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ABSTRACT

Learning causal graphs from interventional data is a challenging problem with
broad applications. In molecular biology, for example, a central goal is to uncover
gene regulatory networks from large-scale perturbation data. An ideal algorithm
for this task should scale to thousands of nodes, incorporate interventions even
when their targets are unknown, quantify uncertainty, and provide identifiability
guarantees. However, existing approaches—e.g. approaches using score-based
optimization or approximate Bayesian inference—often fail to meet all of these
criteria. To address these limitations, we develop Amortized Bayesian Causal
Discovery of Extended Factor Graphs (ABCDEFG). Our method guarantees exact
acyclicity, scales to graphs with thousands of nodes, and naturally handles inter-
ventions even when their targets are unknown. Additionally, ABCDEFG estimates
a posterior distribution whose mode provably identifies the true causal graph up to
an equivalence class. On simulated datasets, ABCDEFG achieves state-of-the-art
accuracy, producing a well-calibrated posterior distribution while outperforming
previous score-based and approximate Bayesian methods. Applied to large-scale
single-cell perturbation data, ABCDEFG identifies both established and novel gene
targets of growth factors [2].

1 INTRODUCTION

Discovering causal relationships is a fundamental challenge across scientific domains. In many
settings, both observational and interventional data are available to probe underlying causal mecha-
nisms. Yet, inferring causal relationships remains difficult in large, complex systems. For example,
in computational biology, understanding how genes influence one another through gene regulatory
networks is crucial for understanding cellular development and homeostasis. Recent biotechnological
advances now enable high-throughput perturbation experiments, providing measurements of gene
expression across thousands to millions of cells under various interventions, providing exciting new
data for inferring causal relationships in the cell.

However, existing causal discovery methods fall short when applied to inferring a gene regulatory
network from high-throughput perturbation data. Many approaches cannot scale to the large number
of variables in the gene regulatory network (more than 20,000 genes) or the large number of samples
(10* — 106 cells). Very noisy data, correlated causal edge probabilities, and interventions with
unknown targets (such as drug treatments) pose additional challenges. While approximate Bayesian
methods offer the advantage of uncertainty quantification (a crucial property for noisy biological data),
they typically struggle to scale to problems of this size. Although prior work has addressed some
of these issues in isolation, no existing method satisfies all the requirements simultaneously. There
remains a need for new causal inference approaches that are scalable, uncertainty-aware, and capable
of jointly learning causal gene relationships and intervention targets from large-scale single-cell drug
or growth factor screens.

To address these challenges, we develop Amortized Bayesian Causal Discovery of Extended Factor
Graphs (ABCDEFG). Our key idea is to represent causal structures using extended factor graphs,
where feature nodes and intervention nodes are connected through auxiliary factor nodes. This
extended factor graph formulation enables accurate and scalable distributional estimation of causal
DAGs, while incorporating interventions with unknown targets and guaranteeing acyclicity. Moreover,
it supports joint modeling of edge probabilities as coupled random variables, capturing complex
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Table 1: Summary of the proposed and existing approaches. Max nodes and samples indicate the size
of the largest dataset evaluated in the original publication.

Method DAG Graph Guaranteed Intvn  Unknown  Max Max
Uncertainty Model Size Acyclic Data Target Nodes  Samples
NO-TEARS X O(n?) X X X 100 7,466
DCDI X O(n?) X v v/ 100 10°
DAGMA X O(n?) X X X 2,000 1,000
DCD-FG X O(mn) X v X 1,000 87,590
ENCO X O(n?) X v X 1,000 110,000
SDCD X O(n?) X v/ X 4,000 10,500
DeepITE X O(n?) X v/ v 500 10,000
LIT X O(n?) X v/ v 16 32
iSCAN X O(n?) X v v 50 1,000
BaCaDI v/ O(n?) X v v 20 300
ProDAG v/ O(n?) v X X 100 7,466
DECI v/ O(n?) X X X 64 5,000
DP-DAG v O(n?) v X X 100 1,000
VDESP v O(n?) v X X 20 4,200
ABCDEFG (ours) v O(mn) v v/ v 1,000 31,425

dependencies among edges. ABCDEFG also possesses strong theoretical guarantees: we prove that
the mode of the estimated posterior recovers the true causal graph up to an equivalence class.

Contributions. Our core contributions include: (1) we introduce a new parametric model for
sampling extended factor graphs that are acyclic by construction and have explicit intervention
nodes; (2) we develop a variational Bayesian approach for discovering causal extended factor graphs
from interventional data with known or unknown targets; (3) we integrate sum-product networks
into the generative model to flexibly model complex joint distributions over causal edges; (4) we
develop new theoretical results connecting our Bayesian framework to the identifiability guarantees of
score-based methods; and (5) we demonstrate the effectiveness of ABCDEFG on a large-scale single-
cell perturbation dataset, recovering both known and novel gene-to-gene and growth factor-to-gene
interactions.

Related Work. Classical causal discovery methods are typically divided into constraint-based and
score-based methods. Constraint-based methods date back to the 90s when Spirtes & Glymour [24]
proposed the PC algorithm. In contrast, score-based differentiable causal discovery methods have
gained popularity in recent years due to their better performance and computational efficiency. Zheng
et al. [31] pioneered the formulation of causal DAG discovery as a continuous optimization problem
under a linear causal model, using an augmented Lagrangian approach with a matrix exponential
constraint to enforce acyclicity. Lee et al. [15] built on this by designing a polynomical regression
loss tailored and reducing computational cost for gene expression data. Subsequent works improved
performance and expanded the modeling framework. Bello et al. [4] proposed an alternative log-
det function for the acyclicity constraint, resulting in better performance, better-behaved gradient
and faster convergence. Lippe et al. [16] designed an optimization strategy alternating between
distribution and graph fitting and proved convergence to the true graph under specific conditions.

A parallel line of work developed Bayesian methods for causal discovery. Cundy et al. [9] applied
variational inference (VI) to linear Gaussian SEMs. Annadani et al. [3] adopted the NoCurl DAG
model [30] and derived a VI method for the parameters. Charpentier et al. [7] proposed a fully
probabilistic and differentiable DAG model and performs VI by maximizing the ELBO. Geffner
et al. [10] developed a Bayesian method based on a previous probabilistic DAG model [16] and
applied a flow-based generative model for distributional fitting. Thompson et al. [26] proposed a
Bayesian method for DAGs by first pruning a weighted matrix to be acyclic and projecting it onto an
L1 ball. Bonilla et al. [5] designed a differentiable DAG distribution using a continuous relaxation of
permutation [21]. These Bayesian methods tend to be significantly less scalable than the score-based
methods, as reflected in the relatively small datasets used for evaluation.



Under review as a conference paper at ICLR 2026

The methods discussed above focus exclusively on observational data and are not designed to
incorporate interventional data, which is critical for accurate causal discovery in applications such as
computational biology. To address this, a separate line of work has explored causal discovery with
interventions. Brouillard et al. [6] proposed a differentiable method that incorporates observational
and interventional data; guarantees identifiability with known or unknown intervention targets; and
model nonlinear effects using deep neural networks. Lopez et al. [17] used factor graphs to learn a
low-rank approximation of DAGs, a key foundation for our approach. Nazaret et al. [18] proposed a
robust acyclicity penalty loss. Hégele et al. [11] set up a Bayesian framework for causal discovery
with interventional data. Our work is also distinct from intervention target estimation methods, which
can infer the nodes targeted by interventions but cannot simultaneously estimate the causal graph
(e.g., iISCAN [8], LIT [28], and DeepITE [25]). We summarize these and related methods, along with
our own, in Table 1.

2 METHODS

2.1 DEFINITIONS

Our definitions and notation closely parallel previous differentiable causal discovery methods [6],
but we summarize the key points here to make the presentation of our approach more self-contained.
Let X = {X3,...,X,} be a set of random variables. A causal graphical model (CGM) for these
variables consists of a joint distribution and a graph {G = (V, E),p(X)}. G € G (where G is the set
of DAGs) and G and p are related as follows:

p(X) = [[ p(XiXx,)
icV
Here, 7; is the set of parents of vertex 7 in GG. Intuitively, an intervention on a variable modifies
its conditional dependence on its parent. Interventions can be performed on multiple variables
simultaneously; the interventional target for each intervention is thus a set of vertices I C V.

Given a CGM with {G, p(X)}, intervening on targets I modifies p into p!:

p'(X) = [Tp" (Xil Xr) T [ o(Xil X,
i€l gl
Note that the causal sufficiency assumption is implicit in this definition of intervention. The I-
faithfulness assumption ensures that p’ (X;| X,,) # p(X;|Xx,). A hard intervention removes all
dependence on parents, so p’* (X;| X,,) = p'*(X;)

To accommodate multiple interventions, we define an infervention set as T := (I, ..., I,z), where
n? is the number of interventions. Note that the intervention set may include multiple interventions
with the same targets, I; = I;. For convenience, we include the observational distribution in the
intervention set and define it as I; := (). We also abbreviate p’* (X) as p*) (X). The set of joint
distributions induced by a causal graph and intervention set is Mz (G), which we can factorize
according to the Markov property: Mz« (G) := {p"*(X) = []_, p"* (Xi| X;)}

Our goal is to estimate ¢(G; A), a probability mass function (PMF) over G parameterized by a set of
real numbers A. In estimating ¢(G; A), we will make use of f(X;®) and f!(X; ®), density models
of p(X) and p*)(X), respectively, parameterized by a set of real numbers ®.

2.2 FACTOR DIRECTED ACYCLIC GRAPHS (F-DAGS)

Our goal is to build a generative model for DAGs and ultimately a Bayesian framework for inferring
causal DAGs. To do this, we start with a type of graph called a factor DAG (f-DAG), following Lopez
etal. [17]. An f-DAG is formally defined as follows:

Definition 2.1 (Lopez et al. [17]). Given a set of nodes, V, and factors, F', a factor directed
acyclic graph (f-DAG), denoted as (V, F, E), is a directed acyclic graph (V U F, E) where edges
Ec{(ij):ieV,jeForic F,jeV}

Given an f-DAG, we can preserve the connection between any two nodes (factors) by removing all
intermediate factors (nodes) along paths. This results in a node-only (factor-only) graph:
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Definition 2.2 (Lopez et al. [17]). Given an f-DAG, D = (V, F, E), its half-square node graph is
defined as D?[V] = (V,{(i,4) : 3f € F, (i, f), (f,g) € E}), and half-square factor graph is defined
as D*[F] = (F,{(f.9) : 3i € V,(f,1),(i,9) € D}).

