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Abstract
DiLoCo is a powerful framework for training
large language models (LLMs) under networking
constraints with advantages for increasing paral-
lelism and accelerator utilization in data center
settings. Despite significantly reducing communi-
cation frequency, however, DiLoCo’s communi-
cation steps still involve all-reducing a complete
copy of the model’s parameters. While existing
works have explored ways to reduce communi-
cation in DiLoCo, the role of error feedback ac-
cumulators and the effect of the inner-optimizer
on compressibility remain under-explored. In this
work, we investigate the effectiveness of standard
compression methods—including Top-k sparsifi-
cation and quantization for reducing the communi-
cation overhead of DiLoCo when paired with two
local optimizers (AdamW and Muon). Our exper-
iments pre-training decoder-only transformer lan-
guage models (LMs) reveal that leveraging Muon
as the inner optimizer for DiLoCo along with an
error-feedback accumulator allows to aggressively
compress the communicated delta to 2 bits with
next to no performance degradation. Crucially,
MuLoCo (Muon inner optimizer DiLoCo) signifi-
cantly outperforms DiLoCo while communicating
8× less and having identical memory complexity.

1. Introduction
It is now well established that increasing the model and
dataset size improves performance of foundation models.
Under this paradigm, training state-of-the-art models is in-
feasible on a single accelerator. Distributed computation
across multiple accelerators is, therefore, required. However,
standard data parallel training incurs communication costs
proportional to the model size at each optimization step. For
large models or slow networks, communication can become

1DIRO, Université de Montréal, Montréal, Canada 2Mila –
Quebec AI Institute, Montréal, Canada 3Concordia University,
Montréal, Canada. Correspondence to: Benjamin Thérien <ben-
jamin.therien@umontreal.ca>.

Efficient Systems for Foundation Models (ES-FoMo) Workshop,
42nd International Conference on Machine Learning, Vancouver,
Canada. PMLR 267, 2025. Copyright 2025 by the author(s)

0.0 0.5 1.0 1.5
Bits Communicated (M) 1e6

3.6

3.7

3.8

3.9

4.0

4.1

4.2

Te
st

 L
os

s

DiLoCo | K=8, H=30, =No Compression
MuLoCo | K=8, H=30, =No Compression
DiLoCo | K=8, H=30, =Quant 2-Bit + EF
MuLoCo | K=8, H=30, =Quant 2-Bit + EF
DiLoCo Final Loss
MuLoCo Final Loss

Figure 1: MuLoCo (Muon inner optimizer) with 2-bit
quantization and error feedback outperforms standard
AdamW-DiLoCo with 8× less communication while hav-
ing identical memory complexity. The figure reports the
test loss (y-axis) measured at each communication step dur-
ing pre-training. The x-axis reports the total number of bits
communicated for a 220M parameter transformer LM. We
use K = 8 workers and H = 30 local steps.

a significant bottleneck, leading to the development of many
communication-efficient training algorithms.

Common approaches to reduce communication costs gen-
erally fall into three categories: those that reduce the fre-
quency of communication, decrease the size of data com-
municated, or combine both approaches. The idea of re-
ducing communication frequency in favor of more local
computation was originally popularized in the context of
federated learning, where it is known as FedAVG (McMa-
han et al., 2017). Local SGD (Stich, 2018) is an equiva-
lent algorithm for non-federated settings. More recently,
DiLoCo (Douillard et al., 2023) (a variant of Local SGD)
has recently gained attention due to its competitive perfor-
mance with data-parallel pre-training of LLMs and larger
effective batch sizes (Charles et al., 2025). Another direc-
tion for reducing communication is to compress the com-
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municated updates (Wang et al., 2023; Ahn & Xu, 2025;
Peng et al., 2024; Vogels et al., 2019). These approaches
are typically combined with an error feedback accumula-
tor (Karimireddy et al., 2019) to persist the information
lost during compression and provide convergence guaran-
tees. Finally, (Basu et al., 2019) and (Douillard et al., 2025)
combine reduced communication frequency with smaller
communication sizes, but neither studies compression with
error feedback in the context of LLMs pre-training nor do
they consider the influence of the local optimizers updates
on compressibility.

