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Abstract001

Companies like Microsoft Research and002
Google DeepMind have highlighted limita-003
tions in GPTs’ next-word prediction approach,004
such as poor planning, memory, and reasoning.005
GPTs generate text locally without global task006
understanding, struggling with complex logic007
and unseen code generation, as confirmed by008
our code comprehension studies. We propose009
a new heterogeneous image paradigm for code010
encoding, inspired by diffusion techniques in011
image and protein structure generation. This012
approach encodes code globally, combining im-013
age and protein-like structures, avoiding autore-014
gressive constraints. Using a CLIP-inspired015
text-to-code encoder, the model maps text to016
code for various tasks. Trained on 456,360 text-017
code pairs with self-supervised learning, the018
model achieves zero-error predictions, bridg-019
ing text and code encoding spaces. This work020
paves the way for diffusion-based code genera-021
tion, overcoming GPTs’ limitations.022

1 Introduction023

Studies highlight limitations in GPTs’ autoregres-024

sive next-word prediction paradigm. Microsoft025

Research notes GPT-4 lacks planning, memory,026

backtracking, and reasoning skills, often requir-027

ing step-by-step guidance to provide correct an-028

swers despite having sufficient knowledge (Bubeck029

et al., 2023). Google DeepMind adds that GPTs030

struggle in mathematics due to the high cost of031

converting human proofs into a machine-verifiable032

format (Trinh et al., 2024). Rearranging premise033

order can reduce performance by over 30% (Chen034

et al., 2024), and GPT-4 fails to solve IMO ge-035

ometry problems, producing errors and showing036

poor understanding (Bubeck et al., 2023). In sum-037

mary, GPTs rely on a local, greedy process, lacking038

global task understanding.039

Our empirical studies in code understanding040

confirm GPT-4’s limitations under the autoregres-041

sive paradigm. It struggles with complex logic042

and multi-step operations, often generating incom- 043

plete or buggy code. GPT-4 is overly sensitive to 044

prompt phrasing—even semantically equivalent in- 045

puts with different syntax can lead to inconsistent 046

and error-prone outputs. It also performs poorly 047

in matrix operations, frequently introducing new 048

bugs while attempting fixes. While step-by-step 049

guidance can elicit correct answers, indicating suf- 050

ficient training knowledge, the autoregressive na- 051

ture hinders its ability to generate complete, cor- 052

rect solutions for multi-step or matrix operations 053

in one go. These findings align with Microsoft 054

and Google’s observations, highlighting GPT-4’s 055

reliance on prompts, lack of global code under- 056

standing, and inability to handle complex tasks 057

effectively. 058

Diffusion technology has advanced significantly 059

in image generation (e.g., DALL·E 2, Sora) and life 060

molecule modeling (e.g., AlphaFold 3) (Ramesh 061

et al., 2022; Peebles and Xie, 2023; Josh Abramson, 062

2024). Unlike GPTs, diffusion models learn global 063

information and generate outputs (e.g., images or 064

molecules) all at once, avoiding step-by-step lim- 065

itations. Inspired by non-equilibrium thermody- 066

namics, diffusion models, such as CLIP+diffusion 067

(DALL·E 2), create novel, high-quality images 068

from text inputs (e.g., "panda mad scientist mixing 069

sparkling chemicals") (Ramesh et al., 2022; Pee- 070

bles and Xie, 2023; Ho et al., 2020). CLIP, a key 071

component, bridges text and images by embedding 072

them into a shared semantic space, aligning similar 073

concepts (Radford et al., 2021). This enables the 074

diffusion model to generate images from text em- 075

beddings, demonstrating a deep understanding of 076

the input. 077

We propose applying the CLIP+Diffusion tech- 078

nique to code generation to overcome the limita- 079

tions of the autoregressive paradigm. Code shares 080

properties with both natural language and images. 081

Like natural language, code uses tokens and fol- 082

lows grammatical rules, but unlike natural lan- 083
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guage, code has minimal ambiguity and avoids out-084

