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Abstract

Crystal structure generation is fundamental to materials science, enabling the discovery
of novel materials with desired properties. While existing approaches leverage Large Lan-
guage Models (LLMs) through extensive fine-tuning on materials databases, we show that
pre-trained LLMs can inherently generate novel and stable crystal structures without ad-
ditional fine-tuning. Our framework employs LLMs as intelligent proposal agents within
an evolutionary pipeline that guides them to perform implicit crossover and mutation oper-
ations while maintaining chemical validity. We demonstrate that MatLLMSearch achieves
a 78.38% metastable rate validated by machine learning interatomic potentials and 31.7%
DFT-verified stability, outperforming specialized models such as CrystalTextLLM. Beyond
crystal structure generation, we further demonstrate that our framework adapts to diverse
materials design tasks, including crystal structure prediction and multi-objective optimiza-
tion of properties such as bulk modulus, all without fine-tuning. These results establish
our framework as a versatile and effective framework for consistent high-quality materials
discovery, offering training-free generation of novel stable structures with reduced overhead
and broader accessibility.

1 Introduction

Crystal Structure Generation (CSG) and Prediction (CSP) represent critical bottlenecks in materials discovery,
requiring both chemical validity and thermodynamic stability to determine whether a material can be
synthesized (Bagayoko, 2014). These tasks demand navigating an expansive chemical space while satisfying
multiple constraints: three-dimensional periodicity, proper atomic coordination, charge balance, and minimized
formation energy. While computational approaches have emerged as indispensable tools for accelerating
materials discovery (Dunn et al., 2020; Eremin et al., 2023), developing reliable systems that effectively
explore this vast and complex space remains challenging.

Recent advances in deep learning have introduced various approaches for structure prediction, from variational
autoencoders to diffusion models (Flam-Shepherd and Aspuru-Guzik, 2023; Gruver et al., 2024; Jiao et al.,
2024; Xie et al., 2022; Zeni et al., 2025). Meanwhile, Large Language Models (LLMs) have emerged as
powerful tools for materials discovery (Achiam et al., 2023; Antunes et al., 2023; Fu et al., 2023). Prior
work (Flam-Shepherd and Aspuru-Guzik, 2023) demonstrated that autoregressive models using character-
level tokenization can generate valid crystal structures, and Gruver et al. (2024) showing that fine-tuning
pre-trained language models like Llama (Grattafiori et al., 2024) can produce physically stable structures.

Current approaches often fine-tune LLMs on materials databases such as the Materials Project (Gruver
et al., 2024), which contains only tens of thousands of structures compared to the vast space of possible
stable compounds. While we propose a fundamentally different perspective: Recognizing pre-trained
LLMs not as tools requiring domain-specific fine-tuning, but as intelligent agents already possessing rich
embedded knowledge from vast scientific corpora. This perspective raises the question: How can we exploit
the comprehensive scientific knowledge already embedded in pre-trained LLMs to build a system that can
consistently produce valid stable crystal structures?
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Figure 1: The workflow of MatLLMSearch for crystal structure generation. Starting from an initial population of
known structures, our framework iteratively evolves new crystal structures through LLM-guided reproduction,
evaluation, and selection.

Intuitively, we may directly prompt a commercial LLM to generate crystal structures. However, our ablation
study in Section 4.4 across multiple configurations reveal that simple prompting fails to consistently generate
valid crystal structures that are both stable and novel. These attempts often produce either copies of known
structures, chemically invalid configurations, or thermodynamically unstable structures. The failure suggests
that LLMs struggle to simultaneously satisfy the multiple constraints of CSG, indicating the need for a more
sophisticated approach to exploit the potential of LLMs for materials discovery.

Evolutionary algorithms provide an effective framework for exploring the vast chemical space (Allahyari
and Oganov, 2020; Oganov and Glass, 2006; Wang et al., 2025). By mimicking biological evolution through
iterative selection, reproduction, and mutation operations, these algorithms can gradually improve the
candidates, enabling automated property-guided materials optimization. Previous evolutionary approaches
to CSG and CSP rely on explicit crossover and mutation operators, such as swapping structural motifs or
introducing atomic displacements. While effective, these traditional operators lack the chemical intuition to
efficiently navigate the complex constraints of crystal structures, often resulting in physically implausible
candidates.

Our work advances this paradigm by leveraging the rich scientific knowledge embedded in LLMs to perform
chemically-informed operations within the evolutionary algorithm framework. Unlike traditional operators
that manipulate structures based on predefined rules, LLMs can implicitly reason about chemical bonding
patterns, structural motifs, and stability principles learned from vast scientific literature (Boiko et al., 2023;
Bran et al., 2024; Guo et al., 2023). This knowledge-guided approach enables more intelligent exploration of
the chemical space, potentially discovering novel structures that traditional evolutionary methods might miss
due to their limited chemical knowledge.

In this work, we introduce MatLLMSearch, a novel framework that integrates the rich scientific knowledge of
LLMs into the evolutionary framework for crystal structure discovery. In our proposed framework, LLMs
function as intelligent proposal agents that analyze parent structures to perform implicit crossover and
mutation operations, while Machine Learning Interatomic Potentials (MLIPs) evaluate the physicochemical
validity of generated structures. As illustrated in Figure 1, through iterative selection, reproduction, and
evaluation, MatLLMSearch progressively discovers crystal structures with desired properties.
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Our experiments demonstrate that MatLLMSearch successfully generates diverse, thermodynamically stable
crystal structures while maintaining crystallographic validity. The framework achieves a 76.8% metastable
structure generation rate, with 31.7% of structures verified as stable through DFT calculations, surpassing
the state-of-the-art fine-tuned model CrystalTextLLM (Gruver et al., 2024). Notably, this performance is
achieved with minimal computational overhead, requiring only LLM inference and stability evaluation with
MLIPs rather than extensive model training.

Beyond crystal structure generation, our framework demonstrates remarkable flexibility across various
materials discovery tasks. Through simple modifications in prompting and reference seed structures selection,
our method extends to CSP, which we validate by discovering several metastable NagAlIClg polymorphs
with significantly higher stability than existing structures in the Materials Project database. Furthermore,
the framework enables multi-objective optimization of properties such as bulk modulus, without requiring
specialized fine-tuning. While we demonstrate results using general-purpose pre-trained LLMs, the framework
could also incorporate domain-specialized fine-tuned models or alternative search algorithms, offering a
computationally efficient approach to materials discovery with reduced overhead and broader accessibility.

2 Background: Computational Materials Discovery with Machine Learning

2.1 Problem Definition

Crystal Structure Generation (CSG). The objective of CSG is to learn a probability distribution p(c,, s)
over crystalline materials, where ¢ € RV*M represents the chemical composition matrix for N atoms of M
distinct chemical species, | € RS denotes the lattice parameters (lengths and angles), and s € RV*3 defines
the spatial coordinates of atoms within a periodic unit cell. Samples drawn from this distribution should
ideally satisfy fundamental thermodynamic stability criteria.

Crystal Structure Prediction (CSP). CSP addresses a more constrained problem of determining stable
crystal structures for a specified chemical composition. Formally, it learns a conditional probability distribution
p(s,1 | ¢) to identify thermodynamically favorable atomic arrangements and lattice parameters given a fixed
composition ¢. This formulation addresses the practical scenario of discovering stable polymorphs for a
specified chemical formula.

Crystal Structure Design (CSD). CSD extends beyond structure prediction by incorporating property
optimization and conditional generation. An example objective is finding the optimal crystal structure that
maximizes a target property h(c,l,s): m* = argmax,; s p(c1,s) M1, s), where h : RNXE x R6 x RV*3 5 R
represents an oracle function evaluating the desired materials property. It can also be formulated as sampling
from a tilted distribution p(c,l, s) exp(h(c,l,s)) (Rafailov et al., 2024). Additional constraints can be
integrated into the design process, allowing for flexible tasks such as compositional substitution (learning
p(c | 1,5)) and composition/structure completion (inpainting generation, learning p(ctnknown gunknown |
cknown ] gknowny) (Daj et al., 2024).

2.2 (Meta)stability of Materials

Among computational approaches for evaluating crystal structure stability, Density Functional Theory (DFT)
is the most reliable method for predicting formation energies in solid-state materials, showing close alignment
with experimental measurements (Jain et al., 2011; Sun et al., 2016). The thermodynamic stability of a
structure is quantified through its decomposition energy (Eq4) with respect to the convex hull of known stable
phases: Fy = Es — Zl z;E;, where Eg represents the total energy per atom, x; denotes the molar fraction of
the i-th competing phase, and F; corresponds to its ground-state energy per atom. While the convex hull
serves as a fixed reference, the evaluated structure s need not be part of this hull. A negative decomposition
energy (Eq < 0) indicates a thermodynamically stable state below the convex hull, while Eq > 0 suggests a
metastable phase with a driving force for decomposition into more stable compounds. Our main objective for
CSG is to identify stable crystal structures where Egq < 0.

Given the computational intensity of DFT calculations, universal Machine Learning Interatomic Potentials
(MLIPs), trained on millions of DFT calculations, have emerged as efficient and reliable proxies for structure
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stability assessment. Notable among these is CHGNet (Deng et al., 2023), a Graph Neural Network (GNN)-
based MLIP that uniquely incorporates magnetic moments to capture both atomic and electronic interactions.
M3GNet (Chen and Ong, 2022) offers an alternative approach, implementing three-body interactions in
its graph architecture for accurate structural predictions across diverse chemical spaces. Recent advances
in universal MLIPs include MACE (Batatia et al., 2023), DPA-1 (Zhang et al., 2024), and JMP (Shoghi
et al., 2024), which demonstrate high accuracy in predicting crystal thermodynamic stability, particularly
when trained on industrial-scale datasets comprising millions of compounds and non-equilibrium atomic
configurations (Barroso-Luque et al., 2024; Merchant et al., 2023; Yang et al., 2024a). In this work, we employ
the pre-trained CHGNet as our universal MLIP due to its closer alignment with DFT results, using a fixed
phase diagram derived from the Materials Project 2023 DFT calculations (Jain et al., 2011; Wang et al.,
2021).