Table 1: Memory complexity of DiLoCo and MuLoCo
with and without Error Feedback (EF) accumulators.
We only report the memory required to store accumulators.
OuterOpt is SGD with Nesterov Momentum.

Algorithm InnerOpt Mem. InnerOpt Mem. OuterOpt

DiLoCo AdamW 2× parameters 1× parameters
DiLoCo + EF AdamW 3× parameters 1× parameters
MuLoCo Muon 1× parameters 1× parameters
MuLoCo + EF Muon 2× parameters 1× parameters

Recent works (Jordan et al., 2024; Liu et al., 2025; Shah
et al., 2025) have demonstrated that Muon has the potential
to replace AdamW as the de facto optimizer for pre-training
LLMs. Given that Muon’s orthogonalized updates are qual-
itatively different from those of AdamW, we hypothesize
that, beyond its improved convergence, Muon may offer
additional advantages in terms of compressibility. Given
the potential of muon to be a powerful inner optimizer for
DiLoCo and the absence of existing studies using com-
pressed DiLoCo updates with error feedback, we set out to
fill the gap. Specifically, we systematically compare variants
of DiLoCo using different compression schemes (quantiza-
tion, top-k sparsification, and more in the appendix) with
and without error feedback terms and with different local
optimizers: AdamW and Muon. Our contributions can be
summarized as follows. When pre-training a 220M parame-
ter transformer language model:

• We demonstrate error feedback consistently im-
proves performance for top-k sparsified and quantized
DiLoCo updates,

• We show that MuLoCo consistently converges faster
than and to a lower loss than DiLoCo with and without
compression, and

• We demonstrate that MuLoCo is more resilient to ag-
gressive quantization than DiLoCo: when using 2-bit
quantization and error feedback, MuLoCo reaches a
lower loss than vanilla DiLoCo in the same number of
steps while communicating 8× less.

2. Background
DiLoCo. DiLoCo (Douillard et al., 2023) is a distributed
optimization algorithm, which circumvents the need for
communicating across all K workers when taking optimiza-
tion steps. Instead, it takes H local gradient descent steps
on each worker before communicating among them. The
difference between DiLoCo and its earlier variants, feder-
ated averaging (McMahan et al., 2017) or Local SGD (Stich,
2018; Lin et al., 2018), is the choice of the inner and outer
optimizer. While earlier works locally performed SGD and
averaged parameters during communication, DiLoCo pro-
poses to use AdamW (Loshchilov & Hutter, 2019) as the
inner optimizer and SGD with Nesterov momentum as the
outer optimizer. In the context of LLM pre-training, this
has been shown to scale to very large numbers of local
steps (H > 500) (Douillard et al., 2023) and large mod-
els (Charles et al., 2025; Jaghouar et al., 2024). We outline
the original DiLoCo algorithm in algorithm 1 of the ap-
pendix.

Compressed Local Updates. Existing works have explored
many different compression schemes for neural network gra-
dients and parameters. We will now introduce how schemes
studied herein work when applied to a single matrix-valued
parameters W ∈ Rm×n:

• Quantization involves mapping the entries of W to a
much smaller representable range, such that they can
be efficiently encoded using an offset and a limited
number of discrete levels from a codebook. The num-
ber of bits determines the size of the codebook, while
the codebook itself defines the quantized values used
to approximate entries in W .

• Top-k sparsification involves keeping the k% largest
magnitude entries of W . The remaining entries are set
to 0 and are not communicated. Note that one must still
communicate the sparsity pattern (Wang et al., 2023).

