raedt. Saycanpay: Heuristic planning with large language models using learnable domain knowledge. In *Proceedings of the 38th AAAI Conference on Artificial Intelligence*, 2024.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. In *Proceedings of the 10th International Conference on Learning Representations*, 2022.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot planners: Extracting actionable knowledge for embodied agents. In *Proceedings of the 39th International Conference on Machine Learning*, 2022a.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Tomas Jackson, Noah Brown, Linda Luu, Sergey Levine, Karol Hausman, and Brian Ichter. Inner monologue: Embodied reasoning through planning with language models. In *Proceedings of the 6th Conference on Robot Learning*, 2022b.

- Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Llm-planner: Few-shot grounded planning for embodied agents with large language models. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, 2023.
- Jiaming Ji, Boyuan Chen, Hantao Lou, Donghai Hong, Borong Zhang, Xuehai Pan, Juntao Dai, Tianyi Qiu, and Yaodong Yang. Aligner: Efficient alignment by learning to correct. In *Proceedings of the 38th Annual Conference on Neural Information Processing Systems*, 2024.
- Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou, Yanjun Chen, Li Fei-Fei, Anima Anandkumar, Yuke Zhu, and Linxi Fan. VIMA: general robot manipulation with multimodal prompts. In *Proceedings of the 39th International Conference on Machine Learning*, 2022.
- Byeonghwi Kim, Minhyuk Seo, and Jonghyun Choi. Online continual learning for interactive instruction following agents. In *Proceedings of the 12th International Conference on Learning Representations*, 2024.
- Liunian Harold Li, Jack Hessel, Youngjae Yu, Xiang Ren, Kai-Wei Chang, and Yejin Choi. Symbolic chain-of-thought distillation: Small models can also 'think' step-by-step. In *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics*, 2023.
- Manling Li, Shiyu Zhao, Qineng Wang, Kangrui Wang, Yu Zhou, Sanjana Srivastava, Cem Gokmen, Tony Lee, Li Erran Li, Ruohan Zhang, Weiyu Liu, Percy Liang, Li Fei-Fei, Jiayuan Mao, and Jiajun Wu. Embodied agent interface: Benchmarking llms for embodied decision making. In *Proceedings of the 38th Annual Conference on Neural Information Processing Systems*, 2024a.
- Xiang Li, Shizhu He, Jiayu Wu, Zhao Yang, Yao Xu, Yang jun Jun, Haifeng Liu, Kang Liu, and Jun Zhao. Mode-cotd: Chain-of-thought distillation for complex reasoning tasks with mixture of decoupled lora-experts. In *Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation*, 2024b.
- Ryan Liu, Jiayi Geng, Addison J Wu, Ilia Sucholutsky, Tania Lombrozo, and Thomas L Griffiths. Mind your step (by step): Chain-of-thought can reduce performance on tasks where thinking makes humans worse. In *Proceedings of the 42nd International Conference on Machine Learning*, 2025.
- Zuxin Liu, Jesse Zhang, Kavosh Asadi, Yao Liu, Ding Zhao, Shoham Sabach, and Rasool Fakoor. TAIL: task-specific adapters for imitation learning with large pretrained models. In *Proceedings of the 12th International Conference on Learning Representations*, 2024.
- Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative refinement with self-feedback. In *Proceedings of the 37th Annual Conference on Neural Information Processing Systems*, 2023.
- Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine. Adaptanner: Adaptive planning from feedback with language models. In *Proceedings of the 37th Annual Conference on Neural Information Processing Systems*, 2023.
- Sam Powers, Eliot Xing, Eric Kolve, Roozbeh Mottaghi, and Abhinav Gupta. CORA: benchmarks, baselines, and metrics as a platform for continual reinforcement learning agents. In *Proceedings of the 1st Conference on Lifelong Learning Agents*, 2022.
- Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler, and Antonio Torralba. Virtualhome: Simulating household activities via programs. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2018.

Juan Ramos et al. Using tf-idf to determine word relevance in document queries. In *Proceedings of the first instructional conference on machine learning*, volume 242, pp. 29–48. New Jersey, USA, 2003.

- Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing*, 2019.
- David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P. Lillicrap, and Greg Wayne. Experience replay for continual learning. In *Proceedings of the 32rd Annual Conference on Neural Information Processing Systems*, 2018.
- William Saunders, Catherine Yeh, Jeff Wu, Steven Bills, Long Ouyang, Jonathan Ward, and Jan Leike. Self-critiquing models for assisting human evaluators. *arXiv preprint arXiv:2206.05802*, 2022.
- Thomas Schmied, Markus Hofmarcher, Fabian Paischer, Razvan Pascanu, and Sepp Hochreiter. Learning to modulate pre-trained models in RL. In *Proceedings of the 37th Annual Conference on Neural Information Processing Systems*, 2023.
- Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion: language agents with verbal reinforcement learning. In *Proceedings of the 37th Annual Conference on Neural Information Processing Systems*, 2023.
- Kumar Shridhar, Alessandro Stolfo, and Mrinmaya Sachan. Distilling reasoning capabilities into smaller language models. In *Findings of the Association for Computational Linguistics*, 2023.
- Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded instructions for everyday tasks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2020.
- Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew J. Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. In *Proceedings of the 9th International Conference on Learning Representations*, 2021.
- Jiashuo Sun, Yi Luo, Yeyun Gong, Chen Lin, Yelong Shen, Jian Guo, and Nan Duan. Enhancing chain-of-thoughts prompting with iterative bootstrapping in large language models. In *Findings of the Association for Computational Linguistics*, 2024.
- Weikang Wan, Yifeng Zhu, Rutav Shah, and Yuke Zhu. LOTUS: continual imitation learning for robot manipulation through unsupervised skill discovery. In *Proceedings of the 12th International Conference on Robotics and Automation*, 2024.
- Peifeng Wang, Zhengyang Wang, Zheng Li, Yifan Gao, Bing Yin, and Xiang Ren. SCOTT: self-consistent chain-of-thought distillation. In *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics*, 2023.
- Sean Welleck, Ximing Lu, Peter West, Faeze Brahman, Tianxiao Shen, Daniel Khashabi, and Yejin Choi. Generating sequences by learning to self-correct. In *Proceedings of the 11th International Conference on Learning Representations*, 2023.
- An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. *arXiv preprint arXiv:2407.10671*, 2024.
- Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan Cao. React: Synergizing reasoning and acting in language models. In *Proceedings of the 11th International Conference on Learning Representations*, 2023.
- Nick Yeung and Christopher Summerfield. Metacognition in human decision-making: confidence and error monitoring. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 2012.