of-vocabulary (OOV) issues through namespace085

partitioning. This suggests that code generation086

may not need the next-word prediction approach087

used in autoregressive models. Additionally, code088

resembles images in its heterogeneity. Just as im-089

ages are composed of components like colors (e.g.,090

yellow, blue) with variations (e.g., light yellow,091

dark yellow), code consists of components like092

classes, methods, and variables, each containing093

distinct entities (e.g., method 1, method 2). This094

structural similarity makes diffusion models, which095

excel at capturing global information, a promising096

alternative for code generation.097

We propose a transferable pre-training CLIP098

model for code comprehension, serving as the foun-099

dation for high-quality code generation using diffu-100

sion technology and other tasks. To encode code,101

we break away from GPTs’ autoregressive, natu-102

ral language-like approach and introduce a single-103

channel, one-dimensional, heterogeneous image104

paradigm, inspired by image encoding. This aligns105

with the sequential nature of human programming.106

Built-in or common code components (e.g., classes,107

methods, operators) are encoded as fixed numerical108

IDs, with similar entities (e.g., Python’s ‘print()‘109

and ‘len()‘) assigned similar IDs, mimicking pixel110

similarity in images. User-defined components111

have unique IDs within their namespace, with sim-112

ilar entities also encoded similarly. This approach113

avoids out-of-vocabulary (OOV) issues and elimi-114

nates the need for token embeddings, ensuring the115

paradigm mimics images, not natural language. For116

pre-training, we design a code encoder using one-117

dimensional convolution and local pooling, tailored118

to this encoding scheme. Unlike GPTs, which pre-119

dict the next token locally, our encoder iteratively120

learns global code information, enabling a deeper121

understanding of code structure and semantics.122

We validated the proposed method with limited123

data, observing performance improvements as data124

increased. Through ablation experiments, we iden-125

tified optimal model designs. While large-scale126

training and direct application were beyond our re-127

sources, this work aims to offer innovative ideas for128

advancing programming language understanding.129

2 Motivation130

GPTs’ autoregressive paradigm has limitations131

such as lack of planning, working memory, and132

reasoning abilities, hindering their application in133

many areas, including mathematics (Bubeck et al., 134

2023; Trinh et al., 2024). Researchers attribute this 135

to their reliance on local, greedy next-word genera- 136

tion. Our case studies in code understanding with 137

GPT-4 further confirm these limitations. 138

2.1 Cases Studies 139

Lack of ability to handle complex logic. We 140

asked GPT-4 about a code problem involving com- 141

plex logic and multi-step operations, summarizing 142

it as: "We want to train an embedding network with 143

input shape (359, 4), where each of the 359 arrays 144

contains 4 lists, and output an array of the same 145

shape with embedded lists of length n. The label 146

has shape (359,)." Although humans can grasp the 147

problem, GPT-4 provided incomplete and logically 148

flawed code. For instance, GPT-4 misunderstood 149

the desired output shape and incorrectly concate- 150

nated the lists. Additionally, the training process 151

was incomplete, lacking a loop for epochs, and 152

variables were undefined (indicated by red wavy 153

lines). 154

Figure 1: An example of GPT-4 handles complex logic.

Lack of working memory. If we ask the same 155

question again after a few dialogue rounds because 156

we forgot the first answer, GPT-4 will often give a 157

completely different answer. This results in almost 158

all the dialogue rounds being invalid. For example, 159

we repeated the GPT-4 question "How do I use a 160

terminal command to issue a commit that changes 161

more than n files in a repository?" twice, with sev- 162

eral rounds of dialogue in between. GPT 4 gave 163

two different incorrect answers, as shown in Fig. 2 164

(a) and (b) respectively. 165

Overly dependent on prompt format. GPT-4 166

will give different answers to questions with differ- 167

ent formats but the same meaning. For example, 168
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Figure 2: An example of GPT-4 lacking memory.

if we ask "How do I use a terminal command to169

find the commits that change more than n files in170

a repository?" and "How do I use a terminal com-171

mand to find the commits with multiple changed172

files greater than n in a repository? GPT-4 gives173

very different answers as shown in Fig. 3.