3 MatLLMSearch

We propose MatLLMSearch, an evolutionary workflow that leverages pre-trained LLMs to search for stable and
optimized crystal structures with. In this section, we introduce three key stages of the workflow as illustrated
in Figure 1: (1) Selection, which identifies promising candidate structures from existing pools based on
stability and property metrics; (2) Reproduction, where the LLM generates new candidates through implicit
crossover and mutations of parent structures; and (3) Evaluation, which assesses proposed structures for
validity, stability, and target properties. The overall workflow outlined in Algorithm 1 iteratively evolves a
population of crystal structures while maintaining physical constraints and optimizing desired properties.

Algorithm 1 The MatLLMSearch Framework

Require: Population size K, parent size P, reproduction size C', number of iterations /N, known stable structures D,
oracle function O, extra pool R

1: > Initialization

2: Form population Py by sampling K groups of P structures from D

3: Initialize structure collection S < @

4: for i+ 0,1,--- , (N —1) do

5: > LLM-guided reproduction

6: Generate prompts from parent structures in P;

7 Obtain children structures C; via LLM inference and parsing

8: > Structure evaluation

9: Relax structures C; +— CHGNetRelax(C;)
10: Calculate decomposition energy Fq and properties
11: Evaluate objective scores using oracle function O
12: Update structure collection S + SUC;
13: > Selection
14: Form candidate pool from parents P;, children C;, and extra pool R
15: Select top-(K x P) structures based on objective scores from the candidate pool
16: Construct next parent groups Pj41

17: {/alidate final structures via DFT
18: return cumulated structures S

3.1 Initialization

We first optionally sample an extra pool R of reference structures from a database of known stable structures
D. R is used to initialize the population and will be considered for fitting during following iterations. Our
evolutionary search begins by sampling (K x P) structures from D to form the initial parent pairs Py. These
structures are randomly paired into K groups of P parents each to serve as reference examples in LLM
prompts. R can be customized to suit various design objectives, with more details and ablation studies
provided in Section 4.4.
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3.2 Reproduction

Genetic algorithms traditionally mimic biological evolution through explicit crossover and mutation opera-
tions (Heiles and Johnston, 2013; Johnston, 2003). In CSP, crossover typically involves combining structural
fragments from parent structures (e.g., swapping atomic positions or structural motifs), while mutation
introduces random variations through predefined operations like atomic displacement, lattice transformation,
or element substitution (Curtis et al., 2018; Kadan et al., 2023). While effective, these rigid operators can
limit the exploration of the complex crystal structure space. In MatLLMSearch, we explore the flexibility
of LLMs for structure reproduction. Through prompt-based guidance, we ask LLMs to perform implicit
crossover and mutation by analyzing and combining structural information from parent materials. Specifically,
LLMs are instructed to “modify or combine the base materials”, while maintaining chemical validity and
enhancing target properties. This approach allows LLMs to freely and simultaneously introduce variations
across multiple structural aspects, including atomic positions, lattice parameters, and element substitutions,
or even generate completely new structures functionally relevant to parent structures.

3.3 Evaluation

Our evaluation pipeline consists of two stages:

e Rule-based validation ensures structural integrity by verifying three-dimensional periodicity,
physical connectivity (interatomic distances between 0.6-1.3 times the sum of atomic radii), and
chemical validity through charge balance analysis.

o Stability and property evaluation begins with structure relaxation using CHGNet. We quantify
thermodynamic stability through decomposition energy Fq calculated as the distance to the Materials
Project convex hull. Notably, we observe that LLM-proposed structures typically require minimal
relaxation, with 61.1% of structures exhibiting small energy changes (|JAE| < 0.5 ¢V/atom) during
this process (detailed in Appendix G.2), indicating their initial stability. For stability-focused
optimization, we quantify thermodynamic stability through the decomposition energy Fq4 using
CHGNet, calculated as the distance to the convex hull from the Materials Project database (version
2023-02-07-ppd-mp).

For multi-objective optimization, additional properties such as bulk modulus can be evaluated.
These quantitative scores then guide the selection process for subsequent generations, allowing our
framework to flexibly adapt to different design goals.

3.4 Selection

Last, the selection stage evolves a population of candidate structures that meet the optimization objectives,
such as thermodynamic stability or other desired physical properties. For each iteration i, we construct
a new parent pool P;;1 of the same size (K x P) by selecting top-ranked candidates from three sources:
(a) the current parent pool (P;), (b) newly generated children structures (C;), and (c) an optional extra
pool (R) to improve diversity. Candidates in P; UC; UR are ranked according to optimization objectives,
either single-objective (e.g., Eq for stability) or multi-objective criteria (e.g., alternating between different
properties).

3.5 Final DFT Verification

After completing all evolutionary iterations, we collect the cumulated children structures S = |J, C; for final
validation using DFT. To save computational cost, we focus on meta-stable structures with CHGNet-predicted
decomposition energy Eq < 0.1 eV /atom. DFT calculations are performed using VASP 6 in the Generalized
Gradient Approximation (GGA) with PBE functional (Perdew et al., 1996), using the projector-augmented
wave method (Kresse and Furthmiiller, 1996; Kresse and Joubert, 1999). We employed a plane-wave basis set
with an energy cutoff of 520 eV and a k-point mesh of 1,000 per reciprocal atom (Jain et al., 2013). The
calculations converged to 1076 €V in total energy for electronic self-consistent field cycles and 0.02 eV /A in
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interatomic forces for the ionic steps. The computational settings are consistent with MPGGARelaxSet and
MPGGAStaticSet (Jain et al., 2011).

4 Experiments

4.1 Experimental Settings

For the main experiments, we use Llama 3.1 (70B) (Grattafiori et al., 2024) with temperature 0.95 as the
base LLM. The evolution performed with parent size P = 2, reproduction size C' = 5, and population size
K =100 for N = 10 iterations unless otherwise specified. Crystal structures are represented in the POSCAR
format with 12 decimal digits.

For initialization, we use the MatBench-bandgap dataset (Dunn et al., 2020) as the reference database D. We
sample some known stable structures from D to form the initial generation; they serve as the candidates for
parents during each iteration. Samples are selected based on minimizing CHGNet-predicted decomposition
energy or optimizing specific target properties. Detailed hyper-parameter sensitivity analysis is provided in
Appendix G.

4.2 Evaluation Metrics

We evaluate our framework on three primary aspects: (a) stability, (b) validity and diversity, and (c) novelty.
We would like to emphasize that stability is the most important metric among all to reflect generation quality.
Additionally, we extend the evaluation to computational efficiency and provide detailed definitions for all
metrics in Appendix D.

Stability. Thermodynamic stability is the primary criterion for material realizability. We quantify this via
the decomposition energy (Fq) relative to the Materials Project convex hull (version 2023-02-07-ppd-mp).
The gold standard for stability is Density Functional Theory (DFT) verification, where a structure is stable
only if its DFT-calculated E4 < 0.0 eV /atom. Structures identified as metastable (E4 < 0.1 eV /atom) by
CHGNet undergo further DFT calculations for stability assessment. For a fair comparison with baselines, we
also report metastability rates evaluated with multiple MLIPs (CHGNet, M3GNet, and Orb-v3 for CSP). We
note that the DFT verification should be the primary validation metric. We use multi-MLIP metastability
rates for comparison with baselines and they are not substitutes for first-principles DFT calculations.

Diversity. To evaluate the diversity of our generated structures, we analyze the specific characteristics
including element co-occurrence pattern and space group distribution, comparing LLM-generated structures
with reference structures from MatBench-bandgap that forms the initial generation. In addition, we analyze the
compositional and structural diversity among generated structures. The discussion is detailed in Appendix H.

Novelty. A structure is compositionally novel if its reduced formula is absent from the reference database
(MatBench-bandgap, ~ 106K structures). It is structurally novel if no match is found using StructureMatcher
of pymatgen with default settings.

S.U.N. rate. Following the protocol of FlowMM (Miller et al., 2024) and MatterGen (Zeni et al., 2025), we
report the S.U.N. (Stable, Unique, Novel) rate as a supplementary generation quality metric. We calculate it
as the ratio of generated structures that are simultaneously stable (DFT E4 < 0.0 eV /atom after CHGNet
pre-relaxation), unique (no match in the generated set via StructureMatcher), and novel (no match in the
reference database via StructureMatcher). We emphasize that direct cross-method comparison is limited by
the reference sets used for novelty calculation. As illustrated in Figure 4, while baselines evaluate novelty
against their training sets, we compare against the full MatBench-bandgap dataset.

4.3 Main Experimental Results

In this section, we evaluate our proposed pipeline on progressively more challenging tasks, from crystal
structure generation through design to crystal structure prediction.
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. Validity Metastability Stability*
Model lf'ele - ~ MB3GNet CHGNet DFT
arents Structural Composition
Eq4<01 E3<01 E4<003 w/ fele w/o f-elef
CDVAE* 100.0% 86.7% 28.8% — — 5.4% —

" CrystalTextLLM-7B*  — 96.4% 93.3% 35.0%  —  — 8%  —
CrystalTextLLM-13B* 95.5% 92.4% 38.0% — — 14.4% —
CrystalText LLM-70B* 99.6% 95.4% 49.8% — — 10.6% —

"~ MatLLMSearch v 100.0% 85.6% 81.1% 76.8% 56.5% 31.7% 14.0%

(Llama 3.1-70B) X 100.0% 89.0% 81.9% 78.4% 54.8% 27.0% 24.6%

Table 1: Performance comparison of crystal structure generation. Metastability is first assessed using surrogate
models, where we report both M3GNet and CHGNet results for fair comparison with baselines CDVAE and
CrystalTextLLM (which use M3GNet). *Results taken from the original papers. TIndicates whether f-electron
elements are excluded in parent structures (not applicable to CDVAE and CrystalTextLLM as they are
trained on data including f-electron elements). *The stable fraction represents the percentage of DF T-verified
stable structures (E4q < 0.0 eV/atom) over structures predicted to be metastable (Eq < 0.1 €V/atom) by
respective surrogate models (M3GNet for CDVAE and CrystalTextLLM, CHGNet for ours, with CHGNet
being more rigorous as evidenced by lower metastability rates). ¥We exclude structures containing f-electron
in DFT verification while keeping the denominator as all metastable structures.

