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Abstract
Low-bit integer training emerges as a promising
approach to mitigate the heavy burden during net-
work training by quantizing the weights, activa-
tions, and gradients. However, existing methods
cannot well achieve mixed-precision quantization
for low-bit training and are commonly limited
to INT8 precision. In this paper, we propose a
novel low-bit integer training framework that, for
the first time, achieves adaptive mixed-precision
allocation (AMPA) for weights, activations, and
gradients, and pushes the boundaries to a pre-
cision level below INT8. We develop a novel
magnitude-based sensitivity measurement with
regard to the quantization losses of weight, acti-
vation, and gradient quantization and the average
gradient magnitudes, which is demonstrated as an
upper bound of quantization influence in theory.
We further design a layer-wise precision update
strategy under observations on the quantization
losses and their effects on model performance in
low-bit training. Extensive experiments on differ-
ent backbones and datasets show that, compared
to INT8 quantization, the proposed method can
achieve more than 38% BitOPs reduction with a
tolerable loss below 2% in image classification,
image segmentation, and language modeling.

1. Introduction
In recent years, deep learning techniques have demonstrated
remarkable progress across various tasks. Nevertheless, the
success of deep neural networks (DNNs) originates from
their explosive volume of model parameters. The substantial
growth in computational demands and resource prerequi-
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Figure 1: Image classification with the proposed AMPA
low-bit training framework. For each dataset, the areas of
bubbles are positively correlated with BitOPs of training
the network. AMPA can save more than 38% BitOPs with
tolerable loss below 2% compared with INT8 training (Zhu
et al., 2020).

sites (Sevilla et al., 2022) poses unprecedented challenges
to the practical deployment of deep learning methods. To
mitigate this problem, network quantization has been widely
studied as a promising solution that alleviates computational
burdens without altering network architectures.

Network quantization can be employed in both inference
and training stages (i.e., inference quantization and training
quantization). Different from inference quantization that
quantizes the weights or activations for acceleration in de-
ployment (Jacob et al., 2018; Choi et al., 2018), training
quantization (Cambier et al., 2020; Fu et al., 2021) simulta-
neously projects gradients, weights, and activations into low-
precision representations during training. Since the back-
ward computation (backpropagation) consumes nearly twice
the computational cost of the forward computation (Zhao
et al., 2021), low-bit training is crucial to reduce resource
consumption and enable efficient training of DNNs. Com-
pared with low-bit floating-point (FP16/FP8) training, low-
bit integer training enjoys lower computation cost and better
efficiency on hardware. Recent attempts (Zhu et al., 2020;
Zhao et al., 2021) successfully maintain model performance
under INT8 training. In this paper, we explore integer train-
ing with further lower bits and equivalent performance.

DNNs could suffer from severely degraded performance
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when directly quantized into lower precisions than INT8 dur-
ing training. The idea of layer-wise mixed precision quan-
tization, typically adopted in inference quantization (Dong
et al., 2020; Tang et al., 2022), is a promising alterna-
tive. However, there are significant differences in mixed-
precision quantization during training. First, training quan-
tization should not introduce much computational overhead,
rendering mixed-precision quantization methods based on
solution-space search (Wu et al., 2018a; Elthakeb et al.,
2018) impractical. Second, gradients during training are
non-zero, making Hessian-based sensitivity evaluation meth-
ods (Dong et al., 2019; 2020) not effective. Third, the im-
pact of quantization evolves throughout the training process,
necessitating dynamic adjustments of bitwidths. (Zhang
et al., 2020) realized layer-wise mixed-precision gradients
by introducing a predefined threshold of distribution differ-
ence from quantization. However, the predefined threshold
cannot accommodate all models, and a more reasonable
sensitivity measurement for training quantization is needed.

In this paper, we propose a novel integer training framework
with layer-wise mixed-precision quantization of weights, ac-
tivations, and gradients. Different from (Zhang et al., 2020)
that uses a preset fixed threshold to determine the bitwidths
for different layers, we propose an adaptive sensitivity-based
scheme for layer-wise bitwidth allocation. Specifically, we
develop a novel magnitude-based sensitivity measurement
that involves the quantization losses associated with quan-
tized weights, activations, and gradients and the average
gradient magnitudes. We demonstrate via theoretical analy-
sis that the proposed measurements provide upper bounds
of the influence of the quantization loss without introducing
excessive computations.

Moreover, we design an adaptive layer-wise selection strat-
egy for multiple precisions under observations on the weight,
activation, and gradient quantization losses, and their dif-
ferent effects on model performance. Finally, we present
the Adaptive Mixed-Precision Allocation (AMPA) training
framework for integer training with an average precision
lower than INT8. Experimental results demonstrate that,
compared with INT8 quantization (Zhu et al., 2020), the pro-
posed framework can further reduce bit operations (BitOPs)
by 38% with a tolerable less than 2% performance loss on
various backbones and datasets as illustrated in Figure 1.
The contributions of this paper are summarized below.

1. To our best knowledge, we are the first to propose an
integer training framework that achieves Adaptive Mixed-
Precision Allocation (AMPA) for weights, activations, and
gradients with an average precision lower than INT8.

2. We develop a novel magnitude-based sensitivity measure-
ment for weight, activation, and gradient quantization in the
training stage and demonstrate it provides an upper bound
of the quantization influence in theory.

