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Abstract

With the remarkable achievements of large language models (LLMs), the demand
for fine-tuning and deploying LLMs in various downstream tasks has garnered
widespread interest. Parameter-efficient fine-tuning techniques represented by
LoRA and model quantization techniques represented by GPTQ and AWQ are of
paramount significance. However, although these techniques have been widely
adopted in single-task scenarios, research is scarce in multi-task scenarios. To
be specific, we find that mainstream quantization methods would prevent the
base LLM from being shared among tasks, so current LLM serving systems are
infeasible to integrate LLM quantization with multiple LoRA adapters to achieve
memory-efficient multi-task serving. Moreover, existing LLM serving systems lack
support for dynamic task addition and overlook the workload differences among
tasks, leading to inefficiencies in multi-task scenarios.
This work proposes LoRA-Inlaid, an efficient multi-task LLM serving system. On
the one hand, LoRA-Inlaid designs a flexible and efficient multi-task quantization
algorithm (MLGPTQ) that facilitates the sharing of a single quantized model for
multiple LoRA adapters, which significantly reduces the memory consumption for
model deployment. Meanwhile, it supports adding LoRA adapters for new tasks
on the fly, without sacrificing the stability of online services. On the other hand,
LoRA-Inlaid develops a novel multi-task scheduling algorithm guided by output
length prediction and grouping among different tasks, which effectively shrinks the
memory consumption and avoids frequent switching of LoRA adapters. Empirical
results verify that LoRA-Inlaid outperforms existing state-of-the-art LLM serving
systems by up to 1.58× in terms of throughput, 1.76× in terms of average latency,
2× in terms of job completion time, and 10× in terms of SLO Attainment, while
maintaining the same level of model quality.

1 Introduction

Large language models (LLMs) have demonstrated impressive effectiveness in various domains [26,
30, 31, 39], and the demand of deploying LLMs in downstream tasks continues to grow [4, 10,
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Table 1: Comparison of supported features of different LLM serving systems

System Multi-task
Serving

Multi-task
Quantization

Dynamic Task
Addition

Multi-task
Scheduling

vLLM [19] & TensorRT-LLM [29] ✗ ✗ ✗ ✗
S-LoRA [35] & Punica [5] ✓ ✗ ✗ ✗
LoRA-Inlaid (this work) ✓ ✓ ✓ ✓

20, 24, 34, 43, 44, 46, 47]. Given the explosive increase in model size and the limitations of
hardware resources, “parameter-efficient fine-tuning” (PEFT) and “quantization-then-deployment”
have become the most common pathways for deploying LLMs in downstream tasks [50]. On the one
hand, PEFT techniques, represented by LoRA (Low-Rank Adaptation) [16], only train small-scale
adapters to adapt the base model to a specific task, significantly reducing the cost of model fine-tuning.
On the other hand, low-bit quantization techniques like GPTQ and AWQ [12, 22] can substantially
reduce the memory requirements of model deployment and alleviate memory access overhead during
inference, while maintaining model quality.

Although mainstream LLM serving systems like vLLM and TensorRT-LLM [19, 29] have integrated
support for the quantized deployment of fine-tuned models, these systems focus on single-task serving
scenarios. With the rising demand for various downstream tasks, efficiently supporting multi-task
servicing scenarios has become increasingly crucial. This has led to the emergence of multi-task
serving systems supporting multiple LoRA adapters concurrently, such as S-LoRA and Punica [5, 35].
These systems share a unified base model across different tasks and activate different LoRA adapters
based on the incoming requests, enabling the simultaneous processing of multiple tasks in a single
batch. However, in multi-task scenarios, existing systems still face three major challenges.

First, existing multi-task serving systems cannot effectively incorporate mainstream model quantiza-
tion methods such as GPTQ and AWQ. Specifically, these quantization methods require calibration of
numerical distributions using task-specific datasets, and the quantization process for each task neces-
sitates activating the corresponding LoRA adapter. Consequently, the base models after quantization
are divergent across different tasks, and thus it is infeasible to share a unified quantized model. This
limitation leads to performance deficiencies or even unavailability in resource-constrained scenarios.

Second, in practical multi-task serving scenarios, it would be necessary to add new tasks in real time.
However, existing systems only support a static number of tasks and are incapable of dynamically
adding LoRA adapters. More importantly, after a quantized model is deployed, current solutions do
not support any subsequent quantization and deployment for new tasks without affecting the existing
tasks. In contrast, adding new tasks typically requires suspending and restarting the serving process,
which severely harms the stability and robustness of online services.

Third, incoming requests for different tasks inevitably have workload variations (such as request
length, processing time, etc.) and require loading different LoRA adapters for processing. Existing
systems overlook these issues during the scheduling for multi-task requests, and thus necessitate
loading a large number of adapters in a single scheduling step as well as frequently switching adapters
between adjacent scheduling steps, leading to significant efficiency degradation.

To address these challenges, we develop LoRA-Inlaid, a resource-efficient and high-performance
system for multi-task LLM serving. The main contributions of this paper are as follows.

To begin with, we propose an innovative multi-task quantization algorithm termed MLGPTQ (Multi-
LoRA GPTQ), which utilizes multi-task data to perform joint quantization on the base model.
This allows the quantized base model to be shared across multiple tasks. In addition, it supports
incremental quantization for newly added tasks without impacting the performance of online services.

Subsequently, we introduce a novel multi-task scheduling strategy based on output length prediction
and grouping. This effectively reduces memory consumption and memory swapping overhead in
multi-task scenarios, significantly enhancing overall system performance.

Based on these two techniques, we develop a brand new multi-task LLM serving system, namely
LoRA-Inlaid. As shown in Table 1, LoRA-Inlaid integrates multi-task quantization, enables dynamic
task addition, and employs the multi-task scheduling strategy, achieving high-performance and
flexible multi-task LLM serving in resource-constrained environments.
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Finally, experimental results demonstrate that, compared to existing systems, LoRA-Inlaid can
increase throughput by up to 1.58×, reduce average latency and job completion time by up to 1.76×
and 2×, improve SLO Attainment by up to 10×, and support larger-scale language models under the
same resource constraints, all while maintaining nearly the same level of model quality.

2 Background and Related Works

Low-Rank Adaptation. LoRA [16], short for Low-Rank Adaptation, is one of the most widely
used parameter-efficient fine-tuning (PEFT) techniques. Unlike full-parameter fine-tuning, LoRA
fine-tunes only a small adapter, which consists of much fewer parameters than the base model,
significantly reducing the training cost. The key idea behind LoRA is that the fine-tuning process
should only introduce small changes to the weight matrix of the base model (denoted by W ∈ Rm×n),
so we can learn two small, low-rank matrices (denoted by A ∈ Rr×n,B ∈ Rm×r where r ≪ m,n),
and approximate such changes with the product of two matrices (i.e., ∆W ≈ BA).

Low-bit Quantization. Low-bit quantization [7, 8, 12, 22, 23, 42] shrinks the model size effectively
and thus reduces the memory requirement when deploying the model. In addition, it usually helps
to improve efficiency by decreasing the memory access overhead of the model weights. Conse-
quently, it has been widely adopted in LLM serving. There are various quantization paradigms, with
post-training quantization (PTQ) being among the most popular ones. Typically, PTQ computes
XINT = Round(α Clip(XR/α,Qmin, Qmax)), where XR represents the real-valued parameters be-
fore quantization, XINT represents the parameters after quantization to integers, Qmin and Qmax

denote the minimum and maximum values of the quantization range, and α represents the scaling
factor. Various PTQ methods calculate the quantization knobs like α with diverse approaches or
implement different approximation methods. While mainstream PTQ methods (e.g., GPTQ [12],
AWQ [22]) have a common ground that they need to calibrate the numerical distribution based on
a small task-specific dataset (a.k.a. the calibration set), since numerous studies have revealed the
accuracy after quantization with dataset calibration is usually significantly higher than that without
dataset calibration [17]. Therefore, this paper focuses on quantization with dataset calibration.