4.3.1 Crystal Structure Generation

Stability. We first evaluate the ability of our framework to generate stable crystal structures by optimizing
decomposition energy Ey as the sole objective. The LLM prompting template is provided in Appendix C.

We compare our model against two baseline models CDVAE (Xie et al., 2022) and CrystalTextLLM (Gruver
et al., 2024) in Table 1. Following baselines, we report structural and compositional validity as simple
sanity check, which assess non-overlapping atomic radii and charge neutrality respectively. LLM output
passes the simple sanity check at a high validity rate. Then, we evaluate the 1,479 generated structures
for metastability with MLIPs, where 76.8% and 81.1% are metastable based on CHGNet and M3GNet
evaluations respectively. Performance evaluated by both MLIPs outperform the 49.8% metastability rate by
M3GNet of the state-of-the-art CrystalTextLLM 70B model, which has a comparable model size to our base
model. We then perform DFT validation for stability assessment, 31.7% of the metastable structures remain
stable, substantially improving the 10.6% stability rate from CrystalTextLLM 70B.

However, structures containing f-electron elements (actinides and lanthanides, abbreviated as f-ele) challenge
stability prediction with their strongly correlated electron interactions, which may not be adequately captured
by DFT approaches under GGA and Hubbard U corrections (Himmetoglu et al., 2014). These structures
consistently yield lower decomposition energies (Fq), creating a potential computational shortcut. To assess
this effect, we report the percentage of stable structures without f-ele (denoted as “w/o f-ele”) among
the metastable structures. By excluding f-electron structures from parent selection (marked with X), we
improved metastability rates to 78.4% and increased stable non- f-electron structures from 14.0% to 24.6%.
This simple intervention demonstrates the ability of our framework to effectively guide exploration toward
diverse stable configurations, which remain unaddressed by existing methods.

Diversity. To evaluate the diversity of our generated structures, we analyzed their compositional and
structural characteristics by comparing LLM-proposed structures and with the (K x P) most metastable
structures from MatBench that forms the initial generation. Our element co-occurrence analysis reveals
high compositional diversity in the LLM-proposed structures, with even the most frequent compositions
appearing only twice (approximately 0.14% of total structures). Examination of element co-occurrences with
F in Figure 2 highlights the effectiveness of our evolutionary method in guiding structure generation toward
more stable F-based compounds, particularly with alkali metals and transition metals.

The structural diversity is further evidenced by space group distribution and stability analysis in Figure 7(b).
The generated structures demonstrate broad structural diversity with high metastability rates across multiple
space groups, confirming that our evolutionary method navigates toward stable regions of chemical space
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Figure 2: Element co-occurrence patterns with fluorine (F) in Figure 3: Decomposition energy (Eq) distri-
LLM-proposed structures (left) versus MatBench structures bution comparison across experimental con-
(right). Bubble size indicates frequency of occurrence for each figurations. Vertical lines indicate metastable
element pair, while color intensity represents compositional thresholds at 0.0 €V /atom and 0.1 €V /atom.
diversity (darker indicates more unique compositions with that Reference-guided approaches show more bal-
element pair). anced distributions.

while maintaining diverse structural motifs across different crystallographic symmetries. Additional diversity
and novelty evaluations and analysis are provided in Appendix H.

Metastability . Compositional Space: and Generated Structures
Method (Ea < 0.0) Stability S.U.N. e
MatLLMSearch *
(Llama 3.1-70B) 37.59% 24.34% 21.64% .
DiffCSP — 5.06% 3.34% "
FlowMM — 4.65% 2.34% 10

8

MatBench Bandgap Density (structures/bin)

Table 2: (Meta)stability and S.U.N. rates comparison.
S.U.N. computed against the entire MatBench-bandgap

UMAP Dimension 2 (compositional space)
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Figure 4: Difference in comparing the S.U.N. rate in
different baselines. Figure 5: Compositional space overlap (UMAP pro-

jection).

S.U.N. rate. The results in Table 2 demonstrate that our framework maintains higher stability and S.U.N.
(Stable, Unique, Novel) rates compared to the two baselines. Specifically, we achieve a 37.59% metastable
rate (Eq < 0.0 eV/atom) with CHGNet, a 24.34% stable rate verified by DFT calculations, and an overall
21.64% S.U.N. rate, outperforming both DiffCSP (Jiao et al., 2024) and FlowMM (Miller et al., 2024).

However, we caution that the S.U.N. metric has inherent limitations: it is dependent on the chosen reference
sets and collapses complex, multi-dimensional properties into binary counts. Figure 4 illustrates the key
methodological difference in S.U.N. computation: while FlowMM and DiffCSP evaluate novelty against their
training sets, our framework compares against the entire MatBench dataset (106,113 structures). Consequently,
we treat S.U.N. primarily as a supplementary signal for novelty assessment rather than a definitive metric.

To strengthen the analysis, we also provide comprehensive evaluation covering all S.U.N. dimensions in
Appendix H. This includes DFT-calculated stability; metastability verficiation with multiple MLIPs (CHGNet,
M3GNet and Orb-v3 for CSP); space group and crystal system distributions for Uniqueness; and compositional
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Figure 6: (a) Pareto frontiers of bulk modulus versus decomposition energy (Eq4) for structures optimized
towards stability, bulk modulus and multi-objective (multi-turn). Ellipses indicate regions of highest structure
density. (b) Examples of predicted crystal structures with composition NazAlClg.

and structural novelties, elemental co-occurrence pattern shifts for Novelty. Further discussion on the fairness
of these baseline comparisons is available in Appendix D.

Extended evaluation. To better compare with baseline methods, we perform a larger scale CSG experiment
with DeepSeek-Reasoner, with experimental settings detailed in Appendix G.5. Figure 5 shows the compo-
sitional space overlap of generated structures and MatBench reference structures using UMAP projection
of Magpie features. The generated structures mostly overlap with the MatBench compositional space.
Additional hyper-parameter sensitivity analysis including model scaling effects, fine-tuning comparisons,
reproduction parameters, representation format, base LLM choices, etc. are detailed in Appendix G. Besides
performance gains, our method also demonstrates computational advantages. A detailed efficiency analysis,
including generation time overhead and carbon footprint, is provided in Appendix G.6.

4.3.2 Crystal Structure Design

We also explore multi-objective optimization by extending our framework to balance stability with desired
material properties. We demonstrate this capability by alternating between optimizing stability (E4) and
bulk modulus in each iteration. While this multi-objective setting naturally yields lower stability rates (57.1%
metastable with Eg < 0.1 eV/atom and 15.6% DFT-verified stable structures with f-electron elements)
compared to stability-only optimization, it enables the discovery of structures with favorable property-stability
trade-offs.

As shown in Figure 6(a), the Pareto frontiers under various optimization strategies converge in regions
with high bulk modulus (> 200 GPa) and metastability (Fq < 0.1 eV/atom) in the stability-property
space, indicating successful discovery of potentially valuable structures that balance both objectives. The
regions of highest structure density, estimated using Gaussian KDE and visualized as ellipses, reveal how
optimization goals affect the distribution. Prioritizing bulk modulus shifts the density distribution toward
higher mechanical strength at the cost of increased decomposition energy. We provide additional discussions
of multi-objective optimization strategies in Appendix E.

4.3.3 Crystal Structure Prediction

We next evaluate our framework on crystal structure prediction tasks, which aim to predict stable structure
(i.e. lattice and atomic coordinates) for a given composition. As a case study, we prompt the LLM to predict
polymorphs of NagAlClg. For context, the Materials Project database currently contains only one structure
for this composition (mp-1111450, Fm3m, E4q = 0.142 eV /atom), which is significantly unstable.

During the prompting process, we apply specific structural filters to select seed structures containing only
three distinct elements in a 3:1:6 ratio, matching the stoichiometry of NazAlClg. From MatBench, we
identified 820 structures meeting the criteria to build the initial population. Example structures proposed
by the LLM for this composition are visualized in Figure 6(b), with DFT-verified decomposition energies
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Figure 7: Ablation analysis comparing reference-guided (REF+EvO0) vs. reference-free (Evo-ONLY) generation.
(a) Iterative optimization shifts Ey4 distributions toward metastability. (b) The reference-guided REF+Evo0
maintains diverse crystallographic symmetries. (c¢) Without references, Evo-ONLY suffers from diversity
collapse, concentrating on limited space groups.

of 0.024 and 0.032 eV /atom respectively. Although these predicted polymorphs remain metastable, their
decomposition energies Eq are significantly lower than the previously reported structure in MatBench (Eq4
reduced by up to 83%), exemplifying the potential of our evolutionary pipeline for CSP applications. For
readers of interest, we demonstrate additional successful structure prediction cases including AggOs, BisFg,
etc. in Appendix F.

4.4 Ablation Analysis

We evaluate four configurations to disentangle the impact of reference structures and evolutionary iterations:
REF+EvO (the proposed framework), EvOo-ONLY (evolutionary search without references), REF-1SHOT
(single-iteration generation with references), and ZERO-SHOT (standard zero-shot generation).

Thermodynamic stability analysis. The decomposition energy distributions in Figure 3 highlight the
critical role of the components of MatLLMSearch. The reference-guided approaches (REF+EvO, REF-
1SHOT) effectively concentrate structures near the metastable threshold (Eq & 0.0 €V /atom), indicating high
thermodynamic quality. While evolutionary search alone (Evo-ONLY) achieves a similar median stability,
its distribution is more dispersed. In contrast, the ZERO-SHOT baseline yields structures with substantially
inferior thermodynamic stability, confirming that neither references nor evolution can be entirely omitted
without performance loss.