Figure 3: An example of GPT-4 over-relying on the
prompt format.

174

Not good at matrix operations. GPT-4 often175

fails to handle matrix operations correctly or intro-176

duces new bugs when handling matrix operations.177

For example, as shown in Fig. 4(a), when we asked178

GPT-4 why the figure (a) code reported an error:179

"ValueError: could not broadcast input array from180

shape (359,1149) into shape (359,)". GPT-4 will181

allow us to modify according to Fig. 4(b). But it in-182

troduces new bugs into the code: ValueError: only183

one element tensors can be converted to Python184

scalars. GPT-4 ignores global correctness and in-185

stead gets stuck in solving local problems.186

Figure 4: An example of GPT-4 is not good at matrix
operations.

Lack of creativity. GPT-4 is not creative. For187

example, if we ask GPT-4 to invent an algorithm188

for predicting earthquakes, GPT-4 cannot provide189

an answer, even if it is to give some ideas for this190

scientific question.191

2.2 Discussion 192

CLIP+Diffusion in Image Understand- 193

ing/Generation can mitigate limitations similar 194

to those of GPTs in code tasks. As illustrated 195

in Fig. 5(a) and (b), CLIP+Diffusion globally 196

comprehends complex text input and accurately 197

generates images with intricate structures. The 198

lines and colors in (a) are intricate and smooth, 199

while the fur and textures in (b) are clearly 200

rendered. This method remains creative and 201

accurate even when the input text’s form varies but 202

the meaning stays the same. As shown in Fig. 5(c) 203

and (d), CLIP+Diffusion creates unprecedented 204

images like panda mad scientist and a cat dressed 205

as French Emperor Napoleon holding cheese, 206

demonstrating its innovative capability. Thus, 207

we believe applying this technology to code 208

understanding/generation could significantly 209

enhance performance in this area. 210

Figure 5: Examples of CLIP+Diffusion can avoid some
limitations similar to GPTs.

Why GPTs Have Limitations in Code 211

Understanding/Generation Compared to 212

CLIP+Diffusion We observed that the CLIP 213

model globally remembers all image information 214

during training, unlike GPTs which predict the next 215

token based solely on previous code. For instance, 216

CLIP learns the global distribution of fur color, 217

texture, and facial feature structure in multiple 218

Shiba Inu images. The image representation 219

corresponding to human-given textual descriptions 220

already contains comprehensive global image 221

information (Ramesh et al., 2022). Diffusion 222

then refines this representation into a high-quality 223

image. However, GPTs, adhering to the next-token 224

prediction paradigm, cannot globally retain fully 225
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functional code information. As illustrated in226