Let A be the adjacency matrix of a causal DAG. An f-DAG can be viewed as a Boolean factorization
of A, A=UV.HereU € {0,1}"*™ and V € {0, 1}™*" are binary node-to-factor and factor-to-
node connection matrices. Intuitively, if m < n, the node-only half-square graph of an f-DAG can be
interpreted as a low-rank approximation of the full-rank DAG, and the factors represent groups of
related nodes (modules, topics, etc.). Lopez et al. [17] proved that, with probability exponentially
approaching one, adding incorrect edges to a random graph increases its Boolean rank. Viewing an
f-DAG as a Boolean matrix factorization of the binary adjacency matrix (Fig. 1), this result implies
that the low-rank property of the f-DAG acts as a regularization for graph structure and increases
robustness to noisy edges. This low-rank assumption is common in computational biology [29; 32].

We further extend the f-DAG framework for identifying unknown intervention targets. We model the
effect of each intervention on target nodes via factors. This is a natural abstraction for interventions
whose exact targets are unknown, such as drugs that affect a biological pathway. Suppose Z =
{I,...,I,z} is a set of unknown intervention targets, and W is a n’-by-m binary matrix, where
Wiy, represents whether the k-th intervention targets the j-th factor. We next define extended f-DAGs,
a.k.a. extended factor graphs.

Definition 2.3 (Extended f-DAG). Let D = (V, F, E) be an f-DAG and Z = {I;,..., I,z } be a set
of interventions. Let = = {¢&, k € [n?]} be n® nodes corresponding to the n” interventions. An
extended f-DAG is defined as an f-DAG DT = (V UZ, F, EU ET) where EZ C {(&,1) : 1 € F},
i.e. set of edges from intervention nodes to factors.

2.3 PROBABILISTIC MODELING OF F-DAGS

Generative Model for f-DAGs. A key innovation of our approach is a generative process for
efficiently sampling large-scale f-DAGs that guarantees acyclicity by construction. This eliminates
the need for computationally expensive acyclicity penalties used in differentiable causal discovery
methods, ensures that all sampled graphs are acyclic, and forms the foundation for probabilistic
causal f-DAG inference.

Given a set of n nodes, {v; : i € [n]}, and m factors, {f; : j € [m]}, we construct an f-DAG by
forming a partial order of nodes and factors together and determining the node-to-factor or factor-
to-node edge connection (Fig. 1). Since node-to-node edges are disallowed in f-DAGs (nodes are
only connected via factors), we do not need to explicitly model the relative order between nodes.
Instead, we form a total order of factors, 7 : [m] — [m], such that f 1) < ... < f;(,). They
partition all nodes into m + 1 subsets and each node v; is randomly inserted into one partition, i.e.
3k € [m], fri—1) < vi < fra) orv; < fra)orv; > fr(,). We model this assignment using n
categorical distributions with m + 1 categories, denoted as Y = {Y; : i € [n]}. The second step
determines edge existence, regardless of direction. These edge connection probabilities are related
to a joint distribution of all edge connections. We use a binary matrix B € {0, 1}"*™ to represent
edge connections. Thus, Y contains all the direction information and B contains all the connection
information. Hence, Y and B uniquely determine an f-DAG, and we can generate an f-DAG by
sampling Y and B (Fig. 1).

Sampling Independently or Jointly Distributed Causal Edges. Using the above generative process,
we can infer a causal DAG by optimizing a score function with respect to Y and B. But what is the
best way to sample Y and B? One possibility is to model the edges as independent Bernoulli random
variables sampled using the Gumbel softmax trick [13]. However, such a naive approach neglects
possible correlation between edges. A more general approach is to model the joint distribution of
edges using a sum-product network (SPN) [20; 23]. SPNs combine sum and product operations over
latent variables, enabling flexible sampling from a categorical joint distribution (see Appendix A for
further details). We implemented and evaluated both strategies on real and simulated data.

2.4 BAYESIAN CAUSAL DISCOVERY OF DAGS

A Differentiable Bayesian Framework for Causal Discovery. Let G be the set of all DAGs.
Consider a generative process where a DAG is first sampled from a prior, p(G) with support on G,
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Figure 1: Causal inference using extended factor graphs. (a) Generative process for sampling
extended factor graphs that are guaranteed to be acyclic. Factors are ordered to form partitions,
then nodes and interventions are inserted into partitions. Finally, edges are added from earlier
nodes, factors or interventions to later. Removing factors gives a “half-square” graph with direct
node-to-node and intervention-to-node connnections. (b) An extended factor graph factorizes a
node/intervention-to-node adjacency matrix as a Boolean product of a node/intervention-to-factor
and factor-to-node matrix. ABCDEFG samples edges in these matrices using either independent
Bernoulli random variables or a joint PMF parametrized by a sum-product network.

and a generative model p(X |G, I) under the intervention /. Given empirical observations, we can
obtain a MAP estimate of the causal graph as G* = argmaxg.g p(G|X, I).

Because |G| is super-exponential in n [22], searching through the discrete space is computationally
inefficient for large n. Instead, we resort to continuous optimization. As the true posterior is often
intractable, we apply variational Bayes using a variational distribution ¢(G; A). In this way, we
are able to find G* by optimizing a KL divergence: G* = argming.g K L(q(G; A)||p(G| X, 1)).
In real experimental scenarios, the random intervention is replaced with Monte Carlo sampling,
I, ..., I,z. From our derivation (Appendix B.2), minimizing the KL divergence is equivalent to
maximizing the evidence lower bound (ELBO):
nI
0(6) =argmax Y By xja) [Eaam) [log i) (X16)]] = KL (G G- ()
&5 k=1
This ELBO objective is directly connected to autoencoding variational Bayes [14]. A slight difference
compared to the traditional autoencoding variational Bayes setting is that we treat the causal graph
as a constant during the likelihood calculation, so the expectation is over p(*) (X |G*) instead of
p*) (X). (We provide a detailed derivation of the ELBO in the Appendix.) The posterior can be
estimated by optimizing the ELBO to yield ¢*(G) = pﬁf) (G| X)), assuming enough capacity of the
variational family.

As mentioned in Section 2.2, we can narrow down the search space by considering extended f-
DAGs as a reasonable low-rank approximation of the true causal DAG. In this work, we use either
independent Bernoullis or SPNs as a parametric model for f-DAGs, but the Bayesian framework is
general to parametric DAG models.

2.5 AMORTIZED BAYESIAN CAUSAL DISCOVERY OF EXTENDED FACTOR GRAPHS

With the problem setup in Section 2.4, we now formally introduce our method, Amortized Bayesian
Causal Discovery of Extended Factor Graphs (ABCDEFG). (Note that “amortized” here refers
to using a common inference function in contrast to traditional mean-field variational inference.
Variational autoencoders (VAEs) are a type of amortized variational inference [1].) Given a set of
random variables X = {X : ¢ € [n]} generated via a causal graph G*, we apply a Bayesian method
by estimating p(G| X, I'*) via optimization as described in section 2.4:

z

0 (6) =argmax Y B xja) [Baein [logpl) (XIO)] | = KL (G A)Ip(G)).
&5 k=1
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The key to convert discrete search into continuous optimization is thus to create a differentiable
parametric model for DAGs and estimate the ELBO using Monte Carlo sampling. We assume the
true causal graph is or can be approximated by an f-DAG. Thus, we use either independent Bernoullis
sampled by Gumbel softmax or joint PMF sampled from an SPN to parameterize ¢(G; A).

The model architecture (bottom panel of Fig. 4) consists of an f-DAG parametric model (Gumbel
softmax or SPN) and a VAE for data distribution fitting. The output is a node-to-factor matrix
U € R™ ™ and a factor-to-node matrix V. € R™*", Next, we model the data distribution under
the -DAG as p(X) = [, [T\, f(Z;|Xx,;)9(X;|Zx,)dZ. Here, 7; and 7; are the parent nodes
and factors in the f-DAG. Instead of using separate encoding and decoding functions to obtain the
posterior of each Z; and conditional likelihood of each X;, we follow Lopez et al. [17] and amortize
all conditional distributions into a single encoding and decoding feed-forward neural network. Causal
relations are injected into the VAE via masking operations U; © X and V; ® Z, where Uj is the
j-th column of U, Vj is the i-th column of V and ® denotes the Hadamard product.

When the intervention targets are unknown, the causal discovery problem can be treated as recovering
an extended f-DAG with intervention nodes. Equivalently, our Gumbel softmax or SPN sampling
procedure can be extended to generate an intervention-to-factor matrix W € {0, 1}**™_ The causal
mask operation becomes [U; @ X; W; © I| where I is a one-hot encoding of the intervention. We
can apply the same optimization approach to jointly infer the causal graph and intervention targets.
Extended f-DAGs could also include intervention information such as the dosage of a chemical
treatment, though we did not explore this in detail here.

2.6 IDENTIFIABILITY

We next provide identifiability guarantees for our approach. Our main theorem proves that the
DAG with highest posterior probability (MAP estimate) belongs to the same equivalence class as
the true causal DAG. We use the notion of Z-Markov equivalence from [6]: two DAGs G and
G4 are Z-Markov equivalent if and only if Mz(G1) = Mz (G3). Our theorem relies on the same
four assumptions as previous identifiability results for differentiable causal inference methods [6]:
sufficient model capacity, Z-faithfulness, positivity, and finite differential entropy. This result applies
to any DAG, including half-square graphs obtained from f-DAGs.

Theorem 2.4 (Identifiability via ELBO maximization). Let X be a set of causally related random
variables with a causal DAG G* and T* be a set of interventions with I7 = (). Let G be a subset of
all causal DAGs and q*(G) be an optimal graph distribution from the optimization problem:

sup L(q(G; A)),
q(G;A):supp(q)CG

where

L(q(G; A)) = Eq(g;a) [97-(G)] — BEL(q(G; A)|Ip(G)), B >0,
S7-(C) = sup > By x) loa 4 (X165 @) — NG,
k=1

In addition, assume the following:

1. Sufficient capacity: The set of distributions from our parametric models contains the
ground truth interventional distributions: {p*)(X) : k € [n*']} € Fr-(G*) where
Fr(G*) = {{fP(X|G" @)} : @ € Q(®)).