Impact of evolutionary iterations. Evolutionary iterations are critical for maximizing generative yield
and thermodynamic stability. As shown in the decomposition energy distributions (Figure 7(a)), the Eq4
distribution progressively shifts toward greater stability over successive iterations. Further, under an equivalent
computational budget of 1,000 LLM inferences, REF+EVO yields 1,479 valid structures compared to only 741
for REF-1SHOT. This confirms that iterative refinement not only optimizes stability but also improves the
acceptance rate of generated candidates.

10
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Impact of reference structures. References act as critical geometric priors that prevent mode collapse.
While evolutionary search alone (Evo-ONLY) successfully optimizes metastability, it suffers from severe mode
collapse. Figure 7(c) reveals that 88% of its generated structures collapse into the triclinic space group
1, indicating convergence to a repetitive crystallographic motif. Conversely, the reference-guided model
REF+EvO (Figure 7(b)) maintains high metastability while preserving a broad distribution across diverse
space groups. This suggests that reference structures provide necessary geometric diversity, preventing the
optimization process from collapse into repetitive solutions.

Summary. Our ablation study reveals distinct trade-offs: EvOo-ONLY optimizes stability but suffers from
diversity collapse. REF-1SHOT ensures diversity but yields limited quantity. ZERO-SHOT fails to achieve
sufficient quality or quantity. By synergizing reference structures with evolutionary search, REF+EvoO
simultaneously achieves high metastability, balanced structural diversity, and scalable generative yield.

5 Related Work

5.1 Language Models for Materials Science

The increasing capabilities of LLMs have prompted materials science community to explore their potential for
understanding and predicting material properties (Jablonka et al., 2023). Benchmarking studies (Rubungo
et al., 2024) also suggest that fine-tuning LLMs over specific materials datasets can lead to comparable or
better performance than specialized graph neural networks.

Recent autoregressive approaches has developed along two main paths. First is to train from scratch.
Flam-Shepherd and Aspuru-Guzik (2023) demonstrate that autoregressive models trained with character-
level tokenization can generate chemically valid crystal structures by directly tokenizing CIF files into
string sequences. Other approaches include Wyckoff Transformer (Kazeev et al., 2025) for symmetric
crystal generation, deCIFer (Johansen et al., 2025) for crystal structure prediction from powder diffraction
data, and multimodal foundation models (Moro et al., 2025) for material property prediction. Secondly,
CrystalTextLLM (Gruver et al., 2024) fine-tunes a pre-trained LLM (over massive texts) on generating
crystalline structures with task-specific prompts. Mat2Seq (Yan et al., 2024) converts 3D crystal structures
into unique 1D sequences that preserve SE(3) and periodic invariance for language model training. While
these approaches produce valid structures, they sacrifice the general conversation capabilities of LLMs due
to specialized training or fine-tuning on crystallographic data.Recent work also raised concerns about the
scalability and reliability of LLMs for real-world materials discovery (Miret and Krishnan, 2024).

In parallel developments within molecular chemistry, MolLEO (Wang et al., 2025) successfully employs
pre-trained LLMs without domain-specific fine-tuning to search for small molecules. Subsequent work (Lu
et al., 2024) extended this evolutionary optimization approach to more complex transition metal chemistry
using advanced base LLMs with enhanced reasoning capabilities. However, these applications benefit from
natural string representations for molecules (e.g., SMILES or SELFIES), which are considerably simpler than
the three-dimensional representations required for crystal structures. Our work bridges this gap by adapting
the evolutionary approach to the more complex domain of crystal structures without requiring fine-tuning.

5.2 Generative Models for Materials Discovery

Besides autoregressive language models, various generative models including variational autoencoders, diffusion
models, and flow models have emerged as promising solutions for crystal structure generation. Early work
proposes generative crystal structures using variational autoencoders that represent crystal structures as 3D
voxels (Court et al., 2020; Noh et al., 2019). CDVAE first proposes to generate crystal structures with a
score-based generative (diffusion) model and optimize crystal structure properties through gradient-based
optimization in the latent space (Xie et al., 2022). This approach has been extended in several directions: Jiao
et al. (2024) developed Riemannian diffusion models to better handle periodic coordinates, Zeni et al. (2025)
scaled the approach to encompass elements across the entire periodic table with various design criteria, and
Dai et al. (2024) applied it to crystal inpainting tasks. Most recently, Miller et al. (2024); Sriram et al. (2024)
introduced Riemannian flow matching models to better address periodic boundary conditions with improved

11
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Method Category

Genetic Operators

Key Innovation

USPEX (Lyakhov et al., 2013;
Oganov and Glass, 2006)

XtalOpt (Falls et al., 2020; Lonie
and Zurek, 2011)

GASP (Curtis et al., 2018)
CALYPSO (Wang et al., 2012)

Classical EA

Classical EA

Classical EA
Classical EA

ML-Enhanced
ML-Enhanced

MAISE (Balachandran et al., 2016)
MAGUS (Wang et al., 2023)

GOFEE (Jennings et al., 2019)
CI‘ySPY (Yamashita et al., 2021)

Bayesian Opt
Bayesian Opt

MatLLMSearch LLM-Guided

Symmetric crossover, lattice muta-
tion
Multiple crossover schemes

Crossover, mutation, permutation
PSO-inspired operators

Classical + ML screening
Graph-decomposed operators
Gaussian process-guided

Modular EA + BO

Implicit mutation and crossover

Pioneering evolutionary CSP with
heredity operators
Flexible operator combinations

Python framework for alloys
Particle swarm integration
10-100x speedup via active learning
On-the-fly ML + graph theory
Surrogate-based convergence
Flexible multi-method framework
EA + LLM for CSG, CSP, and

CSD

in LLM generation

Table 3: Comparison of evolutionary CSP methods.

performance. Space group-aware methods have further advanced this direction: CrystalFormer (Cao et al.,
2025) uses space group informed transformers, while Chang et al. (2025); Puny et al. (2025) incorporate
space group equivariance and conditional flow matching, respectively. Universal models for atoms (Wood
et al., 2025) provide a unified framework for materials modeling. Yang et al. (2024b) explore the synergy
between language and generative models by leveraging LLMs to propose chemical formulae under design
constraints before feeding them to a diffusion model.

5.3 Evolutionary Algorithms in Materials Discovery

Evolutionary algorithm has also played an important role in materials discovery, especially Crystal Structure
Prediction (CSP), where the goal is to identify the global energy minimum for a given chemical composi-
tion (Oganov and Glass, 2006; Wang et al., 2012). Representative methods include USPEX (Lyakhov et al.,
2013; Oganov and Glass, 2006), XtalOpt (Falls et al., 2020; Lonie and Zurek, 2011), GASP (Curtis et al.,
2018), CALYPSO (Wang et al., 2012), and GAmuza (Kadan et al., 2023), which employ hand-crafted genetic
operators such as symmetric crossover by swapping atomic positions while preserving one parent’s space
group and lattice mutation by perturbing crystallographic parameters. These methods have predicted stable
phases for systems including gamma-boron (Oganov et al., 2009), high-pressure sodium compounds (Ma et al.,
2009), and metal hydrides (Peng et al., 2017). Recent approaches integrate machine learning to accelerate
CSP, including active learning by MAISE (Balachandran et al., 2016), graph-based structure decomposition
by MAGUS (Wang et al., 2023), and Bayesian optimization methods like GOFEE (Jennings et al., 2019) and
CrySPY (Yamashita et al., 2018; 2021).

We summarize key characteristics of established evolutionary CSP methods in Section 5.3. Recent bench-
marks (Duval et al., 2025) and reviews (Handoko and Made, 2025) provide broader context on the landscape
of generative models for materials discovery. DiffCSP (Jiao et al., 2024) achieves higher match rate (73.33%
over 53.33%) and much faster inference (10 seconds over 12.5 hours) than USPEX when evaluated on 10
binary and 5 ternary compounds in the MP-20 test set.

6 Conclusion

In this paper, we present an evolutionary workflow for computational materials discovery, encompassing crystal
structure generation, prediction, and objective-based optimization. We demonstrate that a pre-trained LLM
trained on general text can identify a higher proportion of (meta)stable materials compared to state-of-the-art
generative models specifically trained on materials datasets. These findings suggest that LLMs inherently
function as effective crystal structure generators, with both compositional and structural information naturally
embedded in their text-inference capabilities. In conclusion, our method complements existing structure
discovery techniques by providing refined optimization capabilities while maintaining versatility in addressing
various optimization objectives. The stability of generated materials is related to both structural geometry
and chemical composition (Szymanski and Bartel, 2025). Our LLM-based evolutionary approach achieves
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superior performance by populating the energy-favorable chemical compositions using an MLFF-based oracle
function that provides strong guidance unavailable in other de novo crystal generative models.

Looking forward, a natural extension of this work would be synthesis prediction based on the evolutionary
method. Improved machine learning interatomic potentials will complement this process, as discussed
in Appendix D. Such development would benefit from integration with high-quality experimental data
from automated, high-throughput experiments, bridging the gap between computational predictions and
experimental synthesis, which would accelerate high-throughput materials discovery.

Limitations and broader impact. This work aims to advance machine learning and computational
materials discovery by making crystal structure generation more accessible and efficient. This advancement
will particularly benefit researchers who have limited computational resources, enabling scientific discovery
without the need to train large ML models. Additionally, the oracle functions can be further adapted to
incorporate experimental data or high-fidelity property predictors for the generated crystal structures when
applying this pipeline to practical materials discovery.
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A Experimental Details and Reproducibility

The extra pool R of stable structures is sampled from the MatBench-bandgap dataset (Dunn et al., 2020),
which consists of 106,113 crystal structures in total. To initialize the parent structures for the first iteration, we
rank candidate structures by decomposition energy computed with CHGNet and then apply de-duplication by
composition. For the CSG task, we remove binary compounds and structures with higher-order compositions,
retaining candidates with 3 to 6 elements. For CSP tasks, we filter seed structures to match a desired
compositional pattern and also apply de-duplication by composition.

