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Abstract001

Recently, Large Language Models (LLMs)002
have dominated much of the artificial intelli-003
gence scene with their ability to process and004
generate natural languages. However, the ma-005
jority of LLM research and development re-006
mains English-centric, leaving low-resource007
languages such as those in the SouthEast Asian008
(SEA) region under-represented. To address009
this representation gap, we introduce Llama-010
SEA-LION-8B-IT and Gemma-SEA-LION-011
9B-IT, two cutting-edge multilingual LLMs012
designed for SEA languages. The SEA-LION013
family of LLMs supports 11 SEA languages,014
namely English, Chinese, Indonesian, Viet-015
namese, Malay, Thai, Burmese, Lao, Filipino,016
Tamil, and Khmer. Our work leverages large-017
scale multilingual continued pre-training with a018
comprehensive post-training regime involving019
multiple stages of instruction fine-tuning, align-020
ment, and model merging. Evaluation results021
on multilingual benchmarks show that our mod-022
els achieve state-of-the-art performance across023
LLMs supporting SEA languages. We open-024
source the models1 to benefit the wider SEA025
community.026

1 Introduction027

Large language models (LLMs) have significantly028

transformed the field of natural language process-029

ing, achieving remarkable performance in text030

generation, summarization and sentiment analy-031

sis (Brown et al., 2020; OpenAI, 2023; Dubey et al.,032

2024; Rivière et al., 2024; Zhang et al., 2024b; Yeo033

et al., 2024).034

Despite their impressive capabilities, most035

LLMs remain heavily English-centric (Wendler036

et al., 2024; Zhong et al., 2024). Unfortunately,037

this situation has led LLMs in regions with many038

under-represented languages such as Southeast039

Asia (SEA) to suffer. Languages with lower re-040

sources, such as Filipino, Lao, Burmese and Khmer041

1[LINK_HIDDEN]

in the SEA region, are not supported by many open- 042

source English-centric LLMs. This underscores the 043

need to bridge the resource and representation gap 044

between English and SEA languages. 045

Recently, there have been many attempts to cre- 046

ate multilingual LLMs in an open-source man- 047

ner, e.g., BLOOM (Scao et al., 2022), a project 048

aimed at increasing multilingual presence in open- 049

source LLMs by supporting 46 languages. Popular 050

LLM families such as Llama (Dubey et al., 2024), 051

Gemma (Rivière et al., 2024) and Qwen (Yang 052

et al., 2024a) have also introduced multilingual 053

LLMs for their latest iteration. During our eval- 054

uations, we found that the performance of these 055

models is acceptable in the general case, i.e., if 056

we consider evaluation benchmarks formulated 057

from English datasets, but we observe that the per- 058

formance degrades on SEA-specific benchmarks. 059

Moreover, researchers have also introduced LLMs 060

such as SeaLLMs (Nguyen et al., 2024; Zhang 061

et al., 2024a) and Sailor (Dou et al., 2024) to specifi- 062

cally address the LLM gap in SEA languages. How- 063

ever, the performance of these models is less than 064

ideal for languages such as Thai or Tamil2 (10X 065

et al., 2024; AI Products Team, 2024). 066

In this paper, we address the issues by proposing 067

a robust open-source Southeast Asian model with 068

data transparency for reproducibility, namely SEA- 069

LION – a family of LLMs continued pre-trained 070

(CPT) and fine-tuned on Llama-3.1-8B-Instruct 071

for Llama-SEA-LION-8B-IT and Gemma-2-9B for 072

Gemma-SEA-LION-9B-IT with a focus on SEA 073

languages. To tackle the performance problem, 074

we utilize 200 billion English, code and SEA lan- 075

guages tokens as well as 16.8 million English and 076

SEA languages instruction and answer pairs for 077

CPT and post-training steps respectively, to achieve 078

a significant improvement in SEA languages. In 079

2Tamil is one of the official languages in Singapore. It is
also spoken in other areas in the SEA region, such as Malaysia.
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order to allow our models to be used by everyone080

without restrictions, we release our models under081

a fully open MIT 3. We benchmark our models082

against the SEA-HELM(Susanto et al., 2025) and083

Open LLM Leaderboard4 with other LLMs of sim-084

ilar sizes in Southeast Asia like Sailor 2 (Team,085

2024) and SeaLLMs 3 (Zhang et al., 2024a), where086

our models achieve state-of-the-art performances.087

We summarize the contribution of our paper as088

follows.089

• We released two LLMs, Llama-SEA-LION-8B-090

IT and Gemma-SEA-LION-9B-IT, that are091

meticulously trained to accurately represent the092

unique linguistic diversity of SEA languages.093

• We also provide in-depth insights in this paper094

into our end-to-end training workflow to benefit095

the community developing multilingual LLMs.096

• We present a reproducible dataset development097

process, covering sourcing and the model train-098

ing process. Upon the acceptance of this paper,099

we will release our training artifacts, including100

the training dataset, training scripts, training101

checkpoints, and fine-tuned models, including102

Llama-SEA-LION-8B-IT and Gemma-SEA-103

LION-9B-IT, to provide strong baselines, pro-104

mote reproducibility, and enable future research105

on applications that require SEA-specific knowl-106

edge.107

108

2 Continued pre-training (CPT)109

2.1 Pre-training data110

The CPT data consists of a curated set of En-111

glish, multilingual, and code corpora from sev-112

eral open source repositories like Dolma (Sol-113

daini et al., 2024), FineWeb (Penedo et al.,114

2024), the-stackv2 (Lozhkov et al., 2024), SEA-115

LION-Pile (AI Singapore, 2023), SEA-LION-Pile-116

v2 (AI Singapore, 2025), as well as documents117

from CommonCrawl (CommonCrawl, 2024) and118

from the public domain, such as Wikipedia (Foun-119

dation, 2024). For SEA-LION-Pilev2, we filter120

CommonCrawl WARC data for documents in SEA121

languages (i.e., Burmese, Simplified Chinese, In-122

donesian, Khmer, Lao, Malay, Filipino, Tamil,123

Thai, and Vietnamese) using the pretrained fast-124

text language classifier (Joulin et al., 2017).125

A document is retained if the language code re-126

ported in its metadata matches with that of one of127

3https://mit-license.org/
4Open LLM Leaderboard

the aforementioned SEA languages. Additionally, 128

we further clean up the data with Trafilatura (Bar- 129

baresi, 2021). To determine the best dataset ratio 130

between SEA languages, code and English for the 131

CPT process, we perform a series of small-scale 132

CPT experiments each with a training budget of 133

10B tokens and varying proportions of English, 134

code and SEA language data. We settled on an op- 135

timal data mix ratio of 55% SEA languages, 25% 136

English, and 20% code tokens for a budget of 200B 137

tokens. For a detailed breakdown of the token count 138

by languages, please refer to Table 6. 139

2.2 CPT process 140

Model selection. For the models to CPT from, we 141

choose Llama-3.1-8B-Instruct (Dubey et al., 2024) 142

and Gemma-2-9B (Rivière et al., 2024). 143

Training setup. Following previous works (Dou 144

et al., 2024), we use BPE-Dropout (Provilkov 145

et al., 2020) to increase the performance and ro- 146

bustness of the training. We use a Warmup-Stable- 147

Decay (WSD) (Hu et al., 2024) scheduler with 148

warm-up and cooldown phases each representing 149

10% of the entire training budget. We use the 150

AdamW (Loshchilov and Hutter, 2019) optimiser 151

with the maximum learning rate (LR) set to 1e−5 152

and the final LR after cooldown is 1e−7. Fol- 153

lowing Wortsman et al. (2024), we set epsilon to 154

1e−15. We use Composer (Team, 2021) and LLM 155

Foundry (Team, 2022) for distributed training us- 156

ing Fully Sharded Data Parallel (Zhao et al., 2023) 157

on a cluster of eight nodes of the p5.48xlarge in- 158

stance from Amazon Web Services (AWS). The 159

total training duration was approximately 6 days 160

and 10 days for the Llama 3.1 and Gemma 2 mod- 161

els, respectively. In this paper, we refer to the post- 162

CPT models as Llama-SEA-LION-8B and Gemma- 163

SEA-LION-9B for the Llama 3.1 and Gemma 2 164

continued pre-trained models respectively. 165

3 Post-training 166

3.1 Post-training data 167

The post-training data consists of 3 subsets of data 168

for Stage 1 IFT, Stage 2 IFT, and the Preference 169

dataset for alignment, respectively. We describe the 170

training data information of each step as follows. 171

Stage 1 IFT. In this step, we employ Infinity- 172

Instruct [Foundation and Chat] (Beijing 173

Academy of Artificial Intelligence, 2024) 174

and OpenMath-Instruct 2 (Toshniwal et al., 2024) 175

to improve the mathematical, reasoning, and 176
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coding skills of the instruction model. The177

full details of the training data are shown in178

Appendix 7.179

Stage 2 IFT. Then, in this step, we use general-180

ized large-scale instructions on the previous instruc-181

tion model. In particular, we employ 22 existing182

datasets (written in English, Thai, and Vietnamese)183

and formulate new 22 synthetic datasets using vari-184

ous models and techniques to create SEA instruc-185

tion datasets (see Appendix A.3 for the full data186

generation details). As shown in Appendix 9, we187

use a total of 7,298,828 instruction samples that188

cover 11 languages.189

Helpfulness and preference alignment. We also190

conduct an alignment learning on top of the instruc-191

tion model using a feedback dataset called Ultra-192

FeedBack (Cui et al., 2024). In addition, we also193

synthesized the SEA version of the UltraFeedBack194

using NemoTron-70b with Gemma2 as a reward195

model, see Appendix A.4 for the full details.196

Figure 1: Training process of Llama-SEA-LION-8B-
IT (Section 3.2.1). The post-training process consists of
2 stages of instruction fine-tuning, an alignment stage
and multiple merge stages. Dotted lines denote a merge
stage and solid lines denote an alignment stage.