3. We develop a mixed-precision low-bit training method
based on the developed measurement and well-designed
layer-wise precision selection strategy and validate its effec-
tiveness with comprehensive experiments on various back-
bones and datasets.

2. Related Work
Inference Quantization. Different from network prun-
ing (Kim et al., 2022; Ding et al., 2023), inference quantiza-
tion quantizes the weights or activations of the trained neural
networks from full precision to lower-bit representations for
inference speedup. Representative works (Hubara et al.,
2016; Rastegari et al., 2016; Li et al., 2016) employ binary
or ternary bitwidths for weights and activations to accelerate
network inference. TQT (Jain et al., 2020) improves the for-
mer work and achieves near-floating point accuracy. Jacob
et al. (2018) develop a standard INT8 quantization scheme
that balances accuracy and inference latency.

Mixed Precision Quantization. Mixed precision quantiza-
tion involves allocating appropriate bit widths for different
layers or even rows within layers (Chang et al., 2021) and is
commonly utilized in inference quantization. Existing layer-
wise mixed precision quantization approaches can be clas-
sified into two main categories. The first category is based
on the solution space search. (Wu et al., 2018a) and (Yu
et al., 2020) employ the network architecture search method
to identify optimal bitwidths, while reinforcement learning
is adopted in (Wang et al., 2019; Elthakeb et al., 2018) to
determine the allocation scheme. Additionally, (Yang &
Jin, 2021) leverage continuous and differentiable bitwidths
to search the mixed precision. Another effective approach
involves using sensitivity evaluation to assign bitwidths.
Hessian matrix is adopted in (Dong et al., 2019; 2020; Yao
et al., 2021) to evaluate the layer sensitivity.

Training Quantization. There are three main categories
of methods in existing studies of low-bit training. The first
category utilizes low-bit floating point representations or
new data format for training (Wang et al., 2018; Mellempudi
et al., 2019; Cambier et al., 2020), which can achieve almost
lossless accuracy but sacrifices the acceleration performance
compared to integer quantization. The second category
quantizes the entire network with low-bit integers (Zhou
et al., 2016; Wu et al., 2018b; Yang et al., 2020) which
offers a higher compression ratio with significantly degraded
model performance compared to full precision models. The
third category focuses on quantizing only the convolutional
layers (Zhu et al., 2020; Zhao et al., 2021) or the linear
layers (Xi et al., 2023) in the model which can achieve a
good balance between model accuracy and compression
ratio. This paper is closest to the third category and designs
the adaptive mixed precision allocation training framework,
which is applicable to both convolutional and linear layers.
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3. Adaptive Mixed Precision Allocation for
Low-bit Integer Training

This section elaborates on the proposed adaptive mixed pre-
cision allocation (AMPA) framework for low-bit integer
training. We first introduce the preliminaries of quantization
and present the observation for the proposed framework.
Then, we propose the sensitivity measurement for weights,
activations, and gradients. Finally, we present the overall al-
location scheme and introduce the fair allocation threshold.

3.1. Preliminaries

Integer Quantization maps from a floating-point value to an
integer number. Uniform quantization is popular in network
quantization (Krishnamoorthi, 2018; Zhu et al., 2020). It
can be classified into symmetric quantization and asymmet-
ric quantization based on whether the zero points before
and after quantization are corresponding. The asymmetric
quantization of the full precision data df is expressed as:

d̂q = round

(
1

s
· clamp(df ,m,M) + z

)
, (1)

where clamp(·) is the clipping function, round(·) is the
rounding function, s = (M −m)/(2N − 1) is the scaling
factor, N is the bitwidth for quantization, and M and m
are the maximal and minimal clipping values respectively.
Nearest rounding is usually used for weight and activa-
tion quantization while stochastic rounding (Gupta et al.,
2015) is often adopted for the gradient quantization. The
de-quantization result is dq = (d̂q − z) · s. The symmetric
quantization obtains zeros for the zero-point z:

d̂q = round

(
1

s
· clamp(df ,−R,R)

)
, (2)

where R ∈ (0,max(|df |) is the maximal clipping value,
scaling factor is s = R/(2N−1 − 1). The de-quantization
result is dq = d̂q · s.

3.2. Observations for Layer-wise Bitwidth Selection

We begin with three observations on the characteristics of
low-bit training to motivate the layer-wise bitwidth selection
that increases from low-bits to high-bits.

Observation i): Quantization loss in different layers dur-
ing the training process. As illustrated in Figure 2, in the
same training epoch, the relative quantization loss varies
significantly in different layers. Moreover, for a given layer,
the gradient and weight quantization loss tend to increase
during training while there is no clear trend in the activa-
tion quantization. Overall, the quantization loss is different
across different layers and training stages.

Observation ii): Increasing bitwidths throughout train-
ing. We conduct preliminary experiments on the dataset
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Figure 2: The average quantization loss E(|xf − xq|/|xf |)
of (a) gradients, (b) weights, and (c) activations with full
INT8 quantization when training ResNet-20 on CIFAR-10.

CIFAR-10 by switching the weight, activation, and gradient
bitwidths from INT4 to INT8 at 40% of the training process
and from INT8 to INT4 at 60% of the training process, with
a total of 100 training epochs. As illustrated in Table 1,
utilizing lower bitwidths in the later stages has more impact
on the model performance. Overall, at different stages of
training, the network exhibits varying levels of tolerance to
the quantization loss.

