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Abstract

Companies like Microsoft Research and
Google DeepMind have highlighted limita-
tions in GPTs’ next-word prediction approach,
such as poor planning, memory, and reasoning.
GPTs generate text locally without global task
understanding, struggling with complex logic
and unseen code generation, as confirmed by
our code comprehension studies. We propose
a new heterogeneous image paradigm for code
encoding, inspired by diffusion techniques in
image and protein structure generation. This
approach encodes code globally, combining im-
age and protein-like structures, avoiding autore-
gressive constraints. Using a CLIP-inspired
text-to-code encoder, the model maps text to
code for various tasks. Trained on 456,360 text-
code pairs with self-supervised learning, the
model achieves zero-error predictions, bridg-
ing text and code encoding spaces. This work
paves the way for diffusion-based code genera-
tion, overcoming GPTs’ limitations.

1 Introduction

Studies highlight limitations in GPTs’ autoregres-
sive next-word prediction paradigm. Microsoft
Research notes GPT-4 lacks planning, memory,
backtracking, and reasoning skills, often requir-
ing step-by-step guidance to provide correct an-
swers despite having sufficient knowledge (Bubeck
et al., 2023). Google DeepMind adds that GPTs
struggle in mathematics due to the high cost of
converting human proofs into a machine-verifiable
format (Trinh et al., 2024). Rearranging premise
order can reduce performance by over 30% (Chen
et al., 2024), and GPT-4 fails to solve IMO ge-
ometry problems, producing errors and showing
poor understanding (Bubeck et al., 2023). In sum-
mary, GPTs rely on a local, greedy process, lacking
global task understanding.

Our empirical studies in code understanding
confirm GPT-4’s limitations under the autoregres-
sive paradigm. It struggles with complex logic

and multi-step operations, often generating incom-
plete or buggy code. GPT-4 is overly sensitive to
prompt phrasing—even semantically equivalent in-
puts with different syntax can lead to inconsistent
and error-prone outputs. It also performs poorly
in matrix operations, frequently introducing new
bugs while attempting fixes. While step-by-step
guidance can elicit correct answers, indicating suf-
ficient training knowledge, the autoregressive na-
ture hinders its ability to generate complete, cor-
rect solutions for multi-step or matrix operations
in one go. These findings align with Microsoft
and Google’s observations, highlighting GPT-4’s
reliance on prompts, lack of global code under-
standing, and inability to handle complex tasks
effectively.

Diffusion technology has advanced significantly
in image generation (e.g., DALL-E 2, Sora) and life
molecule modeling (e.g., AlphaFold 3) (Ramesh
et al., 2022; Peebles and Xie, 2023; Josh Abramson,
2024). Unlike GPTs, diffusion models learn global
information and generate outputs (e.g., images or
molecules) all at once, avoiding step-by-step lim-
itations. Inspired by non-equilibrium thermody-
namics, diffusion models, such as CLIP+diffusion
(DALL-E 2), create novel, high-quality images
from text inputs (e.g., "panda mad scientist mixing
sparkling chemicals") (Ramesh et al., 2022; Pee-
bles and Xie, 2023; Ho et al., 2020). CLIP, a key
component, bridges text and images by embedding
them into a shared semantic space, aligning similar
concepts (Radford et al., 2021). This enables the
diffusion model to generate images from text em-
beddings, demonstrating a deep understanding of
the input.

We propose applying the CLIP+Diffusion tech-
nique to code generation to overcome the limita-
tions of the autoregressive paradigm. Code shares
properties with both natural language and images.
Like natural language, code uses tokens and fol-
lows grammatical rules, but unlike natural lan-



guage, code has minimal ambiguity and avoids out-
of-vocabulary (OOV) issues through namespace
partitioning. This suggests that code generation
may not need the next-word prediction approach
used in autoregressive models. Additionally, code
resembles images in its heterogeneity. Just as im-
ages are composed of components like colors (e.g.,
yellow, blue) with variations (e.g., light yellow,
dark yellow), code consists of components like
classes, methods, and variables, each containing
distinct entities (e.g., method 1, method 2). This
structural similarity makes diffusion models, which
excel at capturing global information, a promising
alternative for code generation.

