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The effectiveness of mask wearing at controlling severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) transmission has been unclear. While masks are known
to substantially reduce disease transmission in healthcare settings [D. K. Chu et al.,
Lancet 395, 1973–1987 (2020); J. Howard et al., Proc. Natl. Acad. Sci. U.S.A. 118,
e2014564118 (2021); Y. Cheng et al., Science eabg6296 (2021)], studies in community
settings report inconsistent results [H. M. Ollila et al., medRxiv (2020); J. Brainard
et al., Eurosurveillance 25, 2000725 (2020); T. Jefferson et al., Cochrane Database
Syst. Rev. 11, CD006207 (2020)]. Most such studies focus on how masks impact
transmission, by analyzing how effective government mask mandates are. However, we
find that widespread voluntary mask wearing, and other data limitations, make mandate
effectiveness a poor proxy for mask-wearing effectiveness. We directly analyze the effect
of mask wearing on SARS-CoV-2 transmission, drawing on several datasets covering 92
regions on six continents, including the largest survey of wearing behavior (n = 20
million) [F. Kreuter et al., https://gisumd.github.io/COVID-19-API-Documentation
(2020)]. Using a Bayesian hierarchical model, we estimate the effect of mask wearing
on transmission, by linking reported wearing levels to reported cases in each region,
while adjusting for mobility and nonpharmaceutical interventions (NPIs), such as bans
on large gatherings. Our estimates imply that the mean observed level of mask wearing
corresponds to a 19% decrease in the reproduction number R. We also assess the
robustness of our results in 60 tests spanning 20 sensitivity analyses. In light of these
results, policy makers can effectively reduce transmission by intervening to increase mask
wearing.

COVID-19 | epidemiology | Bayesian modeling | hierarchical modeling | face masks

Face masks are one of the most prominent interventions against COVID-19, with very
high uptake in most countries (1). However, global mask wearing fell substantially in
2021, even in countries with low vaccination rates (Fig. 1). Given ongoing epidemics,
establishing the effectiveness of mask wearing in community settings is critical. The
following sections review past work on the effectiveness of mask wearing in different
settings and at different scales.

In the context of healthcare, N95 masks (as defined by ref. 3) work well when worn
properly by trained users—reducing transmission of coronaviruses including severe acute
respiratory coronavirus syndrome 2 (SARS-CoV-2) by at least half (4, 5). Cheng et al. (6)
find that ideal surgical masking (7, 8) of a noninfected person corresponds to a 65 to 75%
reduction in their risk of COVID-19.

However, the effect of mask wearing in small-scale community settings is more difficult
to detect.

In particular, four meta-analyses have summarized studies on respiratory infections,
conducted in community settings (4, 9–11). They estimate mean decreases in infection
risk between 4% and 15% for surgical masks, but with large uncertainty: Individual
results ranged from a 7% increase in infection risk to a 61% decrease in infection risk.
In addition, few of these studies are randomized controlled trials (RCTs), and those that
are RCTs have considerable issues: Bungaard et al. (12) found a small, nonsignificant
reduction in infection risk. Abaluck et al. (13), found a significant, 8.6% decrease in
symptomatic seropositivity linked to mask wearing. However, limitations of the study
included a requirement for unblinded participants to self-report symptoms before testing,
use of an antibody test with a very low 5 d sensitivity, and unclear generalization from the
specific context (rural villages in Bangladesh).

We focus on the effects of mask wearing or mandates (i.e., legal requirements to wear
a mask) on transmission in large connected populations. To study mask impacts on
transmission, many studies use the timing of mask mandates as a proxy for sharp changes
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Fig. 1. Reported mask wearing in countries with <40% of population fully
vaccinated, as of 1 October 2021 [wearing from the UMD/Facebook survey
(1); vaccinations from ref. 2]. The y axis is the proportion who reported that,
over the last week, they wore masks most or all of the time in public spaces.

in the level of mask wearing. Some such studies have inferred
limited or inconclusive effects in cross-country analyses (14)
and within-country studies (15), while others find cross-country
evidence that mask mandates and recommendations lead to de-
creased transmission and mortality (16, 17).