Muon (Jordan et al., 2024) is a newly proposed optimizer
that has shown promising results outperforming AdamW
for training MoEs and dense transformers (Liu et al., 2025;
Shah et al., 2025). Muon maintains a single momentum ac-
cumulator, m, and computes its parameter update by first ap-
plying the newton-shulz algorithm (Björck & Bowie, 1971;
Kovarik, 1970) to orthogonalize m before re-scaling by the
learning rate. It has been shown that this procedure approx-
imates UV T , where UΣV T = m is the Singular Value
Decomposition of m (Bernstein, 2025). Since the commu-
nicated delta, ∆, in DiLoCo is a sum of subsequent inner-
optimizer updates, the distinctly different update structure
of Muon may result in improved or degraded performance
under different compression schemes.
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Figure 2: Error feedback ablation for MuLoCo v.s. DiLoCo with compressed updates. We vary the strength of the
(LEFT) Top-k sparsification (1 − 50%) and (RIGHT) Quantization (2,4, and 8 bits). EF designates runs using error
feedback. The dashed lines report the final performance of the no-compression baseline (16-bit floats). We observe that EF
consistently improves performance and that MuLoCo’s advantage over DiLoCo improves as quantization increases.

3. Method
In this work, we make three methodological changes to the
DiLoCo framework, which lead to communication savings
over standard DiLoCo. The changes are highlighted with
blue text in algorithm 1. Specifically, we change the inner
optimizer (line 11), apply a compression function C to the
communicated update (line 19), and experiment with using
an error feedback EMA (lines 15-17).

DiLoCo algorithm We provide a detailed description of
the DiLoCo algorithm and our modifications to it in Algo-
rithm 1. The total number of outer steps is marked as N . At
each outer step n, all workers will send the momentum of
the compressed delta to the outer optimizer to update the
model parameters using SGD with Nesterov Momentum. In
the inner optimization phase, each worker k ∈ [K] first sam-
ples data from their assigned shards, Dk, and then utilizes
the inner optimizer to perform local updates to the model for
H steps. This significantly reduces the frequency of commu-
nication. After completing local optimization, each worker
computes it delta, the difference between the model parame-
ters before and after the local steps ∆i = θ(t−H) − θt

i . We
then apply error feedback and compression to ∆i.

4. Empirical Evaluation
Our goal is to study, in the context of language model pre-
training, (1) the performance of DiLoCo with Muon and
AdamW inner optimizers, (2) the performance of error feed-
back accumulators for improving DiLoCo training with
compressed updates, and (3) establish the effect of the inner
optimizer on compression. To achieve this, we construct a
systematic empirical study by borrowing the setup and most
of the hyperparameter configuration from Scaling Laws for

DiLoCo (Charles et al., 2025) at the 180M model size and
(K = 8) workers. Leveraging this base setup, described in
more detail below, with additional hyperparameter tuning
when needed, we very the inner optimizer, compression
mechanism, and ablate the use of error feedback.

Evaluation Task We select the relatively, small-scale 180M
transformer language modeling task with K = 8 workers
from (Charles et al., 2025) to make it tractable to run hy-
perparameter sweeps and a large-scale empirical evaluation.
Following (Charles et al., 2025), we use a post-LN trans-
former with hidden dimension 1024, 12 hidden layers, and
16 attention heads; a global batch size of BG = 218 tokens
(see Figure 14 of (Charles et al., 2025)); H = 30 local
steps; and a compute optimal 3.6B total tokens resulting
in 13, 733 total steps and T = 458 communication steps
with the setting of BG and H . Unlike (Charles et al., 2025),
we do not use KQ norm in our transformer; nor do we use
Z-loss; we employ a slightly larger GPT-2 tokenizer mean-
ing our model size is actually 220M parameters (but we
keep the 3.6B total tokens); we use a sequence length of
512 to save memory; we decay the learning rate to 0.1×
the maximum value; and we pre-train on the FineWeb-EDU
dataset (Lozhkov et al., 2024).