We propose a transferable pre-training CLIP
model for code comprehension, serving as the foun-
dation for high-quality code generation using diffu-
sion technology and other tasks. To encode code,
we break away from GPTs’ autoregressive, natu-
ral language-like approach and introduce a single-
channel, one-dimensional, heterogeneous image
paradigm, inspired by image encoding. This aligns
with the sequential nature of human programming.
Built-in or common code components (e.g., classes,
methods, operators) are encoded as fixed numerical
IDs, with similar entities (e.g., Python’s ‘print()*
and ‘len()*) assigned similar IDs, mimicking pixel
similarity in images. User-defined components
have unique IDs within their namespace, with sim-
ilar entities also encoded similarly. This approach
avoids out-of-vocabulary (OOV) issues and elimi-
nates the need for token embeddings, ensuring the
paradigm mimics images, not natural language. For
pre-training, we design a code encoder using one-
dimensional convolution and local pooling, tailored
to this encoding scheme. Unlike GPTs, which pre-
dict the next token locally, our encoder iteratively
learns global code information, enabling a deeper
understanding of code structure and semantics.

We validated the proposed method with limited
data, observing performance improvements as data
increased. Through ablation experiments, we iden-
tified optimal model designs. While large-scale
training and direct application were beyond our re-
sources, this work aims to offer innovative ideas for
advancing programming language understanding.

2 Motivation

GPTs’ autoregressive paradigm has limitations
such as lack of planning, working memory, and
reasoning abilities, hindering their application in

many areas, including mathematics (Bubeck et al.,
2023; Trinh et al., 2024). Researchers attribute this
to their reliance on local, greedy next-word genera-
tion. Our case studies in code understanding with
GPT-4 further confirm these limitations.

2.1 Cases Studies

Lack of ability to handle complex logic. We
asked GPT-4 about a code problem involving com-
plex logic and multi-step operations, summarizing
it as: "We want to train an embedding network with
input shape (359, 4), where each of the 359 arrays
contains 4 lists, and output an array of the same
shape with embedded lists of length n. The label
has shape (359,)." Although humans can grasp the
problem, GPT-4 provided incomplete and logically
flawed code. For instance, GPT-4 misunderstood
the desired output shape and incorrectly concate-
nated the lists. Additionally, the training process
was incomplete, lacking a loop for epochs, and
variables were undefined (indicated by red wavy
lines).
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Figure 1: An example of GPT-4 handles complex logic.

Lack of working memory. If we ask the same
question again after a few dialogue rounds because
we forgot the first answer, GPT-4 will often give a
completely different answer. This results in almost
all the dialogue rounds being invalid. For example,
we repeated the GPT-4 question "How do I use a
terminal command to issue a commit that changes
more than n files in a repository?" twice, with sev-
eral rounds of dialogue in between. GPT 4 gave
two different incorrect answers, as shown in Fig. 2
(a) and (b) respectively.

Overly dependent on prompt format. GPT-4
will give different answers to questions with differ-
ent formats but the same meaning. For example,



git log --stat --numstat --oneline | awk ‘NF==1 {commit=$1} NF>1

{changed_files[commit]+=$1+$2} END {for (commit in changed_files)|

if (changed_files[commit] > 5) print commit}"
(a) First answer

git log --name-only --oneline | awk '/“commit/ {if (n>@) print c

" n; n=0; c=$1} /~ [MADRCUT]/ {n++}' | awk '$2 > n' n=5
(b) Second answer

Figure 2: An example of GPT-4 lacking memory.

if we ask "How do I use a terminal command to
find the commits that change more than n files in
a repository?" and "How do I use a terminal com-
mand to find the commits with multiple changed
files greater than n in a repository? GPT-4 gives
very different answers as shown in Fig. 3.

--stat --numstat --oneline | awk 'NF==1 {commit=$1} NF>1
{changed_files[commit]+=$1+$2} END {for (commit in changed_files)
if (changed_files[commit] > 5) print commit}®

(a) First answer
git log --format="%H" --numstat | awk '/*$/ {commit=0} {if(
commit==1) {print $1} commit=1}" | while read commit; do git diff

git log

--name-only $commit” $commit | wc -1 | tr -d '[:space:]'; done
awk -v n=5 "$1 > n {print $2}"

(b) Second answer

Figure 3: An example of GPT-4 over-relying on the
prompt format.