Other analyses provide evidence for reduced case growth fol-
lowing subnational mandates within countries such as the United
States (18–20) and Germany (21). A potential explanation for
the inconsistency and uncertainty of these results is that data on
national mandate timing may be poorly suited for analyzing the
effects of mask wearing on transmission.

Epidemiological studies often use government mask mandates
as a proxy for mask wearing. However, the existing literature
on the relationship between mandates and actual levels of mask
wearing has shown surprisingly weak effects. For example, study-
ing US states, ref. 22 failed to find a statistically significant
relationship between mandates and subsequent wearing, while
other studies found postmandate increases in wearing of just 13%
(23) and 23% (24). Betsch et al. (25) find a ∼40% increase in
wearing after local mandates in Germany, but no other study
finds a comparably large increase. Given that the link between
mandates and wearing is surprisingly weak, it is likely that the
link between mandates and transmission is difficult to detect.

Three additional factors lead us to suspect that a link between
mandates and transmission would be difficult to detect. First,
introducing a mandate is a coarse, one-off event that necessarily
loses signal by not tracking day-to-day changes in mask wearing.
We also have fewer data on mandates: Less than half of the
regions we study enforced any mandate during the study period.
Second, past studies treat mandates as a binary on/off intervention
that is fully implemented at a single point in time. However,
modeling the effect of mandates as an instantaneous change in
the reproduction number or mortality fails to capture changes
in wearing behavior following the announcement of a mandate
but before its enforcement (21). Nor does it account for gradual
change in behavior after the implementation of a mandate. Finally,
the circumstances of mandate policies are highly heterogeneous,
both in terms of the preexisting level of voluntary wearing at the
time of implementation and in terms of how exactly they are
defined, enforced, and complied with. Consequently, averaging
the international effect of mandates based on coarse data is
unlikely to provide a useful summary of heterogeneous mandate
effects. Importantly, these arguments point to the link between
mandates and transmission being difficult to detect, not that it is
absent.

Because of these difficulties in studying the effect of mandates,
we instead focus on estimating the effect of mask wearing on
transmission, using a large (n = 19.97 million) global survey of
self-reported mask wearing (1). Two other studies estimate mask
effectiveness from self-reports: In their study of 24 countries,
Aravindakshan et al. (26) use YouGov wearing data to infer an
overall 3.9 to 10% relative decrease in case growth rate from whole
population mask wearing. Rader et al. (22) study US states using a
novel SurveyMonkey wearing dataset to infer a ∼10% decrease in
transmission between the lowest and highest empirical quartiles
of wearing (a 50 to 75% increase in wearing). Rader et al. use
data limited to 12 US states during June–July 2020. Our data
are richer: We study 56 countries on six continents, and our
inferential analyses span May–September 2020.

Our analysis goes further than past work in the quality of wear-
ing data—100 times the sample size, with random sampling and
poststratification—the geographical scope, the use of a semimech-
anistic infection model, the incorporation of uncertainty into
epidemiological parameters, and the robustness of our results (59
sensitivity tests). See Table 1 for our operational definitions.

Table 1. Glossary of key terms
Terminology Meaning
Clinical settings Any inpatient setting involving healthcare professionals. These include hospitals, doctor’s offices, and

other inpatient clinics; this covers the place, and so includes cleaners and receptionists (and anyone
else) who are in contact with patients in inpatient settings. It would not include, for example,
administrators working in an office attached to a hospital, or paramedics attending at an emergency.

Community settings Any setting outside clinical or residential settings, such as public areas, restaurants, and public
transportation, as well as public and private indoor areas.

Mask Any face covering. Unless specified, this is broadly construed to include both cloth and surgical-grade
masks and above. See also refs. 3 and 7.

Mask wearing All community mask wearing: the proportion of people wearing masks in community settings.
Reported mask wearing The quantity of self-reported wearing in the following sense: Over the last week, respondents wore a

mask most or all of the time when in public spaces; a proxy.
Mandate As per OxCGRT, a legal requirement to wear a mask, in a (usually national) region, “in [at least] some

specified shared spaces outside the home with other people present or some situations when social
distancing [is] not possible.”

Epidemiological effect An effect studied at a population level, measured in entire populations, rather than with data
observed at the individual level.