2. I-faithfulness as defined in [6] (See appendix B, Thm. B.13 for details).
3. Positivity: VG, I, ®, f*)(X|G, I; ®) > 0.

4. Finite differential entropy: Vk € [n*"],

E, @ (x) [log p™ (X)]| < +o0.

If G* € G, then, under the assumptions 1-4 [6] and with a proper 3 > 0, G= arg maxg ¢*(G) is
T*-Markov equivalent to G*.
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Table 2: F1 score and SHD of Scored methods on Nonlinear Targeted Simulated Datasets

METRIC METHOD HARD SOFT SPN SPN
INTVN INTVN HARD SOFT
F1 DCDI 0.19 £0.05 0.25 +£0.07 0.34 +£0.01 0.35 +0.04
DCDFG 0.05 £+ 0.08 0.20 +0.14 0.23 +0.18 0.57+0.14
ENCO 0.10 £0.01 0.10 +0.03 0.25 +0.01 0.23 +0.03
SDCD 0.31 +0.01 0.30 £+ 0.06 0.25 £ 0.02 0.30 £ 0.06

ABCDEFG  0.29 £0.03 0.25 £0.01 0.64 +0.01 0.61 £+ 0.03
ABCDEFG  0.29£0.04 0.21 £0.01 0.61 +0.02 0.60 & 0.02

(SPN)
SHD DCDI 740 & 291 559 & 106 4293 £301 3337 £120
DCDFG 2513 £ 0 900 + 272 2500 + 198 2030 + 125
ENCO 1952 £ 126 1992+ 141 2855+ 177 2896 & 100
SDCD 421 + 77 421 4+ 78 2973 + 72 2793 + 83

ABCDEFG 11144328 1406 £361 2046 +£49 2248 200
ABCDEFG  1125+248 1791 + 249 2206 =+ 81 2228 + 85
(SPN)

The key idea of the proof is that any posterior distribution whose MAP is not Z*-Markov equivalent
to the true causal DAG must have a lower ELBO. Here, we present a sketch proof. See Appendix B.2
for details.

Proof. The proof is by contradiction. Suppose 3G = argmax ¢*(G) that is not Z*-Markov

equivalent to G*. We can create another distribution ¢’ such that ¢/ (G) —¢*(G) = ¢*(G*)—¢ (G*) =
e > 0 and for any other graph G, ¢'(G) = ¢*(G). From algebraic calculation, we have

£(d) - £(q") = ¢ (Sz-(G") = 52-(G)) + BA.
Because Sz- (G*)—S7(G) > 0,33 > 0such that £(¢')— L (g*) > 0. Then, we have a contradiction
about ¢* being an optimal solution to the optimization problem. |

Furthermore, our method can be extended to identify the true causal DAG by replacing the causal DAG
with an interventional DAG (Z-DAG)[27]. Because the derivation is highly similar to that of causal
discovery with known targets, we present the derivation of the ELBO objective and identifiability
results in Appendix Section B.3.

3 EXPERIMENTS

3.1 SIMULATION RESULTS

We simulated data based on the approach of [17]. We further explored the effects of correlations
between edge probabilities, which our approach explicitly models but previous approaches do not,
by constructing an SPN and then sampling from the joint distribution of edges. We also simulated
interventions with unknown targets. To evaluate our method, we benchmarked ABCDEFG on 24
datasets and compared with four SOTA score-based methods: DCDI [6], DCDFG [17], ENCO [16]
and SDCD [18]. The 24 datasets include eight types of SEMs — a combination of (1) linear vs.
non-linear causal effects, (2) independent vs. jointly distributed edge probabilities, and (3) hard vs.
soft interventions. Each simulated graph includes 100 nodes and 10 factors. We simulated three
separate graphs for each type of SEM. Similar to previous studies, we report Structural Hamming
Distance (SHD) and F1 score for edge prediction. We used consistent hyperparameter settings for
ABCDEFG across all simulations (Appendix C.3). ABCDEFG significantly outperformed all other
approaches on graphs with nonlinear causal effects and edge probabilities that are jointly distributed
and sampled from an SPN (Table 2). ABCDEFG performed similarly or better than SOTA methods
on nonlinear SEMs, though SDCD showed strong performance in the nonlinear, non-SPN setting (Fig.
5). We also found that the other methods frequently produced cyclic graphs that required heuristic
pruning to obtain a final DAG (Fig. 6, Fig. 7).
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Table 3: F1 score and SHD of ABCDEFG on Nonlinear Untargeted Simulated Datasets

METRIC METHOD HARD SOFT SPN SPN
INTVN INTVN HARD SOFT

F1 ABCDEFG 0.23+£0.01 0.23+£0.05 0.22+0.06 0.46+0.03
ABCDEFG 0.20£0.02 0.17£0.02 0.28+£0.04 0.55+0.05
(SPN)
ABCDEFG 0.36 £0.01 0.38+£0.01 0.46+0.10 0.85+0.02
INTV.
ABCDEFG 0.35+£0.01 0.35+£0.02 0.51+£0.01 0.84+0.01
(SPN) INTV.

SHD ABCDEFG 857 + 112 1121 £ 261 3067 £ 56 2632 £+ 217
ABCDEFG 1076 326 1399 + 342 3132+ 148 2307 + 239
(SPN)
ABCDEFG 1659 4240 1426 =346 2584 + 440 1021 £ 56
INTV.
ABCDEFG 1761 =204 1516 =280 2438 £ 187 1071 £ 71
(SPN) INTV.

We next evaluated how ABCDEFG performs for interventions with unknown targets, a key advantage
of our approach. To test target identification, we generated causal graphs but withheld the intervention
target information during inference. SDCD, ENCO, and DCDFG cannot incorporate interventions
with unknown targets. Although DCDI can in principle identify both causal relations and unknown
intervention targets, we excluded it from this evaluation because it required extremely long runtimes
and showed poor performance in the easier targeted case. In addition to SHD and F1 of the causal
graph, we evaluated the accuracy of the intervention-to-node graph (Table 3). The accuracy of inferred
node-to-node relationships was lower compared to interventions with known targets, indicating that
causal inference is more challenging under unknown interventions. Nevertheless, ABCDEFG
inferred the intervention targets more accurately than the node-to-node causal relationships, achieving
relatively high precision and recall, particularly for SPN-simulated graphs.

We also benchmarked ABCDEFG against SOTA Bayesian causal inference methods: BaCaDi [12],
ProDAG [26], DECI [10] and VI-DP-DAG [7]. These methods required significantly longer runtimes
than the score-based approaches, so we used smaller datasets with 16 nodes and 260 samples.
ABCDEFG and ProDAG were significantly faster than the other Bayesian approaches (see Table 14).
For each method, we sampled 100 graphs from the posterior after training. ABCDEFG outperformed
the other methods by achieving the highest F1 score and the lowest SHD across four different linear
and nonlinear settings (Table 4). We also evaluated the posterior calibration of each method by
comparing the expected and predicted edge probabilities. The posterior estimated by ABCDEFG
showed the best match between the predicted edge probability and empirical estimation (Fig. 2a).

3.2 APPLICATION TO REAL CELLULAR PERTURBATION SCREEN

We applied our model to a large-scale single-cell perturbation screen in which cells were treated with
46 combinations of 14 growth factors [2]. Growth factors are biomolecules that induce significant
molecular changes through signaling pathways and are used to steer cells toward desired cell types
in the dish. Though some downstream targets of growth factors are known, the targets are highly
context-specific. The raw data contains gene expression counts for 34,469 genes in 31,475 cells.
Following standard preprocessing steps for this type of data, we extracted the 1,000 most highly
variable genes for causal graph inference. We used 10 factors in our model. To evaluate intervention
target identification, we collected (growth factor,gene) pairs from the Gene Ontology and used these
true positives to calculate recall. We cannot calculate precision because the full signaling network
is unknown, so true negatives are not available. As a baseline model, we compared against random
factor graphs with the same edge density as the graphs inferred by ABCDEFG. ABCDEFG achieved
a recall of 0.325 (Basic) and 0.376 (SPN), significantly better than the baseline model (recall: 0.196).
Second, we evaluated data reconstruction on held-out interventions. Both DCDI and ENCO failed to
run on the real data. The remaining approaches DCDFG and SDCD cannot incorporate interventions
with unknown targets, so we treated the data as observational when training them. We held out four
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Table 4: F1 score and SHD of Bayesian methods on Simulated Datasets with 16 Nodes.

METRIC METHOD LINEAR LINEAR NONLINEAR NONLINEAR
SPN SPN
F1 BACADI1 0.18 +0.02 0.22 £0.03 0.16 4+ 0.03 0.20 £ 0.03
DECI 0.09 +0.02 0.114+0.01 0.08 = 0.01 0.08 +0.02
VI-DP-DAG 0.20 4+ 0.04 0.20 £0.03 0.13 +0.00 0.21 £ 0.06
PRODAG 0.17+0.01 0.20 £ 0.02 0.16 + 0.03 0.23 £ 0.05
ABCDEFG 0.74 £+ 0.13 0.49 £+ 0.13 0.23 +0.31 0.35 £ 0.24
ABCDEFG 0.40 +0.03 0.24 +0.06 0.13+0.13 0.30 +0.24
(SPN)
SHD BACADI 108.28 £0.95 106.50 £1.49  109.34 £0.82 107.78 £ 0.85
DECI 37.27£0.76 41.89 £5.36 36.75 £4.17 41.88 £4.35
VI-DP-DAG 83.88 £4.32 79.48 +£1.97 86.51 £ 5.35 79.78 £4.28
PRODAG 98.24 £ 1.56 94.79 £ 1.56 81.16 £ 0.60 88.00 £ 2.52
ABCDEFG 12.74 +£5.02 29.25 +3.57 22.14+5.44 27.68 £ 0.88
ABCDEFG 34.40 £ 1.80 43.11 £ 2.86 30.38 £6.76 34.31 £ 3.87
(SPN)
a
] P J—
S ::E:;FG e /,/' -~ ) ;e[:s:i;s':;{l;bmb\as(
c 0.8 — : \E/)ESIP-DAG ./;/'/, response to BMP
.‘EOG, - @  foretrain development
E L L @ ciomorgnicaion

T SPON1 downstream gene

Figure 2: Posterior calibration plot of Bayesian methods and extended factor graph inferred
from growth factor screen. (a) 95% confidence intervals estimated empirically (colored regions)
across the range of posterior edge probabilities for each method. The black dotted line indicates
perfect calibration. (b) Inferred causal edges among interventions with unknown targets (growth
factors; pentagons), factors (circles), and genes (text) are shown. Factor colors indicate gene ontology
terms enriched in the upstream (blue) and downstream (orange) genes. Edges from interventions to
factors are shown in gray arrows, and edges between genes and factors are shown in black arrows.

intervention combinations during training, then calculated the MSE of reconstructed data on these
held-out interventions. ABCDEFG achieved better MSE on the held-out samples (Basic: 0.917, SPN:
0.922) compared with DCDFG (0.957) and SDCD (1.029). Finally, we visualized the causal factor
graph learned by ABCDEFG (Fig. 2b).

