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Abstract

Generative modeling of multivariate time series has remained challenging partly
due to the complex, non-deterministic dynamics across long-distance time steps.
In this paper, we propose deep probabilistic methods that combine state-space
models (SSMs) with transformer architectures. In contrast to previously proposed
SSMs, our approaches use attention mechanism to model non-Markovian dynam-
ics in the latent space and avoid recurrent neural networks entirely. We also extend
our models to include several layers of stochastic variables organized in a hierar-
chy for further expressiveness. Compared to transformer models, ours are proba-
bilistic, non-autoregressive, and capable of generating diverse long-term forecasts
with accounted uncertainty. Extensive experiments show that our models consis-
tently outperform competitive baselines on various tasks and datasets, including
time series forecasting and human motion prediction.

1 Introduction

Generative modeling of multivariate time series is a challenging problem with wide-ranging appli-
cations in demand forecasting [15, 76], autonomous driving [2, 16], robotics [29, 67], and health
care [20, 21, 59]. Despite remarkable progress in recent years, models that predict high-dimensional
future observations from a few past examples have remained intractable, partly due to the complex,
non-deterministic temporal dynamics across long-distance time steps. Given a sequence of human
poses, for example, such models must internally figure out the involved dynamics of various body
components across space and time while maintaining the inherent uncertainty of multiple plausible
futures, even though only one such future is observed.

Among proposed probabilistic approaches, state space models (SSMs) provide a principled frame-
work for learning and drawing inference from sequential inputs [27, 66]. While autoregressive
models feed its predictions back into the dynamics model without any compressed representation of
data, SSMs model stochastic transitions between abstract states using latent variables, allowing for
efficient state-to-state sampling without the need to render high-dimensional observations. Gaussian
linear dynamical systems (LDSs), one of the best known SSMs [92], for example, postulate linear
state transitions and enjoy exact inference via the celebrated Kalman filter algorithm.

While early extensions of LDSs focus on linearization [46] and unscented transform [88], recent
work that marry state space models with deep neural networks offers much more flexibility to model
complex dependencies across different time steps. Some approaches retain the Markovian dynamics
of LDSs and only replace their linear observation models with feed-forward networks [23, 31, 47,
71], whereas others favor nonlinear state transitions and parametrize such dependencies via recurrent
neural networks (RNNs) [22, 23, 30, 39, 51, 75]. Despite differences, both Markovian transitions
and RNNss are often not capable of capturing long-range dependencies in highly structured sequential
inputs [36, 100], limiting the capacity of the corresponding SSMs.
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Figure 1: Graphical model representations of linear dynamical systems (LDSs) in (a), and our proposed models
(ProTran) in (b), (c), and (d). Black arrows denote the generative mechanism and red arrows the inference
procedure. The separation of generation and inference in (c) and (d) is for readability. While traditional SSMs
such as LDSs are limited to Markovian dynamics and linear dependencies, our models allow for non-Markovian
and non-linear interactions between time steps via attention mechanism. A multi-layer extension of our models
further increases expressiveness without compromising the tractable inference procedure.

In this work, we propose to combine the complementary strengths of SSMs and transformer archi-
tectures [85], a powerful mechanism for modeling long-term interactions that enjoys success across
a variety of sequence modeling tasks [26, 48, 99]. In contrast to most SSMs, our models make
extensive use of attention mechanism [5, 85] between latent variables to model non-Markovian dy-
namics (see Figure 1). Compared to transformer-based methods, our models are probabilistic, non-
autoregressive in a similar fashion to LDSs, and capable of generating diverse long-term forecasts
with uncertainty estimates.

Our main contributions are threefold. First, we propose novel SSMs based on transformer archi-
tectures for multivariate time series, which include generative models and inference procedures
based on variational inference [49, 74]. Second, we extend our models to include several layers of
stochastic latent variables organized in a hierarchy for further expressiveness. Third, we conduct
extensive experiments on time series forecasting and human motion prediction and demonstrate that
our Probabilistic Transformer (ProTran) performs remarkably well compared to various state-of-the-
art baselines.