NPI A policy implemented to prevent transmission, excluding pharmaceuticals such as vaccines and
therapeutics. Examples include school and business closures, stay-at-home orders, and restrictions
on gatherings.
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Results

The Effect of Mask Wearing on Transmission. Using data from
May to September 2020, we estimate the effects of mask wear-
ing on transmission in 92 regions (SI Appendix, Table S3). This
window of analysis is determined by our datasets: the University
of Maryland (UMD)/Facebook COVID-19 World Symptoms
Survey (1, 27) reports wearing estimates for our regions start-
ing from 1 May 2020 (1). We end on 1 September 2020, at
the beginning of the second wave, a period in which national
nonpharmaceutical interventions (NPIs) fragment into regional
responses, making national analyses less informative (16). Our
wearing estimates are from UMD and (for the United States)
the COVIDNearYou/SurveyMonkey dataset (22). Our covariate
“percentage of region wearing masks” is the weighted percentage of
people who said that, over the past 7 d, they wore masks in public
most or all of the time. The weights correct for nonresponse bias
and for demographic imbalance (27). This is a proxy for the true
wearing level (see Discussion).

We use a Bayesian hierarchical model (Fig. 2A). The model
links wearing levels to the number of reported cases in each region,
via the instantaneous reproduction number Rt . Accordingly, our
model captures the natural, nonlinear exponential growing or
decaying nature of epidemics. Our model is similar to ref. 28,
but, in addition to adjusting for other NPIs, we also account
for changes in mobility. (See Data below for explanations of
NPIs and the mobility proxy.) We model many sources of un-
certainty through prior distributions: epidemiological properties
of the virus, differences in transmission between regions, the lag
between an infection and the registration of a COVID-19 case,
and the effect of unobserved influences on R. Our model shares
information across all regions to produce a statistically robust
estimate, and thus measures the international mass wearing effect.

Fig. 2B shows the inferred wearing effect in the form of a
percentage reduction in R. We find that the difference between
zero mask wearing and 100% of people self-reporting that they
mask most of the time in some public places corresponds to a
25% [6%, 43%] reduction in transmission.

A

B

C

D

Fig. 2. (A) (Top) Model schematic. Observed nodes are dark blue, latent nodes are light blue. (Bottom) The target of our analysis is αi , which includes NPIs,
mobility, and masks, and is assumed to be the same for each country (as we do not have enough data to estimate country-specific effects). On each day t,
region c’s reproduction number Rt depends on 1) the starting reproduction number Rinit,c , 2) the NPIs active in region c, 3) the mobility level, 4) either the
wearing level or the mandate indicator, and 5) a location-specific weekly random walk. The resulting Rt estimate (as a growth rate) is used to compute the latent
daily infections Nt , given the distributions over the generation interval and the previous infection count. The expected number of daily confirmed cases (yt ) is
computed using Nt and the distribution over the delay until case confirmation. (B) Posterior reduction in R if self-reported wearing increased from 0 to 100%,
estimated from all countries. (C) Posterior mean estimates for the achieved reduction in R from masking in each of our 92 regions (the mean from B multiplied
by time-averaged wearing in each region). (D) Wearing effect estimates over all sensitivity tests; each dot is the median under a different experimental condition
(effect on transmission of 100% self-reported wearing).
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In practice, 100% mask wearing is not achievable. Indeed, the
maximum possible level of wearing in a region will depend on
complex social and cultural factors. To capture these differences,
Fig. 2C shows our median wearing effect estimate (i.e., the
median of the posterior of Fig. 2B) multiplied by the median
(time-averaged) wearing percentage in each region. Across this
window, the mean region saw an average reduction in transmission
from wearing of 19%.

The Effect of Mask Mandates on Transmission. We illustrate the
difficulty of directly inferring how mandates affect transmission,
by running our model using mandate data in place of wearing
data (SI Appendix, section B). We model mask mandates as having
an instantaneous effect on wearing (and hence on R), a gradually
increasing effect, or an effect starting when the mandate is an-
nounced but not yet implemented.

Each of these models fails to discover a mandate-driven effect
on R. Presumably, this is because the issue is not one of timing, but
that mandates are coarse, heterogeneous, and increase wearing by
an average of only 8.6% in our data (Fig. 3). However, our results
do provide evidence that mass mask wearing substantially reduces
transmission.