3.2 Post-training process197

We use LLaMaFactory (Zheng et al., 2024b) with198

DeepSpeed (Rasley et al., 2020) for all Instruc-199

tion Fine Tuning (IFT) and alignment steps. All200

IFT stages are performed using full model fine-201

tuning where the models are from the previous202

step (Section 2.2) and existing models. We use203

MergeKit (Goddard et al., 2024) with a value of204

1 for weight and density parameters for all merge205

steps. Models selected for merging are selected em-206

pirically, based on the openness of model licenses,207

the suitability for merging and performance.208

3.2.1 Llama-SEA-LION-8B-IT 209

Stage 1 IFT As shown in Figure 1, we started 210

off the post-training phase with IFT of Llama- 211

SEA-LION-8B with the Infinity Instruct (Founda- 212

tion) (Beijing Academy of Artificial Intelligence, 213

2024) and OpenMathInstruct2 (Toshniwal et al., 214

2024) datasets. Both datasets contain approxi- 215

mately 9.5 million instruction pairs, primarily in 216

English and centered around reasoning, math, and 217

code. We refer to the model at this stage as Stage- 218

1-Llama. 219

Stage 2 IFT We performed a second round of 220

IFT using the SEA-Instruct dataset, which con- 221

sists of approximately 7.3 million instruction pairs, 222

of which 5 million instruction pairs are gener- 223

ated using the Gemma-2-27B-Instruct (Rivière 224

et al., 2024) model and the Qwen2.5-32B-Instruct 225

model (Yang et al., 2024a) in SEA languages. 226

The remaining are English language instruction 227

pairs from the Infinity-Instruct (Chat) (Beijing 228

Academy of Artificial Intelligence, 2024) dataset. 229

We refer to the model at this stage as Stage-2- 230

Llama. 231

First merge After finishing the IFT stages, we 232

performed the first of a series of merges by merging 233

Stage-1-Llama and Stage-2-Llama into the Llama- 234

SEA-LION-8B using the DARE TIES (Yu et al., 235

2024; Ilharco et al., 2023) method. We refer to the 236

model at this stage as Merge-1-Llama. 237

Second merge In order to mitigate catastrophic 238

forgetting due to the fine-tuning process (Alexan- 239

drov et al., 2024), we performed the second round 240

of merge by merging top-performing instruction- 241

tuned models that share the Llama 3.1 lineage. We 242

merge the original Llama-3.1-8B-Instruct, Llama3- 243

8B-SEA-LION-v2.1-Instruct (SEA-LION Team, 244

2024), and SuperNova-Lite (Arcee-AI, 2024) into 245

Merge-1-Llama using the Consensus TA (Wang 246

et al., 2024b; Ilharco et al., 2023) merge method. 247

We refer to the model at this stage as Merge-2- 248

Llama. 249

Helpfulness and preference alignment We per- 250

formed one round of alignment on Merge-2-Llama 251

using SimPO (Meng et al., 2024) with the SEA- 252

Preference dataset. We refer to the model at this 253

stage as Aligned-SimPO-Llama. 254

Final merge Lastly, we perform a merge using the 255

DELLA-Linear merge. With the original Llama- 256

3.1-8B-Instruct model as the base for merging, 257

we merge in Merge-2-Llama and Aligned-SimPO- 258

Llama to produce the final model, Llama-SEA- 259
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LION-9B-IT.260

261

3.2.2 Gemma-SEA-LION-9B-IT262

Figure 2: Training process of Gemma-SEA-LION-9B-
IT (Section 3.2.2). The post-training process comprises
two stages of instruction fine-tuning, an alignment stage,
and multiple merge stages. Dotted lines denote a merge
stage and solid lines denote an alignment stage.

Stage 1 and Stage 2 IFT Similar to the Llama-SEA-263

LION-8B-IT, we started off the post-training phase264

with both stages of IFT using the same datasets265

on the Gemma-2-9B model (Rivière et al., 2024).266

We refer to both models at stage 1 and stage 2 as267

Stage-1-Gemma and Stage-2-Gemma, respectively.268

First merge We merge the Gemma-2-9B-IT (Riv-269

ière et al., 2024) and Stage-2-Gemma into Gemma-270

2-9B using the DELLA Linear method. We refer271

to the model at this stage as the Merge-1-Gemma.272

Helpfulness and preference alignment Using the273

Merge-1-Gemma as the base model, we performed274

one round of alignment using SimPO with the SEA-275

Preference dataset. We refer to the model at this276

stage as the Aligned-SimPO-Gemma.277

Final merge Finally, using the Gemma-2-9B278

model as the base model, we merged Merge-1-279

Gemma, FuseChat Gemma-2-9B-Instruct (Yang280

et al., 2024b), Gemma-SEA-LION-9B, and Aligned-281

SimPO-Gemma into it to produce the final model282

Gemma-SEA-LION-9B-IT.283

3.3 Discussion284

This post-training workflow emphasizes the careful285

balance between general capabilities, SEA-specific286

linguistic fluency, and natural conversational abil-287

ities. Each step in the workflow is designed to288

progressively refine the model, ensuring it meets289

the diverse needs of users in the Southeast Asian290

region.291

The entire post-training process for Gemma- 292

SEA-LION-9B-IT and Llama-SEA-LION-8B-IT 293

took approximately 1350 and 1024 GPU hours, re- 294

spectively, on eight H100 GPUs. To make the train- 295

ing efficient, all post-training steps utilize Liger 296

Kernel (Hsu et al., 2024) for substantial memory 297

savings of approximately 60%. 298

4 Experimental Setup 299

4.1 Competitive methods 300

For the evaluation, we compared our models 301

against well-known LLMs for multilingual and 302

SEA languages, such as SeaLLMsv3 (Zhang et al., 303

2024a), Sailorv2 (Team, 2024), Qwen 2.5 (Yang 304

et al., 2024a), Gemma 2 (Rivière et al., 2024) and 305

Llama 3.1 (Dubey et al., 2024), where the parame- 306

ters of those models are less than 10 billion param- 307

eters, similar to our models. 308

4.2 Evaluation Benchmarks 309

To evaluate the robustness of our proposed models, 310

we compare our models to competitors in three 311

benchmarks. 312

SEA Benchmarks. We evaluated the multilin- 313

gual performance of each LLM using the SEA- 314

HELM Leaderboard (Leong et al., 2023; Su- 315

santo et al., 2025). We selected SEA-HELM 316

because the design choice of this benchmark re- 317

flects the performance of SEA culture and knowl- 318

edge the most compared with other existing bench- 319

marks (DAMO-NLP-SG, 2024; Lovenia et al., 320

2024; Wang et al., 2024a). We also evaluate on 321

a wide-range SEA coverage language benchmark 322

called SEACrowd (Lovenia et al., 2024). This 323

benchmark consists of all SEA languages for natu- 324

ral language understanding and generation datasets. 325

However, due to maintenance reasons, we can- 326

not reproduce the NLG benchmark of SEACrowd. 327

Therefore, we experiment only with the NLU 328

benchmark (zero-shot), which has 131 data sub- 329

sets, 7 tasks, and 31 SEA indigenous languages. 330

English performance. We also evaluated the En- 331

glish performance of the models using the Open 332

LLM Leaderboard (HuggingFace, 2024). This 333

is because English is also widely used in SEA 334

countries. Therefore, we need to evaluate the 335

understanding and knowledge of LLMs in the 336

English benchmark as well. The leaderboard 337

consists of six benchmarks, IFEval (Zhou et al., 338

2023), Big Bench Hard (Suzgun et al., 2023), 339

MATH (Hendrycks et al., 2021), GPQA (Rein et al., 340
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SEA-HELM
NLU, NLG, NLR, NLI Instruction Following

Models Average ID VI TH TA ID VI TH
Meta-Llama-3.1-8B 35.37 42.33 40.67 35.13 38.88 16.19 19.05 9.00
SeaLLMs-v3-7B 37.04 44.79 48.29 43.53 27.45 26.67 35.24 26.00
Gemma-2-9B 41.48 47.65 43.28 42.00 53.26 4.76 3.81 10.00
Qwen2.5-7B 41.98 51.63 52.17 46.55 36.60 31.43 36.19 30.00
Sailor2-8B 42.62 53.23 47.33 46.64 45.04 30.48 30.48 35.00
Llama-SEA-LION-8B 41.42 44.98 46.25 42.79 43.03 25.71 32.38 23.00
Gemma-SEA-LION-9B 48.67 57.16 49.39 47.16 60.56 25.71 20.00 27.00

Table 1: SEA-HELM multilingual benchmark on NLU, NLG, NLR, NLI and instruction following on base and
continued pre-trained models of similar sizes.

Open LLM Leaderboard
Models Average MMLU-PRO BBH GPQA MATH Lvl 5 IFEval (EN) MUSR
Meta-Llama-3.1-8B 13.9 24.95 25.29 6.32 5.14 12.7 8.98
Sailor2-8B 17.71 25.74 27.62 4.87 7.02 21.95 19.03
Gemma-2-9B 21.15 34.48 34.1 10.51 13.14 20.4 14.3
SeaLLMs-v3-7B 24.00 35.71 34.57 9.28 18.81 32.94 12.68
Qwen2.5-7B 24.99 37.39 35.81 9.96 18.88 33.74 14.14
Llama-SEA-LION-8B 16.61 27.6 26.04 7.49 9.89 16.56 12.07
Gemma-SEA-LION-9B 22.41 32.78 37.24 10.29 9.89 30.12 14.11

Table 2: Open LLM Leaderboard benchmarks across different continued pre-trained models of similar sizes.