Scheduling in LLM Serving. With the explosive applications of LLMs, more and more studies
try to evolve the scheduling strategies in LLM serving for better performance. Early systems like
FasterTransformer [28] rely on request-level scheduling. Notably, Yu et al. [45] introduced Orca, the
first iteration-level scheduling with first-come-first-serve (FCFS) order for better batching. Building
on this, mainstream LLM serving systems leverage various batching approaches, such as continuous
batching in vLLM [19] and in-flight batching in TensorRT-LLM [29]. FastServe [40] takes the
semi-information of requests (e.g., input length, processed time, etc.) into account and tries to
minimize average job completion time. However, none of these scheduling strategies consider the
characteristics of multi-task scenarios, as we will discuss in §3.3.

Multi-task Serving Systems. Since the LoRA fine-tuning technique keeps the base model unaltered,
it is feasible to share the same base model across multiple LoRA adapters, so that we can serve
requests from multiple tasks within a single batch. Punica [5] and S-LoRA [35] are two notable
multi-task serving systems, putting forward the initial efforts to support multi-task LLM serving with
multiple LoRA adapters. Specific optimization techniques are proposed. For instance, the Segmented
Gather Matrix-Vector (SGMV) kernel is developed to enhance memory and computation efficiency
when processing requests from different tasks together. In addition, to allocate more GPU memory
to intermediate results (typically, KV cache), existing systems maintain the LoRA adapters in CPU
memory and only preserve a relatively small number of LoRA adapters in GPU memory. When a
LoRA adapter outside GPU memory is needed, it is necessary to perform memory swapping between
the CPU and GPU memory.

3 LoRA-Inlaid

The overview of LoRA-Inlaid is depicted in Figure 1. Given an LLM with multiple LoRA adapters for
various downstream tasks, LoRA-Inlaid initiates a joint quantization process (§3.1), which produces
a unified quantized base model that can be shared across the adapters. During the online serving,
if new tasks are to be included on the fly, LoRA-Inlaid facilitates a dynamic task addition process
(§3.2) that efficiently conducts incremental re-quantization and seamlessly deploys the added tasks.
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Figure 1: Design overview of LoRA-Inlaid. The workflow is labeled with numbers in the diagram.
1⃝ Quantize and Deploy indicates the initiation of the server performing the multi-task quantization and de-

ploying the quantized model and LoRA online. 2⃝ Schedule involves utilizing a multi-task scheduling strategy
for 3⃝ Inference. If a new task is detected, it invokes 4⃝ Add Task to dynamically add the new task without
interrupting the ongoing services.

Furthermore, LoRA-Inlaid employs a multi-task scheduling strategy (§3.3) that takes the workload
differences into account for better efficiency.

3.1 Multi-task Joint Quantization

As introduced in §2, mainstream quantization methods require task-specific datasets for calibration.
In addition, they mostly follow the Forward-Aggregate Info-Modify Weight-Quant paradigm in
Figure 2. This paradigm first simulates the activation distribution for a given task through Forward
propagation and Aggregates Information of this specific task. Subsequently, it uses the aggregated
information to Modify model Weights to adapt to the task. Finally, the quantization knobs like scales
α are calculated based on the modified weights to Quantize the base model.

However, in multi-task scenarios, since different tasks should provide diverse calibration sets and
necessitate unique LoRA adapters for computation, the quantized models of different tasks are
inevitably divergent. Intuitively, if we wish to tweak existing quantization methods to make the
quantized model shareable across tasks, we should quantize the model without any LoRA adapters.
In addition, we should either (i) quantize the model without calibration or (ii) quantize the model
with a mixed calibration set consisting of the datasets from all tasks.

However, these approaches fail to accurately capture the unique numerical distribution of each task,
and suffer from severe accuracy loss (as evaluated in §4.2). Below we first elaborate on the reason
why these approaches fail with the widely used GPTQ [12] and then propose our solution1.

Drawbacks of GPTQ in multi-task scenarios. Directly applying GPTQ in multi-task scenarios
has the following drawbacks. First, as aforementioned, GPTQ can only quantize the model without
any LoRA adapters, which is infeasible to accurately capture the correct activation information for
multiple tasks during Forward. Second, in Aggregate Info, since the calibration sets from all tasks
are mixed, GPTQ simply accumulates the information from different tasks into one Hessian matrix,
making each task’s specific information diluted and losing the emphasis on critical information from
different tasks. Third, in Modify Weight, GPTQ relies on the naïve, mix-aggregated Hessian matrix,
overlooking the varying importance across tasks, which results in suboptimal outcomes. These
drawbacks make the direct application of GPTQ in multi-task scenarios ineffective.

Our MLGPTQ (Multi-LoRA GPTQ) Algorithm To address these drawbacks, we propose a multi-
task quantization algorithm termed MLGPTQ. Our algorithm enables joint quantization of multiple
tasks to retain only one quantized base model, while effectively maintaining the model accuracy by
capturing the numerical distributions of all tasks. The goal of MLGPTQ is to minimize the errors of
activations before and after quantization, i.e.,

argmin
Q(W)

||
T∑

t=1

((W +BtAt)Xt − (Q(W) +BtAt)Xt)||22, (1)

1Note that the idea of our solution can also be applied to other quantization algorithms which follow the same
paradigm (like AWQ) since the drawbacks exist generally. Considering that the choice of backbone algorithm is
orthogonal to our goal, we focus on GPTQ in this work due to its widespread adaption, and present how to adapt
our solution to AWQ in Appendix D.
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Figure 2: Process of MLGPTQ vs GPTQ. Both MLGPTQ and GPTQ follow the Forward-Aggregate Info-
Modify Weight-Quant paradigm. MLGPTQ primarily improves the first three steps, aiming to better gather and
highlight critical information for all tasks.

where T denotes the number of tasks, At and Bt are the low-rank adapter matrices of the t-th task,
Xt is the input of t-th task, and W and Q(W) denote the original and quantized weights of a layer.

As shown in Figure 2, During Forward, MLGPTQ loads the corresponding LoRA adapters based
on each task, accurately computing the activations. In Aggregate Info, unlike GPTQ’s naïve mix-
aggregation that disrupts task-specific information, MLGPTQ derives the max-aggregation to solve
the objective in Eq. 1 (the derivation can be found in the Appendix A), which has the following form:

∇W = −wq −Q(wq)

(H−1
t∗ )qq

H−1
t∗ eq, where t∗ = argmax

t∈{1,2,··· ,T}
(H−1

t )qq, (2)

where Ht denotes the Hessian matrix of the t-th task,wq is the q-th parameter in W. To be formal,
there are primarily two steps in Aggregate Info. First, it calculates the Hessian matrix information for
each task individually (i.e., compute {H−1

t }Tt=1) Second, it aggregates the most important information
from each one into a max-aggregated Hessian matrix (i.e., Htmp = MaxAgg({H−1

t }Tt=1)). In Modify
Weight, MLGPTQ utilizes the max-aggregated Hessian matrix to adjust the weights according to
Eq. 2. Finally in Quant, we utilize the modified weights for quantization. Due to space constraints,
we only present the core concept of MLGPTQ here. Interested readers are referred to Appendix A for
a complete derivation as well as the detailed algorithm.

3.2 Dynamic Task Addition

In real-world online services, there is a need for dynamic task addition (i.e., adding new LoRA
adapters). In single-task scenarios, adding new tasks typically requires launching more services with
extra hardware resources, which does not affect the services for existing tasks. In multi-task scenarios,
there would be interference since all tasks share the same base model. However, we find that none of
the existing multi-task serving systems address this problem, lacking a proper solution.

Nevertheless, adding new LoRA adapters on the fly in LoRA-Inlaid is inherently far from trivial since
the multi-task quantization poses two challenges: (1. Unseen Distributions) Since the MLGPTQ
algorithm is invoked before the new tasks are involved, the quantized model has not captured the
distribution information about the new tasks, making it infeasible to work with the new LoRA
adapters directly. (2. Serving Interruption) Directly re-quantizing the model requires a substantial
amount of memory, so it necessitates pausing the ongoing serving for a while to reserve available
space for re-quantization, harming the stability of online services. To support dynamic task addition
in multi-task scenarios, LoRA-Inlaid tackles these two obstacles, respectively.

