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ABSTRACT

Smart watches are being increasingly used to detect human gestures and move-
ments. Using a single smart watch, whole body movement recognition remains a
hard problem because movements may not be adequately captured by the sensors
in the watch. In this paper, we present a whole body movement detection study
using a single smart watch in the context of ballroom dancing. Deep learning
representations are used to classify well-defined sequences of movements, called
figures. Those representations are found to outperform ensembles of decision trees
and hidden Markov models. The classification accuracy of 85.95% was improved
to 92.31% by modeling a dance as a first-order Markov chain of figures.

1 INTRODUCTION

Recent work has used low-cost smart watches to track the movement of human body parts. ArmTrak
tracks arm movement, assuming that the body and torso are stationary (Shen et al., 2016). In this
paper, we perform whole body movement recognition using a single smart watch, which is a hard
problem given that body movements need to be inferred using readings taken from a single location
on the body (the wrist). The movements in the study are from ballroom dancing, which engages
tens of thousands of competitors in the U.S. and other countries. Competitors dance at different
skill levels and each level is associated with an internationally recognized syllabus, set by the World
Dance Sport Federation. The syllabus breaks each dance into smaller segments with well-defined
body movements. Those segments are called figures. In the waltz, for example, each figure has a
length of one measure of the waltz song being danced to; the entire dance is a sequence of 40 to 60
figures (depending on the length of the song). The sequence is random, but the figures themselves
are well-defined. The sequence is illustrated in Fig. 1.

The International Standard ballroom dances are a subset of ballroom dances danced around the
world, and they include the waltz, tango, foxtrot, quickstep and Viennese waltz. A unique charac-
teristic of all these dances is that the couple is always in a closed-hold, meaning they never separate.
Also, both dancers in the couple maintain a rigid frame, meaning the arms and torso move together
as one unit. The head and the lower body, however, move independently of that arms-torso unit.
Our hypothesis in this paper is that the figures in each of these dances can be recognized with high
accuracy using deep learning representations of data obtained from a single smart watch worn by
the lead in the couple. That is possible because the rigid frame makes it unnecessary to separately
instrument the arms and torso, and because most figures are characterized by distinct movements
(translations and rotations in space) of the arms and torso. We refer the interested reader to the
website www.ballroomguide.com for free videos and details on the various syllabus figures in
all the International Standard ballroom dance styles.

In this paper, we validate our hypothesis on the quintessential ballroom dance– the waltz. We chose
16 waltz figures that are most commonly danced by amateurs. The full names of the figures are
included in Appendix A. Our goal is to accurately classify those figures in real-time using data from
a smart watch. That data can be pushed to mobile devices in the hands of spectators at ballroom
competitions, providing them with real-time commentary on the moves that they will have just
watched being performed. That is an augmented-reality platform serving laymen in the audience
who want to become more engaged with the nuances of the dance that they are watching.

The main beneficiary of the analysis of dance movements would be the dancers themselves. The
analysis will help them identify whether or not they are dancing the figures correctly. If a figure
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Figure 1: A dance is random a sequence of well-defined figures (movements). If the dancer is
instrumented with sensors, the figures emit sensor readings that should be similar for each type of
figure.

is confused for a different figure, it may be because the dancers have not sufficiently emphasized
the difference in their dancing and need to improve their technique on that figure. That confusion
metrics could also be used by competition judges to mark competitors on how well dancers are
performing figures; that task is currently done by eye-balling multiple competitors on the floor, and
is challenging when there are over ten couples to keep track of.

We make three main contributions in detecting ballroom dance movements using learning represen-
tations.

• First, we show that representations using data from a single smart watch are sufficient for
discriminating between complex dancing movements.

• Second, we identify and evaluate six learning representations that can be used for clas-
sifying the figures with varying accuracies. The representations are 1) Gaussian Hidden
Markov Model, 2) Extra Trees Classifier, 3) Feed-Forward Neural Network, 4) Recurrent
Neural Network (LSTM), 5) Convolution Neural Network, and 6) a Convolution Neural
Network that feeds into a Recurrent Neural Network.

• Finally, we model the sequence of figures as a Markov chain, using the fact that the tran-
sitions between figures are memoryless. We use the rules of the waltz to determine which
transitions are possible and which are not. With that transition knowledge, we correct the
immediately previous figure’s estimate. This leads to an average estimation accuracy im-
provement of 5.33 percentage points.