Minjong Yoo, Jinwoo Jang, Wei-Jin Park, and Honguk Woo. Exploratory retrieval-augmented planning for continual embodied instruction following. In *Proceedings of the 38th Annual Conference on Neural Information Processing Systems*, 2024.

A RELATED WORK

Embodied task planning. Recently, embodied task planning has gained significant attention, driven by the advancements in LMs' reasoning capabilities (Jiang et al., 2022; Driess et al., 2023; Huang et al., 2022a; 2023). These advancements empower agents to handle complex scenarios such as everyday household tasks, enabling them to produce appropriate plans to accomplish given tasks. SayCan (Ahn et al., 2022) is one of the pioneering works leveraging LMs for embodied tasks, exploiting skill affordance functions to guide the generation of feasible actions. Meanwhile, several works explore the integration of various sources of feedback to either replan or refine decision-making (Huang et al., 2022b; Shinn et al., 2023; Oh et al., 2023). In parallel, DeDer (Choi et al., 2024) distills the reasoning capabilities of LLMs into small LMs through a two-tier hierarchy, tailored for embodied agents operating on resource-constrained devices. While our work shares a similar objective, we focus on enabling LM-based agents to efficiently adapt to new tasks under limited supervision and model capacity.

Continual task adaptation. In the domain of continual task adaptation, prior works (Gao et al., 2021; Wan et al., 2024) have focused on leveraging a stream of datasets to progressively learn diverse tasks over time. TAIL (Liu et al., 2024) and L2M (Schmied et al., 2023) adopt parameter-efficient tuning methods to harness the knowledge embedded in pre-trained models for efficient adaptation in robotic manipulation tasks. CAMA (Kim et al., 2024) proposes a framework for continual embodied planning, where model updates are guided by previously stored logits to prevent catastrophic forgetting. Our work distinguishes itself by structuring robust CoT reasoning within LM-based policies, particularly in resource-constrained settings.

Reasoning distillation and self-correction of LMs. With the growing reasoning capabilities of LLMs, recent efforts have explored distilling these abilities into smaller models. A common strategy involves extracting CoT rationales from LLMs and using them as supervision signals to train smaller LMs (Li et al., 2023; Wang et al., 2023; Li et al., 2024b; Shridhar et al., 2023; DeepSeek-AI et al., 2025). Furthermore, self-correction mechanisms have emerged as a promising approach to mitigate flawed reasoning in LMs (Saunders et al., 2022). These typically leverage previous responses to bootstrap feedback for self-improvement (Madaan et al., 2023; Sun et al., 2024) or incorporate external feedback from additional knowledge sources (Gou et al., 2024; Shinn et al., 2023). Self-Correction (Welleck et al., 2023) and Aligner (Ji et al., 2024) decouple the initial response generator from a separate corrector, which is trained to refine outputs based on feedback. Unlike previous works that treat CoT reasoning and self-correction as separate capabilities, our BiCL framework aims to enhance CoT reasoning itself through reflexive reasoning. In BiCL, reflexive reasoning internalizes task-specific knowledge by identifying and correcting prior rationales, thus providing richer supervision and enhancing CoT reasoning capabilities for the current task.

B BENCHMARK ENVIRONMENTS

B.1 VIRTUALHOME

VirtualHome (Puig et al., 2018) is a Unity-based simulation environment where an agent interacts with household objects to accomplish given instructions. There are 50 different house settings in VirtualHome, each with different room layouts and object positions. The environment features a wide variety of real-life objects, making it challenging for embodied agents.

Instruction. We configure four instruction templates, each with a unique goal to accomplish: TURNON, OPEN, PLACEON, PUTIN. In Table 8, we provide an example for each instruction template.

Observation. We use a Sentence-BERT (Reimers & Gurevych, 2019) to retrieve the top-k most relevant triples from the environment knowledge graph based on the given instruction. This setup follows similar practices in recent works in embodied agents (Choi et al., 2024; Yoo et al., 2024). In Figure 2, we provide an example of observation.

Action. The available actions include: walk, open, switch, grab, place on, and put in. The first four actions take a single argument (e.g. walk kitchen, grab apple), while the last two actions require two

Table 8: An example for each instruction template in VirtualHome

Instruction template	Example
TURNON	Turn on tv
OPEN	Open cabinet
PLACEON	Place apple on sofa
PUTIN	Put mug in microwave

(character, inside, kitchen), (character, hold, none), (kitchen, adjacent, bedroom), (kitchen, adjacent, livingroom), (bathroom, adjacent, bedroom), (tv, inside, bedroom), (hanger, inside, bedroom), (powersocket, inside, kitchen), (wineglass, inside, kitchen), (kitchencabinet, inside, kitchen), (salmon, inside, kitchen) ...

Figure 2: Observation example for "Turn on tv" task

arguments (e.g. place apple on sofa, put mug in microwave). In Table 9, we present the format of each action along with a corresponding example.

Table 9: Format and example of each action in VirtualHome

Action	Format	Example
walk	walk [object or room]	walk kitchen
open	open [object]	open cabinet
switch	switch [object]	switch tv
grab	grab [object]	grab apple
place on	place [object] on [object]	place apple on sofa
put in	put [object] in [object]	put mug in microwave

Continual task adaptation. We configure two continual adaptation setups similar to CAMA (Kim et al., 2024). For Behavior Incremental Learning (Beh-IL), the agent incrementally learns new behaviors; for Environment Incremental Learning (Env-IL), the agent incrementally learns to perform behaviors in novel indoor scenes. In Figure 3, we illustrate these two continual adaptation setups.

For **Beh-IL**, we utilize the four instruction templates described above, assigning each as the primary behavior for a different learning stage. Experiments are conducted across four randomly ordered sequences of tasks, and evaluated under **Seen** and **Unseen** categories. For the Seen category, we use the same tasks and the same room layouts as those used for training; while for the Unseen category, we introduce variations in room layouts, instructions, and initial object positions. The specific sequences used for Beh-IL in VirtualHome are detailed in Figure 4.

For **Env-IL**, we utilize the diverse room layouts provided by VirtualHome, each featuring different object and furniture arrangements. Experiments are conducted across four randomly ordered sequences of these room layouts, and the Seen and Unseen categories are constructed in the same manner as in Beh-IL. The room sequences used for Env-IL in VirtualHome are detailed in Figure 5.

For the continual few-shot adaptation setting, we double the length of each sequence.