Not good at matrix operations. GPT-4 often
fails to handle matrix operations correctly or intro-
duces new bugs when handling matrix operations.
For example, as shown in Fig. 4(a), when we asked
GPT-4 why the figure (a) code reported an error:
"ValueError: could not broadcast input array from
shape (359,1149) into shape (359,)". GPT-4 will
allow us to modify according to Fig. 4(b). But it in-
troduces new bugs into the code: ValueError: only
one element tensors can be converted to Python
scalars. GPT-4 ignores global correctness and in-
stead gets stuck in solving local problems.

forward (

forward(

tal: x[: :
(a) Problem code

Figure 4: An example of GPT-4 is not good at matrix
operations.

Lack of creativity. GPT-4 is not creative. For
example, if we ask GPT-4 to invent an algorithm
for predicting earthquakes, GPT-4 cannot provide
an answer, even if it is to give some ideas for this
scientific question.

2.2 Discussion

CLIP+Diffusion in Image Understand-
ing/Generation can mitigate limitations similar
to those of GPTs in code tasks. As illustrated
in Fig. 5(a) and (b), CLIP+Diffusion globally
comprehends complex text input and accurately
generates images with intricate structures. The
lines and colors in (a) are intricate and smooth,
while the fur and textures in (b) are clearly
rendered. This method remains creative and
accurate even when the input text’s form varies but
the meaning stays the same. As shown in Fig. 5(c)
and (d), CLIP+Diffusion creates unprecedented
images like panda mad scientist and a cat dressed
as French Emperor Napoleon holding cheese,
demonstrating its innovative capability. Thus,
we believe applying this technology to code
understanding/generation could significantly
enhance performance in this area.

Figure 5: Examples of CLIP+Diffusion can avoid some
limitations similar to GPTs.

Why GPTs Have Limitations in Code
Understanding/Generation = Compared to
CLIP+Diffusion We observed that the CLIP
model globally remembers all image information
during training, unlike GPTs which predict the next
token based solely on previous code. For instance,
CLIP learns the global distribution of fur color,
texture, and facial feature structure in multiple
Shiba Inu images. The image representation
corresponding to human-given textual descriptions
already contains comprehensive global image
information (Ramesh et al., 2022). Diffusion
then refines this representation into a high-quality
image. However, GPTs, adhering to the next-token
prediction paradigm, cannot globally retain fully



functional code information. As illustrated in
Fig. 1, GPT-4 struggles to generate structurally
complete code even if it has learned complex
code snippets. This paradigm also leads to other
limitations. For instance, GPT-4 may provide
vastly different answers to the same question asked
multiple times due to changes in preceding text.
Similarly, questions with the same meaning but
different wording may elicit varied responses from
GPT-4. Furthermore, GPTs’ lack of proficiency in
handling matrix operations and limited creativity
stem from their inability to truly understand code.
Comprehensive code understanding requires global
learning of code information during training,
not just local context. We believe that GPTs’
autoregressive next-word prediction paradigm is
the root cause of these limitations.

Why GPTs Use the Autoregressive Paradigm
for Code GPTs utilize the autoregressive paradigm
for understanding and generating code primarily
because it is well-suited for natural language pro-
cessing. Both code and natural language serve as
communication tools, with code facilitating human-
computer interaction and natural language enabling
human-to-human communication. Both consist of
token sequences governed by syntax rules. How-
ever, natural language exhibits greater flexibility
than code, with word meanings varying across con-
texts. Thus, understanding and generating natural
language necessitates rigorous contextual analysis,
driving GPTs to adopt the autoregressive paradigm.
This approach ensures semantic correctness by gen-
erating tokens sequentially, relying on previous text
at each step. Transformer decoders, employed by
GPTs, adhere to this paradigm during generation.
Although Transformer encoders can globally learn
text information, the decoder focuses on autoregres-
sive token prediction. We summarize this analysis
in Table 1, columns 1 and 3.

Challenges and Solutions in Proposing a New
Paradigm for Code To overcome the limita-
tions of GPTs, we propose a structured coding
paradigm that mimics images, aiming to leverage
CLIP+Diffusion technology. However, code ex-
hibits both image-like and natural language-like
features, posing a challenge. We observe similari-
ties between code and images in terms of compo-
nent structure (Table 1, columns 2 and 4). Codes
consist of entities like classes, methods, and vari-
ables, akin to image components like colors and
shapes. This heterogeneity—where an object is
composed of different types of components—is

Linguistic ~ Heterogeneous  Ambiguous ooV
Image X v X X
Code v v X Solvable
Text v X v v

Linguistic: Is it language?