2 Preliminaries

2.1 Variational State Space Models

Let {x(f)T}fil consist of N univariate time series where xgl)Tq =( gi),xéi), . x%)) and xgi)
denotes the vaue of the i¢-th time series at time t. We consider the multivariate form
x1.7 = (X1,X2,...,X7) where x; = (x; 7, ...%; )) € RY. Conditioning on observed values up
to time C, we aim to produce distributional forecasts into the future p(xc41.7 | X1.¢). For clarity,
we refer to x1.¢ and X¢41.7 as contexts and targets, respectively.

We are interested in probabilistic models parametrized by 6 of the form

p@(xlzT |X1:C) = /pa(X1:T | Z1:T)p9(Z1:T | Xlzc)dZLT (D

where z1.7 = (21,22, ...,2zr) denotes the corresponding sequence of latent variables, sometimes
referred to as states. In other words, we assume a generative model that can be decomposed into
a transition model py(z1.7 | X1.c) between the latent variables conditioned on the contexts, and an
emission model py(x1.7 |21.7) from the latent variables to observable outputs. In particular, we



further impose several assumptions on both models: '
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As demonstrated in Figure 1(b), the latent variable z,; depends not only on z; but also on all of
its preceding latent variables, including z;_1, in contrast to linear dynamical systems (LDSs). In
addition, the transition and emission models allow for non-linearity via neural network parametriza-
tions. These assumptions aim to maximize model capacity for real-world applications with complex
emissions or temporal dependencies.

However, neither x1.;—1 nor z;.;—; are included in the emission model p(x; |z1.7,X1.¢c). Such
assumptions are important, as it has been argued previously that a leakage of information from the
latent space in autoregressive models can hinder long-term predictions [23, 47]. While all ground
truth observations are available during training, the entire sequence has to be generated sequentially
at test time, making the dependencies on X;.;—1 prone to accumulated errors over multiple time
steps. By letting the latent variable z; capture all information needed to render x;, we also avoid the
computational costs associated with repeatedly decoding and encoding x; in multi-step predictions.

The inclusion of nonlinear state transitions and observation models necessarily requires approximate
inference. We follow the stochastic variational inference framework [49, 74] and assume that the
variational posterior parametrized by ¢ can be decomposed auto-regressively as gy (z1.7 | X1.7) =
[1; 94(2¢ | 21:4—1, %1.7), which leads to a lower bound on the log likelihood:

T
log o (x1:7[X1:0) = > (By [log po(x¢|z:)] — KL(qs(2e|21:6 -1, %1:7) || Po(2e|21:0 -1, %1:0)))
t=1
3)
where KL is the Kullback-Leibler divergence.

For computational stability, we assume homoscedasticity and choose Laplace distribution with scale
parameter (3 as a parametric form for py(x; | z¢), i.e. we optimize for L; reconstruction loss with
a cross-validated factor § for the KL term, following similar variational autoencoder (VAE) work
[24, 41, 86]. Such an assumption does not necessarily limit the capacity of our models, as powerful
stochastic transitions and flexible emission models can theoretically characterize arbitrary noise
covariance [66]. Incorporating structured probabilistic outputs such as Gaussian copulas [75] or
normalizing flows [23] can potentially further improve our model performance.

2.2 Transformer Architectures

Central to our models and other transformer-based approaches [48, 85] is the notion of attention
[5], which allows the models to focus on important parts within a context. Multi-head attention,
for example, maps a sequence of queries Q € R%*? of length ¢, to a sequence of outputs O =

[O1,...,0p] € R%*9 of the same size by attending over given ¢}, key-value pairs K € R4,
V € Réxd;
KT
O), = Attention(Qp, Ky, V},) = Softmax (Q\h/gh) Vi, 4)

where Q; = QW?, K; = KWfL{ ,Vy, = VW}‘L/ are projected queries, keys, and values cor-

responding to head h € [1, H] with learning parameters Wg, WE WY respectively. In case
Q = K =V, we refer to such an attention mechanism as self-attention.

Given fully observed sequences of inputs, the mapping can be computed efficiently without any
imposed sequential order often seen in recurrent neural networks [19, 42]. More importantly, the
direct connections between long-distance time steps are baked into the mechanism as information
from previous time steps is easily accessible without being compressed into a fixed representation,
easing optimization and learning of long-term dependencies [5, 85].

'For notational simplicity, we assume xo = z1.0 = @ and p(z | x0) = p(z).