To capture the information of new tasks, a naïve solution is to perform full quantization once there
are new tasks. Denote T1, T2 as numbers of existing and new tasks, respectively. The naïve solution
runs the two steps of Aggregate Info above with T = T1 + T2. However, this leads to redundant
computation of {H−1

t }
T1
t=1. In addition, given the commutative property of the max-aggregation

operation, we have MaxAgg({H−1
t }Tt=1) = MaxAgg(MaxAgg({H−1

t }
T1
t=1), MaxAgg({H

−1
t }

T2
t=T1+1), where

the first term MaxAgg({H−1
t }

T1
t=1) has already been computed as Htmp in the previous quantization.

Inspired by this, LoRA-Inlaid caches Htmp so that the incremental quantization can be done as
follows. In Forward, it capture the activation information of new task T1 + 1, · · · , T2. In Aggregate
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Info, it computes the Hessian matrices for new tasks {H−1
t }

T2
t=T1+1, and then max-aggregates the

T2 +1 matrices (i.e., {H−1
t }

T2
t=T1+1 and the cached H

(cached)
tmp ). At last, it performs Modify Weight and

Quant, as introduced in §3.1. By doing so, incremental quantization with T2 tasks is identical to full
quantization with T1 + T2 tasks, while avoiding redundant computation.

To avoid halting the ongoing services, LoRA-Inlaid spawns a background thread for incremental
quantization. Moreover, it is done in a layer-by-layer manner to reduce the memory consumption
— for each (unquantized) model weight, we load it from CPU memory to GPU memory, perform
incremental quantization, remove it from GPU memory, and proceed to the next model weight. The
IO between CPU-GPU is overlapped with computation. Thus, LoRA-Inlaid supports seamless task
addition on the fly and has very little influence on the ongoing services, as evaluated in §4.4.

Putting them together, LoRA-Inlaid develops an asynchronous, layer-wise re-quantization mechanism,
which accomplishes incremental quantization with the new tasks and cached Hessian matrices
asynchronously, without interrupting the serving.

3.3 Multi-task Scheduling

Despite extensive research on scheduling strategies for LLM serving, these approaches primarily
focus on single-task serving, leaving the unique characteristics in the multi-task scenarios neglected.
Below we analyze two limitations of existing scheduling strategies in multi-task serving. Besides,
due to the space constraint, we briefly introduce the corresponding solutions in LoRA-Inlaid, while
leaving the details of our multi-task scheduling algorithm in Appendix B.

Limitation 1: Divergent Output Length Distributions Leading to High Average Completion Time. As
shown in Figure 3, the distributions of input and output lengths vary significantly across different
tasks, while requests of the same task exhibit clustering effects. Current strategies mainly rely on
semi-information (e.g., input length, processed time, etc.) to make the scheduling decisions, but do
not consider the information of output length since it is not the prior knowledge. Intuitively, this
may work fine for single-task scenarios where the vast majority of requests fall within the same
workload and thus the clustering effect exists. However, it is unsuitable for multi-task scenarios due
to the divergent output length distributions across different tasks. Eventually, we find that existing
scheduling strategies suffer from heavy performance degradation when applied to multi-task serving.

Solution 1: Scheduling Guided by Output Length Prediction. Existing research has shown that the
output lengths can be accurately predicted by a small, distilled model given the requests [49]. Inspired
by this, we leverage a number of small models, to predict the output lengths of incoming requests.
Particularly, upon receiving a new request, we predict its output length on CPU using a small model
(255MB). Note that the output length prediction takes about 16 milliseconds for one request on CPU,
while it takes about 200 milliseconds or more to finish the inference of one request on GPU. Hence,
we can completely overlap the prediction, without occupying any GPU computing resources. Based
on the predictions, we employ a Shortest Remaining Time First (SRTF) scheduling, which prioritizes
requests with the shortest remaining processing time and has been proven to minimize the average
completion time in the field of job scheduling [37].

Limitation 2: Excessive Tasks Involved in each Step Leading to Expensive Memory Access Overhead.
Due to the randomness and dynamicity of request arrivals, multiple tasks are to be scheduled in each
step. However, owing to the lack of consideration upon the task for each request, existing scheduling
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Table 2: Model quality of different approaches under different tasks (std-dev given in parentheses). GPTQ
and AWQ are in gray background color since the quantized models produced by them cannot be shared across
different tasks. We mark the best multi-task quantization approaches (i.e., the best among MLGPTQ, GPTQtweaked,
AWQtweaked, and RTN) in bold.

Dataset trans-fr trans-cs trans-id trans-nl trans-da trans-sw QTsum xlsum tiny-codes GSM8k med-qa malicious
Metric S_BLEU S_BLEU S_BLEU S_BLEU S_BLEU S_BLEU ROUGE-1 ROUGE-1 ROUGE-1 Acc (%) Acc (%) Acc (%)
Unquantized 34.45 (0.01) 31.89 (0.02) 33.94 (0.01) 30.94 (0.01) 35.04 (0) 31.14 (0.01) 49.38 (0) 41.28 (0.01) 31.72 (0.02) 32.14 (0) 80.9 (0) 37.44 (0)

4-
bi

t

MLGPTQ 34.05 (0.02) 31.16 (0.02) 33.63 (0.01) 30.73 (0.04) 34.39 (0.01) 31.20 (0.01) 49.02 (0) 40.96 (0.02) 30.85 (0.05) 31.62 (0) 76.7 (0.68) 36.44 (0.6)
GPTQtweaked 33.91 (0.02) 28.95 (0.21) 32.88 (0.08) 30.48 (0.07) 33.47 (0.04) 28.94 (0.06) 48.23 (0.02) 39.77 (0.06) 29.25 (0.10) 31.51 (0) 74.81 (2.53) 35.05 (1.15)
AWQtweaked 33.88 (0.04) 29.45 (0.11) 33.01 (0.06) 29.99 (0.09) 33.34 (0.11) 30.11 (0.07) 47.96 (0.03) 40.12 (0.08) 30.23 (0.07) 30.51 (0.01) 75.42 (1.13) 35.68 (0.33)
RTN 33.79 (0) 29.64 (0.01) 32.96 (0.01) 30.33 (0) 33.96 (0) 30.46 (0.02) 47.54 (0.01) 40.27 (0.02) 30.63 (0.02) 31.01 (0) 76.15 (0) 33.78 (0)
GPTQ 34.07 (0.02) 31.19 (0.03) 33.79 (0.02) 30.86 (0.15) 34.57 (0.02) 31.08 (0.08) 49.26 (0.02) 40.89 (0.06) 30.92 (0.06) 31.35 (0) 76.7 (2.66) 36.25 (0.44)
AWQ 34.17 (0.03) 31.19 (0.05) 33.72 (0.07) 30.69 (0.08) 34.21 (0.08) 31.07 (0) 49.04 (0.12) 41.10 (0.02) 31.03 (0.04) 31.45 (0) 75.42 (1.26) 36.18 (0.28)

3-
bi

t

MLGPTQ 31.72 (0.39) 26.93 (0.58) 30.11 (0.63) 27.97 (1.04) 30.77 (0.50) 28.06 (0.53) 47 (0.38) 39.07 (0.22) 27.62 (0.47) 28.74 (0) 54.84 (7.94) 31.90 (0.47)
GPTQtweaked 31.3 (0.62) 25.89 (0.7) 28.18 (0.75) 23.54 (1.01) 24.09 (0.51) 21.12 (0.39) 45.99 (0.26) 38.32 (0.15) 23.80 (0.46) 28.30 (0) 54.02 (7.9) 30.93 (0.24)
AWQtweaked 31.57 (0.94) 26.45 (0.59) 25.13 (0.62) 24.46 (1.02) 26.77 (0.7) 19.79 (1.02) 45.13 (0.17) 37.62 (0.46) 21.83 (0.46) 28.24 (0) 53.66 (19) 31.03 (0.34)
RTN 26.02 (0.01) 0.03 (0) 0.03 (0) 0.06 (0) 0.05 (0) 0.05 (0) 0.9 (0) 0.10 (0) 0.34 (0) 26.38 (0) 51.3 (0) 31.4 (0)
GPTQ 30.83 (0.31) 26.19 (0.58) 31.88 (0.65) 28.21 (0.81) 32.93 (0.26) 29.75 (0.3) 47.22 (0.17) 39.53 (0.17) 26.12 (0.11) 28.16 (0) 56.03 (12.39) 31.26 (0.5)
AWQ 31.23 (0.63) 25.35 (0.18) 30.35 (0.73) 28.65 (1.15) 31.23 (0.32) 28.77 (0.62) 47.13 (0.17) 39.23 (0.44) 27.16 (0.57) 28.63 (0) 53.66 (4.08) 31.77 (0.29)

strategies typically involve a great number of tasks, and the system has to load lots of LoRA adapters
in each step, as shown in Figure 4. As it is well known that the decoding phase of LLM inference
is usually bounded by the memory bandwidth, the need for loading more LoRA adapters further
exacerbates this issue. Worst still, we observe that the sets of involved tasks vary significantly
between consecutive steps. As introduced in § 2, multi-task serving systems only preserve limited
GPU memory space for LoRA adapters, and swap them between CPU and GPU memory when
necessary. Consequently, existing scheduling strategies force the system to frequently swap LoRA
adapters, rendering performance degradation due to the expensive memory swapping overhead.