The Mandate–Wearing Correlation. We can investigate the re-
lationship between mask mandates and subsequent changes in
wearing in our data. Fig. 3 shows the wearing trend before and
after the implementation of national mandates, averaged across
regions. In this context, a mandate implementation date refers
to the date when masks were “required in some or all shared
spaces, outside the home with other people present, or some
situations when social distancing [was] not possible” (29). (See
SI Appendix, Table S4 for implementation dates.)

Crucially, most of the uptake in wearing occurs premandate.
Fig. 4 illustrates several ways mandates can fail to correlate with

wearing: South Korea’s mandate came after voluntary wearing
had already plateaued at 94%; conversely, in the Netherlands
and Switzerland—which imposed limited mandates for public
transport—few people reported wearing masks most of the time,
even 3 wk into the mandate period; finally, in the Czech Re-
public, wearing increased, but only long after the mandate was
implemented. On the other hand, a strong correlation between
mandates and wearing was observed in Ireland (Fig. 4) and in
Germany’s April 2020 local mask mandates (21, 25).

Our sources of wearing data begin after April 2020—that
is, after the initial transition to mask wearing in some regions.
Since it is possible that earlier mandates had persistent effects on

Fig. 3. Self-reported mask wearing against mandate timing, averaged over
all regions with a new national mask mandate, May–September 2020. Dashed
line is the date the mandate began to be enforced.

wearing, we investigate the correlation during the first wave using
an earlier YouGov wearing survey (SI Appendix, section A). In
regions with available data, most of the increase in mask wearing
occurred before the earliest national government mandates, with
64% average wearing on the day the mandate was enacted and
75% 3 wk following the mandate. However, assessing the true
correlation with the available data are difficult—see Discussion.

There are several limitations to this analysis: Our wearing data
are a proxy for true levels of wearing, and additionally do not
capture changes in the quality of mask use, or the heterogeneity
in mask type or venue. This is of particular concern at high
levels of self-reported wearing: At 100% self-reported wearing, any
additional benefit in wearing (quality of mask, frequency of use,
and venue) is impossible to capture with these data. Moreover, it
is difficult to untangle voluntary wearing from wearing caused by
mandates.

Robustness

Results that are sensitive to plausible alternative model assump-
tions offer weak evidence and pose a risk of misinforming policy.
Therefore, we verify the robustness of our results by performing 60
tests across 20 sensitivity analyses (SI Appendix, Table S5). Fig. 2D
shows how the median effect of wearing changes as we vary
epidemiological priors, delay distributions, covariate effect priors,
the model structure, and the data. Each point in Fig. 2D is the
median effect of a different experimental condition. Our results
are robust to these changes—95% of the median reductions fall
between 22.7% and 31.3%.

However, as this study is observational, caution is necessary
when making causal interpretations. Unobserved factors may
influence R, and, if their timing coincides with the timing of
mask wearing, reductions in R from unobserved factors may be
wrongly attributed to mask wearing (30)—our observed factors
will be confounded. For instance, nonwearing protective behav-
iors like social distancing may potentially confound our estimates,
although some will be partially captured by our accounting for
changes in mobility (4, 25). We investigate the susceptibility of
our results to such confounding in four sensitivity analyses. In
the first three (SI Appendix, Figs. S15, S16, and S18), we assess
how much our estimates change when we exclude previously
observed factors: We exclude each NPI in turn, all NPIs at
the same time, and the mobility covariate. The small difference
between our adjusted and unadjusted estimates suggests that,
unless the confounding from unobserved factors greatly exceeds
the confounding from our previously observed factors (NPIs and
mobility), our results are unlikely to be meaningfully affected
by confounding (31). Lastly, over our window of analysis, mask
wearing increases while transmission decreases (in many regions).
Our final analysis aims to assess whether this correlation is a
spurious contributor to the substantial apparent wearing effect.
We test this hypothesis by creating a fake wearing variable for each
region. Each variable has the same start and end wearing value
as the true wearing percentage and linearly interpolates between
these values to capture the trend in wearing in that region. We
infer a small and uncertain effect for the fake wearing variable
7.6% (–20.2%, 30.0%) (SI Appendix, Fig. S17). This implies that
the wearing effect we infer does not rely solely on the correla-
tion between transmission and the overall wearing trend in this
period.