Without recurrence, Transformer [85] encodes information about each time step ¢ with pred efined
sinusoidal positional embeddings Position(t) = [p,(1), ..., pt(d)) € R? where the i-th embedding
is given by p;(i) = sin(t - ¢'/¢) for even 4 and p;(i) = cos(t - ¢*/¢) for odd 7 and c is some large

constant. Empirical results show that such positional embeddings are also important to our models.

3 Probabilistic Transformer

In this section, we first present our single-layered model and subsequently its multi-layered ex-
tension for a hierarchy of stochastic latent variables. As alluded earlier, our model consists of a
generative model and an inference model that share information and parameters extensively.

3.1 Single-Layered Probabilistic Transformer

Generative Model. Given some contexts x;.c, we first apply a linear projection and combine it
with a positional embedding to obtain hy.c € R, i.e.

h; = LayerNorm(MLP(x;) + Position(t)), ®)

where LayerNorm and MLP denote layer normalizations [4] and multi-layer perceptrons, respec-
tively. While a traditional transformer model often dedicates an entire encoder for the same purpose
[55, 72], we find such a simple mapping works sufficiently well in conjunction with the context-
attention module of the corresponding decoder.

As implied in Equation (2), our latent dynamics decomposes auto-regressively. At each time step, we
parametri ze the distribution py(z; | Z1.1—1,X1.c) by a Gaussian with parameters resulting from two
sequential steps of attention: a self-attention over the previously inferred states z;.;—; and another
attention over the projected contexts h;.c. These two operations mirror those found in the decoder
of Transformer [85], with the stochastic latent variables replacing its decoder inputs.

Unfortunately, using stochastic samples of z; as attention queries is problematic, as purely stochastic
transitions make it difficult for the model to reliably retain information across multiple time steps
[17, 30, 39]. We therefore encapsulate the latent variables in hidden representations w, that also
has a deterministic component. Combined with the attention steps, such representations help model
long-range temporal dependencies while accounting for the stochasticity of future observations.

Starting with a learnable, context-agnostic representation wq, we recursively update w; using a
stochastic sample from py(z: | z1.+—1,X1.¢c) and th e positional embedding for the current time step
t. The generating process for the time step ¢ can be summarized by the following pseudocode:

w; = LayerNorm(w;_; + Attention(w;_1, W1.t—1, W1.t—1)) (6)
w; = LayerNorm(w; + Attention(w¢, hi.c, hi.¢)) 7
2, = Sample(\ (z,; MLP (W,), Softplus(MLP(%¢)))) ®)
w; = LayerNorm(w; + MLP(z;) 4 Position(t)), )

where Sample and Softplus are the Gaussian sampling and approximating rectifier operators.

Each stochastic sample of wi.7 is then mapped to a sequence of x;.7 via a multi-layer perceptron.
We emphasize that our generation procedure in the latent space is more efficient than others in the
observation space, which requires encoding and decoding high-dimensional inputs repeatedly.

Inference Model. We parametrize the approximate posterior q¢(zt |Z1.t—1,%1.7) at time step ¢
in a simi lar fashion to the prior py(z: | z1.4—1,X1.c). Indeed, these parametrizations share most
parameters and are done simultaneously in the same recursive loop, following the exact same steps
in Equation (6) and Equation (7) (see Figure 1). We note that similar sharing techniques between
the generative and inference processes have emerged as a common theme among recent successful
VAE models [17, 62, 83].

While the prior only has access to the conditioning observations x;.c, the approximate posterior
should take into account all observations during training, including the targets x¢41.7. Due to the
inherent unidirectional aspect of RNNs, previous work that uses RNNs to parametrize the approx-
imate posterior often disregards such a property [22, 30, 51] and often resorts to a filtering routine



p(2¢ | Z1:t—1,X1.¢). In contrast, our inference procedure resembles more of the smoothing process
of LDSs, factoring in both past and future observations via another application of self-attention:

kt = Attention(hl:T, hl:T7 hl:T)) (10)
z; = Sample(N (z4; MLP([Wy, ky]), Softplus(MLP([wy, ky]))). 11

Here, we replace Equation (8) in the generative model with Equation (11), where the hidden repre-
sentation k,; summarizing all information relevant to the current tim estep ¢ has been concatenate to
the latent-and-context-aware representation w; preceding the Gaussian parametrization.