Solution 2: Reducing Tasks Involved via Grouping. To address the limitation, we adopt a simple yet
effective grouping-based approach, which partitions requests into groups according to their tasks to
guide scheduling. On one hand, to avoid involving excessive tasks in each step, we set a grouping
coefficient β (10 by default) and keep the number of involved tasks below β in each step. On the other
hand, to alleviate the memory swapping overhead, we prioritize tasks involved in the previous step,
aiming to use the LoRA adapters for more consecutive steps. In addition, we maintain a starvation
queue based on the waiting time to get rid of starvation, striking a good balance among the tasks.

4 Experiments

4.1 Experimental Setup

Hardware Environment. All experiments are conducted on one RTX 4090 GPU or one RTX 3090
GPU, with GPU memory capacity of 24GB. Detailed specifications can be found in Appendix C.1.

Datasets and Workloads. For accuracy tests, we consider 12 tasks in total, including six translation
tasks [38] (trans-fr, trans-cs, trans-id, trans-nl, trans-da, trans-sw), one text summarization task [14]
(xlsum), one table summarization task [48] (QTsum), one code generation task [13] (tiny-codes), one
math QA task [6] (GSM8k), one medical QA task [2] (med-qa), and one malicious detection task [1]
(malicious). Detailed descriptions are provided in Appendix C.2. For efficiency tests, we follow prior
works [19, 35] to generate different levels of request rates using the Gamma process.

Models. We conduct experiments with LLaMA2-7B and LLaMA2-13B [25]. For accuracy tests,
open-source fine-tuned models are used, as detailed in Appendix C.2. For efficiency tests, following
S-LoRA [35], we consider LoRA adapters with different ranks (8, 16, 32, 64) across the served tasks
to simulate diverse serving scenarios.

Metrics. For the accuracy test, we focus on SacreBLEU (S_BLEU) [18], ROUGE [21] and Accuracy
(Acc). Details of these metrics are provided in Appendix C.3. For efficiency tests, the considered
metrics include throughput, average request latency, job completion time (JCT), and SLO (service
level objective) Attainment [33] (the percentage of requests completed within the expected latency).
By default, we test the serving for 1 minute, with an expected latency of 6 seconds.

Baselines. For accuracy tests, we focus on two kinds of baselines introduced in §3.1, i.e., (i) the
floating-point round-to-nearest quantization without calibration (denoted as RTN), and (ii) GPTQ [12]
and AWQ [22] with a mixed calibration set from all tasks (denoted as GPTQtweaked and AWQtweaked).

Source code is available at https://github.com/PKU-DAIR/LoRA_Inlaid.
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To be fair, these baselines quantize the base model without any LoRA adapters to ensure the quantized
model is shareable. Besides, to facilitate the comparison to single-task quantization, we further
consider GPTQ and AWQ for each task individually with the corresponding calibration set and LoRA
adapter (denoted as GPTQ and AWQ), which cannot generate a shareable quantized model though.

For efficiency tests, we compare LoRA-Inlaid with vLLM [19] and S-LoRA [35]. For vLLM, we
quantize each model into 4-bit and launch multiple processes (each with one quantized model)
on the same GPU to achieve multi-task serving. For S-LoRA, which does not support deploying
quantized models, we deploy one half-precision (16-bit) model and let multiple LoRA adapters share
it. For LoRA-Inlaid, we use 4-bit quantization in all efficiency tests. Note that although the model is
quantized, the computation during inference is still executed in half-precision (i.e., the model weights
are dequantized before computation).

4.2 Model Quality after Quantization

We first assess the model quality after quantization of different approaches. Table 2 presents the
model quality of different tasks under different metrics. It can be seen that all quantization methods
incur accuracy drops compared to no quantization. For 4-bit quantization, the average accuracy drops
for MLGPTQ, GPTQtweaked, AWQtweaked, and RTN are 1.70%, 4.72%, 4.50%, 4.02%, respectively.
For 3-bit quantization, MLGPTQ consistently achieves the best results, outperforming GPTQtweaked
and AWQtweaked by 59.30%, 69.98% in average. While RTN suffers from up to 74.41% accuracy
drops. In addition, for GPTQ and AWQ, which could not produce a shareable model, the average
accuracy drops are very close to MLGPTQ (e.g., 1.00%, 1.89% respectively for 4-bit quantization).
This proves that our work achieves comparable model quality against single-task quantization while
enabling multi-task sharing after quantization.
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Figure 5: Effectiveness anatomy. The radar charts show the relative accu-
racy drops compared to no quantization (outer is better).

We also conduct experi-
ments to anatomize the
effectiveness of MLGPTQ.
To be more comprehen-
sive, five additional metrics
(ROUGE1, ROUGE2 [21],
NIST_MT [9], METEOR [9],
and G_BLEU [41], detailed
in Appendix C.3) for eval-
uating machine translation
quality are included. In
addition, we further consider
a variant of MLGPTQ termed
MLGPTQno_target, which
intentionally excludes the
calibration set and LoRA
adapter of a target task during
quantization (the other tasks
are not affected).

According to the results in Figure 5, we point out that the effectiveness of MLGPTQ stems from two
factors: 1⃝ whether the information (e.g., activation and Hessian matrix) of each task is correctly
captured, and 2⃝ whether the data distribution of each task is involved during the forward pass of
quantization. In particular, GPTQtweaked (missing 1⃝) and MLGPTQno_target (missing 2⃝) exhibit
higher accuracy drops compared to MLGPTQ and GPTQ (both fulfilling 1⃝ and 2⃝) in almost all
metrics. These results verify that the design of MLGPTQ fits multi-task quantization well.

4.3 End-to-end System Performance

Throughput, Latency, and JCT. We evaluate the system performance with various numbers of
tasks and request arrival rates. The throughput, latency, and JCT are shown in Figure 6. Overall,
LoRA-Inlaid consistently outperforms S-LoRA and vLLM. S-LoRA fails to serve LLaMA2-13B due
to the lack of support for deploying quantized models. Since vLLM necessitates launching multiple
processes to achieve multi-task serving, the memory consumption grows linearly w.r.t. the number
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Figure 6: System performance in terms of throughput (higher is better), latency (lower is better), and JCT
(lower is better) under various request rates (x-axis) and numbers of tasks (T ).

Figure 7: SLO Attainment (higher is better) under various serving loads (RTX 4090).

Table 3: Scalability comparison in terms of throughput (reqs/s, higher is better) under different request rates
and number of LoRA adapters (LLaMA2-7B@RTX 4090).

Task num 2 3 4 5 ... 100 1000
Reqs rate 5 10 20 5 10 20 5 10 20 5 10 20 ... 5 10 20 5 10 20

LoRA-Inlaid 3.89 4.70 4.86 3.78 4.66 4.81 3.82 4.77 4.89 3.71 4.61 4.73 ... 3.60 4.25 4.58 3.42 4.02 4.22
S-LoRA 2.93 3.45 3.51 2.97 3.38 3.54 2.91 3.36 3.58 2.97 3.40 3.55 ... 2.87 3.35 3.36 2.78 3.26 3.28
vLLM 1.77 2.46 2.98 1.02 1.68 2.27 0.77 0.76 0.80 OOM OOM OOM ... OOM OOM OOM OOM OOM OOM

of tasks, and it encounters out-of-memory (OOM) errors in several cases. In contrast, LoRA-Inlaid
supports all cases well. More importantly, since LoRA-Inlaid is able to reserve more memory for
intermediate results (e.g., KV cache) in serving, it achieves higher performance than the baselines.
For instance, LoRA-Inlaid surpasses S-LoRA by 26.5%, 31.3%, 24.1% on average, and up to 58.1%,
76.3%, and 99.9%, in terms of throughput, latency, and JCT, respectively.