Observation iii): Adjusting weights, activations, and gra-
dients in different numbers of layers. The data flow of
weights, activations, and gradients exhibit distinct character-
istics. We conduct preliminary experiments on the model
ResNet-20 and MobileNetV2 using CIFAR-10 with 100
epochs by adjusting the bitwidths of weights, activations,
and gradients from INT4 to INT8 at different time points.
Each row in Table 2 is obtained by fixing the other rows at
INT8. ‘Time Point = 0.5’ signifies changing the bitwidth
at the midpoint of the training process while ‘Time Point
= 1.0’ denotes maintaining INT4. The results presented
in Table 2 highlight the model’s heightened sensitivity to
gradients, with weight quantization exhibiting a relatively
smaller impact compared to activations and gradients. Over-
all, the influence of quantization loss of weights, activations,
and gradients vary with respect to the model performance.

3.3. Magnitude-based Sensitivity Measurements

Consider the training set of N -pair input data xi and cor-
responding label yi for supervised learning. We achieve
layer-wise quantization by minimizing the loss function L.

L =
1

N

N∑
i=1

f (xi, yi) . (3)

Following (Yao et al., 2021; Zhe et al., 2019), we assume
that the quantization of weights, activations, and gradients
in each layer influence the model independently. We first
show that the Hessian-based sensitivity measurement cannot
be employed for quantization in low-bit integer training and
then propose a magnitude-based sensitivity measurement
for weights, activations, and gradients.
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Table 1: Classification accuracy(%) by altering bitwidths
from INT4 to INT8 or from INT8 to INT4 on CIFAR-10.

ResNet-20 ResNet-32 MobileNetV2

INT4→INT8 90.75 91.74 92.95
INT8→INT4 89.52 89.97 90.90

Table 2: Classification accuracy(%) of ResNet-20 and Mo-
bileNetV2 under various time points to alter bitwidths
(INT4→INT8) of weights, activations and gradients.

Time Point ResNet-20 MobileNetV2
0.5 0.8 1.0 0.5 0.8 1.0

W 91.79 91.70 91.57 93.74 93.68 93.60
A 91.66 91.64 91.39 93.52 93.37 91.04
G 90.47 89.32 89.29 89.17 87.38 86.63

3.3.1. ANALYSIS ON HESSIAN-BASED SENSITIVITY
MEASUREMENT

According to (Dong et al., 2019; 2020), we consider the
Hessian-based sensitivity for one batch in training. To facil-
itate understanding, the symbols are used according to the
following rules: i) Generally, the subscripts f and q indicate
that it is full-precision or quantized, respectively, and ii)
d ∈ {w, a, g} means d is weight, activation or gradient.

The impact of quantizing dif into diq in the i-th layer on the
loss function ∆Li

d is

∆Li
d=L(d1q,· · ·, diq,· · ·, dnq )−L(d1q,· · ·, dif ,· · ·, dnq ). (4)

Hessian-based methods (Dong et al., 2019; 2020) consider
the Taylor expansion of ∆Li

d with regard to weights and
activations (i.e., d is w or a). Let us define ∆di = diq − dif .
For the i-th layer,

∆Li
d = gTdi

f
·∆di +

1

2
(∆di)THi∆di + o(∥∆di∥)3. (5)

For inference quantization, Hessian-based methods (Dong
et al., 2019; 2020) assume that a DNN is well trained such
that the gradients gdi

f
vanish. Thus, the second-order term

(∆di)THi∆di based on the Hessian Hi is selected as the
sensitivity measurement for any ith layer. Contrary to infer-
ence quantization, training quantization requires non-zero
gradients to update the low-bit weights and activations. The
first-order term gT

di
f
·∆di becomes dominant in ∆Li

d com-

pared with the second-order term (∆di)THi∆di (about the
order of 1e-2 for INT4 and 1e-4 for INT8). This fact raises
two problems on the Hessian-based sensitivity measurement
for training quantization as below.

i) Weight and activation quantization: A gradient-based
sensitivity measurement is necessarily required to allow

correct evaluation and fast computation of the quantization
impact. The estimation of the trace of the Hessian, such
as the Hutchinson algorithm (Dong et al., 2020), involves
much computation overload.
ii) Gradient quantization: Hessian-based sensitivity ne-
glects the gradient-based first-order term in Equation (5)
and is incapable of evaluating the layer-wise sensitivity of
gradient quantization.

To address these problems, we propose a novel sensitivity
measurement using the product of magnitudes of gradients
and quantization loss for weights, activations, and gradients
for layer-wise quantization during low-bit training.

3.3.2. MAGNITUDE-BASED SENSITIVITY
MEASUREMENT

We begin with Proposition 3.1 to demonstrate the impact of
quantization on the training loss.

Proposition 3.1. The following statements hold for layer-
wise quantization with the proposed magnitude-based sensi-
tivity measurement.

i) For weight or activation quantization (d is w or a) in the
i-th and j-th layers, ∆Li

d ≤ ∆Lj
d, if

gTdi
q
·∆di ≤ gT

dj
q
·∆dj . (6)

ii) For gradient quantization (d is g), ∆Li
g ≤ ∆Lj

g , if

gTwi
q
·∆gwi

q
≤ gT

wj
q
·∆gwj

q
. (7)

Proof. Please refer to Appendix A.1.