Expert demonstrations. To construct few-shot demonstrations, we emulate a rule-based expert that generates an optimal plan based on the given instruction. For each adaptation stage, we collect 20 expert demonstrations, varying the initial positions of the agent and objects, as well as the instructions. For the more constrained continual few-shot adaptation settings, we use 5 expert demonstrations.

Figure 3: Continual adaptation setups: The top line illustrates Beh-IL, where the agent is tasked to incrementally learn new behaviors. The bottom line illustrates Env-IL, where the agent is tasked to perform behaviors in novel indoor scenes.

- 1. Turnon \rightarrow Open \rightarrow Placeon \rightarrow PutIn
- 2. Open \rightarrow Turnon \rightarrow PutIn \rightarrow Placeon
- 3. PlaceOn \rightarrow Open \rightarrow TurnOn \rightarrow PutIn
- 4. Putin \rightarrow Open \rightarrow PlaceOn \rightarrow TurnOn

Figure 4: Continual adaptation sequence for Beh-IL in VirtualHome

- 1. Room $20 \rightarrow Room 01 \rightarrow Room 34 \rightarrow Room 26$
- 2. Room $01 \rightarrow Room 20 \rightarrow Room 26 \rightarrow Room 34$
- 3. Room $34 \rightarrow Room 01 \rightarrow Room 20 \rightarrow Room 26$
- 4. Room $26 \rightarrow Room 01 \rightarrow Room 34 \rightarrow Room 20$

Figure 5: Continual adaptation sequence for Env-IL in VirtualHome

B.2 ALFWORLD

ALFWorld (Shridhar et al., 2021) is a text-based environment designed for embodied task planning, featuring numerous household tasks brought from ALFRED (Shridhar et al., 2020) benchmark. It supports complex task compositions and is widely used to evaluate instruction-following agents under partially observable settings.

Instruction. We configure four instruction templates, each with a unique goal to accomplish: HEAT, CLEAN, PICK2&PLACE, PICK&PLACE. In Table 10, we provide an example for each instruction template.

Observation. The observation settings are identical to VirtualHome in Section B.1. In Figure 6, we provide an example of observation.

(character, inside, bedroom), (character, hold, keychain 1) (character, close, armchair 1), (laptop 1, inside, armchair 1), (lightswitch 1, is, visible), (cellphone 3, inside, bed 1), (cd 2, inside, garbagecan 1), (pillow 1, inside, bed 1), (cd 1, inside, dresser 1), (alarmclock 2, inside, dresser 1), (cabinet 1, is, visible) ...

Figure 6: Observation example for task "Put a keychain in/on armchair"

Table 10: An example for each instruction template in ALFWorld

Instruction template	Example
НЕАТ	Heat some plate in microwave and put it in/on shelf
CLEAN	Clean some fork in sinkbasin and put it in/on sidetable
PICK2&PLACE	Find two newspaper and put them in/on armchair
PICK&PLACE	Put a keychain in/on armchair

Action. The available actions include: go to, take from, put in/on, heat with, and clean with. The go to action takes a single argument specifying the destination (e.g. go to shelf 1), while the other actions require two arguments (e.g. take potato 1 from countertop 3, clean spoon 1 with sinkbasin 1). In Table 11, we provide the format of each action along with a corresponding example.

Table 11: Format and example of each action in ALFWorld

Action	Format	Example
go to	go to [object]	go to shelf 1
take from	take [object] from [object]	take potato 1 from countertop 3
put in/on	put [object] in/on [object]	put newspaper 1 in/on ottoman 1
heat with	heat [object] with [object]	heat potato 3 with microwave 1
clean with	clean [object] with [object]	clean spoon 1 with sinkbasin 1

Continual task adaptation setup. As in VirtualHome, we configure two continual task adaptation setups in ALFWorld, similar to CAMA (Kim et al., 2024).

For **Beh-IL**, we utilize the four instruction templates, assigning each as the primary behavior for an adaptation stage. The specific sequences used for Beh-IL in ALFWorld are detailed in Figure 7.

- 1. Heat \rightarrow Pick2&Place \rightarrow Pick&Place \rightarrow Clean
- 2. $PICK2\&PLACE \rightarrow CLEAN \rightarrow HEAT \rightarrow PICK\&PLACE$
- 3. Pick&Place \rightarrow Pick2&Place \rightarrow Clean \rightarrow Heat
- 4. Clean \rightarrow Heat \rightarrow Pick2&Place \rightarrow Pick&Place

Figure 7: Continual adaptation sequence for Beh-IL in ALFWorld

For **Env-IL**, we utilize different room types in ALFWorld, including bathroom, bedroom, livingroom, and kitchen. The specific sequences used for Env-IL in ALFWorld are detailed in Figure 8.

- 1. Bedroom \rightarrow Bathroom \rightarrow Livingroom \rightarrow Kitchen
- 2. Bathroom \rightarrow Bedroom \rightarrow Kitchen \rightarrow Livingroom
- 3. Livingroom \rightarrow Bathroom \rightarrow Bedroom \rightarrow Kitchen
- 4. Kitchen \rightarrow Bathroom \rightarrow Livingroom \rightarrow Bedroom

Figure 8: Continual adaptation sequence for Env-IL in ALFWorld

Expert demonstrations. To construct the training demonstrations, we utilize the expert provided in ALFWorld. For each adaptation stage, we utilize 20 expert demonstrations, varying the initial positions of the agent and objects, as well as the instructions. For the more constrained continual few-shot adaptation setting, we use 5 expert demonstrations.

C IMPLEMENTATION DETAILS

In this section, we provide the rationale annotation strategy and implementation details of BiCL and the baselines. All experiments are conducted on a system equipped with an Intel(R) Core(TM) i9-10980XE CPU and an NVIDIA RTX A6000 GPU. We use GPT-40-mini (Achiam et al., 2023) for rationale annotation and Qwen2.5-0.5B (Yang et al., 2024) as the pre-trained LM of the policies.

C.1 RATIONALE ANNOTATION

In our implementation, rationales $\mathcal{Z} = \{z_1, ..., z_N\}$ are annotated through LLMs, such as GPT-4o-mini (Achiam et al., 2023) for each observation and action pair (o, a). For this, we define a set of Markov Decision Process-featured queries $\mathcal{Q} = \{q_1, ..., q_N\}$, specifically designed to extract key elements necessary for embodied task planning, such as the location of the target object, the status of the agent, sub-goals, available actions, and expected returns (Choi et al., 2024). We generate 5 multi-step (N=5) rationales, and Table 12 summarizes the key element extracted by each query.