Hyperparameter tuning Due to the slight deviations from
the setup of (Charles et al., 2025), all optimizers have their
learning rates (η), inner learning rates (ηin), and error feed-
back beta (β) tuned on our full pre-training setup. The
results of our hyperparameter search across DiLoCo and
Data Parallel baselines is reported in the appendix 3. In sum-
mary, we sweep 8 learning rates for data-parallel training
and over 16 for DiLoCo configurations. All hyperparam-
eters are swept on a configuration with no compression,
except for the error feedback beta, whose value is swept
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using C = 10% Top-k compression + 4-bit quantization.
Other optimizer-related hyperparameter choices are clarified
below.

DiLoCo (InnerOpt AdamW) We use AdamW as a base-
line inner optimizer for DiLoCo. We set the weight decay
λ = 7.2−5 for all experiments. Following (Charles et al.,
2025) we set β1 = 0.9 and β2 = 0.99 for all experiments.

MuLoCo (InnerOpt Muon) We use the Optax (Deep-
Mind et al., 2020) implementation of Muon with a quintic
Newton-Shulz iteration (Jordan et al., 2024). Muon is ap-
plied to hidden layers, while AdamW is used for the embed-
dings and output layers. We set the weight decay λ = 7.2−5

and β1 = 0.9 for both Muon and AdamW. We set AdamW’s
β2 = 0.99. We use Nesterov momentum in Muon.

OuterOpt Following the optimal values found by (Charles
et al., 2025) for AdamW DiLoCo in the the K = 8 workers
180M parameter task, we use SGD with Nesterov momen-
tum (β = 0.9, η = 0.8) as the outer optimizer for all our
DiLoCo and MuLoCo experiments.

All-Reduce Baselines For each inner-optimizer tested, we
provide the equivalent all-reduce baseline which takes HT
optimization steps with batch size BG. This baseline is data-
matched to the DiLoCo optimizers but requires H times
more communication.

5. Results
The following section reports the results of our empirical
evaluation. Section 5.1 compares DiLoCo to MuLoCo with-
out compression and relative to data parallel baselines. Sec-
tion 5.2 ablates the effect of error feedback when applying
quantization, and Top-k sparsification to DiLoCo updates
with Muon and AdamW inner optimizers.

5.1. MuLoCo vs DiLoCo: InnerOpt Ablation

In this section, we compare MuLoCo and DiLoCo to their re-
spective Muon and AdamW data parallel baselines. All mod-
els use the same amount of data, but MuLoCo and DiLoCo
communicate H = 30 times less. Figure 3 compares the
final performance of the data parallel baselines (dashed
lines) to the training curves of MuLoCo and DiLoCo. We
observe that DiLoCo nearly matches the AdamW data par-
allel baseline, while MuLoCo outperforms it and matches
its Muon baseline. In conclusion, without accounting for
wall-clock time and at the scales tested, Muon is the clear
best-performing local optimizer.

5.2. The Effect of Error Feedback accumulators when
compressing MuLoCo updates

In this section, we ablate the performance of MuLoCo and
DiLoCo when compression is applied during the commu-
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Figure 3: Comparison to Data Parallel baselines. We
report the test loss at communication steps during training
of MuLoCo and DiLoCo compared to their corresponding
Data Parallel baselines (dashed lines). We observe that
MuLoCo matches its data-parallel and that DiLoCo nearly
matches its data-parallel baseline.

nication step (see line 19 in Algorithm1). Specifically, we
study top-k sparsification and quantization (see Sec. 2 for
details of each). Our goal is to study how delta compression
affects the different inner optimizers and establish effect of
error feedback accumulators for each.