We then elaborate on the sensitivity measurement for quan-
tizing weights, activations, and gradients.

1) Sensitivity Measurement for Weights and Activations.
To efficiently estimate the upper bound and avoid computa-
tion overload, we use the Cauchy–Schwarz inequality:

∆Li
d ≤ ∥gTdi

q
∥2 · ∥∆di∥2 ≤ ||gTdi

q
||1 · ||∆di||1. (8)

For a fair comparison between layers, we divide the norm
terms by the parameter number ni

d to define the weight
sensitivity sid. The measurement is averaged over all the
batches in the dataset to get sid. The calculation of sid (d ∈
{w, a}) introduces few floating-point multiplications.

sid =
∥gTdi

q
∥1

ni
d

· ∥∆di∥1
ni
d

= E(|gTdi
q
|) ·E(|∆di|). (9)

2) Sensitivity Measurement for Gradients. Similar to
Equation (8), we have: ∆Li

g ≤ ∥gTwi
q
∥2 · η∥∆gwi

q
∥2. As we

only have access to ∆goi (gradient quantization loss before
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backward computation of the i-th layer), ∆gwi
q

needs further
calculation and is computed differently based on whether it
is a linear layer or a convolutional layer.

For the linear layers, the weight gradient deviation resulting
from the gradient quantization can be calculated with matrix
multiplication: ∆gwi

q
= ∆goi ·XT . For the convolutional

layers, the weight gradient deviation is calculated with the
convolution calculation: ∆gwi

q
= X′ ⊗ ∆goi . Through

the derivation in Appendix A.2, we arrive at Equation (10)
which applies to both linear layers and convolutional layers.
Notably, the terms on the right side of Equations (8) and (10)
are expanded into column vectors.

∆Li
g ≤ ∥gTwi

q
∥1 · η∥∆goi∥1 · ∥X∥1. (10)

Similarly, we divide the three norms in Equation (10) by the
parameter numbers to get the gradient sensitivity:

sig = E(|gTwi
q
|) ·E(|∆goi |) ·E(|X|). (11)

Algorithm 1 AMPA training framework.
Input: The initialized model, the number of epochs N , the
update interval Itv, the fair allocation threshold Thr.
Output: The trained model with mixed-precision weights
and activations.

1: Intialize the empty taboo lists TLw, TLa and TLg .
2: for i = 1 to N do
3: if i%Itv == 0 then
4: Record the quantization loss E(|∆wi|), E(|∆ai|)

and the activations E(|X|) in forward propagation.
5: Record the gradients E(|gwi

q

T |), E(|gai
q

T |) and
the gradient quantization loss E(|∆goi |) in the
backward propagation.

6: Calculate the average layer-wise sensitivity siw, sia
and sig over batches using Equation (9), (11).

7: Sort the layers based on the sensitivity siw, sia and
sig , respectively.

8: Delete layers in taboo lists from the sorted results.
9: Increase the bitwidths of top α%, β% and γ% lay-

ers by ∆bits sorted by siw, sia and sig respectively.
10: Add layers with selection times reaching Thr into

the corresponding taboo list.
11: end if
12: end for

3.4. Mixed Precision Allocation Scheme

Overall Allocation Scheme. The comprehensive scheme is
outlined in Algorithm 1 and visually depicted in Figure 3.
Initially, all layer bitwidths are set to INT4. At regular in-
tervals of every Itv epochs, the bitwidths of weights, activa-
tions and gradients are updated. Specifically, the bitwidths

of the top α%, β%, and γ% most sensitive layers are el-
evated to higher levels (INT4 → INT6, INT6 → INT8).
Here, α, β and γ are the update layer ratio hyperparameters
that enable control over the compression rate. According
to the varying degrees of influence brought about by the
weight, activation and gradient quantization loss (Table 2),
it is reasonable to set α < β < γ.

Threshold for Fair Allocation. In specific training occa-
sions, certain layers may keep occupying the opportunities
for increasing bitwidths even after reaching INT8 (which is
the highest bitwidth in the scheme). This situation can result
in some other sensitive layers not being selected due to their
relatively lower ranking. To ensure a fair allocation across
layers, we introduce a threshold for the maximum selection
times, denoted as Thr. When a layer has been selected for
increasing bitwidths for Thr times after it reaches INT8, it
will be included in the ‘taboo’ list, indicated in the bottom
right corner of Figure 3. Consequently, it will no longer be
eligible for selection to increase bitwidths.

4. Experiments
In this section, we begin with conducting experiments to
validate the effectiveness of the proposed sensitivity mea-
surement. Then, we explain how to determine the layer
update ratio. Subsequently, we evaluate the efficacy of the
proposed framework across different networks using various
datasets. Finally, ablation studies and acceleration results
are given to verify the feasibility of the method.

4.1. Evaluation Metrics

In our experiments, (a) the model performance and (b) the
BitOPs reduced ratio (RR) are used as evaluation metrics.
BitOPs (Yang & Jin, 2021) serves as an effective measure
to approximate computation costs. The ‘BOPS’ denotes the
BitOPs of training quantized parts that occupy most of the
original networks’ MACs.