Query	Key elements
q_1	physical location and status of the agent
q_2	physical location and status of observations relevant to the task
q_3	summarization of previous action history, if available
q_4	sub-goals needed to complete the task
q_5	reasoning about the next action to take

Table 12: Key elements extracted by each query

Specifically, we prompt the LLM Ψ_{LLM} with queries \mathcal{Q} , along with the task \mathcal{T} , observation o, action history $h(=a_{1:t})$, and current action $a(=a_t)$ to sample the rationale set, i.e., $\mathcal{Z} \sim \Psi_{\text{LLM}}(\mathcal{Q}, x, a)$, where $x = (\mathcal{T}, o, h)$. Next, we prompt the policy $\pi(\cdot|\theta_{\text{LM}})$ (i.e., the pre-trained LM without any attached adapters) with the observation and rationale set to obtain logits for the available actions $\bar{a} \in \mathcal{A}$. If the logit corresponding to the ground-truth action a ranks within the top-k action logits, the rationale set \mathcal{Z} is stored in a buffer \mathcal{B} . This process is repeated I times with varying temperature and nucleus sampling parameters to generate multiple rationale sets.

$$\mathcal{B} = \bigcup_{i=1}^{1} \{ \mathcal{Z} | a \in \text{top-}k_{\bar{a} \in \mathcal{A}} \left(\pi(\bar{a} | o, \mathcal{Z}; \theta_{\text{LM}}) \right) \},$$
where $\mathcal{Z} \sim \Psi_{\text{LLM}}(\mathcal{Q}, x, a)$. (8)

Subsequently, we prompt each rationale set stored in the buffer to the policy to obtain logits for the ground-truth future plan $p(=a_{t:T})$. We then select the rationale set that yields the highest logit as the final rationale set for reasoning-policy training.

$$\mathcal{Z} = \underset{\mathcal{Z}^i \in \mathcal{B}}{\arg \max} \, \pi(p|\mathcal{T}, o, \mathcal{Z}^i; \theta_{LM}). \tag{9}$$

This entire procedure is performed for each transition in the demonstrations \mathcal{D} to annotate rationales for each sample. Algorithm 2 lists the procedure of rationale annotation. Moreover, Figure 9 presents an example of rationales annotated by the LLM for VirtualHome.

C.2 LLM-PLANNER

LLM-Planner (Huang et al., 2023) leverages the in-context learning capability of language models by prompting few-shot demonstrations. Specifically, two demonstrations are sampled based on the task similarity, which is computed by Jaccard distance. For inference, LLM-Planner employs an action-level decoding strategy to select actions from the set of valid ones (Hazra et al., 2024). Figure 10 presents the prompt template used for LLM-Planner.

Algorithm 2 Rationale annotation

```
1: Input: demonstrations \mathcal{D}, LLM \Psi_{\text{LLM}}, pre-trained LM parameters \theta_{\text{LM}}

2: for each (\mathcal{T}, o, a) \in \mathcal{D} do

3: Initialize buffer \mathcal{B} = \emptyset

4: for i \leftarrow 1, ..., I do

5: \mathcal{Z} \sim \Psi_{\text{LLM}}(\mathcal{Q}, x, a)

6: if a \in \text{top-}k_{\bar{a} \in \mathcal{A}}(\pi(\bar{a}|o, \mathcal{Z}; \theta_{\text{LM}})) then

7: \mathcal{B} \leftarrow \mathcal{B} \cup \{\mathcal{Z}\}

8: \mathcal{Z} = \arg\max_{\mathcal{Z}^i \in \mathcal{B}} \pi(p|\mathcal{T}, o, \mathcal{Z}^i; \theta_{\text{LM}})

9: Augment demonstrations \mathcal{D} with (\mathcal{T}, o, a, \mathcal{Z})
```

[Instruction]	Place book on coffeetable	
[Observation]	(character, inside, kitchen), (character, hold, book), (kitchen, adjacent, bedroom), (kitchen, adjacent, livingroom), (coffeetable, inside, livingroom), (book, is, closed), (character, close, paper), (pie, inside, kitchen), (facecream, inside, bathroom), (closetdrawer, inside, livingroom)	
[History]	(step 1, walk bedroom), (step 2, walk kitchen), (step 3, walk book), (step 4, grab book)	
[Action]	walk livingroom	
[Rationales]	The character is currently inside the kitchen, holding a closed book. The coffeetable is located inside the livingroom, which is adjacent to the kitchen. Previously, the character walked from the bedroom to the kitchen, grabbed the book, and is now preparing to move it. To complete the instruction of placing the book on the coffeetable, the character needs to walk to the livingroom next. Since the livingroom is adjacent to the kitchen, the character can proceed there to fulfill the instruction.	

Figure 9: Example of rationales for VirtualHome

C.3 REACT

ReAct (Yao et al., 2023) generates rationales and actions in an interleaved manner. To allow the LM to better leverage its reasoning capabilities, we prompt it with few-shot in-context CoT demonstrations. In Figure 11, we show the prompt template used for ReAct.

C.4 SAYCAN

SayCan (Ahn et al., 2022) incorporates an additional module that accounts for affordance scores when selecting actions. This module re-weights the action logits based on predicted affordance scores, ensuring the feasibility of plans and preventing the agent from selecting invalid actions in the current state. In our implementation, we replace this module by heuristically providing only executable actions, filtered based on their feasibility from the current state.

C.5 TAIL

TAIL (Liu et al., 2024) employs parameter-efficient fine-tuning methods to address the continual task adaptation problem. For each adaptation stage, a LoRA adapter is newly initialized and trained on the demonstrations through supervised finetuning. Based on this, we implement two variants for comparison. **TAIL-Action** is trained solely on state-action pairs without utilizing rationale supervision. **TAIL-Distill** leverages rationales to supervise both reasoning and planning policies. The same CoT reasoning loss defined in Equation (3) for BiCL is used to train the reasoning-policy for TAIL-Distill. At inference, rationales are generated segment-by-segment through the reasoning-

```
1026
                    Interact with a household to solve a task. Following are the only actions available:
1027
                    go to [recep]: move to a receptacle/location
1028
                    take [obj] from [recep]: pick up an object from a receptacle
1029
                    put [obj] in/on [recep]: place an object inside or on top of a receptacle
1030
                    heat [obj] with [recep]: heat an object using a receptacle
1031
                    clean [obj] with [recep]: clean an object using a receptacle
1032
                    Here are some examples.
1033
1034
                    Your task is to: put a pencil in/on desk.
1035
                    (character, inside, bedroom), (book 3, inside, desk 1), (laptop 1, inside, desk 1), (pencil
                    2, inside, garbagecan 1), (pencil 1, inside, sidetable 1), (alarmclock 1, inside, desk 1),
1036
                    (remotecontrol 1, inside, desk 1), (alarmclock 2, inside, desk 1), (book 2, inside, desk 1)
1037
                   > go to sidetable 1
1039
1040
                    [Few-shot Demonstration 2]
1041
                    [Few-shot Demonstration N]
1043
                    Here is the task.
1044
1045
                    Your task is to: put a pencil in/on desk.
1046
                    (character, inside, bedroom), (pen 1, inside, desk 1), (laptop 1, inside, desk 1), (pencil 2,
1047
                    inside, sidetable 1), (pencil 3, inside, shelf 1), (keychain 3, inside, desk 1), (box 1, inside,
1048
                    desk 1), (pen 2, inside, desk 1), (book 1, inside, desk 1), (cd 1, inside, garbagecan 1), (cd 2,
                    is, visible), (blinds 1, is, visible), (chair 1, is, visible)
1049
                    > action:
1050
1051
```