2 DATASET DESCRIPTION

2.1 DATA COLLECTION

The data was collected using an Android app on a Samsung Gear Live smart watch. The app was
developed for this work on top of the ArmTrak data collection app. We were able to reliably collect
two derived sensor measurements from the Android API:

• Linear Acceleration. This contains accelerometer data in the X, Y and Z directions of the
smart watch, with the effect of gravity removed.

• Rotation Vector. This provides the Euler angles (roll, pitch and yaw) by fusing accelerom-
eter, gyroscope and magnetometer readings in the global coordinate space. We use only
the yaw (rotation about the vertical axis) in this study, and that is based on prior knowledge
that roll and pitch are insignificant in the waltz figures included in the study.

In total, we collected readings from 4 sensor axes (three from the Linear Acceleration and the yaw
from the Rotation Vector sensors). The readings were reported by watch operating system asyn-
chronously, at irregular intervals, whenever a change was sensed. In order to facilitate signal pro-
cessing, we downsampled the data such that each figure contained exactly 100 sensor samples,
which was possible because the effective sampling rate was greater than that. The downsampling
was done by taking the median (instead of the mean, which is sensitive to outliers) values of 100
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(b) Reverse Turn (R1): left turning

Figure 2: Raw measurements of yaw: 4 samples from two figures.

evenly-spaced time windows. From this point on in the paper, when we refer to “samples”, we refer
to an observation for a figure of dimension 4× 100 as one sample.

The app was developed in such a way that the button on the watch that started recording the afore-
mentioned sensor measurements also simultaneously started playing the music via Bluetooth speak-
ers. That ensured that the music and the recording of the movements were time-synchronized.

For all the data that was collected, we used the same rendition of the classic song ”Moon River”.
We performed manual segmentation of the song using its beats offline, and that was used to segment
the time series data for the entire dance sequence into 2.1-second-long-segments corresponding to
figures in the dance. We noted the song intro length (where no dancing was performed) and ignored
all data in that period. For each figure, we extended the window of measurements equally at the
beginning and at the end by 0.35 seconds to account for slight errors in dancer timing. That ensured
that the window captures the figures even if the dancer was slightly early or late to begin/finish
dancing the figure.

The yaw data for 4 figure samples corresponding to two different figures are illustrated in Fig. 2.
It can be seen that right-turning figures tended to record yaw readings with an upward trend, while
left-turning figures recorded yaw readings with a downward trend. Slight differences between the
samples for each figure can be attributed to differences in the dancers’ timing and execution.

2.2 CROSS-VALIDATION GROUPINGS

In total, we collected 818 figure samples across 16 different waltz figures, over 14 dances (figure
sequences). Thus, the input data had a dimension of <818×4×100 for 818 figure samples, 4 sensors,
and 100 measurements per sensor per figure sample.

The small size of the dataset and subsequent difficulty in collecting additional data during the Covid-
19 pandemic made the learning problem more challenging. We had only 14 sequences in total,
and that is too small of dataset to learn dependencies between figures. Therefore, our focus is on
independently classifying the figures using the 818 samples, and leveraging the Markov property to
enforce dependencies between figures.
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Figure 3: Hidden Markov Model representation.

The 818 samples came from 14 separate dances (figure sequences) and we performed 7-fold cross-
validation with two dances per cross-validation group (assigned randomly). That ensured sequences
of figures (dances) were not split across different cross-validation groups. It also allowed us to test
our representations’ accuracy for each sequence as a whole.

2.3 LABELING GROUND TRUTH

Each dance was recorded on video so that labels (ground truth) could be given to the data segments
corresponding to the figures. The labels are listed in Appendix A.

3 MARKOV TRANSITIONS

The sequence of figures in each dance can be modeled as a Markov chain. The probability of
observing the next figure is dependent on the current figure, but independent of past figures given
the current figure. The reason is as follows.

Certain figures end on the right foot, while others end on the left foot. Similarly, certain figures
begin on the left foot, while others begin on the right foot. The probability of going from a figure
ending on the right foot to another figure beginning on the right foot is zero (and the same applies to
the left foot). That is because of the physics of the dance and the way weight is distributed between
the feet. Similarly, some figures must be followed by figures that move forward while others must be
followed by figures that go backward. Therefore, each figure constrains the immediate next figure,
but the sequence is memoryless.