For the multiplication of a single weight value of kw bits
and a single activation value of ka bits, the BitOPs is kwka.
Under the same bitwidth, the BitOPs for the forward calcu-
lation, weight gradient computation, and activation gradient
computation are approximately equal. For example, as the
forward calculation of convolutional layers in ResNet-20
on CIFAR-10 has 40.11M MACs, the mean BitOPs for one
forward and backward computation under full INT8 training
is about 40.11M × 8× 8× 3 = 7.70G.

4.2. Verification of the Proposed Measurement

We assess the effectiveness of the sensitivity measurement
as follows: (i) Firstly, we compare our proposed measure-
ment with the distribution-based measurement |

∑n
i |xf | −∑n

i |xq| |/
∑n

i |xf | used in (Zhang et al., 2020) and the
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Figure 3: Overview of the proposed AMPA training framework. kiw, kia, and kig denote the bitwidths of weight, activation,
and gradient quantization in the i-th layer respectively. The layer-wise sensitivity of weights, activations, and gradients is
calculated every Itv epochs. The layers with the top sensitivity will increase the bitwidths by ∆ which is 2 here. If a layer is
selected for a certain number of times after reaching INT8, it is added to the taboo list and leaves chances to other layers.

Table 3: Comparison between the distribution-based mea-
surement used in (Zhang et al., 2020), Hessian matrix
trace (Dong et al., 2020) and our proposed measurement.

Model Dataset Measurement Acc (%) RR (%)

ResNet-20 CIFAR-10

Dist 92.25 41.19
Hessian 91.35 50.42

Ours(w/o Mag) 91.97 43.84
Ours(w Mag) 92.26 41.59

ResNet18 CIFAR-100

Dist 74.26 41.48
Hessian 73.72 52.73

Ours(w/o Mag) 73.73 46.05
Ours(w Mag) 74.53 44.42

MobileNetV2 CIFAR-100

Dist 70.12 34.54
Hessian 67.51 52.45

Ours(w/o Mag) 69.71 42.42
Ours(w Mag) 70.32 44.66

Table 4: Verification of the scaling for the weight and acti-
vation sensitivity derivation.

Model Dataset AIRw (%) AIRa (%)

ResNet-20
CIFAR-10

83.75 55.42
ResNet-56 93.97 79.53
MobileNetV2 83.50 56.50
ResNet-18 CIFAR-100 81.17 54.67
MobileNetV2 87.41 57.55

Hessian trace measurement Tr(∇2
w/aL(w/a))/n proposed

in (Dong et al., 2020). The former is used for mixed gradi-
ent bitwidths, while the latter measurement is employed for
mixed bitwidths selection for weights and activations. The
results of this comparison are illustrated in Table 3. Using
Hessian trace measurement for w/a results in a consistent se-
lection of some layers, which leads to a higher compression
rate but the performance loss is significant. Our measure-
ment can achieve satisfactory compression rates with better

performance in most cases. Moreover, when only the quan-
tization loss is used as the measurement, there will be a
noticeable performance decline with a close reduction ratio,
manifesting the effectiveness of the magnitude factor of the
gradients and activations.

(ii) Next, we compare the gTwi
q
·∆wi with siw = E(|gTwi

q
|) ·

E(|∆wi|) for weight quantization and compare the gTai
q
·∆ai

with sia = E(|gTai
q
|) · E(|∆ai|) for activation quantization.

We calculate the average intersection ratio (AIR) of the top
30% sensitive layers calculated by our measurement and the
measurement before scaling. For example, if the average
intersection ratio is 50%, it means that on average half of the
top 30% sensitive layers obtained by the two measurements
are consistent during training. As depicted in Table 4, the
AIR surpasses 50% across all test scenarios, serving as a
clear indication of the rationality of inequality scaling and
the effectiveness of the sensitivity measurement.

4.3. Selection for the Layer Update Ratio

This section elucidates the process of selecting the layer
update ratio α%, β%, and γ%. Before training, the range
of the BitOPs reduced ratio (RR) can be estimated based
on α, β, γ, Itv, and the computation cost of each layer.
The theoretical maximum BitOPs reduction can be achieved
by increasing the layer bitwidths with the least impact on
BitOPs at each update. For example, the BitOPs reduction
ratio of training ResNet-20 on CIFAR-10 with N = 100
epochs is in the range of 35.42%–53.09% under α = 10,
β = 20, γ = 30, Itv = 5; and 16.55%–31.42% under
α = 20, β = 40, γ = 60, Itv = 5.

Empirically, α : β : γ = 1 : 2 : 3 is a suitable choice and
the model performance is not sensitive to the value selection
of α, β, and γ as shown in Appendix D. On a new task, we
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Table 5: Top-1 classification accuracy (%) on CIFAR-10.

Model Method Top-1 Acc (%) BOPS RR (%)FP32 Quant

ResNet-20
UI8 92.32 91.95 7.70G 0DAI8 92.35 92.76

AMPA 92.63 92.26 4.50G 41.59

MobileNetV2
UI8 94.39 93.38 16.20G 0DAI8 94.73 94.37

AMPA 95.01 94.62 8.78G 45.79

InceptionV3
UI8 94.89 95.00 650.1G 0DAI8 95.00 95.21

AMPA 95.58 94.56 370.2G 43.06

ResNet-32 UI8 - 93.75 13.14G 0
AMPA 93.74 93.39 8.08G 38.49

ResNet-56 UI8 - 94.04 24.00G 0
AMPA 94.23 93.63 14.21G 40.81

ViT UI8 - 83.23 117.8G 0
AMPA 83.68 82.34 76.13G 35.37

can set the Itv = 0.05, Thr = 3, α : β : γ = 1 : 2 : 3.
The values of α, β, and γ can be adjusted according to the
expected compression rate.