SLO Attainment. We also assess the SLO Attainment under different serving loads by varying the
request rates and maximum request lengths. The results are shown in Figure 7. In short, compared to
S-LoRA and vLLM, LoRA-Inlaid improves the SLO Attainment by 3.9×, 8.5× on average, and up to
10×, 38×, respectively. Furthermore, we observe that as the request rate or maximum sequence length
increases, S-LoRA and vLLM experience a steep decline in SLO Attainment while LoRA-Inlaid does
not. This demonstrates the excellent adaptability of LoRA-Inlaid to various serving loads.

4.4 More Experiments

Scalability. We investigate the scalability w.r.t. number of tasks. As shown in Table 3, vLLM suffers
from significant performance decline, dropping by 56%-73% when the number of tasks increases
from 2 to 4, and eventually encountering out-of-memory (OOM) errors when the number of tasks
reaches 5. In contrast, under all experimented request rates, the throughput of LoRA-Inlaid hardly
declines, even with 1000 tasks served simultaneously. S-LoRA also supports a large number of tasks,
while LoRA-Inlaid consistently achieves better performance across all kinds of workloads.

Ablation Studies of Multi-task Scheduling and Multi-task Quantization. We compare different
scheduling strategies on LoRA-Inlaid. The results are shown in the left of Figure 8. “Ours (w/o
group)”, “Ours (w/o prediction)” and “Ours (w/o SRTF)” represent three variants of our multi-task
scheduling strategy without task grouping, without output length prediction and without the prediction-
based SRTF, respectively. “FIFO” is the strategy adopted in S-LoRA and vLLM, and “Skip-join

9



7B 13B0.0

0.2

0.4

0.6

0.8

SL
O 

At
ta

in
m

en
t Ours

Ours(w/o group)
Ours(w/o prediction)

Ours(w/o SRTF)
FIFO
Skip-join MLFQ

7B0.0

0.2

0.4

0.6

0.8 Ours
Ours(w/o quant)
S-LoRA

Figure 8: Left: Ablation studies of scheduling strategies on
LoRA-Inlaid (100 tasks). Right: Effectiveness of quantiza-
tion to SLO Attainment (Llama-2-13B is not shown due to
OOM of the other two methods).

0
1
2
3
4
5

Th
ro

ug
ho

ut
(re

qs
/s

)

Serving Process

Add one task, 
throughput 
decreased by 10%.

Add five tasks, 
throughput 
decreased by 10%.

Add ten tasks, 
throughput 
decreased by 13%.

Figure 9: Impact of dynamic task addition on
online throughput (LLaMA2-7B@RTX 4090 with
100 tasks initially, and the request rate is 30 reqs/s).

MLFQ” represents the strategy in FastServe [40]. It is evident that our multi-task scheduling strategy
achieves the best performance in terms of SLO Attainment. The designs of task grouping, output
length prediction, and SRTF increase the SLO Attainment by 1.16×, 1.23× and 2.27× on average,
respectively. We also explore the individual impact of multi-task quantization as shown in the right
of Figure 8. Specificically, we consider a variant of LoRA-Inlaid, which disables quantization (i.e.,
the served model is not quantized), denoted as “Ours (w/o quant)”. The results show that multi-task
quantization brings 39% improvement (“Ours” vs. “Ours (w/o quant)”) when serving the 7B model.
Additionally, without quantization, it will lead to OOM when serving the 13B model.

Forward+Cal
Hess Matrix

Agg Hess matrix
+Quant Total Peak

Memory
Full Quant 1403(±21)s 415(±6)s 1818(±22)s 9.2GB
Incr Quant

(offline) 663(±11)s 416(±5)s 1079(±12)s 9.2GB

Incr Quant 889(±11)s 469(±6)s 1358(±13)s 2.5GB

Table 4: Time cost of quantization.

Dynamic Task Addition. We evaluate the
ability of dynamic task addition in LoRA-
Inlaid by adding 1, 5, and 10 tasks to a
heavily loaded service on the fly. The re-
sults in Figure 9 show that the throughput
undergoes 10%-13% of degradation during
the task addition, regardless of the number
of tasks added. This is worthwhile given
that the online service need not be interrupted. Meanwhile, to evaluate the time consumption of
dynamic task addition, we conducted an experiment where there are 5 tasks in the ongoing service and
another 5 tasks need to be added. We measured the time cost of three approaches: “Full Quant”, which
halts the serving and performs full quantization with 10 tasks, “Incr Quant offline”, an offline variant
(which halts the serving) of our incremental quantization on the 5 new tasks without layer-by-layer
quantization, and “Incr Quant”, our incremental quantization with the 5 new tasks, which works
concurrently with the ongoing service. As shown in Table 4, by avoiding the redundant computation,
the time cost of forward process and calculation of Hess matrix can be reduced greatly, accelerating
quantization. Moreover, although the layer-by-layer mechanism slows down the quantization by 1.26
× due to the extra IO, it reduces the memory greatly and does not halt the serving. These empirical
results validate the flexibility and robustness of LoRA-Inlaid for multi-task serving.

5 Conclusion and Limitations

In this work, we focused on LLM serving in multi-task scenarios and developed a multi-LoRA task
serving system, namely LoRA-Inlaid. On one hand, we designed a flexible and efficient dynamic
multi-task quantization algorithm that supports the joint quantization of models for multiple tasks,
significantly reducing the memory requirements for model deployment. We also facilitated real-
time dynamic task addition, enhancing the stability and flexibility of online services. On the other
hand, we introduced a novel multi-task scheduling strategy based on output length prediction and
grouping, effectively resolving the issues of high memory overhead and frequent memory swapping
when applying existing strategies in multi-task scenarios. Extensive experiments demonstrated that
LoRA-Inlaid significantly outperforms existing LLM serving systems.

Despite the effectiveness of LoRA-Inlaid, it still has several limitations. First, our quantization does
not detect the existence of malicious or poisoning tasks, which might be intentionally crafted to harm
the other tasks. Second, our scheduling does not consider the fairness among tasks (e.g., balancing
the total numbers of output tokens for all tasks), which may be essential for shared service platforms.
Third, it only supports language tasks while requiring some system re-designs for multi-modal tasks.
We wish to leave the exploration of these issues as future works.
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A Details of MLGPTQ

A.1 Derivation of MLGPTQ

MLGPTQ is based on GPTQ, adapting the corresponding LoRA adapter according to the activation
values of the input data to minimize the error in activation values before and after quantization. For
only one task, GPTQ aims to solve the following problem:

argmin
Q(Wl)

||WlXl −Q(Wl)Xl||22, (3)

where Wl represents the weight of l-th layer in the base model, Q(Wl) represents the quantized
version of Wl, Xl is the input of l-th layer. In other words, the objective of GPTQ is to find a
Q(Wl) for each layer’s weight Wl through layer-wise quantization, in order to minimize the changes
in activation values. Since we are discussing quantization within a single layer, we will omit the
subscript l for simplicity in the rest of this section.