Fig. 1, GPT-4 struggles to generate structurally227

complete code even if it has learned complex228

code snippets. This paradigm also leads to other229

limitations. For instance, GPT-4 may provide230

vastly different answers to the same question asked231

multiple times due to changes in preceding text.232

Similarly, questions with the same meaning but233

different wording may elicit varied responses from234

GPT-4. Furthermore, GPTs’ lack of proficiency in235

handling matrix operations and limited creativity236

stem from their inability to truly understand code.237

Comprehensive code understanding requires global238

learning of code information during training,239

not just local context. We believe that GPTs’240

autoregressive next-word prediction paradigm is241

the root cause of these limitations.242

Why GPTs Use the Autoregressive Paradigm243

for Code GPTs utilize the autoregressive paradigm244

for understanding and generating code primarily245

because it is well-suited for natural language pro-246

cessing. Both code and natural language serve as247

communication tools, with code facilitating human-248

computer interaction and natural language enabling249

human-to-human communication. Both consist of250

token sequences governed by syntax rules. How-251

ever, natural language exhibits greater flexibility252

than code, with word meanings varying across con-253

texts. Thus, understanding and generating natural254

language necessitates rigorous contextual analysis,255

driving GPTs to adopt the autoregressive paradigm.256

This approach ensures semantic correctness by gen-257

erating tokens sequentially, relying on previous text258

at each step. Transformer decoders, employed by259

GPTs, adhere to this paradigm during generation.260

Although Transformer encoders can globally learn261

text information, the decoder focuses on autoregres-262

sive token prediction. We summarize this analysis263

in Table 1, columns 1 and 3.264

Challenges and Solutions in Proposing a New265

Paradigm for Code To overcome the limita-266

tions of GPTs, we propose a structured coding267

paradigm that mimics images, aiming to leverage268

CLIP+Diffusion technology. However, code ex-269

hibits both image-like and natural language-like270

features, posing a challenge. We observe similari-271

ties between code and images in terms of compo-272

nent structure (Table 1, columns 2 and 4). Codes273

consist of entities like classes, methods, and vari-274

ables, akin to image components like colors and275

shapes. This heterogeneity—where an object is276

composed of different types of components—is277

Linguistic Heterogeneous Ambiguous OOV
Image × ✓ × ×
Code ✓ ✓ × Solvable
Text ✓ × ✓ ✓

Linguistic: Is it language?
Heterogeneous: Is it heterogeneous?
Ambiguous: Is it possible to have ambiguity?
OOV: Is it has OOV issues?

Table 1: The similarity of image, text, and code

shared by both. However, code tokens face an 278

out-of-vocabulary (OOV) problem due to their in- 279

finite variety, unlike the finite vocabulary of nat- 280

ural language. This hinders the application of 281

CLIP+Diffusion. If natural language embedding 282

techniques are used, they fail to address this issue. 283

Nevertheless, code entities’ namespaces are often 284

smaller and more scoped than natural language 285

words. Code namespaces are typically related to 286

packages, folders, files, or code snippets, whereas 287

natural language words often span the entire vo- 288

cabulary. By strictly partitioning namespaces and 289

using repeated numbers to encode cross-namespace 290

tokens, we may resolve the OOV problem. This ap- 291

proach leverages the scoped nature of code names- 292

paces to manage token representation effectively. 293

3 Approach 294

3.1 Heterogeneous image paradigm 295

Proposed Heterogeneous Image Paradigm for 296

Code. Given code’s standardized structure, we 297

abandon the autoregressive next-word prediction 298

paradigm and propose a single-channel, one- 299

dimensional heterogeneous image paradigm for 300

code understanding and generation. Both code and 301

images share heterogeneity, composed of various 302

components. We treat code components (classes, 303

methods, variables, operators, numbers, symbols) 304

analogously to image components (colors). Entities 305

within the same code component are represented 306

by similar numerical values (IDs), mimicking pixel 307

values within the same image component. To ad- 308

dress the OOV problem due to numerous tokens, 309

we take several steps: 1)Optional cleanup of code 310

by replacing messy data with placeholders to en- 311

sure accuracy in text-to-code matching. 2)Classifi- 312

cation of tokens into built-in (code library) and user- 313

defined types. 3)Further division of user-defined 314

tokens into namespaces. 4)Representation of built- 315

in tokens by fixed numeric values (IDs). 5)Rep- 316

resentation of user-defined tokens by temporary, 317

reusable values within their namespaces. As illus- 318

trated in Fig. 6(a), a function is depicted as a 2D 319

heterogeneous image, where keywords, variables, 320
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Components ID Range Components ID Range
Keyword 1-35 Built-in Attribute 6930-7960
Built-in Class 36-54 Variable 7961-9999
Class 55-1584 Built-in AttrCall 10000-11270
Built-in Method 1585-2698 Attribute Call 11271-11509
Method 2699-4454 Operator 11510-11554
Built-in MethCall 4455-6128 Number 11555-13811
Method Call 6129-6929

AttrCall: Attribute call, MethCall: Method call.