4.4. Training Results

The proposed adaptive mixed precision allocation (AMPA)
training framework employs consistent hyperparameters:
the fair allocation threshold is Thr = 3, the update
frequency(Itv/N ) is set to 0.05 and the layer update ra-
tio α, β, and γ are 10,20 and 30 for weights, activations and
gradients respectively. The bitwidths are selected among
INT4, INT6, and INT8. We employ the symmetric uni-
form quantization for weights and gradients while adopting
asymmetric uniform quantization for activations.

4.4.1. IMAGE CLASSIFICATION

We experiment with ResNet-18/20/32/56 (He et al., 2016),
MobileNetV2 (Sandler et al., 2018), InceptionV3 (Szegedy
et al., 2016), and ViT (Dosovitskiy et al., 2021) on
CIFAR-10/100, and ResNet-18/34/50 (He et al., 2016), Mo-
bileNetV2 (Sandler et al., 2018) and ViT-S (Dosovitskiy
et al., 2021) on ImageNet.

CIFAR-10. The training process consists of 200 epochs.
As shown in Table 5, we achieve satisfactory accuracy com-
pared to UI8 (Unified INT8) (Zhu et al., 2020) and DAI8
(Distributive adaptive INT8) (Zhao et al., 2021) with accu-
racy loss less than 1%.

CIFAR-100. The number of training epochs is also set
to 200. Since the top-1 accuracy for CIFAR-100 is not
provided in (Zhu et al., 2020; Zhao et al., 2021), we repro-
duce UI8 (Zhu et al., 2020) to obtain the top-1 accuracy on
CIFAR-100. The proposed method achieves comparable
top-1 accuracy with more than 40% BitOPs reduction. The

Table 6: Top-1 classification accuracy (%) on CIFAR-100.

Model Method Top-1 Acc (%) BOPS RR (%)FP32 Quant

ResNet-18 UI8 - 75.49 106.3G 0
AMPA 75.83 74.53 59.08G 44.42

MobileNetV2 UI8 - 70.91 12.00G -
AMPA 70.57 70.32 6.64G 44.66

InceptionV3 UI8 - 78.46 650.1G -
AMPA 79.01 78.71 371.5G 42.85

Table 7: Top-1 classification accuracy (%) on ImageNet.

Model Method Top-1 Acc (%) BOPS RR (%)FP32 Quant

ResNet-18

WAGEUBN 68.70 67.40
325.1G 0UI8 70.30 69.67

DAI8 70.22 70.21
AMPA 70.52 69.58 171.0G 47.40

ResNet-34

WAGEUBN 71.99 68.50
681.5G 0UI8 73.68 73.29

DAI8 73.46 73.40
AMPA 73.57 72.55 375.9G 44.84

ResNet-50

WAGEUBN 74.66 69.07
761.9G 0UI8 76.60 76.34

DAI8 76.50 76.59
AMPA 76.60 74.94 451.7G 40.71

MobileNetV2

WAGEUBN 71.99 68.50
51.44G 0UI8 72.39 71.20

DAI8 72.44 71.92
AMPA 72.19 69.62 29.83G 42.01

ViT-S UI8 - 76.92 803.7G 0
AMPA 79.90 75.54 489.6G 39.08

training curves are shown in Appendix B and the bitwidth
change processes are listed in Appendix C.

ImageNet. The number of training epochs is 100 for
ResNet-18/34/50, 200 for MobileNetV2, and 300 for ViT-
Small. Table 7 presents the top-1 accuracy of different
quantized methods on ImageNet. It is worth mentioning
that, despite DAI8 (Zhao et al., 2021) yields enhanced model
performance, it relies on channel-wise gradient quantiza-
tion and requires two separate quantizations for weight and
activation gradient calculations. Our method attains satis-
factory accuracy while achieving a higher compression ratio
compared to full INT8 quantization.

Notably, after the training, we obtain a mixed precision
model with weight storage reduced by more than 40% and
smaller inference BitOPs with a reduction of over 30%, as
shown in Table 8.

4.4.2. IMAGE SEGMENTATION

We further conduct experiments on the image segmenta-
tion task. We train the popular segmentation network U-

7
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Table 8: The reduction of weight average bitwidths and
inference BitOPs for the trained model.

Model Dataset Method W-bits Inf BOPS

ResNet-20 CIFAR-10 UI8 8.0 2.57G
AMPA 4.20 1.62G (-36.76%)

MobileNetV2 CIFAR-100 UI8 8.0 4.00G
AMPA 4.21 2.43G (-39.30%)

ResNet-50 ImageNet UI8 8.0 254.0G
AMPA 4.41 168.5G (-33.66%)

Table 9: Dice similarity score (%) for image segmentation
using U-Net on Dsb2018 and Kvasir.

Dataset Method Dice (%) BOPS RR (%)FP32 Quant

Dsb2018 UI8 - 91.41 1240.5G -
AMPA 91.72 91.24 734.1G 40.82

Kvasir UI8 - 83.58 2203.2G -
AMPA 83.60 82.97 1125.2G 48.93

Net (Ronneberger et al., 2015) on the Dsb2018 dataset and
Kvasir dataset (Jha et al., 2020) with 100 epochs. The image
size is chosen at 96 and 128 for the two datasets, respectively.
Dice similarity coefficient (DSC) is utilized to measure the
model performance. Table 9 shows that our mixed precision
training method achieves acceptable performance with over
40% reduction of BitOPs on the image segmentation task.