As proved by [11], solving Eq. 3 can be transformed into solving Eq. 4 as follows.

argmin
Q(W)

E :=

drow∑
i=1

∥Wi,:X−Q(W)i,:X∥22 . (4)

Since the model has converged through training before quantization, existing works generally assume
the model has reached a local minimum. Thus, when we add a small adjustment ∇W to the parameter
W, according to Taylor expansion, we have

∇E =

(
∂E

∂W

)T

∇W +
1

2
∇WT ·H · ∇W +O(∥∇W∥3), (5)

where H = ∂2E/∂W2 represents the Hessian matrix. Again, since the model has converged,
existing works generally assume its first-order partial derivative is close to zero and thus negligible.
By neglecting the first-order partial derivative and higher-order terms, we have

∇E =
1

2
∇WT ·H · ∇W. (6)

Recall that our goal is to quantize W to Q(W). Denote ∇wq = Q(wq)− wq , where wq represents
the q-th element of W. Then, the problem to solve can be re-written as

argmin
q

{
argmin

∇W

(
1

2
∇WT ·H · ∇W

)[
eTq ∇W + wq = Q(wq)

]}
, (7)

where eq represents a unit vector with a value of 1 at position q and 0 elsewhere. Since this is
a constrained convex optimization problem, based on the method of Lagrange multipliers, it is
necessary to solve the following equation:

L =
1

2
∇WT ·H · ∇W + λ(eTq ∇W + wq −Q(wq)). (8)

By taking the partial derivatives of ∇W and λ, and setting them to zero to find the steady-state
solution, we have 

1

2
(H+HT )∇W + λeq = 0

eTq ∇W + wq −Q(wq) = 0
(9)

Solving this, we get

λ =
wq −Q(wq)

(H−1)qq
, (10)

∇W = −wq −Q(wq)

(H−1)qq
H−1eq, (11)

∇E =
(wq −Q(wq))

2

2(H−1)qq
, (12)

where (H−1)qq represents the value at the diagonal position (q, q) of H−1, which is the inverse of
the Hessian matrix.

For the Hessian matrix, we say that H = 2XXT by proving the following Lemma.
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Lemma A.1. Let a be a 1× n row vector and X be an n×m matrix. The Hessian matrix of the
quadratic form ∥aX∥22 is 2XXT .

Proof. Let a = [a1, a2, . . . , an] be a 1× n row vector, and let X = [xij ] be an n×m matrix.

Let’s denote y = aX . Then, y is a 1×m row vector with elements yj defined as

yj =

n∑
i=1

aixij .

Thus, we have

∥aX∥22 = (aX) · (aX)T =

m∑
j=1

y2j =

m∑
j=1

(
n∑

i=1

aixij

)2

.

We can expand this expression and re-write it as a quadratic form, i.e.,

∥aX∥22 =

m∑
j=1

n∑
i=1

n∑
k=1

aiakxijxkj .

To find the Hessian matrix of this quadratic form, we treat it as a quadratic form in a. Let Q be the
coefficient matrix of this quadratic form.

∥aX∥22 = aQaT .

The (i, k) element of Q is given by

Qik =

m∑
j=1

xijxkj .

Thus, the matrix Q can be written as
Q = XXT .

And the Hessian matrix is twice Q:

H = 2Q = 2XXT .

Therefore, the Hessian matrix of ∥aX∥22 is 2XXT , which completes the proof.

GPTQ quantizes the weight W row by row. For each row, according to Eq. 12 mentioned above,
it finds the minimum wq that leads to an increase in the loss function due to quantization, then
calculates scales via α =

max(Wi,:)−max(Wi,:)
Qmax

, performs quantization using α, and finally update
the remaining values using Eq. 11. This process repeats until all parameters have been updated.

MLGPTQ considers the scenario of quantization for multiple tasks. During the forward propagation
process, it dynamically loads the corresponding LoRA adapter for each task to simulate the correct
activation values for the respective tasks. Consequently, the problem we need to solve is as follows.

argmin
Q(W)

||
T∑

t=1

((W +BtAt)Xt − (Q(W) +BtAt)Xt)||22, (13)

where T denotes the number of tasks, At and Bt are the low-rank adapter matrices of the t-th task,
Xt is the input of t-th task, and W and Q(W) denote the original and quantized weights of a layer.

Denote W̃t := W +BtAt, then the problem is re-written as

argmin
Q(W)

drow∑
i=1

∥∥∥∥∥
T∑

t=1

(W̃ti,:Xt −Q(W̃t)i,:Xt)

∥∥∥∥∥
2

2

. (14)
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Same as GPTQ, we could get T Hessian matrix Ht, where t ∈ [1, T ]. To minimize the objective
function, we can obtain the updating formulas for W and E in MLGPTQ:

∇W = −wq −Q(wq)

(H−1
t∗ )qq

H−1
t∗ eq,∇E =

(wq −Q(wq))
2

2
(
(H−1

t∗ )qq
) , where t∗ = argmax

t∈[1,T ]

(
(H−1

t )qq
)
. (15)

The updating method described here leads to the max-aggregation method proposed in § 3.1, which
always selects the Hessian matrix of the task that minimizes ∇E for updating, ultimately reducing
the overall error and thus better-guiding parameter updates.

A.2 Pseudocode of MLGPTQ

We provide the pseudocode of MLGPTQ in Algorithm 1, and we also highlight the differences
compared to directly applying GPTQ to multi-task scenarios, which is termed GPTQtweaked in our
work (i.e., with a mixed calibration set and without any LoRA adapters).

Due to the high complexity and numerical instability of the process described in Appendix A.1, we
leverage the following optimizations to accelerate the quantization, partly inspired by the practical
implementation of GPTQ [12].

Random Order Optimization. GPTQ requires updating weights in the order that produces the
smallest quantization error ∇E. For W ∈ Rm×n, the complexity of GPTQ is O(mn3). However,
using a random order achieves similar results and facilitates GPU parallel optimization [12].

Batch Processing. Since weight updates between different columns of the same matrix W are
non-redundant, we use batch processing and delayed updates, with 128 columns processed at a time,
to enhance computation speed.

Cholesky Decomposition. Using numerically stable Cholesky decomposition to pre-compute the
necessary information increases computational stability.

Algorithm 1 Routines of MLGPTQ and GPTQtweaked to quantize one layer in multi-task scenarios.

Input: {Xt}Tt=1 ▷ The inputs of different tasks of this layer

1: Xt ← (W +BtAt)Xt Xmixed ←
∑T

1 WXt ▷ Forward pass

2: H−1
t ← Cholesky((2XtX

T
t + λI))T , for ∀t ∈ [1, T ]

H−1 ←
∑T

1 Cholesky((2XmixedX
T
mixed + λI)−1)T ▷ Cal inv of Hessian matrix

3: Htmp ← zero_like(H−1
t ) ▷ Init the tmp Hessian matrix

4: Q← 0drow×dcol ▷ Store quantized results
5: E← 0drow×B ▷ Store quantization errors in blocks
6: for i← 0, B, 2B, . . . do
7: for j ← i, . . . , i+B − 1 do
8: Q:,j ← quant(W:,j) ▷ Column-wise quantization

9: E:,j−i ← (W:,j −Q:,j)/maxt∈[1,T ]

(
(H−1

t )jj
)

E:,j−i ← (W:,j −Q:,j)/(H
−1)jj ▷ Update quantization error

10: (Htmp):,s ← (H−1
t∗ ):,s where t∗ = argmaxt∈[1,T ]

(
(H−1

t )ss
)
, for s ∈ [j, i+B − 1]

W:,j:(i+B) ←W:,j:(i+B) −E:,j−i · (Htmp):,j:(i+B)

W:,j:(i+B) ←W:,j:(i+B) −E:,j−i · (H−1):,j:(i+B) ▷ Update weights in current block
11: end for
12: W:,(i+B) ←W:,(i+B) −E · (Htmp)i:(i+B),(i+B)

W:,(i+B) ←W:,(i+B) −E · (H−1)i:(i+B),(i+B) ▷ Update weights in remaining blocks
13: end for
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B Details of our Multi-task Scheduling Strategy

Our multi-task scheduling strategy is based on task grouping and prediction-based SRTF. Com-
pared to other scheduling strategies, it is well-suited for multi-task scenarios, achieving excellent
results. The pseudocode is shown in Algorithm 2, with the helper functions generate_new_batch
and schedule_new_batch in Algorithm 3 and 4. There are four queues maintaining different
requests in our system: 1⃝ prefill_reqs: requests that have not yet entered the prefill stage
(i.e., new requests that have not yet been served). 2⃝ decoding_reqs: requests in the decoding
stage. 3⃝ hungry_prefill_reqs: requests in a starving state that have not yet been served. 4⃝
hungry_decoding_reqs: requests in a starving state in the decoding stage.