Figure 2 (a,b) reports top-k sparsification and quantization
results for MuLoCo and DiLoCo with varying amounts of
compression. We observe that across both subfigures all data
points using error feedback (EF) accumulators outperform
their counterparts without error feedback. Comparing be-
tween data points using error feedback, we observe that for
all percentages of top-k compression MuLoCo consistently
reaches a lower loss than DiLoCo. Tuning our attention to
quantization + EF results, we observe that MuLoCo updates
can be compressed to 2 bits with next to no performance
degradation compared to the 16-bit baseline (dashed line),
while DiLoCo suffers a performance degradation at 2 bits
relative to its 16-bit baseline. Crucially, MuLoCo with 2-bit
compression and EF has the same memory complexity as
DiLoCo without compression, while communicating 8×
less. In summary, we have shown that error feedback is
important for compressing DiLoCo updates and that using
MuLoCo allows unprecedented quantization to 2 bits.

6. Conclusion
In conclusion, we have studied the performance of DiLoCo
with Muon and AdamW inner optimizers under differ-
ent compression schemes and demonstrated that MuLoCo
(Muon inner optimizer) is a practical algorithm for low com-
munication language model pre-training. Our experiments
comparing different local optimizers under varying amounts
of compression revealed that error feedback accumulators
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are important for DiLoCo-style LLM pre-training with com-
pressed deltas. We also found that when using Muon as
the inner optimizer, the deltas can be compressed to 2 bits
with next to no performance degradation. This means that
MuLoCo with error feedback converges to a lower final loss
and communicates 8× less than standard AdamW DiLoCo
while having the same memory complexity.
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A. Algorithm

Algorithm 1 DiLoCo with arbitrary InnerOpt, Nesterov Momentum OuterOpt, and compressed communication with
optional error feedback. Additions beyond or potential modifications to the original DiLoCo algorithm made herein are
colored blue.

Input: N Number of communication steps
K Number of workers
H Number of local steps
{D1, . . . ,Dk} Data shards
θ(0) Initial model
ERROR_FEEDBACK Error feedback flag
β Error feedback coefficient
C Compression algorithm
µ Outer momentum coefficient
ηout Outer learning rate

1: u(0) = 0 ▷ Initialize outer momentum accumulator
2: θ

(1)
i ← θ(0) ∀i ▷ Initialize all local parameter copies

3: t = 0
4: for outer step n = 1 . . . N do
5: for worker i = 1 . . .K in parallel do
6: for inner step h = 1 . . . H do
7: t = t+ 1;
8: x, y ∼ Di

9: L ← fθ(x, y; θ
(t)
i )

10: g
(n)
i = ∇θL

11: θ
(t)
i ← InnerOpt(θ(t)i ,∇L) ▷ Inner optimizer step

12: ∆
(t)
i = θ(t−H) − θti ▷ Compute parameter delta

13:
14: if ERROR_FEEDBACK then
15: E(t)i ← βE(t−H)

i +∆
(t)
i

16: ∆
(t)
i = C(E(t)i ) ▷ Compress delta EMA

17: E(t+1)
i ← E(t)i −∆

(t)
i

18: else
19: ∆

(t)
i = C(∆(t)

i ) ▷ Compress parameter delta
20:
21: ∆(t) ← 1

K

∑K
i=1 ∆

(t)
i ▷ All-reduce Outer Delta

22: u(t) ← µu(t−H) + ηout∆
(t) ▷ Update Nesterov accumulator

23: θ(t) ← θ(t−1) − µu(t) − ηout∆
(t) ▷ Update Model Weights

7
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B. Extended background
In extended experiments, we also compared with the following compression schemes:

1. DCT Top-k (Peng et al., 2024) introduces a novel compression mechanism for the low communication training of
LLMs. Specifically, they first chunk the communicated matrix, W , into n/s+m/s chunks, ci for i ∈ (1, n/s+m/s),
where ci ∈ Rs×s and s divides m and n. Then, they apply a Discrete Cosine Transform (DCT) to each chunk
and apply top-k sparsification to its entries. Finally, the entries are all-gathered by each worker, decoded using the
inverse transformation, and subsequently reassembled. Due to chunking, DCT Top-k sparsification allows using
log2(s) << log2(max(m,n)) bits to encode the top-k indices during communication.