The generative model and the inference model are trained end-to-end with a single stochastic varia-
tional inference objective stated in Equation (3). Such a variational bound includes the reconstruc-
tion loss for xy.c and the KL term for z;.c. Alternatively, we can exclude these terms from the
objective, which is equivalent to starting the inference process from ¢t = C' + 1 instead of t = 1.

Our models incur a time complexity of O(T2d) and a memory cost of O(T2d), where T is the total
sequence length and d is the dimensionality of the latent space. The recursive latent dynamics also
does not allow use the take full advantange of parallelizable attentions. However, we find that our
models are still efficient in practice, especially for reasonably small values of T'.

3.2 Multi-Layered Extension for Probabilistic Transformer

Inspired by recent work on hierarchical VAEs for non-sequential inputs [17, 80, 83, 101], we ex-
tend our proposed model to include several layers of latent variables, aiming to further increase its
flexibility for modelling sequential data.

We represent each time step ¢ with a Ma rkov chain of L latent variables z,El:L) = (zgl), . sz))
for simplicity (see Figure 1). The generative and inference model also decompose auto-regresswely

across different time steps and may exhibit non-Markovian dynamics:

T
Do (Xl:Tvzg}L) |X1:C) = (Hpa (Xt Zg“)) (H Hp (th) |Z1t ngle) Xl:C)) (12)
i—1

(=1t=1

L T
qe (z(1 L) | X1 T) = H Hq¢ (zﬁ” |z§ez l,zngl) xlzT) . (13)

(=1t=1

Intuitively, we generate samples x;.7 conditioning on x;.c by following the latent dynamics from
the bottom up and using the generative process described earlier within each layer. Analogously,
inference proceeds in the same order, resulting in a variational bound similar to Equation (3):

T

log pe (X1:7 | X1:0) > Y Eq [logpo( )Izt)} (14)
t=1

—ZKL (qo(2” 25 2\ xur) || po(at”) | 281,200, x1.0)). (15)

As before, we parametrize the prior pg (zg ) Jg 5/2 1 zgp)T, x1:¢) using self-attention over the inferred

latent variables from previous time steps w, ; on the same layer and another attention over contexts
h;.c. In this case, however, we include an additional self-attention over all latent variables from the
layer immediately below it (see Equation (16)):

vvgé) = LayerNorm(wt 1+ Attentlon(wiz)l,wngl)y (Z 1))) (16)
( ) — LayerNorm(w 5/) + Attentlon(wy),wyz 1aW§/2 1)) (17)
( ) — LayerNorm(w E + Attention(Wg ),hlzCahl c)) (18)

z@ = Sample(A(z;: MLP(W;")), Softplus(MLP(w,")))) (19)

wi" = LayerNorm(w(" + MLP(z") + Position(t)), (20)



Stacking multiple layers of latent variables increases model expressiveness, but it also result in a
linear increase in running time and the number of parameters. The time complexity for the L-
layers transformer is (’)(1LT2d), while the space complexity remains D(72d) due to the Markovian
structure of the chain zg ‘L) at each time step t. In our experiments, we restrict the number of layers
of our hierachical models to two or three.

4 Related Work

Deep State Space Models. Deep neural networks have been extensively combined with state
space models, resulting in flexible, yet principledly motivated latent variable approaches. While
some work keep the linear state transition intact to leverage the efficient Kalman filer algorithms
[23, 31, 47, 71], more expressive, nonlinear latent dynamics parametrized by neural networks have
been proposed [51, 52]. All such models are limited to the Markovian dynamics of LDSs, which
hinders learning of long-range dependencies. The limitation is often alleviated by combining the
stochastic transitions with a deterministic RNN that enables access to all past states [3, 8, 22, 30, 39,
77]. Our models are similarly non-Markovian, but the dependencies on the past states are done via
attention, which allows for easy connections between long-distance time steps. In addition, while
most existing deep SSMs represent each time step with a single latent variable, our models include
several layers of hierarchical latent variables with tractable inference mechanism.