Table 2: Components and their ID ranges

and operators/symbols are represented by similar321

pixel values in red, green, and yellow, respectively.322

Figure 6: Examples of heterogeneous image.

Abstracting Entity Call Tokens. In addition323

to the process outlined in steps 1)-5), we apply324

the same methodology to tokens representing en-325

tity calls (e.g., method calls or class attribute ac-326

cesses). To minimize the number of these tokens327

and mitigate OOV issues, we abstract them. Specif-328

ically, tokens containing the same entity call (e.g.,329

a_param.strip and address.strip) share the same330

numeric value. We maintain a list for each numeric331

value to facilitate manual lookup of the specific332

token it represents. Using the encoding method333

detailed above, we constructed a Python vocab-334

ulary based on the 456,360 code snippets in the335

CodeSearchNet corpus’s training set1. This corpus336

comprises code snippets and their associated doc-337

umentation comments from various programming338

languages sourced from open-source GitHub repos-339

itories. GitHub initiated and maintains this corpus340

to foster the development of code search and un-341

derstanding technologies. The number of tokens342

and their corresponding IDs vary across program-343

ming languages. For instance, Tab. 2 showcases344

the specific components and their numerical coding345

ranges in Python.346

Color Images vs. Heterogeneous Image Rep-347

resentation Color images are composed of three348

primary colors: red, blue, and green, forming three349

channels. In contrast, the heterogeneous image350

introduced in this paper features a single chan-351

nel, where different components hold equal sig-352

nificance, unlike the hierarchical composition in353

color images.354

1https://opendatalab.org.cn/CodeSearchNet

Sequential Nature of Code Human program- 355

ming involves writing code sequentially. Hence, 356

the dependency between tokens is stronger horizon- 357

tally (left-to-right) than vertically. Consequently, 358

the two-dimensional heterogeneous image is flat- 359

tened into a one-dimensional form, retaining line 360

breaks and spaces as symbols, akin to Fig. 6(b). 361

This structure resembles a biological molecule 362

chain, such as proteins, DNA, or RNA, composed 363

of basic elements and exhibiting heterogeneity. 364

Inspiration from Diffusion Technology Deep- 365

Mind’s application of diffusion technology to pre- 366

dict living molecule structures inspires us to ex- 367

plore its potential in code understanding and gen- 368

eration. A foundational task is designing a robust 369

pre-trained model for text-to-code conversion. 370

Code as a Hybrid of Images and Language 371

Code shares similarities with both images and nat- 372

ural language. The proposed paradigm mimics the 373

numerical encoding of image pixels for code tokens 374

but retains a sequential structure akin to natural lan- 375

guage. 376

3.2 Contrastive Language-Code Pre-training 377

3.2.1 Architecture 378

We propose the Contrastive Language Code Pre- 379

training (CLCP) model, inspired by the Contrastive 380

Language Image Pre-training (CLIP) model (Rad- 381

ford et al., 2021). CLCP jointly trains a code en- 382

coder and a text encoder to predict correct (code, 383

text) pairs in a batch. As shown in Fig. 7, given 384

a batch of N (code, text) pairs, CLCP predicts 385

the correct pairings among N × N possibilities, 386

learning a multimodal embedding space. We use 387

a pre-trained text transformer as the text encoder 388

(Vaswani et al., 2017; Hu et al., 2020), leverag- 389

ing its strengths in natural language understanding 390

(Vaswani et al., 2017; Devlin et al., 2019; Brown 391

et al., 2020; Ouyang et al., 2022). For the code 392

encoder, we design a new architecture tailored to 393

our proposed code encoding paradigm. The model 394

optimizes a symmetric cross-entropy loss, maxi- 395

mizing the cosine similarity Ci ·Ti (1 ≤ i ≤ N ) of 396

correct pairs while minimizing Ci · Tj (1 ≤ i, j ≤ 397

N, i ̸= j) for incorrect pairings (Radford et al., 398

2021). This approach enables future downstream 399

tasks, such as using the text encoder to generate 400

code via diffusion models or translating code across 401

programming languages using code encoders. 402
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Figure 7: Architecture. CLCP jointly trains a code encoder and a text encoder to predict the correct(code, text) pairs.
In the testing phase, for the target code, the learned model is treated as a zero-shot classifier to select the description
that best matches it.