Another concern for observational NPI studies is endogeneity:
When cases are rising, people are more likely to voluntarily
mask, and governments are more likely to mandate wearing (32).
However, in our window, the correlation between new cases and
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Fig. 4. Self-reported mask wearing against mandate timing in all regions with a new national mask mandate, May–September 2020. Dashed line is the date
each mandate began to be enforced. Ordered by mandate date; see SI Appendix, Table S4.

mask-wearing percentage is low, Spearman’s ρ= 0.05, which lim-
its the scope of this concern.

Discussion

Using several datasets from 92 regions and a state-of-the-art
Bayesian hierarchical model, we find evidence that mask wearing
is associated with a notable reduction in SARS-CoV-2 transmis-
sion. Our analysis adjusts for both NPIs and mobility, and the
results are robust to extensive sensitivity analyses. Our analysis
of the mandate–wearing correlation suggests that factors beyond
mandates strongly affect wearing levels—but does not imply that
mandates have no role in curtailing transmission. Instead, the ev-
idence that mass mask wearing reduces transmission implies that
mandates (and other mask-promotion policies) may be effective
against COVID-19 if and when they improve or increase the use
of masks.

Heterogeneity. In the Introduction, we highlighted the incon-
clusive epidemiological literature. This is, in part, due to not

accounting for factors relating to mask properties and wearing
behavior. These factors include mask quality (33), mask fit (33),
the venue of wearing (e.g., in shops, schools, or public transport)
(33), mask reuse (34), risk compensation (35), and cultural norms
(17, 33, 35). More research into these factors is required to further
reduce our uncertainty about mask-wearing effects. We estimate
the effect of mass mask wearing, aggregating over mask properties
and behavior. Given that, in this window, most masks in use were
the least-effective types (cloth or otherwise unrated masks) (4, 34,
36–38), the actual effectiveness of mass wearing today is likely
stronger than we estimate.

Masks have at least two effects: preventing transmission to
noninfected mask wearers (“wearer protection”) and preventing
infected wearers from infecting others (“source control”). With the
exception of refs. 6 and 13, the studies listed in the Introduction
estimate individual wearer protection, rather than the most policy-
relevant quantity: the effect of mass mask wearing including all
relevant factors (5, 6, 39).

Additionally, clinical studies may not reflect the actual distribu-
tion of protection: For instance, few studies include cloth masks,

PNAS 2022 Vol. 119 No. 23 e2119266119 https://doi.org/10.1073/pnas.2119266119 5 of 9

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 8
2.

16
.1

34
.2

41
 o

n 
M

ay
 9

, 2
02

3 
fr

om
 I

P 
ad

dr
es

s 
82

.1
6.

13
4.

24
1.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2119266119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2119266119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2119266119/-/DCSupplemental
https://doi.org/10.1073/pnas.2119266119


one of the most common types (37, 38). Finally, while mask
wearing is known to be strongly mediated by cultural factors (17,
25, 40), most studies are conducted in a specific social context and
may have limited external validity.

Window of Analysis. Our results are based on the period from
May to September 2020. While we find similar results for dif-
ferent (shorter) windows of analysis (SI Appendix, Fig. S34), mass
wearing effectiveness will likely differ with larger changes in
circumstances. In particular, our period has features that may
not characterize other settings; for example, summer months are
thought to have lower transmission (41, 42), and a tiered regional
approach to containment was not yet implemented in most
regions. However, a short window implicitly holds many factors
constant. This is useful for internal validity: When estimating
a specific quantity such as the effects of mask wearing, a short
window reduces the scope for distribution shift and unobserved
confounders.