Attentive Recurrent Networks. Attention mechanism has also been widely adopted in recent
time series work using sequence-to-sequence models [1, 28] or transformer architectures [14, 55,
57,72, 81, 94]. While our models are equipped with latent variables, these transformer approaches
[55, 72] lack inference mechanism and are susceptible to feeding back observation noise into the
dynamics model at test time. Our work, however, can be considered as an extension of the attentive
state space model proposed in [1], with discrete latent states replaced by their continuous analogs.
Recent developments in natural language processing [58, 60, 90] also combine transformer and
VAE; however, these approaches often use a time-agnostic latent variable, in contrast to our SSM
formulation.

Time Series Forecasting. Traditional univariate time series models, such as Box-Jenkins methods
[12] and exponential smoothing [43], often assume independence between any collection of time
series [76]. While multivariate extensions of the classical approaches, including vector autoregres-
sion [82] and multivariate GARCH [7], do not require such a strong assumption, they come with
many others such as stationarity and homocesdasticity, demand manual selection of covariates and
models, and do not scale well to even a moderate number of time series [40, 69].

Deep learning methods for time series forecasting have recently emerged as an expressive, scalable
framework for industrial applications [10, 68, 79, 91]. While early work focus on point forecasts
[53, 70, 96], recent approaches often employ recurrent neural networks with probabilistic forecasts
parametrized directly [76], using quantile functions [33], Gaussian copulas [75], normalizing flows
[23], or diffusion models [73]. In contrast, our models are entirely devoid of such recurrent archi-
tectures and rely on latent variables to output distributional forecasts.

Human Motion Prediction. Despite being almost identical in formulation, human motion pre-
diction has often been studied independently from time series forecasting. While some work deter-
ministically generate future motions or video frames [13, 32, 34, 56], stochastic prediction has also
been proposed with deep neural networks often outperforming traditional methods such as hidden
Markov models [93] or Gaussian processes [89] on complex motion datasets [13, 32, 45, 54, 63]. In
contrast to earlier work [95, 97] that employ a global latent variable across different time steps via
conditional VAE [49], we leverage the principled framework of state space models for learning and
inference of hierarchical, time-dependent latent variables.

5 Experiments

We present our experiment results on two tasks, namely, time series forecasting and human motion
prediction. These tasks are often studied independently, despite being almost identical as conditional
prediction problems.



Table 1: Test set CRPSqm of time series forecasting models (lower is better). The means and standard devia-
tions are computed over five runs using different random seeds.

DATASET SOLAR ELECTRICITY TRAFFIC TAXI WIKIPEDIA
VES [43] 0.900 + 0.003 0.880 4+ 0.004 0.350 4 0.002 - -

VAR [61] 0.830 + 0.006 0.039 + 0.001 0.290 % 0.001 - -
VAR-Lasso [61] 0.510 £ 0.006 0.025 + 0.000 0.150 % 0.002 - 3.100 + 0.004
GARCH [84] 0.880 + 0.002 0.190 + 0.001 0.370 4 0.001 - -
DeepAR [76] 0.336 = 0.014 0.023 & 0.001 0.055 4+ 0.003 - 0.127 + 0.042
LSTM-Copula [75] 0.319 £ 0.011 0.064 + 0.008 0.103 & 0.006 0.326 + 0.007 0.241 4 0.003
GP-Copula [75] 0.337 £0.024 0.024 +0.002 0.078 = 0.002 0.208 + 0.183 0.086 4 0.004
KVAE [51] 0.340 £ 0.025 0.051 & 0.019 0.100 % 0.005 - 0.095 £+ 0.012
NKEF [23] 0.320 + 0.020 0.016 + 0.001 0.100 % 0.002 - 0.071 £ 0.002
Transformer-MAF [72] 0.301 £ 0.014 0.021 £ 0.000 0.056 £+ 0.001 0.179 4 0.002 0.063 4 0.003
TimeGrad [73] 0.287 £ 0.020 0.021 +0.001 0.044 + 0.006 0.114 + 0.020 0.049 + 0.002
ProTran (Ours) 0.194 + 0.030 0.016 + 0.001 0.028 + 0.001 0.084 + 0.003 0.047 + 0.004

5.1 Time-series Forecasting

Datasets & Covariates. Following the experiment setup in [72, 73, 75], we evaluate our models
and multiple competitive baselines on five popular public datasets: SOLAR, ELECTRICITY, TRAF-
FIC, TAX1, and WIKIPEDIA. The data is recorded with hourly or daily frequency and shows seasonal
patterns of different frequencies (see Appendix A for more dataset details). As in [72, 73], the co-
variates include lagged inputs, fixed time embeddings (e.g. day of week, hour of day), and learnable
time-series embeddings. The inputs are scaled using the conditioning examples before being fed
into the model, and the predictions are rescaled appropriately afterward.