Heterogeneous: Is it heterogeneous?
Ambiguous: Is it possible to have ambiguity?
OOV: Is it has OOV issues?

Table 1: The similarity of image, text, and code

shared by both. However, code tokens face an
out-of-vocabulary (OOV) problem due to their in-
finite variety, unlike the finite vocabulary of nat-
ural language. This hinders the application of
CLIP+Diffusion. If natural language embedding
techniques are used, they fail to address this issue.
Nevertheless, code entities’ namespaces are often
smaller and more scoped than natural language
words. Code namespaces are typically related to
packages, folders, files, or code snippets, whereas
natural language words often span the entire vo-
cabulary. By strictly partitioning namespaces and
using repeated numbers to encode cross-namespace
tokens, we may resolve the OOV problem. This ap-
proach leverages the scoped nature of code names-
paces to manage token representation effectively.

3 Approach

3.1 Heterogeneous image paradigm

Proposed Heterogeneous Image Paradigm for
Code. Given code’s standardized structure, we
abandon the autoregressive next-word prediction
paradigm and propose a single-channel, one-
dimensional heterogeneous image paradigm for
code understanding and generation. Both code and
images share heterogeneity, composed of various
components. We treat code components (classes,
methods, variables, operators, numbers, symbols)
analogously to image components (colors). Entities
within the same code component are represented
by similar numerical values (IDs), mimicking pixel
values within the same image component. To ad-
dress the OOV problem due to numerous tokens,
we take several steps: 1)Optional cleanup of code
by replacing messy data with placeholders to en-
sure accuracy in text-to-code matching. 2)Classifi-
cation of tokens into built-in (code library) and user-
defined types. 3)Further division of user-defined
tokens into namespaces. 4)Representation of built-
in tokens by fixed numeric values (IDs). 5)Rep-
resentation of user-defined tokens by temporary,
reusable values within their namespaces. As illus-
trated in Fig. 6(a), a function is depicted as a 2D
heterogeneous image, where keywords, variables,



Components ID Range Components ID Range
Keyword 1-35 Built-in Attribute ~ 6930-7960
Built-in Class 36-54 Variable 7961-9999
Class 55-1584 Built-in AttrCall 10000-11270
Built-in Method 1585-2698 | Attribute Call 11271-11509
Method 2699-4454 | Operator 11510-11554
Built-in MethCall ~ 4455-6128 Number 11555-13811
Method Call 6129-6929

AttrCall: Attribute call, MethCall: Method call.
Table 2: Components and their ID ranges

and operators/symbols are represented by similar
pixel values in red, green, and yellow, respectively.

def maxNum (numl
numl
return num|

return
(a) 2-dimensional heterogeneous image
def maxNum (numl n numl

(b) 1-dimensional heterogeneous image

Figure 6: Examples of heterogeneous image.

Abstracting Entity Call Tokens. In addition
to the process outlined in steps 1)-5), we apply
the same methodology to tokens representing en-
tity calls (e.g., method calls or class attribute ac-
cesses). To minimize the number of these tokens
and mitigate OOV issues, we abstract them. Specif-
ically, tokens containing the same entity call (e.g.,
a_param.strip and address.strip) share the same
numeric value. We maintain a list for each numeric
value to facilitate manual lookup of the specific
token it represents. Using the encoding method
detailed above, we constructed a Python vocab-
ulary based on the 456,360 code snippets in the
CodeSearchNet corpus’s training set'. This corpus
comprises code snippets and their associated doc-
umentation comments from various programming
languages sourced from open-source GitHub repos-
itories. GitHub initiated and maintains this corpus
to foster the development of code search and un-
derstanding technologies. The number of tokens
and their corresponding IDs vary across program-
ming languages. For instance, Tab. 2 showcases
the specific components and their numerical coding
ranges in Python.

Color Images vs. Heterogeneous Image Rep-
resentation Color images are composed of three
primary colors: red, blue, and green, forming three
channels. In contrast, the heterogeneous image
introduced in this paper features a single chan-
nel, where different components hold equal sig-
nificance, unlike the hierarchical composition in
color images.