3.2.2 Code encoder based on one-dimensional403

convolution404

For the code encoder, we adapt two-dimensional405

convolution for images (LeCun et al., 1998) to a406

one-dimensional convolutional and pooling neural407

network, suitable for one-dimensional heteroge-408

neous images. As shown in Fig. 8, the source409

code is first encoded into one-dimensional hetero-410

geneous images using the new paradigm. Next,411

one-dimensional convolution is applied with a ker-412

nel size k and step size s to learn the semantic413

and structural information of the code. The con-414

volution kernel slides over the one-dimensional415

image, multiplying IDs by corresponding weights416

and summing them to produce a new feature map.417

Each value in the feature map is activated using the418

ReLU function. Then, one-dimensional (1D) max-419

imum or average pooling is applied with window420

size k′ and step size s′. Pooling divides the input421

vector into sub-vectors and computes the maximum422

or average value of each sub-vector, aggregating423

information from sub-code fragments. The code424

encoder consists of M blocks, each containing a425

convolution layer and a pooling layer, designed to426

learn and aggregate code semantics and structure427

effectively. The artifacts are archived at: https://428

doi.org/10.5281/zenodo.13148594. This work429

is licensed under the Apache License, Version 2.0.430

4 Experiments431

4.1 Research Questions432

We evaluate the model’s effectiveness on the fol-433

lowing question using 4×NVIDIA Tesla V100 with434

32GB RAM:435

RQ1. How effective is CLCP at zero-shot436

transfer? Given limited training data (456,360437

pairs) compared to large datasets (e.g., 400 mil-438

Figure 8: The specific implementation of a block of the
code encoder.

lion pairs for CLIP), achieving high accuracy in 439

zero-shot tasks is challenging. Previous works us- 440

ing natural language supervision for representation 441

learning, similar to CLIP (Li et al., 2017; Desai 442

and Johnson, 2021; Sariyildiz et al., 2020; Zhang 443

et al., 2022a), showed limited performance due 444

to data constraints (e.g., 11.5% accuracy on Ima- 445

geNet (Li et al., 2017)). Collecting high-quality 446

data remains difficult. Thus, we adjust training and 447

testing set sizes to assess the model’s impact on 448

zero-shot tasks and its ability to learn global code 449

information. 450

RQ2. Ablation Experiment. We conducted 451

ablation experiments to explore specific training 452

strategies for learning code-heterogeneous images. 453

Specifically, we investigated the impact of pooling 454

operations, which reduce feature map dimensional- 455

ity by aggregating information, potentially leading 456

to information loss. To assess this, we removed the 457

pooling layer from the CLCP model. Furthermore, 458

we employed He initialization (He et al., 2015) 459

to mitigate gradient explosion in backpropagation 460

and omitted Batch Normalization (BN) to preserve 461

input image distribution characteristics. To verify 462

these choices, we conducted experiments by remov- 463

ing He initialization and adding BN, respectively. 464
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4.2 Dataset465