2023), MuSR (Sprague et al., 2024) and MMLU-341

PRO (Wang et al., 2024c). Moreover, we also eval-342

uate the CPT models on SEA-HELM and the Open343

LLM Leaderboard since these benchmarks support344

the CPT evaluation.345

5 Experimental Results346

To understand the robustness and generalization of347

our proposed models, we conduct three studies as348

follows. Section 5.1 evaluates the robustness of349

continual pre-training models using SEA-HELM350

and the Open LLM leaderboard. In Section 5.2, we351

compare our instruction fine-tuning models with352

competitors in three benchmarks to demonstrate the353

generalization of our models. Lastly, we discuss354

the design choice of our models in Section 5.3.355

5.1 Continued Pre-Training Results356

SEA performance. The CPT stage is primarily357

focused on gaining SEA language capabilities and358

knowledge. For the purpose of comparison against359

base and CPT models, as shown in Table 1, we360

observed a 6.05 and 7.19 average SEA-HELM per-361

formance increase over the Meta-Llama-3.1-8B362

and Gemma-2-9B for Llama-SEA-LION-8B and363

Gemma-SEA-LION-9B, respectively. We observed364

a much larger average increase with instruction fol- 365

lowing capabilities in particular, which we attribute 366

to the fact that our CPT models are trained from 367

the instruction models rather than from the base 368

models. Moreover, in the average performance, 369

we found that our Gemma-SEA-LION-9B mod- 370

els perform the best compared to other models. 371

This emphasizes a strong reason to perform CPT 372

for improving the performance of SEA languages, 373

rather than skipping the CPT and performing SFT 374

directly. 375

English performance. For the English perfor- 376

mance, as shown in Table 2, both CPT models 377

also managed to perform competitively against the 378

Meta-Llama-3.1-8B and Gemma-2-9B base models 379

on the Open LLM Leaderboard benchmarks. This 380

indicates that our choice of retraining with a propor- 381

tion of 25% English tokens has been beneficial in 382

mitigating catastrophic forgetting, which has been 383

shown to stem from CPT (Zheng et al., 2024a). Al- 384

though our CPT models perform lower than Qwen 385

and SeaLLMs on this benchmark, we outperform 386

them on the SEA language instead, which is the 387

main focus of this work. 388
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SEA-HELM
NLU, NLG, NLR, NLI Instruction Following MTBench

Models Average ID VI TH TA ID VI TH ID VI TH
SeaLLMs-v3-7B-Chat 39.19 42.72 48.50 42.59 12.06 57.14 53.33 47.00 59.81 65.24 56.59
Llama-3.1-8B-Instruct 41.48 51.50 51.31 45.32 15.40 77.14 75.24 63.00 56.38 57.59 54.34
Sailor2-8B-Chat 43.13 48.98 48.01 45.44 28.29 49.52 45.71 40.00 69.76 66.97 73.94
Qwen2.5-7B-Instruct 44.58 60.28 53.46 53.43 21.03 81.90 69.52 66.00 65.66 66.80 68.71
Gemma-2-9B-IT 55.33 64.04 59.86 57.22 52.28 88.57 78.10 71.00 68.78 68.37 73.51
Stage-1-Llama 50.76 51.84 51.83 46.23 27.53 69.52 73.33 59.00 42.74 46.41 46.46
Stage-2-Llama 59.49 53.87 55.18 50.92 44.80 77.14 76.19 67.00 50.90 53.72 46.97
Merge-1-Llama 59.36 56.73 56.82 51.71 46.63 81.90 82.86 67.00 57.04 54.01 50.28
Merge-2-Llama 58.01 59.19 52.63 51.89 35.40 87.62 80.95 78.00 56.38 59.32 58.86
Aligned-SimPO-Llama 51.30 54.86 51.69 46.77 26.40 82.86 80.00 68.00 68.20 64.68 64.92
Llama-SEA-LION-8B-IT 61.84 60.50 61.48 55.92 43.61 84.76 85.71 76.00 62.65 68.32 65.13
Stage-1-Gemma 56.56 55.06 54.51 51.96 42.74 66.67 74.29 61.00 47.35 47.26 55.05
Stage-2-Gemma 66.66 64.10 61.76 56.90 57.85 89.52 82.86 76.00 60.54 58.93 58.76
Merge-1-Gemma 69.26 66.25 64.95 59.74 60.41 89.52 91.43 82.00 66.45 64.47 65.00
Aligned-SimPO-Gemma 69.37 65.69 65.47 59.51 57.38 86.67 88.57 78.00 68.89 73.67 73.51
Gemma-SEA-LION-9B-IT 69.35 66.26 64.93 59.23 58.82 94.29 88.57 78.00 65.85 73.27 69.07

Table 3: SEA-HELM multilingual benchmark on NLU, NLG, NLR, NLI, instruction following and multi-turn chat
on instruct models of similar sizes.
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Figure 3: Zero-shot model performance across NLU tasks in SEA languages.

Model NLU
Score

SeaLLMs-v3-7B-chat 52.68
Llama-3.1-8B-Instruct 49.94
Sailor2-8B-Chat 60.21
Qwen2.5-7B-Instruct 54.51
Gemma-2-9B-IT 60.21
Llama-SEA-LION-8B-IT 55.10
Gemma-SEA-LION-9B-IT 64.13

Table 4: The average NLU
performance across 131
data subsets and 31 indige-
nous languages.

5.2 Instruction Fine-tuning Results389

In this study, we compare our models with com-390

petitors on SEA-HELM, SEACrowd, and the Open391

LLM Leaderboard as follows.392

SEA-HELM. As shown in Table 3, the SEA-393

HELM benchmark performance demonstrates that394

our instruct models, Llama-SEA-LION-8B-IT and395

Gemma-SEA-LION-9B-IT, attain competitive per-396

formance in SEA languages, with Gemma-SEA-397

LION-9B-IT achieving one of the highest aver-398

age performances. Moreover, we significantly im-399

prove the performance of Llama-3.1-8B-Instruct400

from 41.48 to 61.84 using Llama-SEA-LION-8B-401

IT, while Gemma-SEA-LION-9B-IT achieves 14.02402

improvement points compared to Gemma-2-9B-IT.403

Both Llama-SEA-LION-8B-IT and Gemma-SEA-404

LION-9B-IT outperform other SEA languages-405

focused LLMs, such as Sailor2-8B-Chat and406

SEALLMs-v3-7B-Chat, with an average score of407

69.35 across all the languages covered by the SEA-408

HELM benchmark, apart from the SEA-MTBench 409

tasks. This conforms with the previous results on 410

the CPT models (Section 5.1) that our CPT model 411

performs the best on SEA languages, resulting in 412

the best performer in this experiment. 413

SEACrowd. Other than evaluating on some SEA 414

languages like SEA-HELM, we also evaluated our 415

model compared to competitors on 31 SEA indige- 416

nous languages using SEACrowd-NLU. Note that, 417

for this study, we use only the best settings of our 418

models from the previous experiment (Table 3). As 419

shown in Table 4, we observe a state-of-the-art re- 420

sult from Gemma-SEA-LION-9B-IT by achieving 421

64.13 points on the NLU benchmark, while Llama- 422

SEA-LION-8B-IT improves its baseline from 49.94 423

to 55.10 points. Moreover, the results from Fig- 424

ure 3 also emphasize the robustness of our model 425

by reaching more than 80 points on this bench- 426

mark, while SeaLLMs and Llama-3.1 have only a 427

few cases where the performance exceeds 80 points. 428
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Open LLM Leaderboard
Models Average MMLU-PRO BBH GPQA MATH Lvl 5 IFEval (EN) MUSR
Sailor2-8B-Chat 16.37 27.93 27.15 3.47 0.00 37.49 2.19
SeaLLMs-v3-7B-Chat 22.49 33.93 24.37 7.27 15.86 44.10 9.38
Llama-3.1-8B-Instruct 27.88 29.36 26.10 10.63 17.45 77.03 6.75
Qwen2.5-7B-Instruct 27.93 37.00 34.72 10.18 0.00 76.34 9.34
Gemma-2-9B-IT 28.86 31.95 42.14 14.77 0.23 74.36 9.74
Stage-1-Llama 24.51 25.87 26.32 7.83 19.26 62.89 4.88
Stage-2-Llama 27.75 28.10 24.64 7.72 19.56 78.78 7.74
Merge-1-Llama 27.49 27.47 26.22 8.28 19.79 76.16 7.04
Merge-2-Llama 29.96 29.92 28.78 9.96 19.94 82.61 8.54
Aligned-SimPO-Llama 30.58 30.84 34.31 8.39 26.59 75.76 7.61
Llama-SEA-LION-8B-IT 30.39 31.01 29.47 10.40 22.58 80.35 8.54
Stage-1-Gemma 29.88 33.34 38.51 10.74 24.17 56.87 15.66
Stage-2-Gemma 33.48 34.67 36.06 11.74 20.77 83.00 14.61
Merge-1-Gemma 35.15 36.22 41.42 15.32 26.28 82.09 9.59
Aligned-SimPO-Gemma 35.31 37.65 42.38 14.99 27.79 80.23 8.82
Gemma-SEA-LION-9B-IT 35.43 36.94 43.39 15.10 24.24 81.85 11.07

Table 5: Open LLM Leaderboard benchmarks across different instruct models of similar sizes.