"https://opendatalab.org.cn/CodeSearchNet

Sequential Nature of Code Human program-
ming involves writing code sequentially. Hence,
the dependency between tokens is stronger horizon-
tally (left-to-right) than vertically. Consequently,
the two-dimensional heterogeneous image is flat-
tened into a one-dimensional form, retaining line
breaks and spaces as symbols, akin to Fig. 6(b).
This structure resembles a biological molecule
chain, such as proteins, DNA, or RNA, composed
of basic elements and exhibiting heterogeneity.

Inspiration from Diffusion Technology Deep-
Mind’s application of diffusion technology to pre-
dict living molecule structures inspires us to ex-
plore its potential in code understanding and gen-
eration. A foundational task is designing a robust
pre-trained model for text-to-code conversion.

Code as a Hybrid of Images and Language
Code shares similarities with both images and nat-
ural language. The proposed paradigm mimics the
numerical encoding of image pixels for code tokens
but retains a sequential structure akin to natural lan-

guage.

3.2 Contrastive Language-Code Pre-training
3.2.1 Architecture

We propose the Contrastive Language Code Pre-
training (CLCP) model, inspired by the Contrastive
Language Image Pre-training (CLIP) model (Rad-
ford et al., 2021). CLCP jointly trains a code en-
coder and a text encoder to predict correct (code,
text) pairs in a batch. As shown in Fig. 7, given
a batch of N (code, text) pairs, CLCP predicts
the correct pairings among N x N possibilities,
learning a multimodal embedding space. We use
a pre-trained text transformer as the text encoder
(Vaswani et al., 2017; Hu et al., 2020), leverag-
ing its strengths in natural language understanding
(Vaswani et al., 2017; Devlin et al., 2019; Brown
et al., 2020; Ouyang et al., 2022). For the code
encoder, we design a new architecture tailored to
our proposed code encoding paradigm. The model
optimizes a symmetric cross-entropy loss, maxi-
mizing the cosine similarity C; - T; (1 < ¢ < N) of
correct pairs while minimizing C; - T (1 < 4,7 <
N,i # j) for incorrect pairings (Radford et al.,
2021). This approach enables future downstream
tasks, such as using the text encoder to generate
code via diffusion models or translating code across
programming languages using code encoders.
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Figure 7: Architecture. CLCP jointly trains a code encoder and a text encoder to predict the correct(code, text) pairs.
In the testing phase, for the target code, the learned model is treated as a zero-shot classifier to select the description

that best matches it.

3.2.2 Code encoder based on one-dimensional
convolution

For the code encoder, we adapt two-dimensional
convolution for images (LeCun et al., 1998) to a
one-dimensional convolutional and pooling neural
network, suitable for one-dimensional heteroge-
neous images. As shown in Fig. 8, the source
code is first encoded into one-dimensional hetero-
geneous images using the new paradigm. Next,
one-dimensional convolution is applied with a ker-
nel size k and step size s to learn the semantic
and structural information of the code. The con-
volution kernel slides over the one-dimensional
image, multiplying IDs by corresponding weights
and summing them to produce a new feature map.
Each value in the feature map is activated using the
ReLU function. Then, one-dimensional (1D) max-
imum or average pooling is applied with window
size k" and step size s’. Pooling divides the input
vector into sub-vectors and computes the maximum
or average value of each sub-vector, aggregating
information from sub-code fragments. The code
encoder consists of M blocks, each containing a
convolution layer and a pooling layer, designed to
learn and aggregate code semantics and structure
effectively. The artifacts are archived at: https://
doi.org/10.5281/zenodo.13148594. This work
is licensed under the Apache License, Version 2.0.

4 Experiments

4.1 Research Questions

We evaluate the model’s effectiveness on the fol-
lowing question using 4xNVIDIA Tesla V100 with
32GB RAM:

RQ1. How effective is CLCP at zero-shot
transfer? Given limited training data (456,360
pairs) compared to large datasets (e.g., 400 mil-

(b) One-dimensional convolution (c) One-dimensional pooling
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numl 1 n return num|

n n return

(a) Numerical encoding

Figure 8: The specific implementation of a block of the
code encoder.

lion pairs for CLIP), achieving high accuracy in
zero-shot tasks is challenging. Previous works us-
ing natural language supervision for representation
learning, similar to CLIP (Li et al., 2017; Desai
and Johnson, 2021; Sariyildiz et al., 2020; Zhang
et al., 2022a), showed limited performance due
to data constraints (e.g., 11.5% accuracy on Ima-
geNet (Li et al., 2017)). Collecting high-quality
data remains difficult. Thus, we adjust training and
testing set sizes to assess the model’s impact on
zero-shot tasks and its ability to learn global code
information.