2. Random-k sparsification involves keeping a random k% subset W ’s entries. The remaining entries are set to 0 and
need to be communicated. This scheme has no additional communication overhead as the pattern can be recovered
from the random seed.

C. Extended Empirical Results
We compare top-k to DCT top-k compression 4 and present extended pre-training curves in figures 5 and 5. When
comparing top-k to DCT top-k sparsification, we observe that DiLoCo seems to benefit more than MuLoCo. At 10% and
20% both methods show a small improvement while at 5% top-k is better than its DCT variant for MuLoCo but not for
DiLoCo which still benefits from DCT. At 1% sparsification, Top-k is strictly better than its DCT variant.
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Figure 4: Top-k v.s. DCT Top-k sparsification and random sparsification results. We use DCT compression with a
chunk size s = 128. We observe that DCT compression slightly improves performance for both MuLoCo and DiLoCo at
10% and 20% compared to Top-k. For 5% MuLoCo’s performance degrades while DiLoCo still works well. We observe
that Random-k compression results lead to fast performance deterioration.
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Figure 5: Training curves for Muon DiLoCo with different training curves. We report the training loss for variants of
DiLoCo with different inner optimizers. All hyperparameters were tuned on a setup without any compression, except the
error feedback β parameter. Any non-visible curves that appear in the legend either overlap with another curve or do not
reach low enough loss to be seen.
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Figure 6: Training curves for AdamW DiLoCo with different training curves. We report the training loss for variants of
DiLoCo with different inner optimizers. All hyperparameters were tuned on a setup without any compression, except the
error feedback β parameter. Any non-visible curves that appear in the legend either overlap with another curve or do not
reach low enough loss to be seen.
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D. Extended Litterature Review
In the following section, we review related literature on communication-efficient distributed learning across two main
categories (Sec. D.1, D.2).

D.1. Distributed optimization with local steps

The idea of taking multiple local steps before communicating originated in the context of federated learning (McMahan et al.,
2017), where the algorithm is known as Federated Averaging (FedAVG). The algorithm has since been shown theoretically
and empirically to lead to communication savings (Stich, 2018; Lin et al., 2018). Follow-up works have enhanced the
algorithm by using more sophisticated server-side optimizers (Wang et al., 2019; Joseph et al., 2023; Reddi et al., 2021).
Most recently, works have also studied adaptive client-side otpimizers (Zhou et al., 2024; Douillard et al., 2023; Sani
et al., 2024). Notably, in the context of i.i.d. language modeling, DiLoCo (Douillard et al., 2023) uses SGD and Nesterov
momentum as the server-side optimizer and AdamW on local workers. In follow-up works, DiLoCo has shown the method
scales to much larger workloads and allows for more parallelism than data parallel training (Jaghouar et al., 2024; Charles
et al., 2025).

D.2. Reducing the communication of optimization algorithms

Another approach to reducing communication overhead in distributed training is to reduce the number of bits communicated.
This is typically done by sparsifying (Stich et al., 2018; Shi et al., 2019), quantizing (Alistarh et al., 2017), or computing
low-rank approximations of the gradient (Zhao et al., 2024; Vogels et al., 2019). In CocktailSGD, (Wang et al., 2023)
combine sparsification, quantization, and error feedback (Karimireddy et al., 2019) to achieve substantial communication
reduction for fine-tuning LLMs. In the context of communicate-every-step LLM pre-training, two recent works also apply
compression schemes with error feedback and only all-reduce compressed quantities to lower communication costs (Peng
et al., 2024; Ahn & Xu, 2025). In one of the most closely related works to ours, (Basu et al., 2019) apply top-k sparsification
and quantization to error-corrected moving averages of parameter deltas in the context of local SGD for ResNets. In contrast,
we study this in the context of transformer language models for many more local steps and with multiple different local
optimizers (Muon and AdamW). Streaming DiLoCo (Douillard et al., 2025) is the most closely related work to our own.
Both works share the same goal: to reduce the communication overhead of DiLoCo. The differences are that Streaming
DiLoCo only evaluates a single inner optimizer, AdamW, and they do not consider combining top-k sparsification and
quantization with error feedback.