Figure 10: Prompt example used for LLM-Planner in ALFWorld

policy, and subsequently used to generate actions through the planning-policy. The hyperparameter settings for TAIL are summarized in Table 13.

Table 13: Hyperparameter settings for TAIL

Hyperparameter	Value
Total epochs	80
Batch size	4
Learning rate	1.41e-5
LoRA alpha	32
LoRA rank	16

C.6 SEQFT-DISTILL

Unlike TAIL, which randomly initializes model parameters for each adaptation stage, SeqFT-Distill uses the policy learned from the most recent adaptation stage as the initialization point. This ensures implicit knowledge transfer across stages through model parameters. For reasoning distillation, we employ both reasoning and planning policies as BiCL. We use the same hyperparameter settings as in Table 13 for SeqFT-Distill.

C.7 CAMA-DISTILL

CAMA-Distill (Kim et al., 2024) addresses the continual learning problem in embodied tasks by introducing a method to update stored past logits in episodic memory. To accommodate reasoning distillation, we adopt the same two-tier policy architecture as BiCL. A small subset of previous

```
1080
                   Interact with a household to solve a task. Following are the only actions available:
1081
                   walk [object or room]: walk to object or room
1082
                   open [object]: open an object
                   switch [object]: switch on an object
1084
                   grab [object]: grab an object
1085
                   place [object] on [recep]: put holding on top of an object
                   put [object] in [recep]: put holding inside of an object
1087
                   Here are some examples.
1089
                   Your task is to: Turn on tv.
                   (character, inside, bedroom), (character, hold, none), (bedroom, adjacent, bathroom),
                   (bedroom, adjacent, kitchen), (kitchen, adjacent, livingroom), (tv, inside, livingroom),
                   (milkshake, inside, livingroom), (curtains, inside, bathroom), (barsoap, inside, bathroom),
                   (fryingpan, inside, kitchen), (kitchencounterdrawer, inside, kitchen)
1093
                   > think: The character is currently inside the bedroom, which is adjacent to both the
1094
                   bathroom and the kitchen. The TV is located in the living room, which is adjacent to the
1095
                   kitchen but not directly accessible from the bedroom. There have been no prior actions taken
                   that would influence the current state. To turn on the TV, the character needs to walk to the
                   kitchen first, and then from there, proceed to the living room. Given the adjacency of the
                   kitchen to the living room, the next step involves moving towards the kitchen to ultimately
                   reach the TV.
1099
                   OK.
                   > walk kitchen
1100
1101
1102
                   [Few-shot Demonstration 2]
1103
1104
                   [Few-shot Demonstration N]
1105
1106
                   Here is the task.
1107
                   Your task is to: Turn on tv.
1108
                   (character, close, tv), (character, inside, kitchen), (character, hold, none), (kitchen, adjacent,
1109
                   bedroom), (kitchen, adjacent, livingroom), (bathroom, adjacent, bedroom), (tv, inside,
1110
                   kitchen), (clothesshirt, inside, bedroom), (clothespants, inside, bedroom), (clothesshirt,
1111
                   inside, livingroom), (powersocket, inside, livingroom)
                   > rationale:
1112
                   > action:
1113
1114
```

Figure 11: Prompt example used for ReAct in VirtualHome

demonstrations, along with their corresponding logits, is retained across adaptation stages and used to supervise the policy alongside the current stage's demonstrations. We use the same hyperparameter settings as in Table 13 for CAMA-Distill.

C.8 Self-Correction

1115

1120

1121

1122112311241125

1126

1128

1129

1130

1131

1132

1133

Self-Correction Welleck et al. (2023) explicitly learns to iteratively refine imperfect generations. To adapt this approach to our setting, we employ sLMs with adapters for both the initial rationale generator and the corrector. Feedback for correction is obtained in the same way as our setup. The generated rationale is compared with the ground-truth rationales in the demonstrations using a combined similarity score based on language embeddings and TF-IDF scores. At inference, the model first produces an initial rationale and then performs explicit self-correction. At inference, the surrogate feedback is provided by retrieving the rationale in the demonstrations that is most semantically similar to the current state.

Algorithm 3 BiCL framework

1134

1159 1160

1161 1162

1163

1164

1165

1166

1167

11681169

1170

1171 1172

1173 1174

1175

1176

1177

1178

```
1135
             1: // Adaptation: bidirectional CoT learning
1136
             2: Input: demonstrations for i-th stage \mathcal{D}_i, adapter pool \Theta
1137
             3: Select adapter from adapter pool for base reasoning-policy \pi_z(\cdot; \theta_z') using (2)
1138
             4: Initialize adapters for the current stage \theta_z \leftarrow \theta_z', \theta_p
1139
             5: while not converged do
1140
             6:
                     Sample a batch of \{(\mathcal{T}, o, a, \mathcal{Z})\} \sim \mathcal{D}_i
                     Generate base rationales z_k' \sim \pi_z(\cdot|x,q_k;\theta_z') through the base reasoning-policy
             7:
1141
                     Update reasoning-policy \pi_z(\cdot; \theta_z) using loss \mathcal{L}_{\text{reasoning}} in (5)
             8:
1142
                     Update planning-policy \pi_p(\cdot; \theta_p) using loss \mathcal{L}_{\text{planning}} in (6)
1143
            10: Add adapters to adapter pool \Theta \leftarrow \Theta \cup \{\theta_z\}
1144
            11: Compute threshold \delta_k for each k using equation 10
1145
1146
            13: // Inference: rationale-wise test-time scaling
1147
            14: Input: environment Env, task \mathcal{T}
1148
            15: o_0 \leftarrow \text{Env.reset}()
1149
            16: done \leftarrow false, \ t \leftarrow 0, \ h \leftarrow \emptyset
1150
            17: while not done do
1151
            18:
                     x_t \leftarrow (\mathcal{T}, o_t, h)
                     for k \leftarrow 1, ..., N do
1152
            19:
                        z_{t,k} \sim \pi_z(\cdot|x_t, q_k; \theta_z)
            20:
1153
                        a_t \sim \pi_p(\cdot|x_t, z_{t,1:k}; \theta_p)
            21:
1154
                        if \log \pi_p(a_t|x_t, z_{t,1:k}; \theta_p)/|a_t| \geq \delta_k then
            22:
1155
            23:
                            break
1156
                     o_{t+1} \leftarrow \text{Env.step}(a_t)
            24:
1157
            25:
                     h \leftarrow h \cup \{a_t\}, t \leftarrow t+1
1158
```