These results emphasize the robustness of our mod-429

els by achieving the state-of-the-art with a model430

parameter less than 10B on SEA benchmarks, in-431

cluding both traditional classical NLP benchmark432

(SEACrowd-NLU) and modern LLM benchmark433

(SEA-HELM).434

English performance. We also evaluate the perfor-435

mance of a widely used language, English, to ob-436

serve a difference between the results of SEA and437

English. The Open LLM Leaderboard performance438

is shown in Table 5. Both Llama-SEA-LION-8B-IT439

and Gemma-SEA-LION-9B-IT performed compet-440

itively in English language, math, and reasoning441

tasks, with Gemma-SEA-LION-9B-IT achieving442

the highest average score of 35.43. Moreover, we443

notice that the SEA models (Sailor and SeaLLMs)444

failed to perform on the English dataset. This might445

be because these models are optimized for SEA lan-446

guages during supervised fine-tuning, and English447

performance decreased as a result. In contrast, our448

models balance the performance between SEA and449

English knowledge, resulting in a high score for all450

benchmarks.451

5.3 Performance Analysis452

In this study, we discuss the performance improve-453

ment in each design decision of our models (Ta-454

bles 3 and 5) as follows.455

Stage 1: English instruction fine tuning In Stage456

1 IFT, the focus is predominantly on gaining gen-457

eral capabilities in math, code and general instruc-458

tion following in the English language. Although459

our CPT models are based off of the instruct ver-460

sions of Llama-3.1-8B, the CPT process has eroded 461

the instruction following capabilities (See Table 5). 462

We observe an increase of 3.86 and 9.72 for Stage- 463

1-Llama and Stage-1-Gemma respectively in En- 464

glish instruction following capabilities on the IFE- 465

val benchmark. We also observe an average in- 466

crease of 7.9 for Stage-1-Llama and 7.47 for Stage- 467

1-Gemma for the SEA-HELM benchmark. 468

Stage 2: Multilingual instruction fine tuning In 469

Stage 2 IFT, the focus is on multilingual and rea- 470

soning capabilities. By instruction fine tuning on 471

SEA languages and higher complexity English in- 472

struction pairs, the Stage 2 models saw an average 473

increase of 8.73 for Stage-2-Llama and 10.1 for 474

Stage-2-Gemma over Stage 1 models on the SEA- 475

HELM benchmark. 476

Merge 1: Combining Stage 1 and Stage 2 De- 477

spite the significant gains observed in Stage 1 and 478

2, we observed that the effects of catastrophic for- 479

getting from earlier stages could still be observed 480

after Stage 2. In order to mitigate this, we merge 481

Stage 1 and Stage 2 models into the CPT model, 482

after which we we observed an average increase 483

of 2.6 for Merge-1-Gemma. We also observed an 484

increase across all SEA-HELM benchmark tasks 485

for Merge-1-Llama. 486

Merge 2: Incorporating instruct models To rein- 487

troduce helpfulness, relevance and informativeness 488

of responses observed in Llama 3.1 and Gemma 489

2 models, we perform further merges of open- 490

source instruct models. While we observed sig- 491

nificant increases in MT-Bench benchmark scores 492

for Vietnamese and Thai, we also observed a slight 493
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degradation of average SEA-HELM performance494

as well as a slight degradation of Indonesian MT-495

Bench scores, which we view as acceptable trade-496

offs for the significant performance increases in497

Vietnamese and Thai.498

Alignment steps In the alignment step to align the499

models to human preference, we prioritize the SEA500

MTBench performance over the other SEA-HELM501

benchmark tasks. We observed a broad increase in502

SEA MTBench performances across all languages503

for both models. However, this comes with minor504

degradation of instruction following capabilities505

and overall Indonesian SEA-HELM performance.506

The alignment step encourages longer, more help-507

ful and sensitive responses but hurts performance508

on task-specific benchmarks and instruction follow-509

ing in some languages – an issue we address in the510

next step.511

Final merge: Combining aligned models To com-512

pensate for the capability degradation in the previ-513

ous steps, we merge Merge-2-Llama and Merge-1-514

Gemma with Aligned-SimPO-Llama and Aligned-515

SimPO-Gemma and various open sourced pre-516

trained models describe in sections 3.2.1 and 3.2.2517

for their respective model families. For Llama-SEA-518

LION-8B-IT, we observed a significant increase in519

average SEA-HELM performance (61.84) from the520

alignment stage (51.30), mainly from the increase521

in performance for the core tasks in SEA-HELM.522

This performance increase demonstrates the value523

of empirical selection of pre-trained models to be524

merged in based on each model’s strengths and525

weaknesses to produce a far superior model. For526

Gemma-SEA-LION-9B-IT, it easily achieves higher527

performance compared to the Llama-SEA-LION-528

8B-IT with fewer post training steps. We attribute529

this performance to the high performance of the530

base Gemma 2 model and also to the larger vocab-531

ulary size which have been demonstrated (Takase532

et al., 2024) to produce better models.533

6 Related Works534

Recently, researchers have proposed large lan-535

guage models that support multilingual settings.536

Llama (Dubey et al., 2024) is the prior effort to re-537

lease an open-source large language model for the538

research community to develop their own models.539

Then, Qwen (Yang et al., 2024a) and Gemma (Riv-540

ière et al., 2024) introduced open-source LLMs that541

perform comparably or better than Llama with a542

larger amount of training data and many supported543

languages for these recent models. Massively multi- 544

lingual open-source models like Bloom (Scao et al., 545

2022) and Aya (Üstün et al., 2024) also support a 546

very wide range of languages, including some SEA 547

languages. Although these models demonstrate a 548

robust performance in English benchmarks, they 549

mostly underperformed on SEA benchmarks that 550

tested for SEA languages, SEA knowledge and cul- 551

tural understanding (Lovenia et al., 2024; Susanto 552

et al., 2025), presumably due to a lack of language 553

support for certain SEA languages or cultures. 554

In the SEA community, many works propose a 555

large language model that is designed specifically 556

for SEA languages by adding more SEA tokens in 557

the training process, such as SeaLLMs (Nguyen 558

et al., 2024) and Sailor (Sailor2 Team, 2024). How- 559

ever, the performance of these models is robust 560

only on in-domain datasets or favors only some 561

tasks (i.e., classical NLP datasets). This is because 562

the design choice in the pre-training or fine-tuning 563

of these models is not well studied, e.g., performing 564

a single SFT step with low-quality datasets writ- 565

ten in some SEA languages, resulting in a slight 566

improvement on SEA benchmarks. To create a 567

robust SEA LLM, we need to carefully balance lan- 568

guage representation and design both pre-training 569

and post-training (i.e., SFT, alignment, and model 570

merging) for SEA contexts. 571

7 Conclusion 572

Despite the sizable population and language diver- 573

sity in Southeast Asia, there remains a scarcity of 574

resources and accurate linguistic and cultural rep- 575

resentation with open-source LLMs. In this paper, 576

we introduce Llama-SEA-LION-8B-IT and Gemma- 577

SEA-LION-9B-IT, two multilingual LLMs compre- 578

hensively trained to achieve state-of-the-art perfor- 579

mances in SEA languages, based on the Llama and 580

Gemma family of LLMs. SEA-LION represents 581

the next advancement in the development of LLMs 582

that explicitly supports SEA languages. Both mod- 583

els are fully open-source and available for com- 584

mercial use to increase accessibility and innovation 585

in multilingual LLMs in Southeast Asia. We will 586

make our resources publicly available — including 587

the dataset, training scripts, training checkpoints, 588

and all fine-tuned models, even those that achieve 589

state-of-the-art performance on the benchmarks — 590

to establish solid baselines, ensure reproducibility, 591

and support future research focused on culturally 592

and professionally relevant SEA applications. 593
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Limitation594

Although we propose the state-of-the-art SEA595

LLMs, we found that the benchmark might not596

cover all the properties and languages we want to597

evaluate. For example, SEA-HELM is a robust-598

ness benchmark, but only covers four languages.599

SEACrowd is a benchmark that covers all SEA600

languages, but it is only classical NLP datasets601

(no chat or instruction following datasets). We re-602

quire a more holistic SEA benchmark that covers603

LLM-specific tasks written in all SEA languages.604

However, with the current evaluation design choice,605

these benchmarks are the best design choice for cur-606

rent SEA research works.607

Moreover, we conduct experiments using only608

8 and 9 billion parameter models. We argue that609

this is the most commonly used model size in real-610

world scenarios. In addition, our method can and611

should also work with a higher or smaller model612

size since our proposed technique does not rely on613

the model size, as we demonstrated by applying614

the SFT and alignment techniques on both Llama615

and Gemma models.616

References617

SCB 10X, VISTEC, and SEACrowd. 2024. Thai llm618
leaderboard.619

AI Singapore AI Products Team. 2024. Sea-helm.620

AISG AI Singapore. 2023. Sea-lion-pile.621

AISG AI Singapore. 2025. Sea-lion-pile-v2.622

Anton Alexandrov, Veselin Raychev, Mark Niklas623
Mueller, Ce Zhang, Martin Vechev, and Kristina624
Toutanova. 2024. Mitigating catastrophic forgetting625
in language transfer via model merging. In Find-626
ings of the Association for Computational Linguistics:627
EMNLP 2024, pages 17167–17186, Miami, Florida,628
USA. Association for Computational Linguistics.629

Arcee-AI. 2024. Llama-3.1-supernova-lite.630

Adrien Barbaresi. 2021. Trafilatura: A Web Scrap-631
ing Library and Command-Line Tool for Text Dis-632
covery and Extraction. In Proceedings of the Joint633
Conference of the 59th Annual Meeting of the Asso-634
ciation for Computational Linguistics and the 11th635
International Joint Conference on Natural Language636
Processing: System Demonstrations, pages 122–131.637
Association for Computational Linguistics.638

BAAI Beijing Academy of Artificial Intelligence. 2024.639
Infinity instruct.640

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie 641
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind 642
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 643
Askell, Sandhini Agarwal, Ariel Herbert-Voss, 644
Gretchen Krueger, Tom Henighan, Rewon Child, 645
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, 646
Clemens Winter, Christopher Hesse, Mark Chen, Eric 647
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, 648
Jack Clark, Christopher Berner, Sam McCandlish, 649
Alec Radford, Ilya Sutskever, and Dario Amodei. 650
2020. Language models are few-shot learners. In Ad- 651
vances in Neural Information Processing Systems 33: 652
Annual Conference on Neural Information Process- 653
ing Systems 2020, NeurIPS 2020, December 6-12, 654
2020, virtual. 655

CommonCrawl. 2024. Commoncrawl. 656

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, 657
Bingxiang He, Wei Zhu, Yuan Ni, Guotong Xie, 658
Ruobing Xie, Yankai Lin, Zhiyuan Liu, and Maosong 659
Sun. 2024. ULTRAFEEDBACK: boosting language 660
models with scaled AI feedback. In Forty-first In- 661
ternational Conference on Machine Learning, ICML 662
2024, Vienna, Austria, July 21-27, 2024. OpenRe- 663
view.net. 664

DAMO-NLP-SG. 2024. Seaexam. 665

Longxu Dou, Qian Liu, Guangtao Zeng, Jia Guo, Ji- 666
ahui Zhou, Wei Lu, and Min Lin. 2024. Sailor: 667
Open language models for south-east asia. CoRR, 668
abs/2404.03608. 669