Metrics. Following [23, 72, 75], we evaluate our model and all baselines using continuous ranked
probability score (CRPS) [65] summed across time series, denoted by CRPSg,,,. Given a univariate
distribution function ' and an observation z, CRPS is defined as

CRPS(F,z) = /R(F(z) — {p<sy)dz,

where 1{1-9} is the indicator function. As argued in de Bézenac et al. [23], CRPSg,, is a proper
scoring rule [35] and can be computed without analytical forecast distributions. We compute the
metrics in a rolling fashion and use 100 samples for the distributional forecasts, similar to the afore-
mentioned work.

Baselines. We benchmark our models against various baselines, including (1) VES [43], an innova-
tion state space model; (2) VAR-Lasso and VAR [61], two multivariate linear autoregressive models
with and without Lasso regularization; (3) GARCH [84], a multivariate conditional heteroskedastic
model; (4) DeepAR [76], an autoregressive recurrent neural network; LSTM-Copula and GP-Copula
[75], two RNN-based models that use Gaussian copula to model nonlinearity; (5) KVAE [51], a vari-
ational approach based on linear dynamics; (6) NKF [23], a normalizing-flow model coupled with
Kalman filters; (7) Transformer [72], a transformer-based model based on masked autoregressive
flow; and (8) TimeGrad [73], a recent autoregressive approach that uses a diffusion model.

Implementations. We use 8-head attentions
and 2-layers MLPs to parametrize the gener-
ative and inference models. The stochastic

Table 2: Ablation study on TRAFFIC.

. . . . Two Layers v X X X
latent variables z; are 16-dimensional while . La;Ier « v v v
the hidden representations w; are in R'2%. ol iext Attention v v % v
Our probabilistic transformers for SOLAR and  Deterministic % % % v
ELECTRICITY have one stochastic layer while CRPS.— 0028 0031 0033 0041

those for the other datasets of higher dimen-
sional observations employ two layers. We re-
port the numbers of parameters of our models in Table 4 in Appendix C, which are all comparable
to those of the state-of-the-art approaches. See Appendix D for more details about hyper-parameters
and training processes.
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Figure 2: Prediction intervals and test set ground-truth from ProTran (our model) for the TRAFFIC dataset of
the first 16 of 963 time series.

Accuracy Comparison. Table 1 shows that our models perform competitively across all five high-
dimensional time series datasets, achieving CRPSg,,,, comparable to the best methods on ELECTRIC-
ITY and WIKIPEDIA while outperforming all baselines, including a non-SSM transformer-based
approach [72], by significant margins on SOLAR, TRAFFIC and TAXI. Further analyses with other
metrics, including CRPS and MSE, in Appendix B also help confirm our findings.

Qualitative Results. Figure 2 shows that the distribution forecasts generated by our model follow
closely the ground truths, which is consistent with our accuracy results. In addition, the model ap-
pears to capture the uncertainty of future forecasts to some extent; observations of large magnitudes
and far into the future seem to correctly have higher variance estimates.

Ablation Study. We include a small scale ablation study on the TRAFFIC dataset to investigate
which components of our models are essential. Table 2 suggests that removing the stochasticity
from w; has most impacts on model performance, implying that incorprating latent variables into a
transformer is indeed useful. Other aspects such as context attention or multiple layers of stochastic
variables do not show dramatic effects in this study; however, they do contribute performance gains.