The implementation of our evolutionary search pipeline is available here. The crystal structures generated by
MatLLMSearch that are presented in the main results can be downloaded here. We provide structures parsed
directly from LLM responses, as well as structures after CHGNet relaxation. We also provide the generated
structures and reference structures for the larger scale experiment conducted with DeepSeek-Reasoner.

B Machine Learning Interatomic Potentials

A significant breakthrough in addressing computational cost challenges has emerged through the development
of machine learning interatomic potentials (MLIPs) trained on high-fidelity quantum mechanical calculations
(e.g., DFT) (Batzner et al., 2022; Cheng, 2024; Du et al., 2023a;b; Liao et al., 2024; L’opez-Zorrilla et al.,
2023; Yin et al., 2025; Zhang et al., 2021). In MLIPs, the total energy is expressed as a sum of atomic
contributions, where each atom’s energy depends on its local environment including the atomic coordinates
and chemical species of neighboring atoms within a cutoff radius:

A N oOF 1 0E
E:ZQS({Tj}i;{Cj}i), fi:_ar" Uzvg- (S1)

Here, ¢ is a learnable function that maps the set of position vectors {7;}; and chemical species {C;}; of the
neighboring atoms j to the energy contribution of atom ¢. The forces f, and stress o are calculated via
auto-differentiation of the total energy with respect to the atomic Cartesian coordinates and strain. Recent
advances have demonstrated that MLIPs, trained on extensive density functional theory (DFT) calculations
accumulated over the past decade across diverse materials systems, exhibit remarkable transferability in
performing atomistic simulations across various material and chemical systems. These broadly applicable
potentials are known as universal MLIPs (uMLIPs) (Batatia et al., 2023; Chen and Ong, 2022; Deng et al.,
2023; Park et al., 2024). By leveraging uMLIPs as surrogate energy models, researchers can rapidly optimize
crystal structures and obtain structure-energy relationships for assessing thermodynamic stability. Recent
benchmark studies, including MACE (Batatia et al., 2023), DPA-1 (Zhang et al., 2024) and JMP (joint
multi-domain pretraining) (Shoghi et al., 2024), have demonstrated the high accuracy of these uMLIPs in
predicting crystal thermodynamical stability, particularly for industrial-scale implementations trained on
millions of compounds and non-equilibrium atomic configurations (Barroso-Luque et al., 2024; Merchant
et al., 2023; Yang et al., 2024a).

To accelerate the oracle function evaluation in the evolutionary iterations, we performed all structure
relaxations with the FIRE optimizer (Bitzek et al., 2006) over the potential energy surface provided by
CHGNet, where the atom positions, cell shape, and cell volume were optimized to reach converged interatomic
forces of 0.1 eV /atom (Deng et al., 2023). The output energy prediction is directly compatible with the
Materials Project phase diagrams with the MaterialsProject2020Compatibility (Wang et al., 2021).
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C Prompt Templates

You are an expert material scientist. Your task is to propose hypotheses for {reproduc-
tion__size} mew materials with valid stable structures and compositions. No isolated or
overlapped atoms are allowed.

The proposed new materials can be a modification or combination of the base materials given
below.

Format requirements:

1. Each proposed structure must be formatted in JSON with the following structure:

{
it {{
"formula": '"composition_formula",
"POSCAR": "POSCAR_format_string"
}}
}}

2. Use proper JSON escaping for newlines (\n) and other special characters

Base material structure for reference:
{reference__structures}

Your task:
1. Generate {reproduction__size} new structure hypotheses
2. Fach structure should be stable and physically reasonable
3. Format each structure exactly as shown in the input

Output your hypotheses below:

D Details on Evaluation Metrics

D.1 Stability

Thermodynamic stability is the primary criterion for material realizability. We quantify this using the
decomposition energy (Eq4), which measures the energy distance of a structure to the convex hull of known
stable phases.

Reference hull. All decomposition energies are computed against the Materials Project phase diagram
(version 2023-02-07-ppd-mp).

Metastability. For high-throughput evaluation, we use Machine Learning Interatomic Potentials (MLIPs)
including CHGNet, M3GNet, and Orb-v3. A structure is defined as metastable if its predicted Fq falls below
a chosen threshold (e.g., 0.1 eV/atom, 0.03 eV /atom, or 0.0 eV /atom).

Stability. The gold standard for stability is verification via Density Functional Theory (DFT). A structure
is classified as stable only if its DFT-calculated Eq < 0.0 €V /atom.

D.2 Diversity

We extend the evaluation on structural and compositional diversity using established metrics from prior
work (Gruver et al., 2024; Xie et al., 2022).
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Compositional diversity and structural diversity. For each generated structure, we compute a
composition fingerprint and a structural fingerprint using featurizers from the Matminer library. Then,
we calculate the mean pairwise cosine distances between fingerprints of the generated structures. Log
normalization is applied to composition diversity for 0-1 scale standardization.

D.3 Novelty

Reference database. We evaluate novelty against the entire MatBench-bandgap dataset (~106K
structures), which is the source of our parent pools.

Compositional novelty. A structure is compositionally novel if its reduced_formula does not exist in the
reference database.

Structural novelty. A structure is considered structurally novel if it has no match in the reference database
using StructureMatcher from pymatgen with default settings: 1t01=0.2, sto1=0.3 A, angle_tol=5°.

D.4 S.U.N. Rate

Following the protocol of FlowMM (Miller et al., 2024) and MatterGen (Zeni et al., 2025), we report the
S.U.N. (Stable, Unique, Novel) rate as a supplementary generation quality metric. We compute S.U.N. as
the fraction of generated structures that are simultaneously: stable (DFT-verified, E4 < 0.0 eV /atom after
CHGNet pre-relaxation), unique (no match within the generated set via StructureMatcher), and novel (no
match in the reference database via StructureMatcher).

Limitations for cross-method comparison. S.U.N. collapses multiple axes of quality into a single number
and is sensitive to the reference set used for novelty. This dependence complicates direct cross-method
comparison, because baseline methods typically evaluate novelty against their training sets, whereas our
framework compares against the full MatBench-bandgap dataset (~106K structures). This methodological
discrepancy is detailed in Section 4.2 and illustrated in Figure 4. We therefore use S.U.N. as a supplementary
signal, while treating DFT verification as the primary stability criterion.

For the main results reported in the text, “Stable” in S.U.N. refers to DFT verification (E4 < 0.0 €V /atom).
For the extended hyper-parameter analysis across multiple base LLMs in Table S9, we adopt a CHGNet-based
criterion (Eq < 0.0 eV /atom) due to the computational cost of DFT.

To provide a comprehensive view of generation quality beyond S.U.N., we also report fine-grained evaluations
of each dimension. For stability, we report both DFT-verified stability rates and metastability rates computed
with multiple MLIPs (CHGNet and M3GNet for CSG; Orb-v3 for CSP). For uniqueness, we analyze space
group distributions, crystal system diversity, and compositional space coverage. For novelty, we report
compositional and structural novelty in Figure S3 and show elemental co-occurrence patterns in Figure 2 to
evidence exploration beyond the reference pool.

D.5 Efficiency Metrics

LLM inference dominates the computational cost of our framework, so efficiency primarily depends on model
scale and hardware. For experiments with locally hosted LLMs, we report the average wall-clock time per
successfully generated valid structure, including both generation and evaluation. We prioritize this metric
over raw FLOPs because it directly captures the trade-off between higher per-step compute for larger models
and their typically higher success rates. For experiments using API-accessed LLMs, we report token usage and
estimate environmental impact in Appendix H. We compute the carbon footprint by converting total input
and output tokens into energy consumption and equivalent CO9 emissions using established energy-per-token
factors.
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Measure Definition Parameter/Method Reference Database
Metastability Near-hull thermodynamic CHGNet-predicted MP (2023-02-07-ppd-mp)
stability (proxy) E4 <t eV/atom,
t € {0.0,0.03,0.1}
Stability DFT-verified on-hull stability DFT-calculated MP (2023-02-07-ppd-mp)
E4 <0.0 eV/atom (VASP)
Uniqueness No duplicate within the StructureMatcher (default: Generated set

Compositional novelty

Structural novelty

Novel polymorphs

S.U.N. rate
(DiffCSP /FlowMM)
S.U.N. rate
(MatLLMSearch)

generated set

Reduced formula not in the
reference database
No structural match in the
reference database

Known composition, novel
structure

Fraction that is stable, unique,
and novel
Fraction that is stable, unique,
and novel

1to1=0.2, stol=0.3 A,
angle_tol=5°)
Match by reduced_formula

StructureMatcher (default:
1t01=0.2, sto1=0.3 A,
angle_tol=5°)

Composition € MP; no
structural match via
StructureMatcher

DFT stable + unique + novel
(novelty against training set)
DFT stable + unique + novel
(novelty against reference

MatBench-bandgap (106K)

MatBench-bandgap (106K)

Materials Project (MP)

MP-20 (27K train, 45K total)

MatBench-bandgap (106K)

database)

Table S1: Evaluation metric definitions. Definitions of stability, metastability, matching criteria, and reference
databases used for novelty.

D.6 Summary

We summarize the key evaluation definitions used throughout this work in Table S1, including stability
and metastability thresholds, reference databases for novelty evaluation, and the energy correction and
compatibility settings applied.

E Additional Experiments on CSD

We demonstrate the flexibility of our evolutionary pipeline by guiding LLMs to propose novel crystal
structures with diverse mechanical characteristics. We evaluate five optimization strategies: (1) stability-
oriented optimization (“Stability”), (2) property-oriented optimization (“Bulk Modulus”), (3) alternating
multi-objective optimization (“Multi-turn”), (4) normalized weighted-sum optimization (“Weighted Sum”),
and (5) lexicographic optimization (“Lexical”). As shown in Table S2, all strategies maintain high metastability
rates, indicating that our framework can optimize target properties while preserving validity and stability.