C.9 BICL (OURS)

The BiCL framework consists of two main processes: (i) bidirectional CoT learning, and (ii) rationale-wise test-time scaling. (i) For adaptation, we first select the most relevant previously learned reasoning-policy to serve as the base one. Then, an LM-based policy is jointly trained via CoT and reflexive reasoning objectives from few-shot demonstrations, where CoT reasoning is supervised by rationale distillation and reflexive reasoning by base rationale correction. We use the same hyperparameter settings as in Table 13 for BiCL. (ii) For inference, the policy solely relies on CoT reasoning, with its depth dynamically adjusted according to the model's confidence in predicted actions.

The threshold δ_k for rationale-wise test-time scaling in equation 7 is derived from the mean and standard deviation of the log-probability of the ground-truth action when the planning-policy is conditioned on partial rationales $z_{1:k}$ as

$$\delta_k = \mathbb{E}_{(x,a,\mathcal{Z})\sim\mathcal{D}} \left[\log \pi_p(a|x, z_{1:k}; \theta_p) / |a| \right] + \lambda \operatorname{std}_{(x,a,\mathcal{Z})\sim\mathcal{D}} \left[\log \pi_p(a|x, z_{1:k}; \theta_p) / |a| \right]$$
(10)

where λ is a hyperparameter, set to -0.524 for VirtualHome and 0.0 for ALFWorld. Thresholds are computed separately at each adaptation stage, yielding a distinct δ_k for every reasoning step. A sensitivity analysis of this threshold is provided in Section D.7.

The entire procedure for BiCL is summarized in Algorithm 3, and examples of the planning, correction and reasoning prompts are illustrated in Figures 12, 13, and 14, respectively.

1188 ### Human: 1189 Following are the only actions available: 1190 walk [object or room]: walk to object or room 1191 open [object]: open an object 1192 switch [object]: switch on an object 1193 grab [object]: grab an object place [object] on [recep]: put holding on top of an object 1194 put [object] in [recep]: put holding inside of an object 1195 1196 In order to complete the given instruction, what should be the next immediate action? 1197 Instruction: Open stove State: (character, inside, kitchen), (character, hold, none), (kitchen, adjacent, bedroom), 1198 (kitchen, adjacent, livingroom), (bathroom, adjacent, bedroom), (stove, is, closed), (stove, 1199 inside, kitchen), (stove, is, off), (toaster, is, off), (closetdrawer, inside, bedroom) Previous Actions: No action history. 1201 Rationale: The character is currently inside the kitchen, situated near the closed stove. The 1202 stove, which needs to be opened, is located inside the kitchen and adjacent to a bedroom. There is no previous action history to consider. To complete the instruction, the character 1203 must first walk to the stove. Thus, the logical next action should be walk to stove. 1205 ### Assistant: 1207 1208 Figure 12: Planning prompt example used for BiCL in VirtualHome 1209 1210 1211 ### Human: 1212 Instruction: heat some cup in microwave and put it in/on sidetable 1213 State: (character, inside, kitchen), (microwave 1, is, visible), (cup 2, inside, countertop 1), 1214 (cup 1, inside, sinkbasin 1), (peppershaker 1, inside, sidetable 1), (pot 2, inside, stoveburner 1215

4), (bread 1, inside, countertop 1), (soapbottle 1, inside, garbagecan 1), (spoon 1, is, visible) Previous Actions: No action history.

Reasoning Trace: The character is currently inside the kitchen. The cup 2 is located on countertop 1, while the microwave 1 is also visible in the kitchen. There is no previous action history to summarize. To complete the instruction, the character needs to first go to countertop 1, retrieve cup 2, heat it in the microwave, and then place it on sidetable 1. Rationale: Heat some cup in microwave and put it in/on sidetable.

There are many errors in the Think. You need a major revision in the Think. You should provide exactly 1 sentence response that only incorporate: reasoning for what should do

Assistant:

1216

1217

1218

1219

1220

1222

1224

1225 1226

1239 1240

Figure 13: Correction prompt example used for BiCL in ALFWorld

1242	[Query 1]
1243	### Human:
1244	Instruction: Open stove
1245	State: (character, inside, kitchen), (character, hold, none), (kitchen, adjacent, bedroom),
1246	(kitchen, adjacent, livingroom), (bathroom, adjacent, bedroom), (stove, is, closed), (stove,
1247	inside, kitchen), (stove, is, off), (toaster, is, off), (closetdrawer, inside, bedroom)
1248	Previous Actions: No action history. You should provide exactly 1 sentence response that only incorporate: <i>physical location and</i>
1249	status of the character.
1250	
1251	### Assistant:
1252	[Query 2]
1253	### Human:
1254	Instruction: Open stove
1255	State: (character, inside, kitchen), (character, hold, none), (kitchen, adjacent, bedroom),
1256	(kitchen, adjacent, livingroom), (bathroom, adjacent, bedroom), (stove, is, closed), (stove,
1257	inside, kitchen), (stove, is, off), (toaster, is, off), (closetdrawer, inside, bedroom)
1258	Previous Actions: No action history. You should provide exactly 1 sentence response that only incorporate: <i>physical location and</i>
1259	status of observations that are only related to the instruction.
1260	·
1261	### Assistant:
1262	[Onew, 2]
1263	[Query 3] ### Human:
1264	Instruction: Open stove
1265	State: (character, inside, kitchen), (character, hold, none), (kitchen, adjacent, bedroom),
1266	(kitchen, adjacent, livingroom), (bathroom, adjacent, bedroom), (stove, is, closed), (stove,
1267	inside, kitchen), (stove, is, off), (toaster, is, off), (closetdrawer, inside, bedroom)
1268	Previous Actions: No action history. You should provide exactly 1 sentence response that only incorporate: <i>summarization of</i>
1269	previous action histories if previous actions are available.
1270	
1271	### Assistant:
1272	[Query 4]
1273	### Human:
1274	Instruction: Open stove
1275	State: (character, inside, kitchen), (character, hold, none), (kitchen, adjacent, bedroom),
1276	(kitchen, adjacent, livingroom), (bathroom, adjacent, bedroom), (stove, is, closed), (stove,
1277	inside, kitchen), (stove, is, off), (toaster, is, off), (closetdrawer, inside, bedroom) Previous Actions: No action history.
1278	You should provide exactly 1 sentence response that only incorporate: <i>break down the</i>
1279	remaining plan to complete the instruction if remaining plans are required.
1280	
1281	### Assistant:
1282	[Query 5]
1283	### Human:
1284	Instruction: Open stove
1285	State: (character, inside, kitchen), (character, hold, none), (kitchen, adjacent, bedroom),
1286	(kitchen, adjacent, livingroom), (bathroom, adjacent, bedroom), (stove, is, closed), (stove,
1287	inside, kitchen), (stove, is, off), (toaster, is, off), (closetdrawer, inside, bedroom) Previous Actions: No action history.
1288	You should provide exactly 1 sentence response that only incorporate: reasoning for what
1289	should do next.
1290	