Using the above rules, we constructed a transition matrix for all figures, and that is given in the
Appendix in Table 3. We essential gave a zero probability to impossible transitions, and equal
probability to all possible transitions. Therefore, our transition matrix is completely unbiased, and
not based on real training data. The advantage of the unbiased transition matrix is that the same
matrix can be used across different couples since it is very general. It does not encode unique habits
of certain couples, where there is a tendency to follow patterns. If a biased approach were taken,
a unique transition matrix could be learned for each couple, but it would not generalize to other
couples.

4 HIDDEN MARKOV MODEL REPRESENTATION

The dance can be represented as a Hidden Markov Model (HMM) where the states represent figures
that emit sensor readings, as illustrated in Fig. 3. Although the state space is discrete, the emission
space is continuous because the sensor readings continuous. As a result, the HMM cannot be solved
using a discrete emission probability matrix. Instead, we assumed Gaussian emission probabilities,
resulting in a Gaussian HMM.

We used the HMMLearn Python library (hmm) to estimate the transition and emission probabilities
while fitting the input data. We initialized the transition probabilities with the trained transition
matrix described in Section 3, and initialized state vector with the actual initial state obtained from
the ground truth.

The problem with the HMM approach for this task is that the HMM is a generative model, and
not a discriminative model. At no stage does the model take the actual known labels to perform
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Figure 4: Deep Neural Networks Representations.

classification. It simple estimates states using the probability information and we assigned labels to
the states by fitting the training set, and matching the states estimated by the HMM with the known
labels. The approach achieved an accuracy of 35.93% on the validation sets, averaged across the 7
cross validation groups.

5 DECISION TREE REPRESENTATION

We used the Extra Trees Classifier provided in the Scikit-Learn Python library (Pedregosa et al.,
2011) to classify figures directly from the downsampled data. That classifier is an ensemble method
incorporating several (250 in our case) decision trees and aggregating their results. Each input
sample was in <400 (4 sensors, 100 time series points per sensor), so there were 400 features. The
approach achieved an average accuracy of 72.2%.

6 DEEP NEURAL NETWORKS REPRESENTATIONS

We tested three different deep neural network architectures, illustrated in Fig. 4 and a standard feed-
forward neural network (not illustrated). In all layers, we used ReLu activations, except for the
LSTM layers for which we used Sigmoid activations. The inputs to all the networks are the same,
and are based on the cross-validation groupings described in Section 2.2. The outputs are also the
same, because we want to obtain the probabilities associated with the different figures. Therefore,
we use a softmax output layer with a categorical cross-entropy loss function.

We used the Keras (Ker, 2017) package for Python, which provides an abstraction for a Tensor-
flow (Abadi et al., 2015) backend. We trained the networks using the Adam solver (Kingma & Ba,
2014).

• Feed-forward: All layers are densely connected. There are D dense layers, each of width
W . We varied D and W , as given in Appendix C.

• Convolutional (ConvNet): Since we are looking at 4 1-dimensional streams, we used 1-
dimensional convolution layers. The first two layers are convolutional with 64 filters and a
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Table 1: Results for Mean Accuracy with 7-fold Cross-Validation (%)

Classifier Only Classifier + Markov
Correction

Random Guess 6.25 N.A.
Gaussian HMM 35.93 N.A.
Extra Trees Classifier 72.20 73.48
Feed-forward 80.86 85.63
ConvNet 83.01 88.90
LSTM 83.73 92.31
ConvNet +LSTM 85.95 88.41

kernel size of 3. The next two layers are preceded by a max pooling operation, and contain
128 filters and a kernel size of 3. Another max pooling operation is added before D dense
layers of width W . This particular architecture was inspired from the example in (Ker,
2017).

• Recurrent (LSTM): This layer has D Long Short-term Memory (LSTM) layers (Hochreiter
& Schmidhuber, 1997). The layers have W nodes with a time history of 100 and 4 features
each (as per the input dimension). This network took the longest time to train because it
had the most parameters.

• Hybrid Convolutional and Recurrent (ConvNet+LSTM): This network is a hybrid of the
aforementioned convolutional and recurrent architectures. One LSTM layer replaces the
dense layers in the convolutional architecture. The complexity of this layer is less than that
of the pure LSTM network because the convolutional layers reduce the input dimension-
ality. As a result, this network trains faster than the pure LSTM architecture. This hybrid
architecture was inspired from related work (Morales & Roggen, 2016).

As described previously, we did not attempt to learn the entire sequence because of the number
of sequences was too small. Instead, we focused on representations for classifying each figure
independently.