Validity Metastability
Model Objective M3GNet CHGNet,
Structural Composition
FEq <01 E3<01 Eg<0.03
Stability 100.0% 79.4% 81.1% 76.8% 56.5%
Bulk Modulus 100.0% 82.9% 27.0% 43.3% 8.3%
MatLLMSearch .
(Llama 3.1-70B) Multi-turn 100.0% 84.1% 70.9% 57.1% 29.8%
Weighted Sum 100.0% 88.1% 74.0% 59.8% 36.5%
Lexical 100.0% 89.5% 84.7% 78.0% 59.9%

Table S2: Compare experimental results under various optimization goals. We explore multi-objective
optimization for stability and bulk modulus in three different ways.
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Figure S2: Crystal system distributions
Figure S1: Comparison of optimization strategies targeting of generated structures under various
different objectives evaluated based on thermodynamic sta- optimization strategies. Structural di-
bility (decomposition energy E4) and mechanical property versity is preserved regardless of opti-
(bulk modulus). mization objective.
Bulk Modulus Avg. Bulk Modulus (GPa)
Objective Iter 1 Iter 2 Iter 3 Iter 4 Iter 5
Target 100 GPa  88.5+£67.4  91.5+42.7 89.4 + 284 98.7 +25.5 90.9 +25.9
Maximize 96.1 +£63.5 123.74+40.9 14954429 171.8+50.8 232.6£47.2

Table S3: Bulk modulus controllability for CSD: (a) target 100 GPa and (b) maximize bulk modulus.

Bulk modulus optimization. To validate property-guided generation with MatLLMSearch, we perform
single-objective optimization by changing the selection criterion from decomposition energy (Eq4) to bulk
modulus. In crystalline solids, bulk modulus is a key indicator of mechanical resistance to compression.

Bulk modulus values were computed using an Equation of State (EOS) workflow with the CHGNet potential.
Structures are first relaxed with CHGNet to reach local energy minima. Isotropic volume perturbations
were then applied to generate distorted structures. For each perturbation, a constrained ionic relaxation was
performed to optimize atomic positions while fixing the cell dimensions, using a force convergence criterion of
0.1eV/ A and a maximum of 500 optimization steps. Finally, the resulting energy-volume data were fitted to
the Birch-Murnaghan EOS to extract the bulk modulus, which was then converted to GPa.

Figure S1 compares the distributions of decomposition energy (E4) and bulk modulus across optimization
strategies and highlights clear trade-offs. Bulk-modulus optimization shifts the generated structures toward
higher bulk modulus values (peak density at 194 GPa versus 19 GPa for stability-oriented optimization), but
this improvement comes with increased decomposition energy: the Eq density peak shifts from 0.0 €V /atom
(stability-oriented) to 0.1 €V /atom (bulk-modulus-oriented), indicating reduced thermodynamic stability.

Bulk modulus controllability. We evaluate CSD tasks that (a) target a specific bulk modulus and (b)
maximize bulk modulus, as shown in Table S3. Experiments use DeepSeek-Reasoner with population size 10
for 5 iterations.

MatLLMSearch demonstrates effective controllability: in the 100 GPa targeting setting, the average bulk
modulus approaches 98.7 GPa by iteration 4, while the maximum setting shows consistent improvement
across iterations. These results highlight the flexibility of our framework for crystal structure design tasks
with different objectives.

Multi-objective optimization. Beyond single-objective optimization, we explore multi-objective strategies
that jointly consider thermodynamic stability and mechanical properties.
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Figure S3: Diversity and novelty evaluation results for structures proposed under different experimental
settings.

We first implement an alternating strategy (“Multi-turn”), which switches between stability and property
optimization across iterations, with stability optimized first to provide a reliable starting point. The number
of iterations allocated to each objective can be adjusted. As shown in Figure S1, this strategy achieves
balanced performance, with Eq centered around 0.037 eV/atom. The bulk modulus distribution suggests
a stability—property trade-off, separating structures into higher-strength but moderately stable candidates
versus highly stable but lower-strength candidates.

We also consider a normalized weighted-sum objective that combines both terms into a single scalar:
J = we - Ed +wp - (1 — B), where E‘d and B are min-max normalized values and we = 0.7, wp = 0.3.
This strategy produces structures with bulk modulus centered around 141 GPa and Ey4 centered around
0.034 eV /atom.

Finally, the lexicographic (“Lexical”) strategy treats stability as the primary criterion and considers bulk
modulus only after a stability threshold is met (metastable structures with E4 < 0.03 eV /atom). This design
penalizes low-stability candidates to keep stability dominant. While single-objective stability optimization
achieves the highest metastability rate (76.8%), all multi-objective strategies maintain metastability rates
above 50% while improving mechanical properties.

To ensure that optimization does not degrade generation quality, we also evaluate diversity and novelty
under different objectives. Following prior work, we compute diversity and novelty on structures predicted to
be metastable, using a structural distance cutoff of 0.1 and a composition distance cutoff of 2 for novelty.
Results in Figure S3 show a consistent trade-off between property optimization and novelty: when explicitly
targeting properties (e.g., bulk modulus), the model more often explores well-established stable chemical
spaces, slightly reducing novelty while maintaining high diversity. Our evolutionary approach continues to
encourage exploration of diverse structural motifs, as evidenced by the relatively uniform crystal system
distributions in Figure S2.

F Additional Experiments on CSP

We further evaluate MatLLMSearch on crystal structure prediction across multiple compositions. Crystal
structure prediction (CSP) aims to identify the lowest-energy atomic arrangement for a given composition.

For each CSP task, we first filter seed structures using compositional constraints and then run MatLLMSearch
for 10 iterations. This setup enables the LLM to propose structures by leveraging optimized candidates with
similar compositions.

To benchmark our framework, we compare against DiffCSP-generated candidates. For each composition, we
use DiffCSP to sample 100 structures and then apply energy-guided optimization using an energy predictor
trained on MP-20 for 1000 epochs, producing 10 optimized variants per initial sample. We evaluate energies
after relaxation with Orb-v3 (Rhodes et al., 2025) for both methods.
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Figure S4: Energy and AFE distributions comparing our LLM-generated structures versus DiffCSP predictions

for AggO2 and BisFg CSP tasks. LLM-generated structures show smaller |AE| values during relaxation than
DiffCSP predictions.
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Figure S5: Representative CSP examples for six compositions (AggOs, BigFs, CoyBy, KZnF3, Sro04, YMgs)
generated by MatLLMSearch.

MatLLMSearch successfully predicts structures for a range of compositions, including AgsOs, BisFg, CosBs,
KZnF3, Sr04, and YMgs. Figure S5 shows representative predictions that achieve lower energies than the
best DiffCSP candidates under the same evaluation protocol.

To further compare the two approaches, we analyze the energy and AF distributions. Figure S4 shows
that many DiffCSP predictions undergo substantial changes during relaxation (large |AFE]), whereas our
LLM-generated structures typically require smaller adjustments. This suggests that the initial configurations
proposed by MatLLMSearch are closer to local energy minima.

G Hyperparameter Sensitivity Analysis for CSG

G.1 Evolutionary Reproduction Hyperparameters

Our training-free evolutionary framework is relatively robust to hyperparameters compared to many traditional
machine learning approaches. The reproduction phase introduces three key hyperparameters that control the
LLM prompting context and sampling budget: population size (K), context size (C; number of parents), and
children size (¢; number of proposed offspring per prompt). Our baseline configuration (C = 2, ¢ = 5) with
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Reproduction Configuration # Unique / # Total Generated Fg < 0.1eéV/atom FEq < 0.03 eV /atom

1—=5 56.5% 79.8% 56.4%
2—=5 72.3% 76.8% 56.5%
22 86.3% 74.8% 54.3%
5—=5 92.7% 72.3% 47.3%
5—2 95.5% 68.3% 46.1%

Table S4: Proportion of unique structures and their CHGNet-predicted metastability under varying reproduc-
tion configurations.

LLM Temperature # Unique / # Total Generated FEg < 0.1 eV/atom FE4 < 0.03 eV /atom

0.95 72.3% 76.8% 56.5%
0.7 70.7% 75.4% 56.6%
0.5 70.7% 71.2% 51.4%
0.2 69.8% 70.3% 50.2%

Table S5: Proportion of unique structures and their CHGNet-predicted metastability with different LLM
temperatures.

Llama 3.1 (70B) achieves balanced performance, generating 72.29% unique structures while maintaining high
stability.

Varying the parent-to-children ratio reveals a trade-off between diversity and stability. Increasing parent
diversity (C =5, ¢ = 2) improves compositional uniqueness to 95.49% but slightly reduces stability (Table S4).
In contrast, single-parent settings highlight the benefit of multi-parent crossover for maintaining structural
diversity and stability. Overall, higher parent-to-children ratios can improve exploration quality, but the best
setting depends on the desired balance between diversity and stability.

We also find that larger population sizes (K) can maintain stability and validity comparable to smaller
populations. Increasing K increases diversity within each iteration, which can reduce the overrepresentation
of f-electron elements and broaden compositional coverage. However, larger populations can also increase
duplication across iterations, suggesting that earlier stopping or stronger de-duplication may be beneficial.
These observations enable application-specific tuning of the reproduction hyperparameters.
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Figure S6: Distribution of energy change AFE before/after structural relaxation and decomposition energy
(Eq) for structures proposed by LLM, evaluated using the pretrained CHGNet.
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Method Primary Format Generative Model Training
CDVAE (Xie et al., 2022) 3D Diffusion GNN Training
MatterGen (Zeni et al., 2025) 3D Diffusion GNN Training
Flam-Shepherd and Aspuru-Guzik (2023) 3D AR Transformer Training
DiffCSP (Jiao et al., 2024) 3D Diffusion GNN Training
CrystalTextLLM (Gruver et al., 2024) Text/CIF LLM Transformer Fine-tuning
FlowMM (Sriram et al., 2024) 3D Flow GNN Training
MatLLMSearch (Ours) Text/CIF/POSCAR LLM Llama 3.1 N/A

Table S6: A collection of generative models on computational materials discovery. Training denotes if
training/fine-tuning is required on materials databases.