4 CONCLUSION

ABCDEFG fills a key gap in the field by enabling scalable Bayesian causal discovery from inter-
ventional data with known or unknown intervention targets. However, we acknowledge several
limitations. First, gene regulatory networks often contain cycles, violating the acyclicity assumption.
Second, the f-DAG approach could poorly approximate a causal DAG when the true graph is high-
rank (or when the number of factors in the f-DAG is too low). Also, our identifiability theorems do
not describe the influence of sample size, though we think that our framework provides a promising
foundation for future efforts to extend identifiability results into the limited data regime. ABCDEFG
opens exciting new opportunities to infer gene regulatory networks and perturbation targets from
large-scale cellular perturbation data.
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5 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide anonymous code for ABCDEFG as a supplementary file.
Details of the sum-product network are described in Appendix Section A. We also describe the
assumptions of our theorems in more detail and provide complete proofs in Appendix Section B.
We describe simulated data generation in detail in Appendix Section C, and details of the real data
preprocessing are given in Appendix Section D.
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A  OVERVIEW OF SUM-PRODUCT NETWORK

Using the generative process we developed for constructing extended factor graphs, we can infer
a causal DAG by optimizing a score function with respect to two binary matrices Y and B. But
what is the best way to do this, given that Y and B are discrete? One possibility is the Gumbel
softmax trick [13], often applied due to its simplicity. For Y, we can parameterize each Y; with
logits 6; and sample Y; using Gumbel softmax. Similarly we can treat each edge in B as a Bernoulli
random variable and sample from Gumbel softmax. However, such a naive approach treats all edges
as independent and neglects possible correlation between edges.

A more general approach is to model the joint distribution of edges in B using a sum-product
network [20]. Two naive ways to sample a binary vector b € {0,1}¢ are (1) sample from a single
categorical distribution over all binary vectors or (2) sample each entry independently from a Bernoulli
distribution. The former involves 2¢ categories, which is impractical for large d, while the latter
neglects dependency between any two entries and lacks expressiveness. In contrast, SPNs provide an
appealing parametric model for B due to their balance between model complexity and expressiveness.

Let B = [By, ..., Bg]T € {0,1}9 be a random binary vector. We applied and extended the algorithm
by Shih & Ermon [23] to construct an SPN to model the joint distribution of B. The construction
of an SPN is analogous to building a neural network by sequentially adding layers. Each layer
contains one type of computation nodes: (1) input node, (2) product node and (3) sum node and
acts as a function of input as shown in Fig. 3a. The SPN starts with singletons {b1},...,{bs}
as an initial partition. Each b; is passed to two input nodes outputting 0 and 1 respectively. Next,
each product layer merges the partitions from the previous layer by creating all combinations of bit
sequences for each merge. When the number of sequences from a merge exceeds a threshold, w, a
sum layer is added to filter out sequences from the previous layer while keeping the same number of
partitions. The merge filter process continues until a single partition remains. Thus, the SPN can also
be interpreted as a deep mixture model whose trainable parameters are the mixture weights of all
sum nodes.

The original algorithm by Shih & Ermon [23] only works when d is a power of two due to recursively
halving the partitions, but we extended it to the general case. To do this, we divide d into powers of
two based on its binary representation: d = Zf:o b; x 2¢. Next, for each b; = 1, we build an SPN
modeling joint PMF of 2° bits. Finally, we apply a product and sum unit to merge the outputs from
each SPN together. The number of parameters in an SPN with a maximum width of w for an f-DAG

mnw?
log w

with m factors and n nodes scales as © ( ), achieving a balance between model size and model

CXpl"eSSiVGIlGSS.

We further provide a theoretical bound on the space complexity of the SPN-FG model we used for
ABCDEFG.

Notation. As introduced in section 2.3, an SPN-FG model contains partition variables Y = {Y; :
i € [n]} and connection matrix B € {0, 1}"*™ parameterized by sum-product networks (SPN). We
use the following notation throughout the derivation.

. n: number of graph nodes.

. m: number of factors.

. [: SPN layer index

. pr: number of partitions in the [-th layer of an SPN

. w: maximum number of bit sequences from a product node.

1
2
3
4
5. w;: number of sum or product nodes in each partition in the [-th layer of an SPN.
6
7. s: Total number of trainable parameters of a single SPN.

8

. S: Total number of trainable parameters of an SPN-FG model.
We define model complexity as the total number of trainable parameters of an SPN-FG. In our

implementation, the joint PMF of either a row or a column of B can be parameterized with a separate
SPN. We consider the case of building an SPN for each row of B, i.e. each SPN models the joint

13
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Figure 3: Hllustration of Sum-Product Network (SPN). (a) Building blocks of an SPN. Top: An
input node encodes a PMF or PDF given an input value x. Middle: A product node generates a
product of input distributions as the output. Bottom: A sum node generates a mixture of input
distributions as the output. (b) An Example of SPN Architecture. Assume inputs are random bits
z1 ...x4. Input nodes generate both 0’s and 1’s for each bit. Next, a product layer merges =1, x5 and
x3, x4 by generating all 2-bit sequences for {x1, 2} and {x3, x4} respectively. Then, a sum layer
downsamples inputs. Finally, a product and a sum layer merge 1, . . ., x4 together and output a 4-bit
sequence.

distribution of connections between one node and all factors. This results in the following general
formula for trainable parameters:

S=n(m+1)+mns )

The first part n(m + 1) represents n categorical distributions with m + 1 categories for modeling Y.
The second part ns represents n SPNs, each having s parameters and modeling a single row of B.
Later, we will see that the space complexity stays the same when we choose to parameterize each
column of B with an SPN. Notice that s is a function of m, n and w. Next, we derive bounds of s.

Special Case. Here, we consider a special case of both m and w being a power of 2. Suppose m = 2¢
and w = 2F. This is also the assumption in the original algorithm by Shih & Ermon [23].

We build an SPN by sequentially adding either a product or a sum layer to the network. The algorithm
by Shih et al. keeps adding product layers until the Cartesian product of two partitions has a size
exceeding the bound w. Here, we further assume w < 2™ because if it’s not the case, the width
bound, w, has no effect and the SPN will be equivalent to a categorical distribution over all 2" binary
vectors. Once the width of an SPN exceeds w, we add sum and product layers alternatingly. Each
sum node constraints the partition size u; to be w, while each product node always combines two sets
of w sequences into w? combinations. That is, we have

spi—1 1< Lo

=14 p1 1> Lol Loodd (sum) 3)
%pl—1 l > Lg,l — Lg even (product)
ul271 l S L()

u; = w > Lo,l — Lg odd (sum) 4)

w? l > Lg,l — Ly even (product)
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Here Ly + 1 is the lowest index of the layer whose partition size exceeds the budget w, i.e. Ly :=
max; u; < w. Using Eq. 3-4, we have u; = 22" when | < Lg. This implies

Lo := max{l: 22 < 2k} — Ly = [logy k. 5)

The trainable parameters of our SPN are the mixture weights of sum nodes and in each sum layer,
the number of sum nodes equals the number of partitions times number of nodes for each partition.
Therefore, the total number of trainable parameters of each SPN equals:

d—Lo—1
§=PLot1 ULot1+ Y, PLotar+1 - ULytar i1 (6)
=1
o dLost
=2t Y g’
=2 oLotl T oLo+itir & 0
=1
_ o2ty 2 1 1
=2 m + muw 9Lot1 ~ 34 8)

From Eq. 5, we have

logo kb —1 < Lo <logy k

k
<:>§<2L0§k

e Jw =25 <2270 <9k — )
By plugging the upper and lower bound in the above inequality into Eq. 8, we have
1 1 2 1
e + maw? —— | <s<muw? - — (10)
2logw 2logw  m logw m
2
—s-0 (mw ) (a1
log w
2
=>S=n(m+1)+ns:®(m"w>. (12)
log w
When each SPN models a column of B instead of a row, we have s = ©( 12;’12”) and hence,

2
S:n(m—f—l)—i—ms:@(mnw >
log w

S_6 <mnw2> .
log w
Now we consider the alternative way of modeling each column of B with an SPN. Then, the total
number of parameters becomes

Finally, we conclude that

S=n(m+1)+ms.

Following exactly the same derivation with m replaced with n, we have each SPN s = ©( gg’;) and

mnw?
log w

the overall m parallel SPNs have a space complexity of S = @ ( ) Hence, we end up with the

same space complexity.

General Case. Because the number of nodes or factors cannot always be a power of two, we would
like to extend the original algorithm by considering any m and n. Again, we first consider building n
SPNs, each modeling the joint distribution of m entries in a row of B. Our algorithm first decomposes
m into its binary representation:

m=> b2 b €{0,1}.

=0
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We build an SPN for each 2¢ entries, and finally use a product unit to concatenate them together -
this comes at a price of not modeling the full joint distribution of all bits, but results in a convenient
implementation and nice properties such as decomposability and smoothness. Denote s(m) as the
space complexity of an SPN with m input bits. In the special case above, we assume the width bound
w < 2™. When w > 2™, the SPN is equivalent to a categorical distribution with a support on all
possible binary vectors. Thus, we have

L +1_ _
s(24) = 22707 ~homtm 4 ma® (2L§+1 - 2%1) w < 2™
2m w > 2™

We assume 2¢ < m < 291 and w = 2’“ Then, we have

Zb $(2") + Liarsk area) W (13)

Here, 1.} is the indicator function. The rlght hand side of Eq. 13 has two parts. The first part is just
sum of all sub-networks. The second part accounts for the fact that Vr < d, the SPN with 2" nodes
already reaches the end with w? combinations and instead of using a single sum node to select one
out of w? nodes, w sum nodes will select one out of every w inputs, and only w outputs come out of
the sum layer. Then, a final layer will select one out of the w outputs to output a single value. On the
contrary, the largest SPN with 27 nodes will also reach the last product layer with w? nodes, but then,
by the algorithm, the w? outputs will go through a final layer with a single sum node to select one out
of w? inputs, so it has w fewer parameters than the other sub-networks with 2" nodes (r < d).