Operationalizing Mask Wearing. Importantly, our effect esti-
mates rely on self-reports of mask wearing from surveys, which are
ultimately a proxy for actual wearing behavior. Social desirability
bias may inflate wearing estimates (43): in one Kenyan study,
the disparity between self-reported wearing and observed wearing
was 77% (44)—although this survey was not anonymous, which
may have led to more overreporting than anonymous surveys
such as COVIDNearYou–SurveyMonkey. If data sources overes-
timate mask wearing, then our estimate for the effect of 100%
of people wearing masks (most or all of the time) will actually
correspond to the effect of less than 100% of people wearing
masks. Consequently, we would expect the true effect of 100%
mask wearing to be larger than we estimate, in proportion to the
amount of overreporting. Further, the operational definition of
“mask wearing” used in the UMD survey is not stringent: It can be
applied both to a person who wears a cloth mask, only on public
transport, slightly more than half of the time, and to a person
who always wears an N95 respirator when outside their home (1).
This implies that there is probably scope for more and better mask
wearing, even in regions reporting, in our data, extremely high
levels of wearing.

Conclusion. We find that mask wearing is associated with a no-
table reduction in transmission. Our evidence shows that factors
other than mandates must have contributed to the worldwide
uptake of mask wearing in 2020. In situations where mandates are
unlikely to have a large effect on uptake—for example, because
voluntary wearing is already high—policy makers may be able
to use other levers to increase wearing quantity and quality. For
example, if masks are widely used but are often of poor quality, or
worn incorrectly, or are not worn in the most important venues,
then policy makers can respond with education about correct
mask fitting and quality, as well as mandates that focus on venues
with the greatest risk of transmission (5, 45).

Materials and Methods

All data and code used can be downloaded via Zenodo: https://zenodo.org/record/
6385347#.Yk9Ufi-B3vw. The preprocessing is derived from ref. 28.

Data. Our analysis is on the national (or US state) level, since this is the finest res-
olution available for all countries in the Oxford COVID-19 Government Response
Tracker (OxCGRT) NPI dataset. OxCGRT represents each NPI policy as a binary
variable (“Is this policy active throughout this region at time t, or only in certain
locales?”) along with an intensity variable marking how strict the implementation
was. Table 2 summarizes the modeling set.

Table 2. Modeling data summary
Category Data
Regions 92 (55 countries + 37 US states)
Period 1 May 2020 to 1 September 2020
Modeling data points 13,248 d across all regions
Mask wearing data points 19.97m [UMD (1)] + 558,670

[COVIDNearYou (22)]
Case data JHU CSSE dataset (46)
Additional data Google mobility (47); OxCGRT

NPIs (29)
Data validation Manual correction of reporting

errors; filtering out nonepidemic
regions; validation against
external sources

Daily national estimates of mask wearing are derived from the UMD/Facebook
COVID-19 World Symptoms Survey (1), which randomly samples from all active
Facebook users, and which poststratifies to correct for nonresponse bias and
demographic imbalance (27). The mean number of individual responses per
region-day is 1,131. UMD does not cover the United States, so we supplement this
dataset with the US data of ref. 22, which, in our window, represent n= 558,670
responses.

Daily confirmed COVID-19 cases are drawn from the Johns Hopkins Center
for Systems Science and Engineering (CSSE) COVID-19 Data Repository, which
collates official statistics from around the world (46). Dates are standardized to
the date the case was initially reported to the official body. Unfortunately, cases
by specimen date are not available for the majority of the countries in our sample;
this is why international case databases (e.g., John Hopkins, European Centre for
Disease Prevention and Control) exclusively use the date of reporting, to make
case numbers more consistent between countries.

By “mobility,” we mean how much public activity there is in a region. As a
proxy, we use the Google COVID-19 Community Mobility Reports (47), which
tracks the presence of Android smartphones in particular sectors of society (com-
mercial, residential, parks), and relates the current level of activity to the 2019
prepandemic level. It is thus a proxy and a relative measure, but one which has
been useful for tracking voluntary safety measures (48, 49). We take the average
of the commercial and workplace mobility indices, because these are the sectors
with the most risk.

See SI Appendix, section A for full data details, including preprocessing steps
and region selection.

Model. We develop a hierarchical Bayesian model based on prior work (16, 28,
50) to infer the effectiveness of mask wearing on COVID-19 transmission (Fig. 2A).
That is, we construct a probabilistic model with prior distributions over parameters
and hyperparameters, and use Markov Chain Monte Carlo sampling to produce
a posterior estimate representing our full uncertainty over the target effect (51).
We use the number of reported cases in each country to infer the number of later-
ascertained infections on each day. Given the dynamics of daily, later-ascertained
infections in each region over time, we infer the instantaneous reproduction
number Rt . Finally, the covariate effects are estimated by relating the Rt to the
observed level of each covariate. The Bayesian approach allows us to explic-
itly model sources of uncertainty, such as uncertain values of epidemiological
parameters.