5.2 Human Motion Prediction

Datasets. Following the experiment setup in [97], we evaluation our models on two public motion
capture datasets: Human3.6M[44] and HumanEva-I [78]. While Human3.6 is a large-scale dataset
with 3.6 million video frames recorded at SOHz, HumanEva-I is smaller with only 3 subjects and
recorded at 60Hz. We follow the preprocessing steps of previous work [64, 97] and obtain a 17-joint
skeleton for Human3.6 and a 15-joint skeleton for HumanEva-1. As in [97], we predict future motion
for 2 seconds conditioning on observed motion of 0.5 seconds and 1 second conditioning on 0.25
seconds for Human3.6 and HumanEva-I, respectively.
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Figure 3: Ground-truth pose sequences (first row) and corresponding predictions by ProTran (second row).
Solid colors indicate later time-steps and faded ones are older. The body-part movements in the predicted and
ground-truth poses resemble similar patterns, while certain variations are retained.

Table 3: Human motion prediction results.

DATASET HUMAN3.6M HUMANEVA-I
Method ADE| FDE| ADE] FDE|
ERD [32] 0722 0969 0382  0.461

acLSTM [56] 0.789 1.126 0.429 0.541
MT-VAE [95] 0457 0.595 0.345 0.403
Pose-Knows [87] 0.461 0.560 0.269 0.296
HP-GAN [6] 0.858 0.867 0.772  0.749
Best-Many [11] 0448 0.533 0.271 0.279
GMVAE [25] 0461 0.555 0.305 0.345
DeliGAN [38] 0483 0.534 0.306 0.322
DSP [98] 0493 0.592 0.273  0.290
DLow [97] 0425 0.518 0.251 0.268
ProTran (Ours) 0.381 0.491 0.258 0.255

Metrics. Following previous work on trajectory forecasting [2, 37], we adopt two popular metrics,
namely, average displacement error (ADE) and final displacement error (FDE). ADE measures the
average Lo distance over all time steps between the ground truth motion and the closest sample,
while FDE only consider such distance for the final pose.

Baselines. We compare our models against 9 models, including ERD [32] and acLSTM [56], two
deterministic RNN-based approaches; MT-VAE [95] and Pose-Knows [87], two conditional VAE
models; HP-GAN [6], a conditional GAN; Best-Many [11], GMVAE [25], DeliGAN [38]. and DSP
[98], four approaches optimizing for diversity objectives. The results for these baselines are reported
as in [97].

Implementations. Similar to the previous experiments, we use 8-head attentions and 2-layers
MLPs. Since Human3.6M is significantly more complex and multi-modal than the time series fore-
casting datasets, we make use of 3 stochastic layers, as opposed to 2 layers for HumanEva-I. For
Human3.6M, the context and target observations are significantly longer and set up for long-term
predictions, so we only infer latent variables for target observations. Appendix C also contains
further details about our models and their number of parameters.

Quantitative Results. Table 3 shows that our models convincingly outperform all baselines based
on both metrics ADE and FDE, with the gains significantly higher for the larger dataset Human3.6M.
We emphasize that our favorable performance is evaluated using random samples, while the closest
competitor, DLow [97], relies on a separate model for selecting samples to promote diversity, which
can potentially be combined with our probabilistic transformer for further improvements.

Qualitative Results. We show in Figure 3 human pose predictions made by our model that are
most similar to the corresponding ground truths among a collection of such stochastic predictions.
The similarities between the body-part movements in both sequences suggest that our model has
been able to capture the temporal dynamics quite well.



6 Conclusion & Discussion

In this work, we have introduced generative models for multivariate time series that combines
strengths of state space models and transformer architectures. In contrast to previous work, our
models do not rely on recurrent neural networks but make extensive use of attention mechanism.
We also extend our models to include hierarchical latent variables, inspired by recent developments
of VAEs for non-sequential data [17, 83]. Empirical experiments show that our models perform
remarkably well on time series forecasting and human motion prediction.

Our models do not come without limitations, however. As in other transformer-based approaches,
the reliance on attention incurs a quadratic time and memory complexity. While we do not find
it problematic in our experiments, the limitation necessarily hinders applications of our models in
tasks characterized by long-term dependencies such as language modelling or music generation [36].
Fortunately, recent work on sparse transformer [9, 18, 50, 55] can potentially address the issue, and
we leave such an investigation for future work.

Probabilistic time series forecasting is a fundamental research problem with wide-ranging applica-
tions in society. Although we have not explored healthcare applications of our work, previously
proposed methods with similar formulations have demonstrated potentials of forecasting techniques
[1, 81] in diagnoses or disease control.
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