Using the previous result, we can get an upper and lower bound of s(m).

Zb 5(2") + Lorsk A reay - W

> s(2d)

24 1 1
v + 2942 - —
2log, w 2logyw  2¢

T+1 2
S B hw (4 1) —w?. (14)
2log, w 2 log, w
The upper bound depends on Ly = |log, k| because small networks do not need sum layers to
pre-select outputs from product nodes.

%

Zb 5(2") + Lorsk A reay - W

<222+ Z +(d—Lo—1)-w

TL()+1
1
<) 2% 2"w - — d—Lg—1)-
S et
r=Lo+1
2o d+2 Lo+2 w® 2
2

4dm — 21 2
< wllogy logy (w)] + M= 2108z whw 2

Tog, w — (logy(m) — 1 —logy logy (w)) w

+ (logy(m) — logy logy (w))w
(4m — 2log, w)w

Tog, w — (logy(m) — 1 — log, log, (w)) w?. (15)

= wlogy(m) +

Therefore, we have s(m) = ©( 1’;’)‘;”;) and consequently
i—6 (mnw2> .
log w
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B IDENTIFIABILITY OF CAUSAL DAGS BY ABCDEFG

In this section, we will introduce key concepts from existing literature[27; 6; 17] and prove the
identifiability of our method. Previously, Yang et al. introduced the concept of Z-Markov equivalence
as an extension of Markov equivalence. Brouillard et al. proved the identifiability of Z -Markov
equivalent graphs under score maximization. Later, Lopez et al. provided a sufficient condition for
a causal DAG to be unique given its corresponding f-DAG. Here, we extend the theory of causal
discovery of DAGs and f-DAGs showing (1) a derivation of variational Bayes approach to causal
discovery, (2) identifiability of Z-Markov equivalent causal graphs under ELBO maximization and
(3) a sufficient and necessary condition for equivalence between Z-Markov equivalence of f-DAGs
and Z-Markov equivalence of their half-squared graphs.

B.1 THEORETICAL FOUNDATION FOR BAYESIAN CAUSAL DISCOVERY OF FACTOR DAGS

We first introduce concepts about causal discovery and factor DAG as from DCDI Brouillard et al.
[6] and DCD-FG [17].

Definition B.1 (Lopez et al. [17]). Given a set of nodes, V, and factors, F', a factor directed
acyclic graph (f-DAG), denoted as (V, F, E), is a directed acyclic graph (V U F, E) where edges
Ec{(i,j):ieV,je Forie F,jeV}

An f-DAG is a DAG with two different types of vertices, nodes and factors. All edges connect two
vertices of different types. Alternatively, if we represent an f-DAG using an adjacency matrix A, we
can use U and V to represent node-to-factor and factor-to-node adjacency matricies. Then we have
A = U o V where o denotes the matrix Boolean product. Furthermore, we can condense an f-DAG
to a node-only graph as defined below.

Definition B.2 (Lopez et al. [17]). Given an f-DAG, D = (V, F, E), its half-square node graph is
defined as D?[V] = (V,{(i,5) : 3f € F, (i, f), (f,g) € E}), and half-square factor graph is defined
as D*[F] = (F,{(f.9) : 3 € V,(f,1),(i,9) € D}).

A half-square graph essentially keeps all dependency relations between nodes in the original factor
graph. The factors can be interpreted as intermediate nodes on the paths between causally-related
observations. We also note that the mapping from the set of f-DAGs to half-square graphs is an
surjection.

Denote par(-; D) and chd(-; D) as the set of parent and child nodes in any graph D.

Definition B.3. Let G = (V, E) be any graph, Vf € V, the set of unique parents and children
of f are defined as P;(G) = {i : i € par(f;G),chd(5;G) = {f}} and C4(G) :=={j : j €
chd(f; G), par(j; G) = {f}}.

With the above definition, we define a subset of f-DAGs:

Given a set of causally related random variables X = {X1,..., X, } with a causal graph G. A
fundamental assumption of a causal DAG underlying X is the Markov property, which leads to a
factorization of the joint distribution. Here, we denote 7r; as the set of all parents of ¢ in G.

Definition B.4 (Brouillard et al. [6]). Let G = (V, E) be a causal DAG with n nodes and Z* =
{I : k € [l]} be a set of interventions. We define Mz-(G) as the set of joint distributions

factorized according to the Markov property, i.e. Mz-(G) := {{p® : k € [nT"]} : pW(X) =
[T, P (X X, )}

By convention, I; = () represents a pure observational setting.

Based on the definition above, Brouillard et al. [6] defined a type of equivalence relation called
Z-Markov equivalence relation to describe DAG equivalence under interventions.

Definition B.5 (Z-Markov Equivalence [6]). Two DAGs G; and G5 are Z-Markov equivalence if and
only if Mz(G1) = Mz(G3). We denote by Z-MEC(G) as the set of all DAGs which are Z-Markov
equivalent to G.

In the rest of section B, we use the notation ~7 to denote Z-Markov equivalence relation.
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Since we consider the set of f-DAGs, the causal relations between ¢ and j are passed through latent
factors. Denote wiD as the set of parents of a vertex 7(node or factor) in the graph D. Next, we use a
continuous random variable Z = {Z, ..., Z,,} to represent the factors. Then, we have a class of
joint distributions of X and Z produced by an f-DAG.

Definition B.6 (Family of Distributions associated with an f-DAG). Let D = (V, F, E) be an {-DAG
with n nodes and m factors. Then, Mz~ (D) is defined as the set of probabilistic models with the
following form:

Mz-(D) = ¢ (p*(X,2) k€ n" ]} : pM (X, Z) = [ [V (Xl Zp) [T p™ (251 X o0)
i=1 j=1
(16)

where pt*) (X;| X _p) # pM(X;| X, p) ifand only if i € Ij, and p*) (Z;| X p) # pM(Z;| X .p)
i 1 J J
if and only if j € Ij.

The above definition assumes knowledge of the intervention targets. When interventions are unknown,
we are able to extend f-DAGS in a similar way to the Z-DAG introduced by Yang et al.[27]. We first
mention the concept of Z-DAG and then extend it to f-DAGs.

Definition B.7 (Yang et al. [27]). Let G = (V,E) be a DAG and Z = {I3,..., I,z } be a set of
interventions with I;; C V,Vk. An interventional DAG (Z-DAG) is defined as an augmented graph

G =(VUE,EUEY),

where = := {{ : k € [n%]} is a set of intervention nodes representing I, . . ., I and EZ C {(&, i) :
i € Iy, k € [n*]} is a set of edges from interventions to targets.

Definition B.8 (Extended f-DAG). Let D = (V, F, E) be an f-DAG and Z = {[;,...,I,z} be a
set of interventions. Let 2 = {&;, k € [nﬂ} be n? nodes corresponding to the [ interventions. An
extended f-DAG is defined as an f-DAG D¥ = (V UZE, F, E U E!) where EZ C {(&,, f) : f € F},
i.e. set of edges from intervention nodes to factors.

An extended f-DAG is obtained by adding intervention nodes to an f-DAG. Here, we also have
low-rank assumption that interventions causally affects downstream nodes via a small number of
factors. Put in a matrix form, the adjacency matrix of an extended f~-DAG has a low-rank Boolean
matrix factorization as

A= [ ] o1V 0.

Tom . . . . .
where W € R™ *™ is an adjacency matrix representing edges from intervention nodes to factors.

Given the definition of Mz (D) and Z-Markov equivalence, we can further define Z-Markov
equivalence relation between f-DAGs.

Definition B.9 (Z-Markov Equivalence Class of f-DAGs). Given a set of interventions, Z, two
f-DAGs D; and Dy are Z-Markov equivalent if Mz (D) = Mz(D>).

The concept of Mz (D) and Z-Markov equivalence for f-DAGs are just the same as those for DAGs
except for classifying vertices into nodes and factors.

The following theorem regarding the concept of Z-DAG connects statistical independence to graph
structures.

Theorem B.10 (Yang et al. [27]). Two DAGs G1 and G4 belong to the same T-Markov Equivalence
Class (Z-MEC) if and only if their T-DAGs have the same skeleton and v-structures.

Since f-DAGs are one type of DAG, we easily obtain the following corollary.

Corollary B.11. Two f-DAGs D1 and D5 belong to the same T-MEC if and only if their extended
f-DAGs have the same skeleton and v-structures.

Proof. Suppose Dy and D5 have n nodes and m factors. Let G; and G5 be two DAGs obtained by
removing the labeling of node or factor in D; and D». We still keep the bijection between vertices
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and random variables X = {X; : i € [n|}and Z = {Z : j € [m]}. Then, G; and G are Z-Markov
equivalent by Theorem B.10. By the definition of Z-Markov equivalence, we have

Mz(Gy) = p\P(X,Z) =pP (X, Z)Vk
MI(DQ) — D1 € Z-MEC (Dz)

Mz(Gy)
— MI(D1)

The first implication comes from the Markov property (d-separation in graphs implies conditional
independence). The second implication comes from definition of extended f-DAGs. The last
implication comes from the definition of Z-Markov equivalence class of f-DAGs. O

In reality, we can use a single encoder function to get Z; ~ p(fenc(U; © X;0)) and X; ~
P(faee(Vi © X; ®)) to represent the conditional distribution p*)(X;|Z_p) and p*) (Z;| X D).
Thus, we define a second set of joint distributions representing our model capacity.

Definition B.12 (Family of Parametric Distributions associated with an f-DAG). Let D = (V, F, E)
be an f-DAG with n nodes and m factors. Consider two parametric functions fe,. : R® — R™,
parameterized by © € Q(©) and fg.. : R™ — R", parameterized by @ € Q(®). In addition, let U
and V be node-to-factor and factor-to-node matrices of an f-DAG D. Then, Fz- (D) is defined as
the set of probabilistic models with the following form:

m

Fr-(D) = {fM(X,2) : ke 0" ]} : fP(X, 2) = Hf (XilZp) ] ] 10251 X ep) 0
1
" a7

where [*)(Z;| X 0) = p(fenc(Uy © X)), B (Xi| Z,p) = p(fene(Vi © 2)), [ (Xi| Z,p) #
fY(X;|Z, p)ifand only if i € I and f*)(Z;|X_p) # f(Z;|X,.p) if and only if j € Ij.
i J J

B.2 DERIVATION OF BAYESIAN FRAMEWORK FOR DIFFERENTIABLE CAUSAL DISCOVERY

We present a Bayesian framework for differentiable causal discovery and show that it reduces to score
maximization under a uniform prior over the space of DAGs.