Figure 14: Reasoning prompt example used for BiCL in VirtualHome

 ### Assistant:

D ADDITIONAL EXPERIMENTS

D.1 EFFECT OF SEGMENT-WISE REASONING

In Figure 16, we compare two variants of BiCL with different levels of granularity in their reasoning processes. *Full* learns to generate and correct the entire rationale in a single inference step, while *Chunk-wise* processes multiple rationales (two or three) at a time. In contrast, BiCL adopts a segment-wise approach, processing one rationale at an inference step, thus enabling the most fine-grained control over the reasoning process. As shown, finer-grained reasoning consistently leads to performance improvements. This is particularly beneficial for smaller LMs, whose limited capacity benefits from step-by-step guidance.

Figure 15: Effect of test-time scaling

Figure 16: Effect of fine-grained reasoning

D.2 PLANNING EFFICIENCY

To assess the planning efficiency beyond the SR reported in Table 1, we report Normalized Plan Efficiency (NPE) defined as optimal plan length divided by executed plan length (higher is better, and 1.0 indicates an optimal plan) While SR reflects task completion, NPE captures how efficiently the agent completes the given task. A higher NPE indicates more efficient planning, with a value 1.0 representing a perfectly optimal plan.

In Table 14, we report the NPE of BiCL and the baselines under continual task adaptation setups in VirtualHome and ALFWorld. As shown, BiCL consistently achieves higher NPE compared to the baselines, demonstrating its superiority in generating not only successful but also efficient plans. This is attributed to the enhanced robustness of CoT reasoning, enabled by reflexive reasoning that corrects prior knowledge to internalize more precise task knowledge across learning stages.

	VirtualHome			ALFWorld				
Method	Beh-IL		Env-IL		Beh-IL		Env-IL	
	Seen	Unseen	Seen	Unseen	Seen	Unseen	Seen	Unseen
TAIL-Action	0.79±0.02	0.75 ± 0.02	0.80±0.01	0.77±0.01	0.88±0.01	0.84±0.01	0.87±0.01	0.88±0.01
TAIL-Distill	0.80 ± 0.01	0.76 ± 0.02	0.81 ± 0.01	0.73 ± 0.01	0.89 ± 0.01	0.81 ± 0.01	0.91 ± 0.01	0.88 ± 0.01
SeqFT-Distill	0.78 ± 0.01	0.72 ± 0.02	0.84 ± 0.01	0.79 ± 0.01	0.91±0.01	0.84 ± 0.01	0.91 ± 0.01	0.89 ± 0.01
CAMA-Distill	$0.79 \scriptstyle{\pm 0.01}$	$0.78 {\pm} 0.01$	0.80 ± 0.01	$0.75{\scriptstyle\pm0.01}$	0.89 ± 0.01	$0.88{\scriptstyle\pm0.01}$	0.89 ± 0.01	$0.86{\pm} 0.01$
BiCL w/o TTS BiCL	0.84±0.01 0.85 ± 0.01	0.84±0.01 0.84±0.01	0.84±0.01 0.87 ±0.01	0.81±0.01 0.81±0.01	0.95±0.00 0.95±0.00	0.93±0.01 0.94 ±0.01	0.94±0.01 0.95±0.00	0.90 ± 0.01 0.92 ± 0.01

Table 14: Planning efficiency

D.3 CONTINUAL TASK ADAPTABILITY

To further assess continual task adaptability, we evaluate BiCL and the baselines (TAIL-Distill and SeqFT-Distill) on the complete set of tasks from all stages at each individual adaptation stage. Here, we compare with BiCL w/o TTS to isolate the effect of test-time scaling, thereby highlighting the effectiveness of bidirectional CoT learning alone. For tasks from stages not yet encountered, evaluation is performed using the most recently learned policy. As shown, the success rate (SR)

increases roughly linearly for all baselines and BiCL as the number of stages grows, indicating that the agents incrementally acquire new behaviors and adapt to novel scenes. However, the performance gain of BiCL becomes more pronounced with increasing adaptation stages, achieving a 5.50% improvement at stage 2 and a 13.96% improvement at stage 4 on the seen category in VirtualHome Beh-IL compared to SeqFT-Distill. This advantage stems from our bidirectional CoT learning, which enables more effective forward transfer of previously acquired knowledge to new tasks.

Table 15: Continual Task Adaptability measured by SR (%)

Method	Stage 1		Stage 2		Stage 3		Stage 4	
1710ulou	Seen	Unseen	Seen	Unseen	Seen	Unseen	Seen	Unseen
TAIL-Distill	20.83±0.92	15.21 ± 0.92	33.55±0.87	26.27±1.08	49.80 ±1.74	36.38±1.83	60.25±2.20	46.29±2.25
SeqFT-Distill	19.13 ± 0.91	13.89 ± 0.87	32.75 ± 1.00	23.81 ± 1.13	49.33 ± 1.67	37.26 ± 1.83	62.17 ± 2.22	46.31 ± 2.22
BiCL w/o TTS	$24.63 \!\pm\! 0.91$	$\boldsymbol{19.78} {\scriptstyle\pm0.98}$	38.25 ± 1.01	29.42 ± 1.30	$56.63 {\scriptstyle\pm1.61}$	44.79 ± 1.96	76.13 ±1.91	$\textbf{60.29} \scriptstyle{\pm 2.32}$

D.4 EXPERIMENTS WITH LARGER SLMS

To validate that the BiCL framework naturally scales to larger sLMs, we evaluate BiCL and SeqFT-Distill on VirtualHome Beh-IL using **Qwen2.5-1.5B** and **Qwen2.5-3B** in Table 16. Consistent with the results in Table 1, on Qwen2.5-0.5B, BiCL outperforms the strongest baseline SeqFT-Distill in the seen category, achieving SR gains of 14.99% on the 1.5B model and 13.75% on the 3B model. Similarly, in the unseen category, BiCL surpasses SeqFT-Distill with SR improvements of 16.29% on the 1.5B model and 14.43% on the 3B model. These results demonstrate that BiCL scales robustly, yielding consistent performance improvements as model size increases.