To reduce preprocessing efforts, this paper evalu-466

ates the performance using Python as an example.467

We utilize the Python dataset from the CodeSearch-468

Net corpus2, which contains 456,360 (code, text)469

pairs in the training set and 22,176 pairs in the test470

set. The CodeSearchNet corpus comprises several471

public code libraries from GitHub, spanning vari-472

ous programming languages such as Java, Python,473

and JavaScript. These libraries include numerous474

code snippets from diverse open-source software475

repositories, with corresponding document com-476

ments aiding in understanding code functionality.477

Initiated and maintained by GitHub, this corpus478

aims to promote code understanding technologies.479

For zero-shot task evaluation, we selected 13,760480

unique samples from the test set, verified through481

text description analysis and manual checks, ensur-482

ing no overlap with the training set categories.483

4.3 Experimental Setup484

Since the amount of data is limited, we imitate the485

works (Li et al., 2017; Desai and Johnson, 2021;486

Sariyildiz et al., 2020; Zhang et al., 2022b) referred487

to in the clip paper to do some preliminary explo-488

ration to verify that the proposed approach is effec-489

tive (e.g. the accuracy in (Li et al., 2017) is only490

11.5%), instead of pursuing the effect of training491

under 400 million data as in the clip model.492

4.3.1 Settings for RQ1493

Dataset size: We evaluate the effectiveness of our494

proposed approach in zero-shot transfer tasks by495

varying both the dataset size and model depth. For496

dataset size, we assess model improvement over497

random prediction results by randomly sampling498

datasets of different sizes: 30,000, 60,000, 120,000,499

240,000, and the full training set size of 456,360.500

For each of these training set sizes, we conduct two501

experiments. The first experiment uses a testing set502

of 50 randomly selected samples, while the second503

experiment employs testing sets of varying sizes:504

50, 100, 300, 600, and 1,000 randomly selected505

samples.506

Baselines: CLCPlp: CLCP with local pooling507

layers. For the different sizes of training/testing508

sets, this type of CLCP is divided into five subtypes:509

CLCPlp(3) ∼ CLCPlp(7), representing CLCPlp510

with 3, 4, 5, 6 and 7 blocks. A block indicates511

a functional unit containing a convolution layer512

2https://opendatalab.org.cn/CodeSearchNet

and a pooling layer. CLCPgp: CLCP also uses 513

global pooling layers. This type of CLCP is divided 514

into five subtypes: CLCPgp(3) ∼ and CLCPgp(7). 515

CLCPrn: Inspired by ResNet’s success in image 516

coding and its use in CLIP (He et al., 2016), we 517

adapt its architecture for our code encoder by re- 518

placing 2D convolution with 1D convolution. The 519

model consists of an input layer, N residual blocks, 520

and a global pooling layer. Each block includes 521

three convolutional layers: the first two process 522

input data sequentially, while the third performs a 523

1× 1 convolution on the input directly. The output 524

of the third layer is added to the second layer’s out- 525

put, forming the residual block’s final output. For 526

different dataset sizes, N varies as 3 ∼ 7. 527

Evaluation Metrics: Accuracy (Acc.): The pro- 528

portion of the correctly matched (code, text) pairs 529

in the L testing pairs. If all L codes are randomly 530

matched to the texts, the estimated accuracy (EA) 531

is 1/L. 532

4.3.2 Settings for RQ2 533

Dataset size: We use the same dataset sizes in 534

RQ1. 535

Baselines: Two of the most effective baselines in 536

RQ1 are used, CLCPlp and CLCPrn with different 537

blocks. Their variants are also used as baselines: 538

CLCPlp+BN: A variant of CLCPlp where the in- 539

put of each convolutional layer is normalized by 540

BN. CLCPlp-Pool: A variant of CLCPlp where the 541

pooling layer is removed. CLCPlp-Init: A variant 542

of CLCPlp where the He initialization is removed. 543

CLCPrn+BN: A variant of CLCPrn where the in- 544

put of each convolutional layer is normalized by 545

BN. CLCPrn-Pool: A variant of CLCPrn where the 546

pooling layer is removed. CLCPrn-Init: A variant 547

of CLCPrn where the He initialization is removed. 548

Evaluation Metrics: In this RQ, we calculate 549

the difference between the average accuracy of 550

CLCPlp/CLCPrn with different blocks and the av- 551

erage accuracy of their variants across all sizes of 552

datasets to determine the variation in the effect of 553

the variants relative to the original model. 554

4.4 Experiment Results 555

Answer to RQ1: As shown in Fig. 9, the legend 556

indicates model and training set sizes, with a fixed 557

testing set of 50 samples. The colors represent 558

model accuracy growth across different sizes. As 559

both the training set and model size increase, all 560

models improve in performance on the testing sets 561

and surpass random prediction accuracy (EA). This 562
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suggests CLCP’s effectiveness in learning. Larger563