Consider a set of causally related random variables X = {X; : ¢ € [n]} and a random intervention
set I* C [n]. First, we assume the observations are generated from a single causal graph G* via a
generative model p(X |G*, I*). We assume each intervention either removes edges towards targets
(hard) or keeps the same graph structure (soft). Thus, the generative model becomes p(X |G*, I*)
under different interventions. When I* is known, we can obtain a MAP estimate of G

G:argmaxp(G|X,I*). (18)
Geg

In order to convert this optimization problem to a differentiable one, we consider a variational
distribution ¢(G) and optimize a KL divergence instead:

G = argmax ¢*(G) where ¢*(G) = argmin K L(q(G)||p(G| X, I")). (19)
G q(G)
Because we have control over ¢(G), finding its mode will be easy.  Directly opti-

mizing KL(¢(G)||p(G|X)) suffers from the intractability problem since p(G|X,I*) =

Z; %ﬁ éj)ﬁ()cpl(g,)l ) and the space of DAGs is super-exponential in the number of nodes. Thus,
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we can derive an alternative objective in the following form:
KL(q(G)[lp(G|X, I"))

G
—EP(XI [ q(G) |:10g G(']ﬁXV)I*):H
q(G)p(X|I*)
= Bpx.17) [E { X|G I*)p (GII*)”
— Eyx.rr) [l0g p(XII) — Ey6) log p(X|G. )] + KL(q(G) [p(GII")]
— manL( (@) || p(G)1 X, I7))

= maxEyx. ) [Bace) logp(X |G, )] = KL(4(G)Ip(GII)]

= max FELBO(G) (20)
9(G)

In reality, p(X, I*) is replaced with an empirical distribution from any dataset. For I*, we can
conduct additional experiments by perturbing some nodes [j in the k-th experiment. For the
empirical data distribution, we assume the data samples are generated from p(X|G*) instead of
p(X). The data samples are not drawn from the marginal over X because we assume a single causal
graph G* underlying the data generative process. We use parametric models f*)(X;|Z_»; ®) and
f®)(Z;| X .p; ©) for distributional fitting and ¢(G; A) for graph fitting. In addition, we need to
add an L1 regularization on G to account for the sparsity constraint. Now the optimization problem
becomes:

nl'

sup > Eyw (x/c) [Eq(iny [log M (X165 ®)] = KL™ (G5 M) Ip®(@)] - N6 @D
T k=1

The objective function is similar to the one proposed in the VAE paper [14] except that we have
a latent space of DAGs instead of a low-dimensional latent embedding. In addition, we assume
interventions change neither the prior graph distribution nor our variational posterior. The objective
can be extended to that of a 5-VAE:

TLI

sup >~ By (xja) [Bagin) [loa /O (X 1G: )] | — BKL(a(G5 A)Ip(G)) ~ NG
k=1

TLZ

=S Ey(Gia) [sup Y Eyeoxiae) [log 1 (X1G5 @)] = NG| ~ BKL(a(G: A)]Ip(@) (22)
k=1

Notice that the score function is under the expectation of ¢(G; A). If we set 8 = 0 and ¢(G; A) =
d(@G), the Dirac delta function, the optimization problem becomes exactly the same as a score
maximization problem as presented in previous score-based methods. The constraint on ¢(G; A)
ensures that ¢(G; A) does not deviate from the prior arbitrarily. Next, we will prove the identifiability
of this Bayesian framework.

Theorem B.13 (Brouillard et al. [6]). Let X = {X1,...,X,,} be a set of causally related random

variables with a causal DAG G* = (V, E) and T* = {I}, : k € [n™"|} be a set of interventions with
I, = 0. Assume the following:

1. The set of distributions from our parametric models contains the ground truth interventional
distributions: {p"™) (X) : k € [n*']|} € Fr-(G*) where Fr-(G*) = {{fF(X|G*; ®)} :
P cQP)}

2. Denote 1 g~ as the d-separation relation in G*. L-faithfulness contains the following two
conditions.

(a) For any disjoint set A,B,C CV, Xa I Xg|Xc = A L¢g- B|C

(b) For any disjoint sets A,C C V and k € [n*"], p)(X 4| X¢c) = pV(Xa|Xo) =
ALz &|C
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3. VG, 1,®, f*(X|G,T;®) > 0.
4. Yk € [nT],

E, i (x) [log p®) (X)] | < 4o00.

Define the score function as

*
nI

52-(@) = sup Y Eymx) [log o (x|G; @)} ~ G
k=1

Then, with a small enough X > 0, we have Sz-(G*) > Sz~ (Q).

The previous theorem claims optimality of the score function when the causal DAG is treated as
a deterministic object. Next, we give a probabilistic view of this optimality. First, we define the
Bayesian score function as follows.

Definition B.14 (Bayesian Score Function). Let X = {X,..., X,,} be a set of causally related
random variables with a causal DAG G* and Z* = {I} : k € [n]} be a set of interventions with
I, = 0. Let p(G) be a prior over DAGs and q(G; A) be a variational distribution. The Bayesian
score function, £(q(G; A)) is defined as

L(q(G;A)) = Eq(gia) [57-(G)] = BKL(q(G; A)[[p(G))
where Sz (G) is the score function defined in Theorem B.13.

Theorem B.15 (Identifiability via ELBO maximization). Let X = {X1,..., X, } be a set of causally
related random variables with a causal DAG G* and T* = {I}, : k € [n%]} be a set of interventions
with Iy = ). Let G be a subset of all causal DAGs and q*(G) be an optimal graph distribution from

the optimization problem:
sup L(q(G; A)),
q(G;A):supp(q)CG

where

L(q(G; N)) = Eq(c;a) [S7-(G)] — BK L(q(G; A)|[p(G)),

z

S7-(G) = sup " By x) log 4 (X165 @)] — NG,
k=1

If G* € G, then, under the same assumptions as those in Theorem B.13, for small enough 8 > 0 and
small enough A > 0, G = argmax ¢*(G) is T*-Markov equivalent to G*.

Proof. We prove this theorem by contradiction. Suppose 3G = arg maxg ¢*(G) such that G o
G*.

Consider another PMF ¢'(G) which has the same support and same mass as ¢*(G) except for
¢ (G*) — ¢*(G*) = € > 0 and consequently, ¢/ (G) — ¢*(G) = —e < 0. Because ¢*(G) > 0, such ¢
exists. By the definition of ¢*, £(¢*) > L(q’). Then, we have

L(q') = £(q")
= [Ey (o) [S7-(G)] = BKL(¢'(G)|Ip(G))] — [Eqg-(q) [S7-(G)] = BEL(q"(G)||p(G))]
=Y (d(G) = ¢"(@)Sz-(G) + BIKL(g"(G)]Ip(G)) = KL(¢'(G)||p(G))]
Geg
= ¢ (826" - 52-(&)) + BIKL(g"(@)p(@) ~ KL (@)]Ip(C)]. 23
By Theorem B.13, 3A > 0 such that Sz-(G*) > S7+(G),VG %7~ G*. Therefore, Sz«(G*) —

S7-(G) = A > 0. 1 Y, [KL(¢*(G)||p(G)) — KL((G)|[p(G))] > 0. we already have
L(q") > L(q*). Otherwise, we can pick
eA
KL(¢'(G)]lp(G) — KL(g*(G)[[p(G)))
")

(@)llp
and L(q") > L(g*). Both cases contradict the fact that £(g*) > L(q’). Therefore, we conclude that
G must be a mode of gq. O

0<pB<
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Notice that we add a constraint on the support of ¢(G; A) to account for cases when we have prior
knowledge about the DAG and only need to search over a subset. As discussed below, this applies
when the true causal DAG is a half-square graph of an f-DAG. If we set G to the set of all DAGs, the
constraint will be removed.

ABCDEFG aims at optimizing K L(q(D?[V])||p(G| X)) with respect to a distribution on f-DAGs
instead of DAGs. As long as the adjacency matrix of the true causal DAG can be factorized as a
Boolean product of a node-to-factor and factor-to-node matrices, optimization over f-DAGs guarantees
identifiability of the true causal DAG, as a half-square graph of an optimal {-DAG.

B.3 EXTENSION TO UNKNOWN INTERVENTION TARGETS

Bayesian framework for interventional causal DAG discovery. The Bayesian framework can be
further extended to unknown intervention targets. Consider a set of causally related random variables
X = {X,; : i € [n]} and a random intervention set I* C [n]. With the same assumptions as the
Bayesian framework in section B.2, our goal is to identify the true Z-DAG, (G*)!". Following a
similar argument, we can convert MAP estimation into a continuous optimization problem:

GT = argmax ¢* (GI) where ¢* (GI) =argmin KL (g (GI) Il p(GI|X))
GTegT q(G*)

Alternatively, we can optimize the ELBO as follows:

KL(q (GI)IIP(GIIX))

[Ba
= 0 [E @ P"g )(qGI)(f( >H

= E,(x) [logp(X) — Eygz) [log p(X|GT)] + K L(q(G")||p(G™)] (24)
— mm KL(qg(G*) ||P(GI|X))

= max By 1) [log p(X|G™)] — KL(q(G")|Ip(G"))

= max ELBO(GT) (25)
q(G*)
The optimization problem is exactly the same as the one in section B.2, except that we consider a
distribution over an Z-DAG instead of a DAG. Similar to the derivation of Theorem. B.15, we first
present a theorem from Brouillard et al. [6].
Theorem B.16 (Brouillard et al. [6]). Let X = { Xy, ..., X,,} be a set of causally related random
variables with a causal DAG G* = (V, E) and T* = {I} : k € [n%]} be a set of interventions with
I, = 0. Define the score function as
nI

S(G.T) = sup 3 Eyoox) [log /¥ (X|G,T: @)] — AG| - AnlZ].
k=1

Then, under the same assumptions from Theorem B.13 and with a small enough X\ > 0 and A\ > 0,
we have S(G*,T*) > S(G,T) for any G %1~ G* or L # T*.