4.4.3. LANGUAGE MODELING

For the language modeling task, we choose the widely
known Transformer network (Vaswani et al., 2017) and train
it on the Wikitext-2 (Merity et al., 2017), Wikitext-103 (Mer-
ity et al., 2017) and Penn Treebank datasets (Marcus et al.,
1993) for 100 epochs. The transformers used consist of 6
layers for Wikitext-2, 16 layers for Wikitext-103 and 12
layers for Penn Treebank. Table 10 shows that the proposed
method achieves satisfactory performance with about 40%
reduction of BitOPs on the language modeling task.

4.5. Ablation Studies

Effects of the mixed precision allocation scheme. We
compare the proposed mixed precision training framework
with full INT6 quantization. As presented in Figure 4, our
method outperforms full INT6 quantization, which results in
a noticeable drop in performance. Additionally, our method
works for any bitwidth setting, including mixed INT4 and
INT8 quantization, which ensures broader compatibility. By
setting the update Itv 0.1 for Mixed-48, we can achieve
acceptable results as indicated in Figure 4.

Effects of the update interval. The update interval Itv in
the training framework (Algorithm 1) impacts the compres-

Table 10: Perplexity for language modeling using trans-
former on Wikitext-2, Wikitext-103 and Penn Treebank.

Dataset Method PPL BOPS RR (%)FP32 Quant

Wikitext-2 UI8 - 120.36 349.2G 0
AMPA 119.20 121.34 198.6G 43.14

Wikitext-103 UI8 - 25.56 2950.57G 0
AMPA 25.00 27.68 1575.90G 46.59

Penn Treebank UI8 - 97.25 698.5G 0
AMPA 96.67 97.33 422.6G 39.50
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Figure 4: Comparison between full INT6 training and our
mixed precision allocation method on CIFAR-10.

sion rate. In Table 11, ‘Update Itv’ refers to dividing the
interval by the total number of epochs: Itv/N . Table 11
vividly shows that too low update frequency will signifi-
cantly impair the model performance and too high update
frequency will yield a low compression rate. An interval of
0.05 appears to provide a balanced trade-off.

Effects of the layer update ratio. The proportion of up-
dated layers that increase bitwidths in comparison to all
layers influences the compression rate. Different layer up-
date ratios are assigned for weights, activations, and gra-
dients, denoted as α%, β%, and γ% respectively. From
Table 12, it is evident that setting α > β > γ is harmful to
the model performance. Additionally, overly small or large
update ratios are unfavorable, leading to performance degra-
dation or compression rate reduction respectively. α = 10,
β = 20, γ = 30 can strike a good balance between the
model performance and compression rate.

Effects of the fair allocation threshold. As illustrated in
Table 13, in some networks like ResNet-56, the absence of
a fair allocation threshold (Thr = ∞) leads to substantial
performance degradation or even training crashes, manifest-
ing the necessity of the fair allocation threshold. Moreover,
directly incorporating the INT8 layer into the taboo list
(Thr = 0) results in a notable reduction of the reduced ratio.
Thr = 3 achieves a better trade-off than 1 and 5. A more
comprehensive ablation study can be found in Appendix E.
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Table 11: Effects of the update interval Itv in the framework.

Model Dataset Update Itv Acc (%) RR (%)

ResNet-20 CIFAR-10
0.02 92.55 18.24
0.05 92.26 41.59
0.10 91.77 55.67

ResNet-18 CIFAR-100
0.02 75.16 21.94
0.05 74.53 44.42
0.10 NaN 61.06

MobileNetV2 CIFAR-100
0.02 70.31 20.34
0.05 70.32 44.66
0.10 69.37 57.66

Table 12: Effects of the layer update ratio α, β and γ in the
training framework.

Model Dataset α β γ Acc (%) RR (%)

ResNet-20 CIFAR-10

30 20 10 91.07 42.34
5 10 15 91.58 61.94
10 20 30 92.26 41.59
20 40 60 92.30 28.18

ResNet-18 CIFAR-100

30 20 10 NaN 50.47
5 10 15 72.33 63.63
10 20 30 74.53 44.42
20 40 60 74.58 27.40

MobileNetV2 CIFAR-100

30 20 10 69.33 44.13
5 10 15 69.30 58.57
10 20 30 70.32 44.66
20 40 60 70.31 30.59

Table 13: Effects of the fair allocation threshold. Thr = ∞
denotes without ‘fair allocation threshold’.

Model Dataset Thr Acc (%) RR (%)

ResNet-56 CIFAR-10

0 93.40 30.45
1 93.27 35.92
3 93.63 40.81
5 NaN 43.88
∞ NaN 46.64

MobileNetV2 CIFAR100

0 70.53 36.00
1 70.32 40.82
3 70.32 44.46
5 70.19 46.73
∞ 70.04 50.48

4.6. Acceleration Results

We simulate the training process on the FPGA device with
the proposed AMPA training framework. Table 14 illus-
trates the results of applying our method and full INT8
training (Zhu et al., 2020) to train ResNet-20 on CIFAR-
10. The batch size is 64 and the FPGA chip is selected
as xc7vx485tffg1157. Overall, our method can achieve a
19.16% latency reduction compared to INT8 training.