RQ2. Ablation Experiment. We conducted
ablation experiments to explore specific training
strategies for learning code-heterogeneous images.
Specifically, we investigated the impact of pooling
operations, which reduce feature map dimensional-
ity by aggregating information, potentially leading
to information loss. To assess this, we removed the
pooling layer from the CLCP model. Furthermore,
we employed He initialization (He et al., 2015)
to mitigate gradient explosion in backpropagation
and omitted Batch Normalization (BN) to preserve
input image distribution characteristics. To verify
these choices, we conducted experiments by remov-
ing He initialization and adding BN, respectively.
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4.2 Dataset

To reduce preprocessing efforts, this paper evalu-
ates the performance using Python as an example.
We utilize the Python dataset from the CodeSearch-
Net corpusz, which contains 456,360 (code, text)
pairs in the training set and 22,176 pairs in the test
set. The CodeSearchNet corpus comprises several
public code libraries from GitHub, spanning vari-
ous programming languages such as Java, Python,
and JavaScript. These libraries include numerous
code snippets from diverse open-source software
repositories, with corresponding document com-
ments aiding in understanding code functionality.
Initiated and maintained by GitHub, this corpus
aims to promote code understanding technologies.
For zero-shot task evaluation, we selected 13,760
unique samples from the test set, verified through
text description analysis and manual checks, ensur-
ing no overlap with the training set categories.

4.3 Experimental Setup

Since the amount of data is limited, we imitate the
works (Li et al., 2017; Desai and Johnson, 2021;
Sariyildiz et al., 2020; Zhang et al., 2022b) referred
to in the clip paper to do some preliminary explo-
ration to verify that the proposed approach is effec-
tive (e.g. the accuracy in (Li et al., 2017) is only
11.5%), instead of pursuing the effect of training
under 400 million data as in the clip model.

4.3.1 Settings for RQ1

Dataset size: We evaluate the effectiveness of our
proposed approach in zero-shot transfer tasks by
varying both the dataset size and model depth. For
dataset size, we assess model improvement over
random prediction results by randomly sampling
datasets of different sizes: 30,000, 60,000, 120,000,
240,000, and the full training set size of 456,360.
For each of these training set sizes, we conduct two
experiments. The first experiment uses a testing set
of 50 randomly selected samples, while the second
experiment employs testing sets of varying sizes:
50, 100, 300, 600, and 1,000 randomly selected
samples.

Baselines: CLCP;;,: CLCP with local pooling
layers. For the different sizes of training/testing
sets, this type of CLCP is divided into five subtypes:
CLCP;,(3) ~ CLCPy,(7), representing CLCPy,
with 3, 4, 5, 6 and 7 blocks. A block indicates
a functional unit containing a convolution layer

Zhttps://opendatalab.org.cn/CodeSearchNet

and a pooling layer. CLCP,,: CLCP also uses
global pooling layers. This type of CLCP is divided
into five subtypes: CLCP,(3) ~ and CLCP,,(7).
CLCP,.,: Inspired by ResNet’s success in image
coding and its use in CLIP (He et al., 2016), we
adapt its architecture for our code encoder by re-
placing 2D convolution with 1D convolution. The
model consists of an input layer, IV residual blocks,
and a global pooling layer. Each block includes
three convolutional layers: the first two process
input data sequentially, while the third performs a
1 x 1 convolution on the input directly. The output
of the third layer is added to the second layer’s out-
put, forming the residual block’s final output. For
different dataset sizes, N varies as 3 ~ 7.

Evaluation Metrics: Accuracy (Acc.): The pro-
portion of the correctly matched (code, text) pairs
in the L testing pairs. If all L codes are randomly
matched to the texts, the estimated accuracy (EA)
is1/L.

4.3.2 Settings for RQ2

Dataset size: We use the same dataset sizes in
RQI.