In the implementation, the unknown interventions are parameterized by a binary matrix R €

{0, 1}"1”‘ where Rfj = 1 if and only if j € I;. Next, we prove identifiability of our Bayesian
framework.

Theorem B.17 (Identifiability for untargeted interventions via ELBO maximization). Let (1) X =
{X1,...,X,} be a set of causally related random variables with a causal DAG G*, (2) T* = {1}, :
k € [n%]} be a set of unobserved interventions with Iy = () and (3) GT be the set of all Z-DAGs with
nT" interventions. YGT € GZ, define R as the adjacency matrix of intervention-to-node graph. Let
q*(G7T) be an optimal graph distribution from the optimization problem:

sup L(g(G*; )

q(GT;A):supp(q) G~
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where

L(q(G";A)) = Eqia) [S(G,T)] — BKL(q(G*; A)||p(GT)),

nI

S(G.I) = SngEp<k>(X) [log AR qleis ‘I’)} — AG| = Arl|Z].
k=1

If G* € G, then, under the same assumptions as those in Theorem B.13, for small enough B > 0and
small enough \ > 0, \g > 0, for any G* = argmaxsz ¢*(GT), G ~7- G* and T = T*.

Proof. The proof uses a similar technique as in proof of Theorem B.15.

We prove this theorem by contradiction. Suppose G = arg max ¢*(G7) such that G *1« G* or
T +T"
Consider another PMF ¢’(G7) which has the same support and same mass as ¢*(G%) except for
¢ (G — ¢ ((G)T) = q*(GI) ¢(GF) = ¢ > 0. Because ¢*(GZ) > 0, such € exists. By
the definition of ¢*, L(¢*) > L(q'). Then we have

L(d") - £(q")

= [Eq (a7 [S(G,T)] = BEL(¢'(G)|Ip(GT))] = [Eg(om) [S(G,T)] = BEL(q"(GT)[Ip(GT))]

= > (@) = q"(G)S(G.T) + B [KL(¢"(G")|[p(GF)) = KL(¢'(GT)||p(GT))]

Geg”

e(S(6", 1) = S(G. D) + 8 [KL(a" (GP)Ip(GT) — KL(¢'(GT)Ip(GF)] 26)

By Theorem B.16, 3X > 0,Ag > 0 such that S(G*,Z*) >
Therefore, S(G*,Z*) — S(G, 1)
0, we already have £(¢') > L(q*

S(G, )VG;EI* G*orT # T*.
=A>0.IfKL(¢ (G, I)|Ip(G,T)) — KL(¢*(G,T)||p(G,T)) >
). Otherwise, we can pick

eA
KL(¢(G,T)|lp(G,T)) = KL(¢*(G,1)||p(G,T))

0<pB<

and L(q "y > L(q*). Both cases contradict the fact that £(¢*) > L(q’). Therefore, we conclude that
both G ~7. G*and T = T* O

Based on the above results, the proposed model architecture is presented in Fig. 4

C SUPPLEMENTARY RESULTS

C.1 RESULTS ON TOY AND EXTENDED DATASETS

We benchmarked existing methods on simulated data using both SPN-FG and previous f-DAG
simulation method from Lopez et al. [17]. In a preliminary study, we tested all methods on simple
toy datasets simulated with 16 nodes and 2 factors (Table 5). We changed the sparsity penalty in
ENCO but it produced mainly zero adjacency matrix except for one datast with 0.13 F1 score. Hence,
we report zero F1 scores here as a placeholder. Then we extend our experiment to 200 and 500
nodes with nonlinear intervention, to evaluate the performance on larger graph (Table 6). Note that
ENCO and DCDI were too slow and/or required too much memory on larger graphs, so we omitted
them from this comparison. We also evaluate our methods on denser graphs containing 100, 200,
and 500 nodes (Table 7), using targeted and hard interventions. For graphs of 100 nodes, the edge
number increased by 100 edges per graph for the factor graph dataset, and 1,000 per graph for the spn
dataset. In addition to F1 and SHD, we also report the structural intervention distance (SID) Peters &
Biihlmann [19] for score-based and Bayesian methods (Table 9 and Table 10).
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Figure 4: Overview of ABCDEFG. Top Left: Bayesian framework. A prior p with a support
of all DAGs and a variational distribution with a support of f-DAGs. The red star represents the
ground-truth DAG and light blue dots with increasing transparency show an optimization process w.r.t.
the variational distribution. Top Right: Real vs. generated data distribution. Bottom: ABCDEFG
model architecture. Binary matrices U, V, W are sampled from a parametric f-DAG model such
as SPN-FG. Next, observations are masked by sampled causal relations (under Hadamard product,
©) and fed to a VAE model fitting data distribution. Arrows show direction of data flow and back
propagation.
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Table 5: Performance on Simulated Datasets with 16 Nodes. Best performance is in bold text and
second best is underlined.

METRIC METHOD LINEAR (FG) LINEAR (SPN-FG) NONLINEAR (FG) NONLINEAR (SPN-FG)
D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3
SHDJ DCDI 12 4 26 14 12 25 14 7 4 2 28 14
DCDFG 48 33 31 43 43 56 48 18 5 46 36 17
ENCO 27 24 28 28 54 29 27 18 29 37 41 29
SDCD 11 16 3 12 15 5 4 7 6 8 16 5
ABCDEFG 0 0 0 12 0 0 2 12 13 3 12 9
ABCDEFG 0 10 12 5 21 1 26 28 26 22 17 25
(SPN)
F11 DCDI 0.842 0.923 0.678 0.793 0.876 0.679 0.781 0.759 0.935 0.964 0.682 0.774
DCDFG 0.529 0.190 0.644 0.566 0.650 0.509 0.529 N/A 0.915 0.477 0.667 0.691
ENCO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.128 0.000
SDCD 0.825 0.750 0.949 0.818 0.842 0918 0.931 0.759 0.889 0.833 0.795 0.915
ABCDEFG 1.000 1.000 1.000 0.806 1.000 1.000 0.964 0.500 0.800 0.949 0.842 0.857
ABCDEFG 1.000 0.828 0.824 0.912 0.753 0.983 0.675 0.333 0.690 0.718 0.805 0.683
(SPN)

Table 6: F1 score and SHD of Scored methods on Nonlinear Targeted Simulated Datasets with 200

and 500 nodes.

METRIC METHOD HARD SOFT SPN SPN
INTVN INTVN HARD SOFT

F1 DCDFG 0.10 £ 0.03 0.13+£0.03 0.06 £ 0.04 0.40 £ 0.26

(200 NODES) SDCD 0.50 £ 0.08 0.43 £ 0.06 0.16 = 0.01 0.14 £0.01
ABCDEFG 0.52 +0.13 0.49 + 0.07 0.61 +£0.05 0.62 +0.04
ABCDEFG 0.48 £0.13 0.42 £ 0.05 0.62 + 0.04 0.62 £+ 0.03
(SPN)

SHD DCDFG 7678 4+ 1846 4954 + 1147 13901 + 272 10892 + 1959

(200 NODES) SDCD 517 + 38 592 + 16 13634 + 368 13854 + 516
ABCDEFG 657 & 401 583 + 285 8978 + 966 8739 £ 743
ABCDEFG 770 £ 525 583 + 169 8950 + 697 8854 + 565
(SPN)

F1 DCDFG 0.11 £0.10 0.06 £ 0.00 0.07 = 0.04 0.17 £0.10

(500 NODES) SDCD 0.34 +£0.01 0.32 £ 0.00 0.10 £0.01 0.09 £0.01
ABCDEFG 0.56 & 0.00 0.55 + 0.03 0.49 £+ 0.05 0.52 £+ 0.06
ABCDEFG 0.48 +£0.01 0.50 £+ 0.04 0.54 £+ 0.04 0.56 &+ 0.05
(SPN)

SHD DCDFG 22507 £ 17922 25849 £+ 2023 105723 4+ 2134 99553 £+ 6921

(500 NODES) SDCD 1777 £ 180 1849 + 134 105352 4+ 518 105834 + 508
ABCDEFG 1262 £+ 25 1228 + 94 72836 £+ 6061 69401 £+ 7637
ABCDEFG 1562 £+ 50 1340 £+ 132 67007 &= 4940 64650 £ 5395
(SPN)

C.2 AVAILABILITY OF BENCHMARK RESULTS

We conducted benchmark studies on a variety of data simulation settings at a larger scale, with 100
nodes and 10 factors. We classify the simulations by (1) SEM - linear vs. nonlinear, (2) factor graph
model - SPN-FG vs. regular f-DAG and (3) type of intervention (hard vs. soft). We included all
results as csv files in our supplementary material. Each csv file records a metric (precision, recall, f1,
SHD) for all methods run on one type of simulation. The tables summarized in Table 2 and Table 3
show the mean = standard deviation for each dataset type, based on the corresponding experimental
results. Moreover, the benchmarking results for score-based methods on linear datasets are presented
in Fig. 5, as discussed in the main text. In addition, as proof that our model can construct acyclic
graphs by design, we calculated the number of cycles when compared with score-based methods (Fig.
6), as well as the number of edges that would need to be removed to obtain an acyclic graph (Fig. 7).
Both results suggest that the graphs predicted by our model are naturally acyclic.
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Table 7: F1 score and SHD of Scored methods on Nonlinear Targeted Simulated Datasets on dense
graphs with hard interventions.