We now outline the inputs of our model.
Notation. We use c to denote the country/region in question, and use t to index
time; t = 0 corresponds to 1 May 2020. NPIs are indexed by i.
Inputs.
• NPIs: xi,t,c ∈ {0, 1}. xi,t,c = 1 if NPI i is active at time t in region c; otherwise,

xi,t,c = 0.
• NPI reopenings: NPIs were active in many regions at the start of our period.

We treat these NPIs, in the relevant regions, as “reopening” NPIs. If NPI i is
active in region c at t = 0 (i.e., we have xi,0,c = 1), we subtract one from the
feature to form xi,t,c . Therefore, at the start of the window, xi,t,c = 0, and the
effect of the NPI is absorbed into Rinit,c . When the NPI lifts, we would have
xi,t,c =−1, reflecting that NPI lifting has the opposite effect from NPI closing,
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which is denoted as xi,t,c = 1. As such, we can more easily set a prior over Rinit,c

(see Prior Distributions, below).

xi,t,c =

{
xi,t,c − 1 if xi,0,c = 1,
xi,t,c otherwise

. [1]

• Mask wearing: The percentage of people in each region that self-report as
likely to/always wear masks in public, wt,c ∈ [0, 1].

• Mobility: Reduction in mobility relative to 2019 levels mt,c , represented as
a multiplicative factor.

mt,c = (mobility2019 − mobilityt,c) / mobility2019,

where mt,c = 1 represents a 100% decrease in mobility, while mt,c = 0
represents no change from 2019 level.

• Cases: New confirmed cases observed on day t: yt,c .

In the following sections, we introduce several variables without explicitly
defining them. They are defined in Prior Distributions, below.
Infection Model. The instantaneous reproduction number Rt,c is the expected
number of infections that would arise from each infection at time t in region c,
all else equal. We model Rt as a product of several terms: 1) the regional starting
reproduction number Rinit,c; 2) a product of our effect estimates for that region-day
for each of the reopening NPIs Xt,c , mask wearing Wt,c , and mobility M(mc,t)

−;
and 3) a weekly latent random walk per region zt,c .

Rt,c = Rinit,c · Xt,c · Wt,c · M−
t,c · exp(zt,c). [2]

We will now discuss each of these terms in turn.
Latent reproduction number. The latent, unobserved reproduction number
in region c at t = 0, assuming no mask wearing, is represented by Rinit,c .
NPIs. We assume that the introduction or lifting of an NPI leads to an instan-
taneous, multiplicative change in transmission. Each NPI contributes exp(−αi ·
xi,t,c) to Rt,c . Note that this also works for reopening NPIs—if the NPI effect (αi) is
positive, a reopening (x−i,t,c =−1) increases R,

Xt,c = exp

(
−

I∑
i=1

αi · xi,t,c

)
.

Mask wearing. Wt,c = exp (−αwwt,c). We use the exponential form in our
base model. However, we test the sensitivity of our results to two alternative
mask-wearing parameterizations and find similar results (SI Appendix,
section D, Model structure).
Mobility. We parameterize the Google mobility data as in ref. 48,

M(m) =
2 exp(−αmm)

1 + exp(−αmm)
.

At 2019 levels of mobility (m = 0), the multiplicative factor M(m) = 1, leading
to no effect on Rt . To set a principled prior for Rinit,c , we normalize mobility by the
initial level (see Prior Distributions),

M−(mc,t) =
M(mc,t)

M(mc,0)
.

Random walk. The weekly random walk is computed as

zt,c =

⎧⎪⎨
⎪⎩

0 t ≤ 13
zt−1,c + εf(t),c if t mod 7 = 0
zt−1,c otherwise

,

where f(t) = �(t − 14)/7� and ε≈ Normal(0, σRW). The random walk
starts after 2 wk to avoid unidentifiability between Rinit,c and the random walk
terms at the beginning of the period.