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 670
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 671
Akhil Mathur, Alan Schelten, Amy Yang, Angela 672
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, 673
Archi Mitra, Archie Sravankumar, Artem Korenev, 674
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien 675
Rodriguez, Austen Gregerson, Ava Spataru, Bap- 676
tiste Rozière, Bethany Biron, Binh Tang, Bobbie 677
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe 678
Bi, Chris Marra, Chris McConnell, Christian Keller, 679
Christophe Touret, Chunyang Wu, Corinne Wong, 680
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al- 681
lonsius, Daniel Song, Danielle Pintz, Danny Livshits, 682
David Esiobu, Dhruv Choudhary, Dhruv Mahajan, 683
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, 684
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, 685
Emily Dinan, Eric Michael Smith, Filip Radenovic, 686
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor- 687
gia Lewis Anderson, Graeme Nail, Grégoire Mialon, 688
Guan Pang, Guillem Cucurell, Hailey Nguyen, Han- 689
nah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, 690
Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan 691
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan 692
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, 693
Jeet Shah, Jelmer van der Linde, Jennifer Billock, 694
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, 695
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, 696
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph 697
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, 698
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate 699
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and 700

9

https://huggingface.co/spaces/ThaiLLM-Leaderboard/leaderboard
https://huggingface.co/spaces/ThaiLLM-Leaderboard/leaderboard
https://huggingface.co/spaces/ThaiLLM-Leaderboard/leaderboard
https://leaderboard.sea-lion.ai/
https://huggingface.co/datasets/aisingapore/sea-lion-pile
https://huggingface.co/datasets/aisingapore/sea-lion-pile-v2
https://doi.org/10.18653/v1/2024.findings-emnlp.1000
https://doi.org/10.18653/v1/2024.findings-emnlp.1000
https://doi.org/10.18653/v1/2024.findings-emnlp.1000
https://huggingface.co/arcee-ai/Llama-3.1-SuperNova-Lite
https://aclanthology.org/2021.acl-demo.15
https://aclanthology.org/2021.acl-demo.15
https://aclanthology.org/2021.acl-demo.15
https://aclanthology.org/2021.acl-demo.15
https://aclanthology.org/2021.acl-demo.15
https://huggingface.co/datasets/BAAI/Infinity-Instruct
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://commoncrawl.org/
https://openreview.net/forum?id=BOorDpKHiJ
https://openreview.net/forum?id=BOorDpKHiJ
https://openreview.net/forum?id=BOorDpKHiJ
https://github.com/DAMO-NLP-SG/SeaExam
https://doi.org/10.48550/ARXIV.2404.03608
https://doi.org/10.48550/ARXIV.2404.03608
https://doi.org/10.48550/ARXIV.2404.03608


et al. 2024. The llama 3 herd of models. CoRR,701
abs/2407.21783.702

Wikimedia Foundation. 2024. Wikimedia enterprise703
html dumps downloads.704

Charles Goddard, Shamane Siriwardhana, Malikeh705
Ehghaghi, Luke Meyers, Vladimir Karpukhin, Brian706
Benedict, Mark McQuade, and Jacob Solawetz. 2024.707
Arcee’s mergekit: A toolkit for merging large lan-708
guage models. In Proceedings of the 2024 Confer-709
ence on Empirical Methods in Natural Language710
Processing: EMNLP 2024 - Industry Track, Miami,711
Florida, USA, November 12-16, 2024, pages 477–712
485. Association for Computational Linguistics.713

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul714
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-715
cob Steinhardt. 2021. Measuring mathematical prob-716
lem solving with the MATH dataset. In Proceedings717
of the Neural Information Processing Systems Track718
on Datasets and Benchmarks 1, NeurIPS Datasets719
and Benchmarks 2021, December 2021, virtual.720

Pin-Lun Hsu, Yun Dai, Vignesh Kothapalli, Qingquan721
Song, Shao Tang, Siyu Zhu, Steven Shimizu, Shivam722
Sahni, Haowen Ning, and Yanning Chen. 2024. Liger723
kernel: Efficient triton kernels for llm training. arXiv724
preprint arXiv:2410.10989.725

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He,726
Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,727
Yuxiang Huang, Weilin Zhao, Xinrong Zhang,728
Zhen Leng Thai, Kai Zhang, Chongyi Wang, Yuan729
Yao, Chenyang Zhao, Jie Zhou, Jie Cai, Zhongwu730
Zhai, Ning Ding, Chao Jia, Guoyang Zeng, Dahai Li,731
Zhiyuan Liu, and Maosong Sun. 2024. Minicpm: Un-732
veiling the potential of small language models with733
scalable training strategies. CoRR, abs/2404.06395.734

HuggingFace. 2024. Open llm leaderboard.735

Gabriel Ilharco, Marco Túlio Ribeiro, Mitchell Worts-736
man, Ludwig Schmidt, Hannaneh Hajishirzi, and Ali737
Farhadi. 2023. Editing models with task arithmetic.738
In The Eleventh International Conference on Learn-739
ing Representations, ICLR 2023, Kigali, Rwanda,740
May 1-5, 2023. OpenReview.net.741

Armand Joulin, Edouard Grave, Piotr Bojanowski, and742
Tomas Mikolov. 2017. Bag of tricks for efficient743
text classification. In Proceedings of the 15th Con-744
ference of the European Chapter of the Association745
for Computational Linguistics: Volume 2, Short Pa-746
pers, pages 427–431. Association for Computational747
Linguistics.748

Wei Qi Leong, Jian Gang Ngui, Yosephine Su-749
santo, Hamsawardhini Rengarajan, Kengatharaiyer750
Sarveswaran, and William-Chandra Tjhi. 2023.751
BHASA: A holistic southeast asian linguistic and752
cultural evaluation suite for large language models.753
CoRR, abs/2309.06085.754

Ilya Loshchilov and Frank Hutter. 2019. Decoupled755
weight decay regularization. In 7th International756

Conference on Learning Representations, ICLR 2019, 757
New Orleans, LA, USA, May 6-9, 2019. OpenRe- 758
view.net. 759

Holy Lovenia, Rahmad Mahendra, Salsabil Maulana 760
Akbar, Lester James V. Miranda, Jennifer Santoso, 761
Elyanah Aco, Akhdan Fadhilah, Jonibek Mansurov, 762
Joseph Marvin Imperial, Onno Kampman, Joel 763
Ruben Antony Moniz, Muhammad Ravi Shulthan 764
Habibi, Frederikus Hudi, Jann Montalan, Ryan Hadi- 765
wijaya, Joanito Agili Lopo, William Nixon, Börje 766
Karlsson, James Jaya, Ryandito Diandaru, Yuze 767
Gao, Patrick Amadeus Irawan, Bin Wang, Jan Chris- 768
tian Blaise Cruz, Chenxi Whitehouse, Ivan Halim 769
Parmonangan, Maria Khelli, Wenyu Zhang, Lucky 770
Susanto, Reynard Adha Ryanda, Sonny Lazuardi Her- 771
mawan, Dan John Velasco, Muhammad Dehan Al 772
Kautsar, Willy Fitra Hendria, Yasmin Moslem, Noah 773
Flynn, Muhammad Farid Adilazuarda, Haochen Li, 774
Johanes Lee, R. Damanhuri, Shuo Sun, Muham- 775
mad Reza Qorib, Amirbek Djanibekov, Wei Qi 776
Leong, Quyet V. Do, Niklas Muennighoff, Tanrada 777
Pansuwan, Ilham Firdausi Putra, Yan Xu, Ngee Tai 778
Chia, Ayu Purwarianti, Sebastian Ruder, William- 779
Chandra Tjhi, Peerat Limkonchotiwat, Alham Fikri 780
Aji, Sedrick Keh, Genta Indra Winata, Ruochen 781
Zhang, Fajri Koto, Zheng Xin Yong, and Samuel 782
Cahyawijaya. 2024. Seacrowd: A multilingual mul- 783
timodal data hub and benchmark suite for southeast 784
asian languages. In Proceedings of the 2024 Con- 785
ference on Empirical Methods in Natural Language 786
Processing, EMNLP 2024, Miami, FL, USA, Novem- 787
ber 12-16, 2024, pages 5155–5203. Association for 788
Computational Linguistics. 789

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed- 790
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi, 791
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, 792
Tianyang Liu, Max Tian, Denis Kocetkov, Arthur 793
Zucker, Younes Belkada, Zijian Wang, Qian Liu, 794
Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen- 795
Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue 796
Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, 797
Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, 798
Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, 799
Niklas Muennighoff, Xiangru Tang, Muhtasham 800
Oblokulov, Christopher Akiki, Marc Marone, Cheng- 801
hao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, 802
Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Pa- 803
try, Canwen Xu, Julian J. McAuley, Han Hu, Torsten 804
Scholak, Sébastien Paquet, Jennifer Robinson, Car- 805
olyn Jane Anderson, Nicolas Chapados, and et al. 806
2024. Starcoder 2 and the stack v2: The next genera- 807
tion. CoRR, abs/2402.19173. 808

Yu Meng, Mengzhou Xia, and Danqi Chen. 2024. 809
Simpo: Simple preference optimization with a 810
reference-free reward. CoRR, abs/2405.14734. 811

Xuan-Phi Nguyen, Wenxuan Zhang, Xin Li, Mahani 812
Aljunied, Zhiqiang Hu, Chenhui Shen, Yew Ken 813
Chia, Xingxuan Li, Jianyu Wang, Qingyu Tan, Liy- 814
ing Cheng, Guanzheng Chen, Yue Deng, Sen Yang, 815
Chaoqun Liu, Hang Zhang, and Lidong Bing. 2024. 816
SeaLLMs - large language models for Southeast Asia. 817