7 MARKOV CORRECTION

In this section, we propose a simple approach to combine the results of the learning representations
(referred to as classifiers) with the Markov structure of the dance. Let i, j ∈ 0, 1, ..., 15 be possible
state from the 16 different figures, and let Xt be the figure at time index t. Then at each time index
t,

1. We assume that the classifier is correct for the current figure and suppose Xt = j

2. We correct the immediately preceding figure Xt−1 as follows.

Xt−1 = argmax
i

P (Xt−1 = i|Xt = j)

= argmax
i

P (Xt = j|Xt−1 = i)P (Xt−1 = i)

We get P (Xt = j|Xt−1 = i) from the trained transition matrix described in Section 3 and
P (Xt−1 = i) from the classifier.

8 EVALUATION RESULTS

The evaluation was performed with 7-fold cross-validation with groupings described in Section 2.2.
The results are summarized below and include the best configurations for the neural networks. The
results for all the different configurations are given in Appendix C. There is no directly related work
that can be used for comparative evaluation. However, the accuracies presented can be compared
with the accuracy of a random guess, which is 1

16 = 6.25%.

From the results, it is clear that the neural networks approaches outperform the Extra Trees Classifier
(ensemble of decision trees). The hybrid approach with the convolutional and LSTM layers performs
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(b) Classifier with Markov Correction

Figure 5: Confusion matrices. When the actual figure is correctly classified p% of the time, the
diagonal entry is p/100.
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Figure 6: Improvement achieved using Markov correction across all neural network configurations
and cross-validation test sets.

the best. It is also clear that the number of samples (figures) in the training sets was sufficient to
achieve good performance on the validation sets. Collecting more data may have improved the
performance further, but despite data collection constraints, the Markov correction provided the
required boost in performance.

On average, the Markov correction approach proposed in Section 7 is found to benefit all the clas-
sifiers. We illustrate this using confusion matrices, which capture the results for individual figures.
Ideally, the confusion matrix should be the 16×16 identity matrix, because that would mean that the
predicted figure was always the actual figure. However it can be seen in Fig. 5(a) that the left-foot
closed-change (LCC) is most often confused for a whisk (W). However, a whisk is almost always
followed by a progressive chasse (PC). The Markov correction approach recognizes this from the
transition probabilities and corrects the estimation of a whisk to a left-foot closed change as soon as
it sees that that figure was not followed by a progressive chasse. The improved classification results
is illustrated in Fig. 5(b).

Markov correction sometimes hurts the classification results because the assumption that the current
figure was correct may not be valid. If the current figure has been incorrectly classified, then that
error in classification could be propagated to the previous figure. Fig. 6 shows the distribution of
improvements. On average, the improvement was 5.33 percentage points.
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9 RELATED WORK

To the best of our knowledge, we are the first to use a smart watch for dance recognition and dance
analytics. Multiple accelerometers are used as input for dancing video games in (Crampton et al.,
2007). VICON systems were proposed in (Dyaberi et al., 2004) and video recognition was used in
(Matthew Faircloth, 2008). Those approaches do not work in our scenario where there are multiple
ballroom dancers simultaneously on the floor, leading to occlusion. Also, they are expensive and
not suited for amateurs.

Music segmentation studies for dance detection purposes are presented in (Shiratori et al., 2004).
Models for turning motions in Japanese folk dances are modeled from observation in (Rennhak et al.,
2010). Signal processing techniques used in dance detection are reviewed in (Pohl, 2010). Ballroom
dance styles are differentiated in (Schuller et al., 2008) from the music that is being played.

For human activity recognition, ensembles of deep LSTM networks were proposed in (Guan & Plötz,
2017), but this approach is not suitable for real-time prediction because it is too slow. A single deep
LSTM network took nearly a whole day to train, from our experiments, and loading the weights for
prediction was also very slow. Convolutional neural networks were proposed in (Zeng et al., 2014).
Our approach is similar, but we use more convolutional layers, as suggested in the Keras time series
classification example (Ker, 2017). Our best results were obtained using the hybrid architecture
between convolutional and recurrent neural networks, and that was proposed for human activity
recognition in (Morales & Roggen, 2016).

More generally, for time series classification, convolutional networks were proposed in (Zhao et al.,
2017) and (Cui et al., 2016).