First, we check if running_batch is empty (line 7) to determine whether the system is in a cold start
phase (i.e., the previous scheduling step did not have any requests to serve). If yes, we perform a
cold start by calling generate_new_batch to get a new batch to schedule from prefill_reqs (line
8). If new_batch is not empty, we proceed to prefill with new_batch (line 10-11). Otherwise,
the system remains idle since there are no requests (line 13). If running_batch is not empty, we
check if we have consecutively executed max_cont_decode decoding steps (line 16). If yes, we
call generate_new_batch to schedule new requests from prefill_reqs and hungry_prefill_reqs
(line 17-20). Otherwise, we check if the continuous scheduling for a batch has reached a pre-defined
threshold max_cont_decode_one_batch (line 22). If yes, we call schedule_new_batch to schedule
new requests in the decoding stage from decoding_reqs and hungry_decoding_reqs according
to the SRTF and grouping strategy (line 23-25). Otherwise, we continue processing the current
running_batch (line 27-28). This two-level threshold strategy effectively reduces the frequent
swapping of LoRA adapters and KV caches due to frequent batch switching. Additionally, by
adjusting the threshold size, we can ensure the immediacy and flexibility of scheduling.

Algorithm 2 Our multi-task scheduling strategy based on grouping and SRTF.
Input: Four queues: prefill_reqs, decoding_reqs, hungry_prefill_reqs, hungry_decoding_reqs
1: running_batch← ∅
2: max_cont_decode← Threshold value for decoding
3: max_cont_decode_one_batch← Threshold value for decoding one batch
4: decode_count← 0
5: decode_count_one_batch← 0
6: while not terminated do
7: if running_batch is empty then
8: new_batch← generate_new_batch(prefill_reqs)
9: if new_batch ̸= ∅ then

10: Perform prefill(new_batch)
11: decoding_reqs← decoding_reqs+ new_batch
12: else
13: Keep idle
14: end if
15: else
16: if decode_count ≥ max_cont_decode then
17: new_batch← generate_new_batch(prefill_reqs, hungry_prefill_reqs)
18: Perform prefill(new_batch)
19: decoding_reqs← decoding_reqs+ new_batch
20: decode_count← 0
21: else
22: if decode_count_one_batch ≥ max_cont_decode_one_batch then
23: new_batch← schedule_new_batch(decoding_reqs, hungry_decoding_reqs)
24: Perform decode(running_batch)
25: decode_count_one_batch← 0
26: else
27: Perform decode(running_batch)
28: decode_count_one_batch← decode_count_one_batch+ 1
29: end if
30: decode_count← decode_count+ 1
31: end if
32: end if
33: end while
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Algorithm 3 The utility function generate_new_batch for Algorithm 2.
1: function GENERATE_NEW_BATCH(prefill_reqs, hungry_prefill_reqs)
2: Sort prefill_reqs by len(prompt) + predict_output_len ascending
3: Sort hungry_prefill_reqs by waiting_time descending, then len(prompt)+predict_output_len

ascending
4: new_batch← ∅
5: for each req in hungry_prefill_reqs do
6: if can_add_req(req, new_batch) and meet_max_lora(req, new_batch) then
7: new_batch.append(req); hungry_prefill_reqs.remove(req)
8: end if
9: end for

10: for each req in prefill_reqs do
11: if can_add_req(req, new_batch) and meet_max_lora(req, new_batch) then
12: new_batch.append(req); prefill_reqs.remove(req)
13: end if
14: end for
15: if new_batch not full then
16: for each req in hungry_prefill_reqs+ prefill_reqs do
17: if can_add_req(req, new_batch) then
18: new_batch.append(req); prefill_reqs.remove(req)
19: end if
20: end for
21: end if
22: for each req in prefill_reqs and hungry_prefill_reqs do
23: req.waiting_time← req.waiting_time+ 1
24: end for
25: for each req in prefill_reqs do
26: if req.waiting_time ≥ Threshold then
27: prefill_reqs.remove(req); hungry_prefill_reqs.append(req)
28: end if
29: end for
30: return new_batch
31: end function

Algorithm 4 The utility function schedule_new_batch for Algorithm 2.
1: function SCHEDULE_NEW_BATCH(running_batch,decoding_reqs,hungry_decoding_reqs)
2: Sort decoding_reqs by predict_output_len− len(output) ascending
3: Sort hungry_decoding_reqs by waiting_time descending, then predict_output_len−len(output)

ascending
4: new_batch← ∅
5: for each req in hungry_decoding_reqs do
6: if can_add_req(req, new_batch) and req.lora ∈ running_batch then
7: new_batch.append(req); hungry_decoding_reqs.remove(req)
8: end if
9: end for

10: for each req in decoding_reqs do
11: if can_add_req(req, new_batch) and req.lora ∈ running_batch then
12: new_batch.append(req); decoding_reqs.remove(req)
13: end if
14: end for
15: if new_batch not full then
16: for each req in hungry_decoding_reqs+ decoding_reqs do
17: if can_add_req(req, new_batch) then
18: new_batch.append(req); decoding_reqs.remove(req)
19: end if
20: end for
21: end if
22: for each req in decoding_reqs do
23: req.waiting_time← req.waiting_time+ 1
24: end for
25: return new_batch
26: end function
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C More Experimental Details

C.1 Experimental Environment

The GPU platforms for evaluation are shown in Table 5. The RTX 3090 platform is equipped with
Intel(R) Core(TM) i9-10900X CPU @ 3.70GHz and 256GB host memory, while the RTX 4090
platform is equipped with Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GH and 512GB host memory.

Table 5: Experimental GPU platforms in detail.
Platform RTX 4090 RTX 3090

GPU cores 16384 10496
GFLOPS 51640 35580

Memory Capacity 24 GB 24 GB
Memory Access Bandwidth 1024 GB/s 936 GB/s

C.2 Summary of Evaluated Tasks

We primarily select 12 major datasets for testing, covering tasks such as machine translation, text
summarization, table summarization, code generation, math QA, medical QA and malicious detection.
For each task, we use open-source models from Hugging Face2 that have been fine-tuned using the
training set of the corresponding dataset and evaluated on the test set. The summary is presented in
Table 6.

Table 6: Dataset Summary

Dataset Name Abbreviation Avg. Input
Length

Avg. Output
Length Type of Task

OPUS-French-English trans-fr 121 105 Machine Translation
OPUS-Czech-English trans-cs 47 47 Machine Translation

OPUS-Indonesian-English trans-id 47 38 Machine Translation
OPUS-Vietnamese-English trans-nl 72 65 Machine Translation

OPUS-Danish-English trans-da 72 71 Machine Translation
OPUS-Swedish-English trans-sw 64 65 Machine Translation

XLSum xlsum 2595 125 Text Summarization
QTSUMM QTsum 1350 339 Table Summarization
tiny-codes tiny-codes 328 1890 Code Generation

gsm8k GSM8k 240 293 Math Question Answer
medical_meadow_mmmlu med-qa 367 1 Medical Question Answer

malicious-600k malicious 59 1 Malicious Detection

For the machine translation tasks of different languages, we consider the classic bilingual translation
dataset OPUS [38], specifically choosing six translation tasks: French-to-English, Czech-to-English,
Indonesian-to-English, Vietnamese-to-English, Danish-to-English, and Swedish-to-English, consider-
ing the diversity of languages.

For the text translation task, we consider the XLSum dataset [14], a comprehensive and diverse
dataset comprising 1.35 million professionally annotated text-summary pairs extracted from the BBC.

For the table summarization task, we consider the QTSumm dataset [48], which is a large-scale
dataset for query-centric summarization tasks on tabular data. It contains 7,111 human-annotated
query-summary pairs and 2,934 tables covering various topics.

For the code generation task, we consider the tiny-codes dataset [13]. This dataset consists of 16
million short and clear code snippets, aiding LLM models in learning how to reason using both
natural and programming languages. The dataset includes a variety of programming languages such
as Python, TypeScript, JavaScript, Ruby, Julia, Rust, C++, Bash, Java, C#, and Go.

2https://huggingface.co/kaichuup
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For the math QA task, we choose the GSM8k (Grade School Math 8K) dataset [6], which consists of
8.5K high quality linguistically diverse grade school math word problems. The dataset was created
to support the task of question answering on basic mathematical problems that require multi-step
reasoning.