E. Hyperparameter Selection Details

Table 2: Best hyperparameters found for each optimizer. No value reported means that the hyperparameter was not
swept.

Optimizer Peak LR Min/Max LR Ratio Error Feedback β

DiLoCo 0.0003 0.1 0.7
MuLoCo 0.0026827 0.1 0.9

AdamW Data Parallel 0.0001 – –
Muon Data Parallel 0.01 – –
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Figure 7: Hyperparameter sweeps. We tune Min/Max LR ratio, maximum ηin of DiLoCo and MuLoCo, the learning rate
of the data parallel baselines, We report the final training loss on the y-axis and the log-hyperparameter on the x-axis. Low
communication optimizers uses K = 8 workers and H = 30 inner steps. The global batch size is always Bloc = 262k
tokens. The error correction β is tuned on a setup whose compression algorithm combines top-k and quantization to be
representative of strong but realistic compression.
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Table 3: Hyperparameter sweep values for DiLoCo, MuLoCo, and Data Parallel Baselines. We swept more values for
DiLoCo than MuLoCo since our initial sweep did not show a clear minimum value.

Hyperparameter # Values

DiLoCo
ηin 12 {6× 10−5, 8.14× 10−5, 1.11× 10−4, 1.5× 10−4, 3× 10−4, 4.17× 10−4,

5.79× 10−4, 8.05× 10−4, 1.12× 10−3, 1.55× 10−3, 2.16× 10−3, 3× 10−3}
Min/Max LR ratio 2 {0.05, 0.1}
MuLoCo

ηin 8 {0.001, 1.39× 10−3, 1.93× 10−3, 2.68× 10−3, 3.73× 10−3, 5.18× 10−3,
7.20× 10−3, 0.01}

Min/Max LR ratio 2 {0.05, 0.1}
Data Parallel (AdamW)

Learning Rate 8 {7.4× 10−5, 1.43× 10−4, 2.76× 10−4, 5.33× 10−4, 1.03× 10−3,
1.99× 10−3, 3.83× 10−3, 7.4× 10−3}

Data Parallel (Muon)
Learning Rate 8 {0.0101, 0.0186, 0.0343, 0.0635, 0.1173, 0.2167, 0.4005, 0.74}

Error Feedback
β 5 {0.7, 0.8, 0.9, 0.99, 0.999}

Table 4: DiLoCo Optimizers Hyperparameters.

Description Value

Shared
Total Local Iterations (NH) 13, 740
Total Communication Steps (N ) 458
Number of Local Steps (H) 30
Number of Workers (K) 8
Linear Warmup iters (Twarmup) 1000
Sequence Length 512
Local Batch Size Bloc 64
Gradient clipping 1.0
Decay Cosine
AdamW DiLoCo
Max learning rate (ηmax) 3 · 10−4

Min learning rate (ηmin) 3 · 10−5

Muon DiLoCo
Max learning rate (ηmax) 2.6827 · 10−3

Min learning rate (ηmin) 2.6827 · 10−4

AdamW Data Parallel
Max learning rate (ηmax) 1 · 10−4

Min learning rate (ηmin) 1 · 10−5

Muon Data Parallel
Max learning rate (ηmax) 1 · 10−2

Min learning rate (ηmin) 1 · 10−3

Table 5: Transformer Language Model Hyperparame-
ters.

Description Value

Dense Transformer
Parameters 228, 949, 073
Embedding Parameters 51, 463, 168
Weight tying False
Num attention heads 16
Num layers 12
Hidden size 1024
FFN Hidden size 4096
FFN Activation GeLU
Positional embedding Learned
Vocab Size 50257
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