10

https://doi.org/10.48550/ARXIV.2407.21783
https://dumps.wikimedia.org/other/enterprise_html/
https://dumps.wikimedia.org/other/enterprise_html/
https://dumps.wikimedia.org/other/enterprise_html/
https://aclanthology.org/2024.emnlp-industry.36
https://aclanthology.org/2024.emnlp-industry.36
https://aclanthology.org/2024.emnlp-industry.36
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://arxiv.org/abs/2410.10989
https://arxiv.org/abs/2410.10989
https://arxiv.org/abs/2410.10989
https://doi.org/10.48550/ARXIV.2404.06395
https://doi.org/10.48550/ARXIV.2404.06395
https://doi.org/10.48550/ARXIV.2404.06395
https://doi.org/10.48550/ARXIV.2404.06395
https://doi.org/10.48550/ARXIV.2404.06395
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://openreview.net/forum?id=6t0Kwf8-jrj
https://doi.org/10.48550/ARXIV.2309.06085
https://doi.org/10.48550/ARXIV.2309.06085
https://doi.org/10.48550/ARXIV.2309.06085
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://aclanthology.org/2024.emnlp-main.296
https://aclanthology.org/2024.emnlp-main.296
https://aclanthology.org/2024.emnlp-main.296
https://aclanthology.org/2024.emnlp-main.296
https://aclanthology.org/2024.emnlp-main.296
https://doi.org/10.48550/ARXIV.2402.19173
https://doi.org/10.48550/ARXIV.2402.19173
https://doi.org/10.48550/ARXIV.2402.19173
https://doi.org/10.48550/ARXIV.2405.14734
https://doi.org/10.48550/ARXIV.2405.14734
https://doi.org/10.48550/ARXIV.2405.14734
https://doi.org/10.18653/v1/2024.acl-demos.28


In Proceedings of the 62nd Annual Meeting of the818
Association for Computational Linguistics (Volume 3:819
System Demonstrations), pages 294–304, Bangkok,820
Thailand. Association for Computational Linguistics.821

OpenAI. 2023. GPT-4 technical report. CoRR,822
abs/2303.08774.823

Guilherme Penedo, Hynek Kydlícek, Loubna Ben Al-824
lal, Anton Lozhkov, Margaret Mitchell, Colin Raffel,825
Leandro von Werra, and Thomas Wolf. 2024. The826
fineweb datasets: Decanting the web for the finest827
text data at scale. CoRR, abs/2406.17557.828

Ivan Provilkov, Dmitrii Emelianenko, and Elena Voita.829
2020. Bpe-dropout: Simple and effective subword830
regularization. In Proceedings of the 58th Annual831
Meeting of the Association for Computational Lin-832
guistics, ACL 2020, Online, July 5-10, 2020, pages833
1882–1892. Association for Computational Linguis-834
tics.835

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase,836
and Yuxiong He. 2020. Deepspeed: System opti-837
mizations enable training deep learning models with838
over 100 billion parameters. In KDD ’20: The 26th839
ACM SIGKDD Conference on Knowledge Discovery840
and Data Mining, Virtual Event, CA, USA, August841
23-27, 2020, pages 3505–3506. ACM.842

David Rein, Betty Li Hou, Asa Cooper Stickland,843
Jackson Petty, Richard Yuanzhe Pang, Julien Di-844
rani, Julian Michael, and Samuel R. Bowman. 2023.845
GPQA: A graduate-level google-proof q&a bench-846
mark. CoRR, abs/2311.12022.847

Morgane Rivière, Shreya Pathak, Pier Giuseppe848
Sessa, Cassidy Hardin, Surya Bhupatiraju, Léonard849
Hussenot, Thomas Mesnard, Bobak Shahriari,850
Alexandre Ramé, Johan Ferret, Peter Liu, Pouya851
Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos,852
Ravin Kumar, Charline Le Lan, Sammy Jerome, An-853
ton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan854
Girgin, Nikola Momchev, Matt Hoffman, Shantanu855
Thakoor, Jean-Bastien Grill, Behnam Neyshabur,856
Olivier Bachem, Alanna Walton, Aliaksei Severyn,857
Alicia Parrish, Aliya Ahmad, Allen Hutchison, Alvin858
Abdagic, Amanda Carl, Amy Shen, Andy Brock,859
Andy Coenen, Anthony Laforge, Antonia Pater-860
son, Ben Bastian, Bilal Piot, Bo Wu, Brandon861
Royal, Charlie Chen, Chintu Kumar, Chris Perry,862
Chris Welty, Christopher A. Choquette-Choo, Danila863
Sinopalnikov, David Weinberger, Dimple Vijayku-864
mar, Dominika Rogozinska, Dustin Herbison, Elisa865
Bandy, Emma Wang, Eric Noland, Erica Moreira,866
Evan Senter, Evgenii Eltyshev, Francesco Visin,867
Gabriel Rasskin, Gary Wei, Glenn Cameron, Gus868
Martins, Hadi Hashemi, Hanna Klimczak-Plucinska,869
Harleen Batra, Harsh Dhand, Ivan Nardini, Jacinda870
Mein, Jack Zhou, James Svensson, Jeff Stanway,871
Jetha Chan, Jin Peng Zhou, Joana Carrasqueira,872
Joana Iljazi, Jocelyn Becker, Joe Fernandez, Joost873
van Amersfoort, Josh Gordon, Josh Lipschultz,874
Josh Newlan, Ju-yeong Ji, Kareem Mohamed, Kar-875
tikeya Badola, Kat Black, Katie Millican, Keelin876

McDonell, Kelvin Nguyen, Kiranbir Sodhia, Kish 877
Greene, Lars Lowe Sjösund, Lauren Usui, Laurent 878
Sifre, Lena Heuermann, Leticia Lago, and Lilly Mc- 879
Nealus. 2024. Gemma 2: Improving open language 880
models at a practical size. CoRR, abs/2408.00118. 881

Sailor2 Team. 2024. Sailor2: Sailing in south-east asia 882
with inclusive multilingual llm. 883

Teven Le Scao, Angela Fan, Christopher Akiki, El- 884
lie Pavlick, Suzana Ilic, Daniel Hesslow, Roman 885
Castagné, Alexandra Sasha Luccioni, François Yvon, 886
Matthias Gallé, Jonathan Tow, Alexander M. Rush, 887
Stella Biderman, Albert Webson, Pawan Sasanka Am- 888
manamanchi, Thomas Wang, Benoît Sagot, Niklas 889
Muennighoff, Albert Villanova del Moral, Olatunji 890
Ruwase, Rachel Bawden, Stas Bekman, Angelina 891
McMillan-Major, Iz Beltagy, Huu Nguyen, Lucile 892
Saulnier, Samson Tan, Pedro Ortiz Suarez, Vic- 893
tor Sanh, Hugo Laurençon, Yacine Jernite, Julien 894
Launay, Margaret Mitchell, Colin Raffel, Aaron 895
Gokaslan, Adi Simhi, Aitor Soroa, Alham Fikri 896
Aji, Amit Alfassy, Anna Rogers, Ariel Kreisberg 897
Nitzav, Canwen Xu, Chenghao Mou, Chris Emezue, 898
Christopher Klamm, Colin Leong, Daniel van Strien, 899
David Ifeoluwa Adelani, and et al. 2022. BLOOM: 900
A 176b-parameter open-access multilingual language 901
model. CoRR, abs/2211.05100. 902

AI Singapore SEA-LION Team. 2024. Llama3 8b cpt 903
sea-lionv2.1 instruct. 904

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin 905
Schwenk, David Atkinson, Russell Authur, Ben 906
Bogin, Khyathi Chandu, Jennifer Dumas, Yanai 907
Elazar, Valentin Hofmann, Ananya Jha, Sachin Ku- 908
mar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ian 909
Magnusson, Jacob Morrison, Niklas Muennighoff, 910
Aakanksha Naik, Crystal Nam, Matthew Peters, Ab- 911
hilasha Ravichander, Kyle Richardson, Zejiang Shen, 912
Emma Strubell, Nishant Subramani, Oyvind Tafjord, 913
Evan Walsh, Luke Zettlemoyer, Noah Smith, Han- 914
naneh Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse 915
Dodge, and Kyle Lo. 2024. Dolma: an open corpus 916
of three trillion tokens for language model pretraining 917
research. In Proceedings of the 62nd Annual Meeting 918
of the Association for Computational Linguistics (Vol- 919
ume 1: Long Papers), pages 15725–15788, Bangkok, 920
Thailand. Association for Computational Linguistics. 921

Zayne Sprague, Xi Ye, Kaj Bostrom, Swarat Chaudhuri, 922
and Greg Durrett. 2024. Musr: Testing the limits of 923
chain-of-thought with multistep soft reasoning. In 924
The Twelfth International Conference on Learning 925
Representations, ICLR 2024, Vienna, Austria, May 926
7-11, 2024. OpenReview.net. 927

Yosephine Susanto, Adithya Venkatadri Hulagadri, 928
Jann Railey Montalan, Jian Gang Ngui, Xian Bin 929
Yong, Weiqi Leong, Hamsawardhini Rengara- 930
jan, Peerat Limkonchotiwat, Yifan Mai, and 931
William Chandra Tjhi. 2025. Sea-helm: South- 932
east asian holistic evaluation of language models. 933
Preprint, arXiv:2502.14301. 934

11

https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.48550/ARXIV.2406.17557
https://doi.org/10.48550/ARXIV.2406.17557
https://doi.org/10.48550/ARXIV.2406.17557
https://doi.org/10.48550/ARXIV.2406.17557
https://doi.org/10.48550/ARXIV.2406.17557
https://doi.org/10.18653/V1/2020.ACL-MAIN.170
https://doi.org/10.18653/V1/2020.ACL-MAIN.170
https://doi.org/10.18653/V1/2020.ACL-MAIN.170
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.48550/ARXIV.2311.12022
https://doi.org/10.48550/ARXIV.2311.12022
https://doi.org/10.48550/ARXIV.2311.12022
https://doi.org/10.48550/ARXIV.2408.00118
https://doi.org/10.48550/ARXIV.2408.00118
https://doi.org/10.48550/ARXIV.2408.00118
https://doi.org/10.48550/ARXIV.2211.05100
https://doi.org/10.48550/ARXIV.2211.05100
https://doi.org/10.48550/ARXIV.2211.05100
https://doi.org/10.48550/ARXIV.2211.05100
https://doi.org/10.48550/ARXIV.2211.05100
https://huggingface.co/aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct
https://huggingface.co/aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct
https://huggingface.co/aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct
https://doi.org/10.18653/v1/2024.acl-long.840
https://doi.org/10.18653/v1/2024.acl-long.840
https://doi.org/10.18653/v1/2024.acl-long.840
https://doi.org/10.18653/v1/2024.acl-long.840
https://doi.org/10.18653/v1/2024.acl-long.840
https://openreview.net/forum?id=jenyYQzue1
https://openreview.net/forum?id=jenyYQzue1
https://openreview.net/forum?id=jenyYQzue1
https://arxiv.org/abs/2502.14301
https://arxiv.org/abs/2502.14301
https://arxiv.org/abs/2502.14301


Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-935
bastian Gehrmann, Yi Tay, Hyung Won Chung,936
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi,937
Denny Zhou, and Jason Wei. 2023. Challenging938
big-bench tasks and whether chain-of-thought can939
solve them. In Findings of the Association for Com-940
putational Linguistics: ACL 2023, Toronto, Canada,941
July 9-14, 2023, pages 13003–13051. Association for942
Computational Linguistics.943

Sho Takase, Ryokan Ri, Shun Kiyono, and Takuya Kato.944
2024. Large vocabulary size improves large language945
models. CoRR, abs/2406.16508.946

Sailor Team. 2024. Sailor2: Sailing in south-east asia947
with inclusive multilingual llms.948

The Mosaic ML Team. 2021. composer. https://949
github.com/mosaicml/composer/.950

The Mosaic ML Team. 2022. Llm foundry. https:951
//github.com/mosaicml/llm-foundry.952

Shubham Toshniwal, Wei Du, Ivan Moshkov, Branislav953
Kisacanin, Alexan Ayrapetyan, and Igor Gitman.954
2024. Openmathinstruct-2: Accelerating AI for math955
with massive open-source instruction data. CoRR,956
abs/2410.01560.957

Ahmet Üstün, Viraat Aryabumi, Zheng Xin Yong, Wei-958
Yin Ko, Daniel D’souza, Gbemileke Onilude, Neel959
Bhandari, Shivalika Singh, Hui-Lee Ooi, Amr Kayid,960
Freddie Vargus, Phil Blunsom, Shayne Longpre,961
Niklas Muennighoff, Marzieh Fadaee, Julia Kreutzer,962
and Sara Hooker. 2024. Aya model: An instruction963
finetuned open-access multilingual language model.964
In Proceedings of the 62nd Annual Meeting of the965
Association for Computational Linguistics (Volume 1:966
Long Papers), ACL 2024, Bangkok, Thailand, August967
11-16, 2024, pages 15894–15939. Association for968
Computational Linguistics.969

Bin Wang, Zhengyuan Liu, Xin Huang, Fangkai Jiao,970
Yang Ding, AiTi Aw, and Nancy Chen. 2024a. Seae-971
val for multilingual foundation models: From cross-972
lingual alignment to cultural reasoning. In Proceed-973
ings of the 2024 Conference of the North American974
Chapter of the Association for Computational Lin-975
guistics: Human Language Technologies (Volume 1:976
Long Papers), NAACL 2024, Mexico City, Mexico,977
June 16-21, 2024, pages 370–390. Association for978
Computational Linguistics.979

Ke Wang, Nikolaos Dimitriadis, Guillermo Ortiz-980
Jiménez, François Fleuret, and Pascal Frossard.981
2024b. Localizing task information for improved982
model merging and compression. In Forty-first In-983
ternational Conference on Machine Learning, ICML984
2024, Vienna, Austria, July 21-27, 2024. OpenRe-985
view.net.986

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni,987
Abhranil Chandra, Shiguang Guo, Weiming Ren,988
Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max989
Ku, Kai Wang, Alex Zhuang, Rongqi Fan, Xiang Yue,990
and Wenhu Chen. 2024c. Mmlu-pro: A more robust991

and challenging multi-task language understanding 992
benchmark. CoRR, abs/2406.01574. 993

Chris Wendler, Veniamin Veselovsky, Giovanni Monea, 994
and Robert West. 2024. Do llamas work in english? 995
on the latent language of multilingual transformers. 996
In Proceedings of the 62nd Annual Meeting of the 997
Association for Computational Linguistics (Volume 1: 998
Long Papers), ACL 2024, Bangkok, Thailand, August 999
11-16, 2024, pages 15366–15394. Association for 1000
Computational Linguistics. 1001

Mitchell Wortsman, Peter J. Liu, Lechao Xiao, Katie E. 1002
Everett, Alexander A. Alemi, Ben Adlam, John D. 1003
Co-Reyes, Izzeddin Gur, Abhishek Kumar, Roman 1004
Novak, Jeffrey Pennington, Jascha Sohl-Dickstein, 1005
Kelvin Xu, Jaehoon Lee, Justin Gilmer, and Simon 1006
Kornblith. 2024. Small-scale proxies for large-scale 1007
transformer training instabilities. In The Twelfth In- 1008
ternational Conference on Learning Representations, 1009
ICLR 2024, Vienna, Austria, May 7-11, 2024. Open- 1010
Review.net. 1011

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yun- 1012
tian Deng, Radha Poovendran, Yejin Choi, and 1013
Bill Yuchen Lin. 2024. Magpie: Alignment data 1014
synthesis from scratch by prompting aligned llms 1015
with nothing. CoRR, abs/2406.08464. 1016

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, 1017
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan 1018
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao- 1019
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, 1020
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin 1021
Ma, Jianxin Yang, Jin Xu, Jingren Zhou, Jinze Bai, 1022
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Ke- 1023
qin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, 1024
Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize 1025
Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, 1026
Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, 1027
Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, 1028
Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing 1029
Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, 1030
Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, 1031
Zhifang Guo, and Zhihao Fan. 2024a. Qwen2 techni- 1032
cal report. CoRR, abs/2407.10671. 1033

Ziyi Yang, Fanqi Wan, Longguang Zhong, Tianyuan 1034
Shi, and Xiaojun Quan. 2024b. Weighted-reward 1035
preference optimization for implicit model fusion. 1036
CoRR, abs/2412.03187. 1037

Wei Jie Yeo, Teddy Ferdinan, Przemyslaw Kazienko, 1038
Ranjan Satapathy, and Erik Cambria. 2024. Self- 1039
training large language models through knowledge 1040
detection. In Findings of the Association for Compu- 1041
tational Linguistics: EMNLP 2024, Miami, Florida, 1042
USA, November 12-16, 2024, pages 15033–15045. 1043
Association for Computational Linguistics. 1044

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin 1045
Li. 2024. Language models are super mario: Absorb- 1046
ing abilities from homologous models as a free lunch. 1047
In Forty-first International Conference on Machine 1048
Learning, ICML 2024, Vienna, Austria, July 21-27, 1049
2024. OpenReview.net. 1050

12

https://doi.org/10.18653/V1/2023.FINDINGS-ACL.824
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.824
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.824
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.824
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.824
https://doi.org/10.48550/ARXIV.2406.16508
https://doi.org/10.48550/ARXIV.2406.16508
https://doi.org/10.48550/ARXIV.2406.16508
https://sea-sailor.github.io/blog/sailor2/
https://sea-sailor.github.io/blog/sailor2/
https://sea-sailor.github.io/blog/sailor2/
https://github.com/mosaicml/composer/
https://github.com/mosaicml/composer/
https://github.com/mosaicml/composer/
https://github.com/mosaicml/llm-foundry
https://github.com/mosaicml/llm-foundry
https://github.com/mosaicml/llm-foundry
https://doi.org/10.48550/ARXIV.2410.01560
https://doi.org/10.48550/ARXIV.2410.01560
https://doi.org/10.48550/ARXIV.2410.01560
https://doi.org/10.18653/V1/2024.ACL-LONG.845
https://doi.org/10.18653/V1/2024.ACL-LONG.845
https://doi.org/10.18653/V1/2024.ACL-LONG.845
https://doi.org/10.18653/V1/2024.NAACL-LONG.22
https://doi.org/10.18653/V1/2024.NAACL-LONG.22
https://doi.org/10.18653/V1/2024.NAACL-LONG.22
https://doi.org/10.18653/V1/2024.NAACL-LONG.22
https://doi.org/10.18653/V1/2024.NAACL-LONG.22
https://openreview.net/forum?id=DWT9uiGjxT
https://openreview.net/forum?id=DWT9uiGjxT
https://openreview.net/forum?id=DWT9uiGjxT
https://doi.org/10.48550/ARXIV.2406.01574
https://doi.org/10.48550/ARXIV.2406.01574
https://doi.org/10.48550/ARXIV.2406.01574
https://doi.org/10.48550/ARXIV.2406.01574
https://doi.org/10.48550/ARXIV.2406.01574
https://doi.org/10.18653/V1/2024.ACL-LONG.820
https://doi.org/10.18653/V1/2024.ACL-LONG.820
https://doi.org/10.18653/V1/2024.ACL-LONG.820
https://openreview.net/forum?id=d8w0pmvXbZ
https://openreview.net/forum?id=d8w0pmvXbZ
https://openreview.net/forum?id=d8w0pmvXbZ
https://doi.org/10.48550/ARXIV.2406.08464
https://doi.org/10.48550/ARXIV.2406.08464
https://doi.org/10.48550/ARXIV.2406.08464
https://doi.org/10.48550/ARXIV.2406.08464
https://doi.org/10.48550/ARXIV.2406.08464
https://doi.org/10.48550/ARXIV.2407.10671
https://doi.org/10.48550/ARXIV.2407.10671
https://doi.org/10.48550/ARXIV.2407.10671
https://doi.org/10.48550/ARXIV.2412.03187
https://doi.org/10.48550/ARXIV.2412.03187
https://doi.org/10.48550/ARXIV.2412.03187
https://aclanthology.org/2024.findings-emnlp.883
https://aclanthology.org/2024.findings-emnlp.883
https://aclanthology.org/2024.findings-emnlp.883
https://aclanthology.org/2024.findings-emnlp.883
https://aclanthology.org/2024.findings-emnlp.883
https://openreview.net/forum?id=fq0NaiU8Ex
https://openreview.net/forum?id=fq0NaiU8Ex
https://openreview.net/forum?id=fq0NaiU8Ex