data amounts could further enhance performance.564

Notably, variants using local pooling outperform565

those using global pooling, possibly due to global566

pooling’s loss of local information critical for tasks,567

while local pooling retains more local details bene-568

ficial for fine feature representation in code images.569

Regarding Fig. 10, the legend similarly repre-570

sents model and training set sizes, with the testing571

set size increasing proportionally (50, 100, 300,572

600, 1000 samples). As both the test set and model573

size grow with the training set, model performance574

declines, indicating underfitting. This may stem575

from insufficient training data compared to CLIP’s576

400 million points. Without NLP embedding tech-577

niques, our redefined code representation paradigm578

increases data diversity and complexity, making it579

challenging for the model to learn general patterns580

from limited data.581

Figure 9: As the sizes of the training set and model
increase, the performance of variants on the testing sets
of same size.

Figure 10: As the sizes of the training set and model
increase, the performance of variants on the testing sets
of different size.

Answer to RQ2: Fig. 11 shows the accuracy582

drop of CLCPlp and CLCPrn models when com-583

ponents are added or removed, compared to the584

original model. EA represents the baseline ran- 585

dom prediction accuracy. The vertical axis indi- 586

cates component changes (+/-), and the horizontal 587

axis shows the average accuracy decrease across 588

different model and dataset sizes (same as RQ1). 589

Legends denote different original models. 590

Removing the pooling layer caused a signifi- 591

cant accuracy drop, with CLCPlp-Pool perform- 592

ing worse than random prediction. Training val- 593

idation loss for CLCPlp-Pool and CLCPrn-Pool 594

stalled after 2-3 epochs, indicating overfitting and 595

local optima. Removing He initialization also re- 596

duced performance for CLCPlp-Init and CLCPrn- 597

Init. Adding Batch Normalization (BN) decreased 598

performance, likely because BN disrupts relative 599

differences between code feature maps by normal- 600

izing each batch independently. 601

Figure 11: Removing and adding different components,
changes in the effectiveness of CLCPlp and CLCPrn.

Conclusion 602

Microsoft Research and Google DeepMind iden- 603

tified GPT’s autoregressive limitations, including 604

lack of planning, memory, backtracking, and rea- 605

soning. GPTs, relying on local, greedy word gener- 606

ation, struggle with complex logic and unseen code, 607

heavily influenced by prompt format. To address 608

this, we propose a new code encoding paradigm 609

inspired by diffusion techniques in image genera- 610

tion, encoding code as heterogeneous images with 611

global information. We designed a text-to-code en- 612

coder model based on Sora’s CLIP, learning global 613

code understanding and connecting text-code en- 614

coding spaces. Through self-supervised learning 615

on 456,360 pairs, the model achieved zero-shot pre- 616

diction, paving the way for diffusion-based code 617

generation to overcome autoregressive limitations. 618

Limitations 619

Due to hardware and data limits, we couldn’t train 620

CLCP models with as many datasets as OpenAI 621

8



used for CLIP. We proposed text-to-code based622

on CLIP’s text-to-image (initially tested on limited623

data), resulting in a non-robust CLCP model unsuit-624

able for downstream code tasks. This paper aims625

to offer a new perspective for code understanding626

researchers. Future plans include collecting more627

datasets, seeking funding for better hardware, and628

not comparing with pre-trained embedding works629

due to our new encoding paradigm. We replicated630

and improved CLIP’s framework ourselves due to631

lack of openness, impacting model performance.632
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