10 CONCLUSION

In this paper, we presented a study of whole body movement detection using a single smart watch in
the context of competitive ballroom dancing. Our approach was able to successfully classify move-
ment segments from the International Standard Waltz, using deep learning representations. The
representations alone achieved a maximum accuracy of 85.95%, averaged over 7 cross-validation
groups. Using the fact that the segments can be represented as a Markov chain, the accuracy was
improved to 92.31% by correcting the prediction for each preceding segment. The deep learning
representations outperformed ensembles of decision trees, and a Gaussian HMM representation per-
formed poorly because it was not discriminative. Despite the small size of the training set, the
representations were able to generalize well to validation sets.
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A APPENDIX: WALTZ FIGURE INFORMATION

Ballroom dancing competitions in the U.S. are conducted at multiple skill levels. The syllabus at
the skill levels restricts which figures can be used. In this paper, we focus on Waltz figures at the
Newcomer and Bronze skill levels, because the majority of amateur dancers compete at these skill
levels. The figures can also be used by dancers at more advanced skill levels, such as Silver and
Gold. Table 2 gives the names of the figures that we consider in this paper, along with the short
names used throughout the paper.

Table 2: Waltz Figure Names

Left Foot Figures Right Foot Figures
Left-foot Closed Change (LCC) Right-foot Closed Change (RCC)
Natural Turn 4-6 (N2) Natural Turn 1-3 (N1)
Natural Spin Turn (NST) Reverse Corte (RC)
Reverse Turn 1-3 (R1) Reverse Turn 4-6 (R2)
Chasse to Right (CTR) Chasse from Promenade (PC)
Outside Change (OC) Basic Weave (Weave)
Double Reverse (DR)
Whisk (W)
Back Whisk (BW)
Back Lock (BL)
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B UNIFORM (UNBIASED) TRANSITION PROBABILITIES

Table 3 describes the uniform (unbiased) transition probabilities between figures of the international
standard waltz.

Table 3: Figure Transition Probabilities

BL BW CTR DR LCC N1 N2 NST OC PC R1 R2 RC RCC W Weave
BL 0.20 0.20 0.00 0.00 0.00 0.00 0.20 0.20 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00
BW 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
CTR 0.20 0.20 0.00 0.00 0.00 0.00 0.20 0.20 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DR 0.00 0.00 0.20 0.20 0.20 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.20 0.00
LCC 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.33 0.00 0.00
N1 0.20 0.20 0.00 0.00 0.00 0.00 0.20 0.20 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00
N2 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.33 0.00 0.00
NST 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.33 0.00 0.00 0.33
OC 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.33 0.00 0.00
PC 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.33 0.00 0.00
R1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.33 0.00 0.00 0.33
R2 0.00 0.00 0.20 0.20 0.20 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.20 0.00
RC 0.20 0.20 0.00 0.00 0.00 0.00 0.20 0.20 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RCC 0.00 0.00 0.20 0.20 0.20 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.20 0.00
W 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
Weave 0.20 0.20 0.00 0.00 0.00 0.00 0.20 0.20 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00

C APPENDIX: DETAILED RESULTS FOR NEURAL NETWORK
HYPERPARAMETER CONFIGURATIONS

The following table contains the detailed results and the number of model parameters for each of
the architectures described in Fig 4. Note that D refers to the number of hidden layers for the feed-
forward neural network, but it refers to the number of LSTM/Dense layers in the other architectures
(described in Fig 4)

Architecture Width	(W) D Classifier	Accuracy	(%) Markov	Correction	(%) Model	Parameters

ConvNet

500 1 81.07 87.58 671,684
500 2 80.19 85.46 922,184
1000 1 83.01 87.98 1,256,184
1000 2 82.30 87.39 2,257,184
2000 1 82.40 86.46 2,425,184
2000 2 82.04 88.90 6,427,184

ConvNet+LSTM
1000 1 84.28 89.51 4,619,184
2000 1 85.95 92.31 17,151,184	
3000 1 85.93 91.86 37,683,184

Feed-Forward

500 1 78.87 85.27 208,516
500 2 80.14 85.63 459,016
500 3 79.04 83.10 709,516
1000 1 78.17 83.82 417,016
1000 2 78.73 84.23 1,418,016
1000 3 79.76 85.05 2,419,016
2000 1 78.77 83.80 834,016
2000 2 80.86 84.90 4,836,016
2000 3 76.83 80.98 8,838,016

LSTM
500 1 83.73 88.26 1,018,016
1000 1 83.19 88.41 4,036,016
2000 1 78.38 84.85 16,072,016
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