Following ref. 52, the resulting Rt estimate is then transformed to daily growth
using the generation interval distribution, which describes the time between
successive infection events in a transmission chain. Nt,c represents daily infections
that are later ascertained, and we have Nt,c = gt−1,c · Nt−1,c; that is, we multiply

the infections on the previous day by the daily growth rate. Then, given an initial
(latent) infection count, we have

βGI =
μGI

σ2
GI

, αGI =
μ2

GI

σ2
GI

,

gt,c = βGI

[
exp

(
Rt,c

αGI

)
− 1

]
.

Nt,c = N0,c

t∏
τ=1

(1 + gτ ,c)

Observation model. Infections at time t are only observed as reported cases
after a delay. Therefore, we convolve the later-ascertained cases with a delay
vector to produce ȳt,c , which is the expected number of reported cases on day t
in country c.

ȳt,c =

31∑
τ=0

Nt−τ ,c · T [τ ].

The forward-delay vector T (defined in Prior Distributions, below) defines the
delay between the two quantities. Finally, the observed number of reported cases,
yt,c , follows a negative binomial distribution,

yt,c ≈ NegBin(μ= ȳt,c , α=Ψ), [3]

where Ψ is the case-reporting overdispersion parameter (see below).
Prior distributions. We place prior and hyperprior (prior distributions placed
on parameters describing another prior) distributions over several parameters.
Our Bayesian approach not only captures uncertainty in unknown parameters but
allows our beliefs about certain parameters to be adjusted if warranted by the
data. We now detail the priors we use in this work.

• Region-specific initial reproduction number: Rinit,c ≈ Normal
(μR, σR);

• Rinit hyperpriors: the Epidemic Forecasting group (53) produced estimates
for Rt,c using methodology from ref. 54. The empirical mean and variability of
these estimates across our regions at the start of our period is μ=1.07, σ=
0.32. We use these estimates to initialize our hyperpriors over the mean and
variability of Rinit,c ,

μR = TruncatedNormal(μ=1.07, σ=0.2,lower=0.1),

σR = HalfNormal(σ=0.4). Median=0.32.

• NPI effect:αi≈AsymmetricLaplace(m=0, κ=0.5, λ=30), fol-
lowing ref. 28. Here m is the location,κ is the asymmetry, and λ is the scale.
This prior places 80% of its mass on positive NPI effects (i.e., on reductions
of R).

• Wearing effect: αw≈Normal(μ=0, σ=0.4). Unlike the NPIs above,
the prior for wearing has equal mass on positive and negative effects. This
uninformative choice reflects past uncertainty about the efficacy of mask
wearing.

• Mobility effect: αm≈Normal(μ=1.704, σ=0.44). Mobility prior val-
ues are derived from the “overall average mobility” estimate in ref. 48.

Note that each α above is not a direct reduction in R; they are transformed
into a reduction via a specific functional form (see above).

• Initial infection counts: Initialized with the empirical median new con-
firmed cases of the first day of our window, log ỹ0 = 5.46.

ζc ≈ Normal(μ=5.46, σ=5.46)

N0,c = exp(ζc).

• Random walk noise scale, chosen as in ref. 16,

σRW = HalfNormal(μ=0, σ=0.15). [4]
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• Generation interval distribution (55, 56):

μGI ≈ Normal(μ=5.06, σ=0.33),

σGI ≈ Normal(μ=2.11, σ=0.5).

• Time from infection to case confirmation T (28, 56 –58): The delay
between infection and case confirmation is distributed as

D ≈ NegBin(μ=10.92, α=5.41).

We produce a forward-delay vector

T [t] =

{
1
ZC

D(t) t < 32

0 otherwise
,

with ZC =
31∑

t′=0

D(t′),

that is, a negative binomial distribution, truncated at 31 d and normalized. Note
that the negative binomialα parameter denotes the dispersion, not the variance,
σ2 = μ+ (μ2/α).

• Observation noise dispersion, chosen as in ref. 28,

Ψ≈ HalfNormal(μ=0, σ=5). [5]

Data Availability. Previously published data were used for this work (1, 22, 29,
46, 47, 59). Open data and code to obtain and process these datasets are available
at Zenodo, https://zenodo.org/record/6385347#.Yk9Ufi-B3vw.
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