Format # Unique / # Total Generated FEq4 < 0.1 eV/atom FEq4 < 0.03 eV /atom
POSCAR (4) 76.7% 75.4% 55.3%
POSCAR (12) 72.3% 76.8% 56.5%

CIF 75.1% 68.9% 49.5%

Table S7: Proportion of unique structures and their CHGNet-predicted metastability using different structure
formats.

G.2 Effect of Structure Relaxation

To quantify the role of structural relaxation in our framework, we define AE as the CHGNet energy difference
after versus before relaxation. Figure S6 shows that most LLM-proposed structures exhibit relatively small
changes: 61.2% have |AFE| < 0.5 eV /atom. This indicates that the generated structures are often already
close to local energy minima and typically require only modest refinement during relaxation.

G.3 Effect of Structure Representation

As summarized in Table S6, most machine-learning approaches to crystal structure generation operate on
3D representations (e.g., graphs or periodic coordinate sets) using GNNs or Transformers with diffusion
or autoregressive generators. In contrast, LLM-based approaches require a text serialization of the crystal
structure.

We therefore study how the structure serialization affects generation efficiency and quality. Specifically, we
compare CIF and POSCAR formats, with POSCAR coordinates written at either 4 or 12 decimal places.
Examples are shown in Figure S7.

We first analyze token efficiency by measuring token length distributions on MatBench (Figure S8). POSCAR
with 4 decimal places is the most token-efficient, followed by POSCAR, with 12 decimal places; CIF is the
least token-efficient due to its more verbose formatting and metadata.

Table S7 shows that POSCAR with 12 decimal places achieves slightly higher (meta)stability under both
thresholds (E4 < 0.03 and 0.1 eV /atom). We therefore use POSCAR with 12 decimal places as a practical
trade-off between token efficiency and numerical fidelity. Differences across formats are modest overall,
suggesting that our approach is relatively robust to the choice of serialization and that pre-training exposure
to crystallographic formats may reduce sensitivity.
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Table S8: Meta-stability comparison of prompting strategy across models with and without fine-tuning.

G.4 Effect of Base LLM Choice

G.4.1 Within-Family Comparison (Llama 3.1)

Model scale. To study the effect of base LLM size, we evaluate MatLLMSearch with Llama 3.1 models at 8B
and 70B parameters, including both pre-trained and fine-tuned variants. Table S8 shows that model capability
strongly affects CSG metastability: the 70B model achieves 76.8% metastability in our full framework
compared to 27.7% for the 8B model, suggesting that useful crystallographic priors emerge only at sufficient
scale.

Fine-tuning integration. Fine-tuned models show substantial improvements when integrated with our
evolutionary framework. The 8B fine-tuned model achieves 45.5% metastability (from 27.7% baseline), while
the 4-bit quantized 70B model maintains 66.0% metastability despite compression constraints. See Table S8 for
detailed results and prompting strategies. Importantly, our information value metric demonstrates that both
fine-tuned and pre-trained models integrate seamlessly into the evolutionary framework, with performance
scaling according to base model capability.

Generation strategy. We compare two generation strategies: zero-shot prompting (without reference
structures or iterative evolution) and our evolutionary framework. Zero-shot prompting fails for the 8B model
and reaches only 25.8% metastability for the 70B model. Our evolutionary framework substantially improves
performance by systematically exploring chemical space while maintaining physical validity. Reference
structures accelerate convergence and promote diverse exploration, while iterative evolution is essential for
both the quantity and quality of valid generations.

Model temperature. The temperature hyper-parameter controls sampling randomness in language models
by scaling the logits before softmax transformation. Higher temperatures flatten the probability distribution,
increasing sampling diversity, while lower temperatures concentrate probability mass on the most likely
tokens. While temperature is commonly associated with model creativity, with higher temperatures generally
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Method Validity Metastability Metastability S.U.N.
(Ea < 0.1, CHGNet) (Ea < 0.0, CHGNet) (CHGNet)

GPT-5-mini 98.45% 74.60% 50.05% 46.24%
GPT-5-chat 98.12% 64.36% 46.93% 44.37%
GPT-5 99.63% 88.33% 63.22% 55.31%
Grok-4 99.92% 87.13% 60.29% 49.80%
DeepSeek Reasoner  99.25% 88.90% 61.22% 48.25%
Claude Sonnet 4.5 99.10% 78.71% 50.21% 38.99%

Table S9: Base LLM comparison using MatLLMSearch for CSG (population K = 100, 10 iterations). Unless
noted otherwise, all models use temperature 1.0 and max tokens 8000; metrics are computed with CHGNet.

producing slightly more novel outputs (Peeperkorn et al., 2024), this relationship remains an active area of
research.

Crystal structure generation requires exploring diverse candidates while maintaining physical validity. We
use temperature 0.95 in our baseline to encourage exploration while preserving stability. Table S5 reports
CHGNet-evaluated metastability across temperatures. At 0.95, the model generates 76.81% metastable
structures under Eq < 0.1 eV /atom; lowering temperature to 0.7 yields 75.38%, and 0.5 yields 71.18%. Under
the stricter threshold Fq < 0.03 €V /atom, the corresponding rates at 0.95, 0.7, 0.5, and 0.2 are 56.5%, 56.6%,
51.4%, and 50.2%, respectively. Overall, stability remains high across settings, indicating that the pipeline is
robust to temperature variation.

G.4.2 Across-Family Comparison

We extend the base LLM evaluation to six models across multiple families (DeepSeek, GPT, Grok, Claude)
in Table S9. We compare those LLMs under the same evolutionary setup and report: (1) validity, the
fraction of generations that parse into physically valid periodic structures; (2) metastability under Eq <
0.1 eV/atom (CHGNet); (3) stability under E4 < 0.0 eV /atom (CHGNet); and (4) S.U.N. rate, the fraction
of generations that are simultaneously stable (Eq < 0.0 ¢V /atom by CHGNet), unique within the generated
set (StructureMatcher), and novel with respect to the MatBench-bandgap reference set (no match via
StructureMatcher; we additionally require reduced-formula novelty for a more conservative estimate).

Table S9 shows consistently high validity across models, while metastability and S.U.N. vary more substantially.
GPT-5 and DeepSeek Reasoner achieve the strongest overall performance, indicating that the framework
benefits from both robust instruction-following (validity) and domain-specific priors (stability and novelty).

G.5 Scaling with Population Size

We increase the population size to K = 500 to study the scalability of LLM-guided evolution. We report
metastability and S.U.N. (computed based on metastability, with novelty assessed against MatBench-
bandgap) in Table S10. When increasing K from 100 to 500, the number of valid structures scales by roughly
5%, demonstrating that MatLLMSearch can scale to high-throughput settings. For DeepSeek Reasoner,
metastability and S.U.N. decrease slightly at larger K. However, metastability remains substantially higher
than diffusion baselines, indicating that LLM-guided evolution preserves thermodynamic validity even at
scale. We visualize compositional overlap with the reference database in Figure 5. The scattered but mostly
overlapping distribution suggests an exploitation tendency toward known compositions.

G.6 Runtime and Resource Cost

Efficiency depends primarily on the base model and hardware (see Appendix D for metric definitions). For
local LLMs, we report average wall-clock time per valid unique structure, including both generation and
evaluation. With Llama-3.1-70B-Instruct on 4x A6000 GPUs and population size K = 100, this cost is 62.35 s
per valid unique structure. We note that although CrystalTextLLM reports 51.6 s per valid structure under
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Population  Validity Metastability Metastability S.U.N.
(Ea < 0.1, CHGNet) (Eq <0.0, CHGNet) (CHGNet)

K =100 99.25% 88.90% 61.22% 48.25%

K =500 98.97% 84.31% 55.51% 43.59%

Table S10: Population scaling using MatLLMSearch for CSG (10 iterations; DeepSeek Reasoner as the base
LLM across rows).

Model Energy Total Tokens Energy CO2

(kWh / 1,000 tokens) (M) (kWh) (kg)
Claude Sonnet 4.5 0.00139 4.72 6.56 2.92
DeepSeek Reasoner 0.01450 8.04 116.52 51.85
GPT-5 0.00326 7.06 22.98 10.22
GPT-5-chat 0.00326 2.73 8.90 3.96
GPT-5-mini 0.00071 5.79 4.10 1.83
Grok-4 0.00605 7.25 43.89 19.53

Table S12: Estimated carbon footprint for LLM API calling.

its reported setting, wall-clock numbers should be interpreted cautiously because hardware, decoding settings,
and evaluation pipelines can differ.

Generation vs. evaluation. Table S11 breaks the
cost into generation and evaluation components for

Avg. Generation Avg. Evaluation

8B versus 70B local models. Model s (5) Time (s)
Inference cost rationale. We prioritize time 70B 55.99 6.36
per successful sample (rather than FLOPs) because 3B 53.40 10.80

larger models often have higher validity, which can
reduce the amortized cost per valid structure despite

; Table S11: Generation/evaluation time breakdown per
higher per-step compute.

valid unique structure for local Llama 3.1 models (K =
Carbon footprint. In Table S12, we estimate en- 100).

ergy use and COq emissions for API-based LLM calls

by converting total input and output tokens using

inferred energy-per-token factors (Jegham et al., 2025).

H Additional Analysis on CSG

H.1 CSG Trajectory

We visualize a representative stability-oriented optimization trajectory in Figure S9 (Llama-3.1-70B), illus-
trating how candidate structures are iteratively refined into more (meta)stable variants.

H.2 Extended Novelty Verification

To address concerns about data leakage and memorization, we perform an additional novelty check against
the Materials Project (MP; >200,000 structures) using compositional and structural matching.