Wenxuan Zhang, Hou Pong Chan, Yiran Zhao, Mahani1051
Aljunied, Jianyu Wang, Chaoqun Liu, Yue Deng,1052
Zhiqiang Hu, Weiwen Xu, Yew Ken Chia, Xin Li,1053
and Lidong Bing. 2024a. Seallms 3: Open founda-1054
tion and chat multilingual large language models for1055
southeast asian languages. CoRR, abs/2407.19672.1056

Xulang Zhang, Rui Mao, and Erik Cambria. 2024b.1057
Multilingual emotion recognition: Discovering the1058
variations of lexical semantics between languages. In1059
International Joint Conference on Neural Networks,1060
IJCNN 2024, Yokohama, Japan, June 30 - July 5,1061
2024, pages 1–9. IEEE.1062

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo,1063
Chien-Chin Huang, Min Xu, Less Wright, Hamid1064
Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmai-1065
son, Can Balioglu, Pritam Damania, Bernard Nguyen,1066
Geeta Chauhan, Yuchen Hao, Ajit Mathews, and1067
Shen Li. 2023. Pytorch FSDP: experiences on scal-1068
ing fully sharded data parallel. Proc. VLDB Endow.,1069
16(12):3848–3860.1070

Wenzhen Zheng, Wenbo Pan, Xu Xu, Libo Qin, Li Yue,1071
and Ming Zhou. 2024a. Breaking language barri-1072
ers: Cross-lingual continual pre-training at scale. In1073
Proceedings of the 2024 Conference on Empirical1074
Methods in Natural Language Processing, EMNLP1075
2024, Miami, FL, USA, November 12-16, 2024, pages1076
7725–7738. Association for Computational Linguis-1077
tics.1078

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan1079
Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma.1080
2024b. Llamafactory: Unified efficient fine-tuning1081
of 100+ language models. In Proceedings of the1082
62nd Annual Meeting of the Association for Compu-1083
tational Linguistics (Volume 3: System Demonstra-1084
tions), Bangkok, Thailand. Association for Computa-1085
tional Linguistics.1086

Chengzhi Zhong, Fei Cheng, Qianying Liu, Junfeng1087
Jiang, Zhen Wan, Chenhui Chu, Yugo Murawaki,1088
and Sadao Kurohashi. 2024. Beyond english-centric1089
llms: What language do multilingual language mod-1090
els think in? CoRR, abs/2408.10811.1091

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha1092
Brahma, Sujoy Basu, Yi Luan, Denny Zhou, and1093
Le Hou. 2023. Instruction-following evaluation for1094
large language models. CoRR, abs/2311.07911.1095

13

https://doi.org/10.48550/ARXIV.2407.19672
https://doi.org/10.48550/ARXIV.2407.19672
https://doi.org/10.48550/ARXIV.2407.19672
https://doi.org/10.48550/ARXIV.2407.19672
https://doi.org/10.48550/ARXIV.2407.19672
https://doi.org/10.1109/IJCNN60899.2024.10651409
https://doi.org/10.1109/IJCNN60899.2024.10651409
https://doi.org/10.1109/IJCNN60899.2024.10651409
https://doi.org/10.14778/3611540.3611569
https://doi.org/10.14778/3611540.3611569
https://doi.org/10.14778/3611540.3611569
https://aclanthology.org/2024.emnlp-main.441
https://aclanthology.org/2024.emnlp-main.441
https://aclanthology.org/2024.emnlp-main.441
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
https://doi.org/10.48550/ARXIV.2408.10811
https://doi.org/10.48550/ARXIV.2408.10811
https://doi.org/10.48550/ARXIV.2408.10811
https://doi.org/10.48550/ARXIV.2408.10811
https://doi.org/10.48550/ARXIV.2408.10811
https://doi.org/10.48550/ARXIV.2311.07911
https://doi.org/10.48550/ARXIV.2311.07911
https://doi.org/10.48550/ARXIV.2311.07911


A Appendix1096

A.1 Continued pre-training (CPT) data1097

Existing data: We utilize existing datasets as shown in Table 6 (HuggingFace Datasets).1098

Other data: As shown in Table 6 (the other data section), the listed datasets contain data from a diverse1099

range of domains, including news, books, articles, poems, etc.1100

Continued Pre-training Data
Source (HuggingFace Datasets) Languages Size (Billions of Tokens)
bigcode/the-stack-v2-dedup CODE 40
allenai/dolma EN 37.5
HuggingFaceFW/fineweb-edu EN 7.5
aisingapore/SEA-PILE-v1 SEA 47.58
aisingapore/SEA-PILE-v2 ID 7
Source (Others) Languages Size (Billions of Tokens)
VinBigData VI 16
WangChanBERTa TH 8.5
Others - EN EN 5
Others - SEA SEA 30.92

Table 6: List of datasets for the continued pre-training stage.

A.2 Stage 1 IFT data1101

Stage 1 IFT Datasets
Source (HuggingFace Datasets) Languages Size
BAAI/Infinity-Instruct EN 7,449,106
nvidia/OpenMathInstruct-2 EN 2,000,000

Table 7: List of datasets for Stage-1-IFT. For BAAI/Infinity-Instruct dataset, any conversation that originally ended
with a user turn has had that last turn removed.

A.3 Stage 2 IFT data1102

Existing data: We utilize existing datasets as shown in Table 9 (HuggingFace Datasets).1103

Synthetic data: As shown in Table 9 (the generated part), we describe how to formulate synthetic data as1104

follows1105

• qwen_gemma_synthetic datasets are generated first in English with Qwen 32B, utilizing an approach1106

similar to Magpie. Instructions are then translated into the target language with Gemma 2 27B.1107

• llama_gemma_synthetic datasets are generated first in English with Llama 3.1 70B, utilizing an1108

approach similar to Magpie (Xu et al., 2024). Instructions are then translated into the target language1109

with Gemma 2 27B.1110

• gemma_synthetic datasets are generated directly with Gemma 2 27B using Magpie (Xu et al., 2024).1111

• sea_multilingual_systemchat is a synthetic dataset translated with Gemma 2 27B from the English1112

systemchat dataset.1113

• rewritten_oasst is a dataset rewritten with Gemma 2 27B based on the English OASST dataset.1114

• rewritten_helpsteer is a dataset rewritten with Gemma 2 27B based on the English Helpsteer dataset.1115
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A.4 Helpfulness and preference alignment data 1116

As shown in Table 8, we use the princeton-nlp/gemma2-ultrafeedback-armorm as the source of the 1117

alignment data. We then further re-scored with the reward model, nvidia/Llama-3.1-Nemotron-70B- 1118

Reward to create the SEA version. In particular, generated-gemma2-27b-seapref-nemotron-70b takes 1119

prompts from seald, wangchan_thaiinstruct, and additional hand-written Southeast Asian cultural prompts 1120

collected from native speakers and then generates responses (with a varying temperature) from them with 1121

Gemma 2 27B. The responses are then scored with nvidia/Llama-3.1-Nemotron-70B-Reward, with the 1122

top-scoring response selected as chosen and vice versa, similar to princeton-nlp/gemma2-ultrafeedback- 1123

armorm. 1124

Preference Data
Source (HuggingFace Datasets) Languages Size
princeton-nlp/gemma2-ultrafeedback-armorm EN 61,510
Source (Generated) Languages Size
generated-gemma2-27b-seapref-nemotron-70b SEA 5,511

Table 8: List of preference datasets used for the alignment stage.
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Stage 2 IFT Datasets
Source (HuggingFace Datasets) Languages Size
BAAI/Infinity-Instruct^* EN 1,456,927
HuggingFaceTB/smoltalk EN 409,537
allenai/tulu-3-sft-personas-math EN 149,960
parinzee/seed-free-synthetic-instruct-thai-v1 TH 118,898
HuggingFaceTB/smoltalk EN 96,356
HuggingFaceTB/smoltalk EN 83,144
arcee-ai/EvolKit-75K EN 74,174
AI-MO/NuminaMath-TIR EN 72,441
Post-training-Data-Flywheel/AutoIF-instruct-61k EN 61,492
argilla/ifeval-like-data EN 56,339
HuggingFaceTB/smoltalk EN 53,342
ai2-adapt-dev/tulu_v3.9_wildjailbreak_decontaminated_50k EN 50,000
ai2-adapt-dev/tulu_v3.9_synthetic_finalresp_wildguardmixtrain_decontaminated_50k EN 50,000
allenai/tulu-3-sft-personas-math-grade EN 49,980
allenai/tulu-3-sft-personas-code EN 34,999
HuggingFaceTB/smoltalk EN 34,424
allenai/tulu-3-sft-personas-instruction-following EN 29,980
airesearch/WangchanThaiInstruct TH 25,014
allenai/tulu-3-sft-personas-algebra EN 20,000
arcee-ai/EvolKit-20k-vi VI 15,378
allenai/coconot EN 10,983
ai2-adapt-dev/tulu_v3.9_sciriff_10k EN 10,000
Source (Generated) Languages Size
qwen_gemma_synthetic_tamil TA 480,000
qwen_gemma_synthetic_thai TH 480,000
qwen_gemma_synthetic_indonesian ID 465,019
qwen_gemma_synthetic_vietnamese VI 465,019
gemma_synthetic_indonesian ID 458,149
gemma_synthetic_filipino TL 455,093
gemma_synthetic_viet VI 291,576
gemma_synthetic_tamil TA 276,314
gemma_synthetic_thai TH 186,339
gemma_synthetic_javanese JV 110,000
gemma_synthetic_sudanese SU 110,000
llama_gemma_synthetic_thai TH 88,920
llama_gemma_synthetic_tamil TA 88,920
llama_gemma_synthetic_vietnamese VI 88,920
llama_gemma_synthetic_javanese JV 88,920
llama_gemma_synthetic_indonesian ID 88,920
llama_gemma_synthetic_filipino TL 80,000
enrich_27k SEA 27,463
sea_multilingual_systemchat SEA 1,903
rewritten_oasst SEA 841
rewritten_helpsteer SEA 838

Table 9: List of datasets for Stage-2-IFT.
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