METRIC METHOD NON LINEAR NON LINEAR SPN

Fl DCDI 0.47 4 0.04 0.34 £ 0.05

(100 NOoDES) DCDFG 0.25 4 0.03 0.11 £ 0.06
ENCO 0.04 =+ 0.00 0.12 £ 0.06
SDCD 0.66 & 0.06 0.35 £ 0.06
ABCDEFG  0.53 £ 0.07 0.69 + 0.04
ABCDEFG  0.43+0.05 0.65 = 0.01
(SPN)

SHD DCDI 475 + 81 3882 + 135

(100 NoDES) DCDFG 1464 + 910 3866 + 98
ENCO 2185 + 223 3982 + 228
SDCD 245 + 30 3283 + 148
ABCDEFG 567 £ 92 1909 + 182
ABCDEFG 770 & 525 2132 + 59
(SPN)

F1 DCDFG 0.18 4 0.06 0.11 4 0.02

(200 NODES)  SDCD 0.42 £ 0.05 0.18 £ 0.02
ABCDEFG  0.56 + 0.08 0.59 £ 0.03
ABCDEFG  0.49 4 0.06 0.60 £ 0.01
(SPN)

SHD DCDFG 6933 + 2978 17035 + 257

(200 NODES) SDCD 885 + 168 16575 + 142
ABCDEFG 932 4 408 9817 + 600
ABCDEFG 1130 & 445 9649 + 104
(SPN)

Fl DCDFG 0.09 £ 0.07 0.03 £ 0.03

(500 NODES) SDCD 0.26 & 0.01 0.10 = 0.00
ABCDEFG 0.33 £ 0.05 0.45 =+ 0.04
ABCDEFG  0.25+ 0.06 0.47 £ 0.03
(SPN)

SHD DCDFG 4298 + 131 118625 = 1433

(500 NODES) SDCD 4294 + 191 114183 + 421
ABCDEFG 6598 + 1804 80315 & 5300
ABCDEFG 866243101 77089 + 3660
(SPN)

C.3 EXPERIMENT SETTINGS

In this section, we report the hyperparameters used in our simulation study. Because ABCDEFG
has many hyperparameters, we did not comprehensively tune each of them. Instead, we fixed
hyperparameters across the same SEM model type. Here, we report some key hyperparameter values.
For the other hyperparameters, our python program contains default values and we used the same
value in all experiments. Table 11 summarizes the most important hyperparameters. In addition, we
unexhaustively tuned the L1 regularization coefficient by trying two different values per simulation
type. We also have a separate L1 regularization coefficient for the intervention-to-node bipartite
graph in simulation with unknown intervention targets.

Table C.3 lists the set of best parameters we chose for each simulation type. For conciseness, we
name a simulation type by a sequence of four attributes: (1) targeted (T) vs. untargeted (U), (2)
canonical f-DAG (FG) vs. SPN-FG (SPNFG), (3) linear (L) vs nonlinear (N) SEM, and (4) hard (H)

wn

vs. soft (S) intervention, separated by “-".
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Table 8: Precision and recall of Bayesian methods on Simulated Datasets with 16 Nodes.

METRIC METHOD LINEAR LINEAR  NONLINEAR NONLINEAR
FG SPNFG FG SPNFG

PRECISION BACADI 0.11+0.01  0.15+0.03 0.10 =+ 0.02 0.13 £ 0.02
DECI 0.11+£0.04  0.17+0.01 0.09 + 0.03 0.12 + 0.04
VI-DP-DAG  0.14+£0.02  0.14 £ 0.03 0.08 £ 0.01 0.15 = 0.05
PRODAG 0.114+0.01  0.1340.02 0.10 & 0.01 0.15 + 0.04
ABCDEFG  0.77+0.05 0.51+0.13 0.31+0.25 0.54+0.12
ABCDEFG  0.374+0.04  0.28 4 0.06 0.17 £ 0.10 0.35+0.19
(SPN)

RECALL BACADI 0.48+0.02 0.51+0.02 0.44+0.01 0.46 & 0.01
DECI 0.07+£0.02  0.09+0.01 0.06 = 0.02 0.06 = 0.02
VI-DP-DAG  0.47+£0.05  0.36 & 0.04 0.30 £ 0.03 0.38 £ 0.07
PRODAG 0.44+0.01  0.43£0.02 0.35 =+ 0.02 0.47 £ 0.06
ABCDEFG  0.74 +0.20  0.48 £0.13 0.23 £ 0.32 0.30 £ 0.23
ABCDEFG  0.44+£0.03  0.24 £ 0.08 0.12 +£0.15 0.29 + 0.26
(SPN)

Table 9: SID of Bayesian methods on Non linear Simulated Datasets with 16 Nodes.

METRIC METHOD NON LINEAR NON LINEAR SPN

SID DECI 65.76 & 34.86 109.32 & 18.75
VI-DP-DAG  83.52 + 35.83 92.19 + 7.59
PRODAG 62.01 + 25.20 90.1 £ 21.78
ABCDEFG  41.93 + 27.27  64.33 + 15.75
ABCDEFG  50.72 & 27.49 70.85 - 24.81
(SPN)

Table 10: SID of score-based methods on Non linear Simulated Datasets with 100 Nodes.

METRIC METHOD HARD SOFT SPN SPN
INTVN INTVN HARD SOFT

SID DCDFG 1839 308 1595 + 1418 5860 £ 1662 6976 + 346
ENCO 3668 +£ 864 3722 £ 945 8805 + 221 8899 + 200
SDCD 2189 616 2224 + 1009 6843 + 504 6858 + 381
ABCDEFG 1005 4 327 771 4 438 4615 1+ 681 4710 £ 694
ABCDEFG 809 =510 671 + 414 4724 + 595 4783 £ 594
(SPN)

C.4 TIME AND MEMORY CONSUMPTION

All simulated datasets with known intervention targets contain 25k samples and those with unknown
intervention targets contain 30k samples. With a batch size of 128, we were able to train our model on
a server with 2 2x 2.9 GHz Intel Xeon Gold 6226R, 16 GB of RAM and an NVIDIA A40 GPU with
48GB of memory. The training time of ABCDEFG is shown in Fig. 8. Since datasets are of similar
sizes, the training time is stable across different simulations. Training ABCDEFG with SPN-FG
consumes more time due to a larger number of parameters and extra time for forward and backward
through the network layers. The benchmarking of Bayesian methods was conducted on datasets with
16 nodes. The training times for the different methods are shown in Table 14. All methods, except
BaCabDi, were run on an NVIDIA A40 GPU with 16GB of RAM. (No GPU implementation was
available for BaCaDi.)
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Table 11: Default Hyper-Parameter Setting of ABCDEFG in a Simulation Study.

PARAMETER NAME DEFAULT VALUE
BATCH SIZE 128
HIDDEN DIMENSION 1000
NUMBER OF EPOCHS 1000
NUMBER OF HIDDEN LAYERS 1
WIDTH BOUND OF SPN (MAX_COPIES) 8
LEARNING RATE (VAE) 5x 1074
LEARNING RATE (F-DAG MODEL) 5x 1073
KL D1v. COEFF. (3) 1x 1078
GAUSSIAN NOISE LEVEL 0.05
VAE WEIGHT L2 REG. 1x1073
LATENT FACTOR PRIOR N(0,107%-1)
ABCDEFG ABCDEFG-SPN
0.5
~ 0.8
<04 T
- 1
0.6
i 0.3 T T
o
E 0.2 T 0.4
£
T Y S I
Fol T |02 T 1 L
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Figure 8: Training Time of ABCDEFG. Each box represents one type of simulation. We groups
simulation regarding the ground truth graph type and known vs. unknown intervention targets. We
use the suffix “-T" for known intervention targets and “-U" for unknown ones.
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Table 12: Hyper-Parameter Setting of ABCDEFG in a Simulation Study.

SIMULATION TYPE L1 REG. L1 REG. (INTV.)  ACTIVATION FUNCTION SPN PARALLELISM
T-FG-L-H 0.1, 0.1 N/A IDENTITY NODE
T-FG-L-S 0.01, 0.01 N/A IDENTITY FACTOR
T-FG-N-H 1.0, 1.0 N/A TANH FACTOR
T-FG-N-S 0.01, 0.001 N/A TANH NODE
T-SPNFG-L-H 0.01, 0.01 N/A IDENTITY NODE
T-SPNFG-L-S 1E-4, 1E-4 N/A IDENTITY NODE
T-SPNFG-N-H 0.01, 0.01 N/A TANH NODE
T-SPNFG-N-S 1E-4, 1E-4 N/A TANH FACTOR
U-FG-L-H 0.01, 0.01 10.0, 10.0 IDENTITY NODE
U-FG-L-S 1E-4, 1E-4 10.0, 10.0 IDENTITY NODE
U-FG-N-H 0.01, 0.01 10.0, 10.0 TANH NODE
U-FG-N-S 1E-4, 1E-4 10.0, 10.0 TANH NODE
U-SPNFG-L-H 1E-6, 1E-6 0.1,0.1 IDENTITY FACTOR
U-SPNFG-L-S 1E-7, 1E-7 1.0, 1.0 IDENTITY NODE
U-SPNFG-N-H 1E-6, 1E-6 0.1,0.1 TANH FACTOR
U-SPNFG-N-S 1E-8, 1E-7 1.0, 1.0 TANH NODE
Table 13: Literature Overview
METHOD UNKNOWN TARGET  LIKELIHOOD DAG PENALTY SPACE DAG GUARANTEE
IDENTIFICATION COMPLEXITY COMPLEXITY COMPLEXITY BY CONSTRUCTION
DCDI PARTIAL O(n?) O(n®) O(n?) No
DCDFG No O(mn) O(mn) O(mn) No
ENCO No O(n?) N/A O(n?) No
SDCD No O(n?) O(n?) O(n?) No
ABCDEFG YES O(mn) N/A O(mn) YES
Table 14: Time usage on Simulated Datasets with 16 Nodes.
METHOD LINEAR LINEAR NONLINEAR NONLINEAR
FG SPNFG FG SPNFG
BACADI 1704.56 + 33.70  1405.64 £ 277.53 1265.71 £35.65 1435.08 + 20.63
DECI 987.81 +5.72 985.27 +1.64 994.50 + 0.91 991.40 + 0.30
VI-DP-DAG 764.77 & 255.60  245.63 £ 132.17  501.51 +328.49 302.64 + 180.52
PRODAG 79.37+0.76 79.99 + 2.34 N/A N/A
ABCDEFG 82.60 £ 24.36 65.95 + 24.61 70.51 + 34.89 106.71 £ 68.05
ABCDEFG (SPN)  138.64 + 37.63 67.63 £+ 32.89 136.17 £52.82  177.71 £+ 154.83

D PREPROCESSING SINGLE CELL PERTURBATION DATA

The data used for single cell perturbation is downloaded from Amin et al. [2] and we followed the
preprocessing steps described by Lopez et al. [17]. For each untargeted perturbation, we removed the
description words like *high’,’low’, early’ eta, and only retain the name of each biomolecule as the
perturbation. We used scanpy to select the top 1000 highly variable genes as input of our model, and
used 10 factors. We performed gene ontology analysis using the online tool at the Gene Ontology
Website.
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E LARGE LANGUAGE MODELS (LLM) USAGE STATEMENT

We use LLM as a tool for assisting paper writing and sentences polishing, and not for generating or
contributing ideas related to this paper.
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