For the medical QA task, we choose medical_meadow_mmmlu [2], which contains 3.79k medical
multiple choice question.

For malicious detection task, we choose malicious-600k [1], which contains 641k URLs to determine
whether they are malicious.

C.3 Summary of Metrics

(1) SacreBLEU [18], represented as S_BLEU, is a classic machine translation evaluation standard. It
scores by comparing the n-gram overlap between the machine translation output and one or more
reference translations, while also considering a brevity penalty to prevent favoring overly short
translation outputs.

(2) rouge1 [21], represented as ROUGE1, calculates the overlap ratio of words between the machine-
generated text and the reference text, i.e., the unigram (single word) match rate.

(3) rouge2 [21], represented as ROUGE2, similar to rouge1, indicates the bigram (two-word sequence)
match rate.

(4) nist_mt [9], represented as NIST_MT, is an improvement on BLEU that gives higher weight to
less common words, encouraging diversity and accuracy in translation.

(5) meteor [3], abbreviated as METEOR, calculates the score based on the harmonic mean of
precision and recall and introduces a penalty factor to penalize excessive mismatches.

(6) google_bleu [41], abbreviated as G_BLEU, is an improvement on BLEU that adjusts for smooth-
ing methods, n-gram weights, and brevity penalties to optimize its performance.
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D Multi-LoRA AWQ Migration

Algorithm 5 Routines of MLAWQ and AWQtweaked to quantize on layer in multi-task scenarios.

Input: {Xt}Tt=1, ratio_search_space ▷ The inputs of different tasks of this layer

1: Mt ← (W +BtAt)Xt Mmixed ←
∑T

1 WXt ▷ Forward to get monitoring matrix
2: Wmean ←W.mean(0)

3: Xt
mean ← Xt.mean(0) for ∀t ∈ [1, T ] Xmean ← {Xt}Tt=1.mean(0) ▷ Aggregate Info: Per-channel

mean of X
4: best_s← None
5: min_errors←∞ · 1dim(Xt .shape[-1]) min_error←∞ ▷ Initialize minimum error(s)
6: for ratio in ratio_search_space do ▷ Aggragate Info: Calculate best_s

7: st ←
(

Xt
mean.pow(ratio)

Wmean.pow(1−ratio)

)
for ∀t ∈ [1, T ] s←

(
Xmean.pow(ratio)

Wmean.pow(1−ratio)

)
▷ Calculate s

8: Wt
scaled ←W · st Wscaled ←W · s ▷ Scale W

9: Xt
scaled ← Xt/st Xscaled ← {Xt}Tt=1/s ▷ Scale X

10: errst ← ∥Mt − (α
(
round

(
clamp

(
Wt

scaled/α,min_val,max_val
)))

+BtAt)Xt
scaled∥2,columns

err← ∥Mmixed − α (round (clamp (Wscaled/α,min_val,max_val)))Xscaled∥ ▷ Use pseudo quantized
W run forward to cal quant error of this ratio, where α is the scale factor of pseudo quant

11: min_errs[j], best_s[j]← mint(errst[j]), sargmint(errst[j])[j] ∀ j ∈ Xt.shape[-1], ∀t ∈ [1, T ]

min_err← min(min_err, err), best_s← (err < min_err) ? s : best_s
▷ Aggregate the min error to get best_s

12: end for
13: Wmodified ←W · best_s ▷ Modify weight
14: Wquant ← quantize(Wmodified) ▷ Quantize modified weight
15: Return Wquant

Our work centers on GPTQ due to its widespread use, but our solution can also adapt to AWQ. We
presented the differences between MLAWQ and AWQtweaked in Alg 5. As introduced in §3.1, most
quantization methods follow the Forward-Aggregate Info-Modify Weight-Quant paradigm. In
essence, AWQtweaked smooths outliers by multiplying weights with a smoothing factor, best_s, to
minimize per-channel quant error:

• In Forward, the input is multiplied by the weights to create an unquantized monitor, guiding
min error quantization (line 1).

• In Aggregate Info, the average of all samples and weights is calculated for each channel
(lines 2&3) to determine smoothing factor s (line 7). W and X are smoothed to remove
outliers (lines 8&9). Then, smoothed W is pseudo-quantized (quantize-then-dequantize to
simulate round loss) and compared to the unquantized monitor for quantization error (line
10). This process iterates over various ratios (line 6), selecting the factor with the smallest
error as best_s (line 11). Then, this best_s is used to Modify the weight (line 12), followed
by the Quant (line 13) process using the modified weight.

The drawbacks discussed in §3.1 also exist for AWQtweaked in multi-task quantization:

• Forward (line 1): It can’t pass LoRA adapters during activation distribution simulation,
causing quantization bias during inference.

• Aggregate Info: It uses Xmean = X.mean(0), a naive mixed average of multi-tasks’ info.
Since each task affects each channel differently, simply averaging blurs distributions, ignor-
ing individual effects.

As explained in §3.1 and shown in Fig 2, MLGPTQ mainly improves the first three steps to tackle
GPTQ’s issues in multi-task scenarios. Similarly, we can fix AWQ’s issues to create a better multi-task
quantization algorithm MLAWQ:
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• Forward: MLAWQ loads corresponding LoRA adapter for each task to participate in
forward propagation, accurately simulating real activation distribution (line 1).

• Aggregate Info: Instead of mixing and averaging features of each column across all tasks
to compute s, MLAWQ computes the average for each task separately to get si (line 3&7).
Then it calculates quantization error for each column rather than the entire matrix (line
10). If the i-th task results in the smallest quantization error for the j-th column, it sets
best_s [j] = si[j] (line 11). This approach allows optimal error minimization, showing each
task’s individual effect on different channels, enhancing Aggregate Info (lines 3&6-11),
and improving the Modify Weight (line 12) and Quant (line 13) processes.

In summary, our work identifies common drawbacks of current single-task quantization methods in
multi-task scenarios. By addressing these issues, we can develop more precise multi-task quantization
algorithms.

22



E Broader Impact and Future Work

This work proposes LoRA-Inlaid, a brand new LLM serving system for the multi-task scenario.
LoRA-Inlaid is featured with a series of innovations, specifically the multi-task joint quantization
algorithm, the dynamic task addition mechanism, and the multi-task scheduling strategy. Considering
the booming research and applications of LLMs in various downstream tasks, we believe LoRA-Inlaid
has the potential to gain widespread adoption and shed light on the high-performance and resource-
efficient system designs for follow-up works in the field of LLM serving. However, there are several
issues that LoRA-Inlaid does not consider currently.

On the one hand, the multi-task quantization algorithm in LoRA-Inlaid does not involve the detection
of malicious or poisoning tasks that may bring negative impacts on the other tasks. One of the most
typical use cases of LoRA-Inlaid is the personalization of LLMs, where clients can upload their data
to create personalized LoRA adapters using the same base model (or directly upload their self-tuned
LoRA adapters). The server is responsible for serving requests from all these clients using the
proposed LoRA-Inlaid system. Fortunately, these LoRA adapters are independently manufactured, so
we can apply malicious detection to them individually. For instance, the server can prepare a rich set
of evaluations to assess the security risks of each LoRA adapter, including violence, discrimination,
unlawful responses, etc. If any LoRA adapters fail to pass the evaluation, the server can reject serving
them.

On the other hand, the multi-task scheduling strategy in LoRA-Inlaid ignores the fairness among
different tasks (e.g., controlling the number of output tokens to be close), which may make our
work ineffective under some settings. To measure fairness among tasks, we can compute a weighted
combination of numbers of input and output tokens for each task. This is because the prefilling
and decoding phases in LLM inference have different workload characteristics [15](also why these
tokens differ in online service pricing). Then, we can borrow the idea of Weighted Fair Queueing
(WFQ) [32] for scheduling different tasks. We wish to address these issues in the future.
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
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7. Experiment Statistical Significance
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information about the statistical significance of the experiments?
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
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of Normality of errors is not verified.
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the experiments?
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Justification: Section 4 and Appendix C.1.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
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Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Appendix E.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses
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(e.g., deployment of technologies that could make decisions that unfairly impact specific
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to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not applicable.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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