Table 16: Performance with larger sLMs (0.5B, 1.5B, 3B)

Method	Sec	en	Unseen					
	SR (%)	GC (%)	SR (%)	GC (%)				
Model: Qwen	Model: Qwen2.5-0.5B							
BiCL	81.38 ±1.74	85.81 ±1.36	64.03 ±2.28	71.60 ±3.03				
SeqFT-Distill	65.75±2.15 (-15.63)	79.09±1.52 (-6.72)	48.68±2.30 (-15.35)	64.11±1.92 (-7.49)				
Model: Qwenz	2.5-1.5B							
BiCL	85.12±1.52	89.28 ±1.14	68.64±2.12	75.16 ±1.87				
SeqFT-Distill	70.13±2.01 (-14.99)	79.88±1.49 (-9.40)	52.34±2.30 (-16.30)	64.41±1.96 (-10.75)				
Model: Qwenz	Model: Qwen2.5-3B							
BiCL	87.00 ±1.37	91.91 ±0.91	72.37 ±2.09	78.07 ±1.80				
SeqFT-Distill	73.25±2.08 (-13.75)	83.28±1.43 (-8.63)	57.94±2.34 (-14.43)	69.22±1.92 (-8.85)				

D.5 EXPERIMENTS WITH COMPOSITIONAL TASKS

To evaluate on more challenging tasks, we design compositional tasks in VirtualHome, where the agent should complete the two or three instructions in sequence, such as "Turn on computer, and turn on radio" (composition of two instructions) or "Put apple in fridge, and turn on stove, and place paper on bed" (composition of three instructions). As shown in Table 17, BiCL outperforms the most competitive baseline SeqFT-Distill, achieving a 7.29% SR gain in the seen category and a 15.65% gain in the unseen category. These results highlight the capability of BiCL to adapt even in complex, compositional tasks.

D.6 INCORPORATING REHEARSAL STRATEGY FOR BACKWARD TRANSFER

BiCL can be seamlessly extended to support backward transfer through memory-based rehearsal strategies (Rolnick et al., 2018; Wan et al., 2024). To demonstrate this, we introduce a variant of BiCL with a rehearsal mechanism (BiCL w/ Rehearsal), in which demonstrations are retained

Table 17: Performance on Compositional Tasks

Uncaan

Caan

1406	
1407	
1408	
1/100	

Method		CII	Uliseeli		
	SR (%)	GC (%)	SR (%)	GC (%)	
SayCan SeqFT-Distill	$\begin{array}{c} 22.08 {\pm} 0.98 \\ 48.12 {\pm} 1.64 \end{array}$	$48.18{\pm}0.90\\69.85{\pm}1.49$	$15.84 {\pm} 0.75 \\ 31.00 {\pm} 1.15$	$45.18 {\pm} 0.80 \\ 57.94 {\pm} 1.29$	
BiCL w/o TTS BiCL	50.59 ± 1.67 55.41 ± 1.55	73.68±1.63 77.13±1.56	40.56±1.02 46.65±0.92	64.12±1.31 71.28 ±1.09	

across adaptation stages. After the final stage, BiCL w/ Rehearsal refines earlier policies using the combined CoT reasoning and reflexive reasoning loss defined in equation 5. For each policy, the most semantically relevant policy (excluding itself) is chosen from the learned pool as the base policy, and training is performed on both the original demonstrations for that stage and task-relevant demonstrations accumulated in the rehearsal buffer.

Table 18 reports results under the continual 5-shot adaptation setup in VirtualHome Beh-IL. As shown, incorporating rehearsal mechanism improves performance, yielding SR gains of 5.06% in the seen category and 10.68% in the unseen. These findings demonstrate that BiCL can effectively leverage memory-based rehearsal to enhance backward transfer.

Table 18: Performance of BiCL with rehearsal mechanism

1	426
1	427
1	428
1	429

Method	Se	en	Unseen	
	SR (%)	GC (%)	SR (%)	GC (%)
BiCL BiCL w/ Rehearsal	70.16±2.04 75.22±1.82 (+5.06)	78.83±1.58 81.33±1.48 (+2.50)	47.99±2.20 58.67±2.31 (+10.68)	63.91±1.96 68.79±1.98 (+4.88)

D.7 SENSITIVITY TO RATIONALE-WISE TEST-TIME SCALING THRESHOLD

To assess the sensitivity to the threshold δ_k used for rationale-wise test-time scaling in equation 7, we vary the threshold levels in VirtualHome Beh-IL by adjusting λ in equation 10. In Table 19, *Low* denotes the default threshold setting used in our main experiments. As shown, applying test-time scaling generally yields higher performance than not applying it. Setting the threshold too low (e.g., *Very Low*) prematurely halts CoT reasoning, resulting in a performance drop of 3.76% in the seen category and 5.84% in the unseen compared to the *low* (default) setting. Setting the threshold too high (e.g. *Very High*) also leads to degradation, with drops of 6.26% in the seen category and 2.49% in the unseen. We conjecture that limited data at each adaptation stage leaves some rationales under-optimized, and forcing the model to "over think" compounds errors and degrades overall performance (Liu et al., 2025).

Table 19: Sensitivity analysis on rationale-wise test-time scaling thresholds

```
Threshold Level
                       Seen SR (%)
                                          Unseen SR (%)
w/o TTS
                       76.13 \pm 1.91
                                         60.29 \pm 2.32
                       77.62 \pm 1.88
                                         57.74 + 2.29
Very Low
Low (Default)
                       81.38 \pm 1.74
                                          \textbf{63.58} {\pm} 2.28
                       79.25 \pm 1.82
                                         61.35 \pm 2.01
High
                       75.12 \pm 1.98
                                         61.09 \pm 2.29
Very High
```