Baselines: Two of the most effective baselines in
RQI are used, CLCPy;, and CLCP,,, with different
blocks. Their variants are also used as baselines:
CLCP;,+BN: A variant of CLCP;, where the in-
put of each convolutional layer is normalized by
BN. CLCPy,-Pool: A variant of CLCP;;, where the
pooling layer is removed. CLCPy,-Init: A variant
of CLCPy, where the He initialization is removed.
CLCP,,,+BN: A variant of CLCP,.,, where the in-
put of each convolutional layer is normalized by
BN. CLCP,.,,-Pool: A variant of CLCP,.,, where the
pooling layer is removed. CLCP,.,-Init: A variant
of CLCP,.,, where the He initialization is removed.

Evaluation Metrics: In this RQ, we calculate
the difference between the average accuracy of
CLCP;,/CLCP,,, with different blocks and the av-
erage accuracy of their variants across all sizes of
datasets to determine the variation in the effect of
the variants relative to the original model.

4.4 Experiment Results

Answer to RQ1: As shown in Fig. 9, the legend
indicates model and training set sizes, with a fixed
testing set of 50 samples. The colors represent
model accuracy growth across different sizes. As
both the training set and model size increase, all
models improve in performance on the testing sets
and surpass random prediction accuracy (EA). This



suggests CLCP’s effectiveness in learning. Larger
data amounts could further enhance performance.
Notably, variants using local pooling outperform
those using global pooling, possibly due to global
pooling’s loss of local information critical for tasks,
while local pooling retains more local details bene-
ficial for fine feature representation in code images.

Regarding Fig. 10, the legend similarly repre-
sents model and training set sizes, with the testing
set size increasing proportionally (50, 100, 300,
600, 1000 samples). As both the test set and model
size grow with the training set, model performance
declines, indicating underfitting. This may stem
from insufficient training data compared to CLIP’s
400 million points. Without NLP embedding tech-
niques, our redefined code representation paradigm
increases data diversity and complexity, making it
challenging for the model to learn general patterns
from limited data.
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Figure 9: As the sizes of the training set and model

increase, the performance of variants on the testing sets
of same size.
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Figure 10: As the sizes of the training set and model
increase, the performance of variants on the testing sets
of different size.

Answer to RQ2: Fig. 11 shows the accuracy
drop of CLCPy;, and CLCP,,, models when com-
ponents are added or removed, compared to the

original model. EA represents the baseline ran-
dom prediction accuracy. The vertical axis indi-
cates component changes (+/-), and the horizontal
axis shows the average accuracy decrease across
different model and dataset sizes (same as RQ1).
Legends denote different original models.

Removing the pooling layer caused a signifi-
cant accuracy drop, with CLCP;,-Pool perform-
ing worse than random prediction. Training val-
idation loss for CLCPy,-Pool and CLCP,.,-Pool
stalled after 2-3 epochs, indicating overfitting and
local optima. Removing He initialization also re-
duced performance for CLCPy,-Init and CLCP,.,-
Init. Adding Batch Normalization (BN) decreased
performance, likely because BN disrupts relative
differences between code feature maps by normal-
izing each batch independently.
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Figure 11: Removing and adding different components,
changes in the effectiveness of CLCP;;, and CLCP,.,,.

Conclusion

Microsoft Research and Google DeepMind iden-
tified GPT’s autoregressive limitations, including
lack of planning, memory, backtracking, and rea-
soning. GPTs, relying on local, greedy word gener-
ation, struggle with complex logic and unseen code,
heavily influenced by prompt format. To address
this, we propose a new code encoding paradigm
inspired by diffusion techniques in image genera-
tion, encoding code as heterogeneous images with
global information. We designed a text-to-code en-
coder model based on Sora’s CLIP, learning global
code understanding and connecting text-code en-
coding spaces. Through self-supervised learning
on 456,360 pairs, the model achieved zero-shot pre-
diction, paving the way for diffusion-based code
generation to overcome autoregressive limitations.

Limitations

Due to hardware and data limits, we couldn’t train
CLCP models with as many datasets as OpenAl



used for CLIP. We proposed text-to-code based
on CLIP’s text-to-image (initially tested on limited
data), resulting in a non-robust CLCP model unsuit-
able for downstream code tasks. This paper aims
to offer a new perspective for code understanding
researchers. Future plans include collecting more
datasets, seeking funding for better hardware, and
not comparing with pre-trained embedding works
due to our new encoding paradigm. We replicated
and improved CLIP’s framework ourselves due to
lack of openness, impacting model performance.
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