Novelty criteria. We verify novelty against MP using two criteria: compositional novelty and structural
novelty (StructureMatcher default settings: 1t01=0.2, sto1=0.3 A, angle_tol=>5°). We label a structure
as overall novel only if both its reduced composition is absent from MP and it has no structural match in
MP, providing a conservative estimate. We also report nowvel polymorphs, i.e., structures whose compositions
exist in MP but whose crystal structures do not match any MP entry.
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Figure S9: Example evolutionary trajectories of crystal structure generation.
Configuration Overall Novelty Composition in MP  Structure Matched
MatLLMSearch (Ref + Iter) 69.2% 30.8% 18.5%
No Ref + TIter 91.4% 8.6% 1.8%
Ref + No Iter 72.6% 27.4% 16.7%
No Ref + No Iter 56.7% 43.3% 5.5%

Table S13: Novelty evaluation against MP for ablations (Llama-3.1-70B, K = 100). “Ref” indicates using
reference structures; “Iter” indicates iterative evolution.

Findings. We acknowledge that completely ruling out data leakage is impossible for LLMs trained on broad
scientific corpora. Nevertheless, Table S13 shows that the “No Ref + Iter” ablation attains the highest overall
novelty and the lowest MP overlap, suggesting that high novelty is not simply driven by copying reference-set
structures.

We further run the same MP-based novelty verification for a larger-scale experiment with a different base
LLM. Across settings, fewer than 30% of generated structures share compositions with MP; among those
composition-overlapping cases, most have no structural match (RMSD > 0.3 A under StructureMatcher),
yielding 8-12% novel polymorphs.

In Table S14, we summarize MP-based novelty statistics at two scales. In both cases, most generations are
compositionally novel relative to MP, and more than 95% of generated compositions are unique within the
generated set. We also observe a non-trivial fraction of novel polymorphs (composition overlaps with MP but
no structural match), indicating that the framework can propose new arrangements even when compositions
are known. The larger-scale run shows slightly higher compositional and structural novelty rates, consistent
with broader sampling at increased population size.

Llama-3.1-70B DeepSeek-Reasoner DeepSeek-Reasoner

Categories (K = 100) (K = 100) (K = 500) Definition
Total structures 1,479 1,604 8,602 Total generated structures
Compositional diversity 1,417 1,572 8,444 Unique compositions among total generated
Compositional novelty 1,023 1,188 6,568 Composition ¢ MP
Structural novelty 1,205 1,337 7,260 No structure match in MP
Compositions in MP 456 416 2,034 Composition € MP
Structures matched 274 267 1,342 Composition € MP, structure match MP entries
Novel polymorphs 182 149 692 Composition € MP, no structure match in MP

Table S14: Novelty analysis: comparison between the original experiment (Llama-3.1-70B, K = 100),
DeepSeek-Reasoner (K = 100), and larger-scale experiment (DeepSeek-Reasoner, K = 500).
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Figure S10: Distribution of children generated per prompt (before parsing and validation) for three LLM
configurations.

Category DeepSeek-Reasoner DeepSeek-Chat Llama-3.1-70B
Generation Completeness (out of 100 prompts)
Prompts with # 5 children 33 2 36
" JSON Format Error (out of 100 prompts)
Empty responses 12 0 2
JSON parsing error 21 0 56
Total Regex Matched Structures 405 504 496
POSCAR parsing failures (after automatic fixing) 9 0 40
Total Parsed Structures 396 504 456
POSCAR Format Error (before automatic fizing, non-exclusive)
Truncated strings (atom count mismatch) 15 19 237
Invalid numeric values 0 0 26
Invalid element tokens 0 0 20
Validation Failures (out of total parsed)
Overlapping atoms (<0.5A) 0 13 125
Invalid stoichiometry 0 0 0
Charge imbalance 0 0 0
Volume /periodicity errors 0 0 0
Relaxation errors 0 0 3
FE4 calculation errors 0 1 2
'Valid Structures 349 428 308

Table S15: Failure mode breakdown (100 prompts x 5 children).

| Failure Mode Analysis

We conduct a failure analysis of LLM-guided crystal structure generation to identify where and why it fails.
Using 100 prompts (2 parent structures each, 5 requested children per prompt) for three LLM configurations
(DeepSeek-Reasoner with 16,000 tokens for extended reasoning, DeepSeek-Chat with standard 8,000 tokens
chat, and Llama-3.1-70B baseline), we track all 500 expected structures per model over multiple validation
stages: LLM generation, parsing, basic validation, CHGNet relaxation, and Eq calculation.

Figure S10 shows the distribution of the number of children generated per prompt with regex matching applied.
DeepSeek-Chat demonstrates good instruction following for the 5-child requirement, while Llama-3.1-70B
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shows difficulty producing complete responses. DeepSeek-Reasoner requires extra tokens for reasoning, it
may produce empty responses.

Format error. Format errors in Appendix I include JSON parsing errors when handling each response and
POSCAR parsing errors when handling the POSCAR  string for each child inside the JSON response.

JSON Format Errors include empty responses and malformed JSON. DeepSeek-Chat shows the best overall
instruction-following ability for formatting. DeepSeek-Reasoner can use up tokens in reasoning, leading
to empty responses. Llama more often generates malformed JSON. We apply regex matching to recover
structures from malformed JSON, successfully extracting 405, 504, and 496 structures, respectively.

POSCAR Format Errors are counted non-exclusively: truncated strings (atom count mismatches before
fixing), invalid numeric values (e.g., “0.qlBay44”), and invalid element tokens (e.g., “Ue”). Truncation can
occur mid-response (not only at the end), indicating LLM truncation behavior beyond token limits. Minor
count mismatches are auto-corrected by aligning declared counts with coordinate lines. E.g. given a structure
declaring “Lu 6 B 18 Rh 18” but providing only 14 B and 14 Rh coordinates, we adjust the atom counts to
align with the actual coordinate lines.

Validation failures. DeepSeek models show better performance in generating valid structures than Llama-
3.1-70B, which more often generates structures with overlapping atoms or severe structural errors that lead
to relaxation or Eq4 calculation errors.

J  Mutation and Crossover Analysis

To characterize genetic operations performed by LLMs during two-parent structure generation, we analyze
approximately 1K parsed valid structures from 100 prompts with two parent structures each. We classify
operations into mutation (single-parent inheritance) and crossover (multi-parent recombination).

J.1 Mutation Analysis

1. Same-group substitution: Measures whether child elements belong to the same periodic group as
replaced parent elements (e.g., DysRul; — DysRuBr7 where I — Br within Group 17 halogens).

2. Stoichiometry preservation: Evaluates exact reduced formula matching using pymatgen composi-
tion equality (e.g., YbAIB14 — ZrAlBy4 preserves a 1:1:14 ratio).

3. Composition similarity: Quantifies element overlap via Jaccard index (set intersection/union)
and Magpie feature-based cosine similarity (e.g., Dy2SnsRhs vs EraSnsRhg yields Jaccard = 0.50,
similarity = 0.993 due to shared Sn and Rh).

4. Space group preservation: Checks if the child maintains the parent’s crystallographic space group
number.

5. Symmetry preservation: Evaluates preservation of both space group and Wyckoff positions.

6. Lattice similarity: Assesses volume ratios and lattice parameter deviations (higher volume ratio
indicates more similar cell volumes).

7. Structural matching: Full structural matching using StructureMatcher with
FrameworkComparator to detect exact geometric isomorphism regardless of element identity.

Observations. DeepSeek models in general demonstrate systematic application of crystallographic knowledge,
supported by the high substitution rate of same-group elements as well as space group and symmetry
preservation. All models exhibit minimal stoichiometry preservation and 0 structural matches, preferring
compositional and structural exploration over copying or minor modifications. Both DeepSeek models show a
slight preference for Parent 0 (the first parent in the prompt).
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DeepSeek-Reasoner DeepSeek-Chat Llama-3.1-70B

Category
PO P1 PO P1 PO P1
Mutation Analysis (Per-Parent Inheritance)
"1. Same-group elemental substitution (%)  63.3 623 473 525 439 511
2. Stoichiometry preservation (%) 0.0 0.0 1.3 0.6 2.2 1.7
3. Composition similarity (normalized) 0.821 0.787 0.826 0.802 0.774 0.770
4. Space group preservation (%) 53.1 41.8 39.8 32.3 18.9 27.8
5. Symmetry preservation (%) 52.6 40.8 37.0 28.6 15.6 16.7
6. Lattice similarity (volume ratio) 0.783 0.681 0.760 0.676 0.597 0.654
7. Structural matching (%) 0.0 0.0 0.0 0.0 0.0 0.0
Crossover Analysis (Multi-Parent Operations)
"8. Group-based recombination (%) 182 3.0 144
9. Ratio bounds (%) 100.0 100.0 100.0
10. Density bounds (%) 79.0 79.1 52.2
Parent Influence Analysis
"11. Dominant parent distribution (PO/P1) 587 /413 58.9 /411 478 /522

Table S16: Mutation and crossover analysis results. Mutation analysis shows per-parent inheritance metrics
(Parent 0 and Parent 1). Crossover analysis shows global multi-parent crossover metrics.

J.2  Crossover Analysis

8. Group-based recombination: Identifies children incorporating unique elements from both parents
(e.g., AgRhF¢ + ZrAlAus; — AIRhAu, where the child takes a Ag—Au substitution from Parent 0
and Al, Au elements from Parent 1, achieving true multi-parent crossover).

9. Ratio bounds: Verifies whether child element fractions lie between parent fractions for shared
elements (e.g., in AIRhAuy, the Au fraction (0.50) lies within Parent 0’s 0.00 and Parent 1’s 0.50
range, demonstrating compositional interpolation).

10. Density bounds: Assesses if child density falls within £20% of the parent density range.

11. Dominant parent distribution: Calculated by comparing each child structure to both parent
structures by averaging per-parent similarity scores from mutation analysis. The parent with higher
similarity is determined as the dominant parent. The distribution reports the proportion of children
dominated by each parent.

Observations. DeepSeek-Chat achieves 31.0% group-based recombination rate, exceeding the other two
models, suggesting better multi-parent exploration. All models follow a universal compositional interpolation
constraint suggested by the perfect ratio bounding. DeepSeek models maintain 79% physically reasonable
densities, while Llama shows higher average deviation indicating more often generation of geometrically
unrealistic structures, which is accompanied by its higher composition error rate (Appendix I).
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