Table 14: Training acceleration of our method on ResNet-20
compared with full INT8 training (Zhu et al., 2020).

conv0 conv8 conv15 Overall

Forward 7.11% 26.51% 27.43% 23.36%
Backward 5.12% 18.84% 21.76% 17.06%

5. Conclusion
In this paper, we present the novel adaptive mixed precision
allocation (AMPA) integer training framework based on the
observed characteristics of low-bit training. We put forward
the effective layer-wise magnitude-based sensitivity mea-
surements for the weight, activation, and gradient quantiza-
tion respectively. The layer-wise bitwidths are adaptively
updated at intervals based on the sensitivity comparison.
The proposed method achieves satisfactory performance
with a much more compression rate compared to full INT8
training. Comprehensive experiments across various models
and datasets confirm the versatility of our method.
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A. Proof of Proposition 3.1 and Equation (10)

A.1. Proof of Proposition 3.1

(a) For the quantization of d ∈ {w, a} in the i-th layer dif → diq = dif +∆di, ∆Li
d can be expressed as:

∆Li
d = L(· · · , dif +∆di, · · · )− L(· · · , dif , · · · ). (12)

By applying Taylor’s expansion, we can have Equation (13) where Hi denotes the Hessian matrix of the i-th layer:

∆Li
d = gTdi

f
·∆di +

1

2
∆di

T
Hi∆di + o(∥∆di∥)3. (13)

In the training process, considering gdi
f

is not at zero and the quantization loss ∆di is a small quantity (about the order of
1e-2 for INT4 and 1e-4 for INT8), the contribution of second-order term is negligible. By adopting the straight-through
estimator (STE) (Bengio et al., 2013), we have gdi

q
≈ gdi

f
. Therefore, Equation (6) holds.

(b) The gradient quantization loss in i-th layer, denoted as goif → goiq = goif +∆goi initially affects the weight update and
then influences the loss function. As a result, the loss deviation∆Li

g can be represented as:

∆Li
g = L(· · · , wi

q + η(gwi
f
+∆gwi

q
), · · · )

−L(· · · , wi
q + ηgwi

f
, · · · ). (14)

Similar to Equation (13), and considering that we can neglect the once update under a small learning rate, we have:

∆Li
g ≈ gTwi

q+ηgwi
q

· η∆gwi
q
≈ gTwi

q
· η∆gwi

q
. (15)

As a result, Equation (7) is valid.

A.2. Proof of Equation (10)

i) In the linear layers, supposing that the weight is denoted as W ∈ Rn×m, the activation as X ∈ Rm×1 and the output as
O ∈ Rn×1, the weight gradient deviation caused by the gradient quantization can be calculated with ∆gwi

q
= ∆goi ·XT .

This yields:

∆Li
g ≤ ||gTwi

q
|| · η||∆goi ·XT || = ||gTwi

q
|| · η

√√√√ n∑
j=1

m∑
k=1

(∆g2
oij
X2

k)

≤ ||gTwi
q
|| · η

n∑
j=1

m∑
k=1

|∆goij ||Xk| = ||gTwi
q
|| · η

n∑
j=1

|∆goij | ·
m∑

k=1

|Xk|

≤
∑

|gTwi
q
| · η

n∑
j=1

|∆goij | ·
m∑

k=1

|Xk|.

(16)

ii) For the convolutional layer, let us consider the weight denoted as W ∈ RF×F , the activation as X ∈ RH1×W1 , the
output as O ∈ RH2×W2 . The weight gradient deviation is calculated with ∆gwi

q
= X′ ⊗∆goi . For ∆gwi

q
, it is easy to have:

||∆gwi
q
|| ≤

F∑
j=1

F∑
k=1

|∆gwi
qjk

| = ||X11∆goi11 +X12∆goi12 + · · · ||+ ||X12∆goi11 +X13∆goi12 + · · · ||+ · · ·

≤ ||X11∆goi11 ||+ ||X12∆goi12 ||+ · · ·+ ||X12∆goi11 ||+ ||X13∆goi12 ||+ · · · .

(17)

The occurrence times of Xjk in the right-hand term of Equation (17) is dependent on the convolution operation. The
middle element XH/2,W/2 has the most existing times which depend on the filter size F and the stride S. Only when the
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convolution X′ ⊗∆gio is a 1*1 convolution, does the number of occurrence times of Xjk reach H2 ×W2. Therefore, it
holds:

||∆gwi
q
|| ≤

H1∑
j=1

W1∑
k=1

H2∑
s=1

W2∑
t=1

|Xjk||∆goist | =
H1∑
j=1

W1∑
k=1

|Xjk|
H2∑
s=1

W2∑
t=1

|∆goist |. (18)

The impact of the quantization on the loss function ∆L can be formulated as:

∆L ≤ ||gTwi
q
|| · η

H1∑
j=1

W1∑
k=1

|Xjk|
H2∑
s=1

W2∑
t=1

|∆goist | ≤
∑

|gTwi
q
| · η

H1∑
j=1

W1∑
k=1

|Xjk|
H2∑
s=1

W2∑
t=1

|∆goist |. (19)

We quantize the linears layers in the models like Transformer, or quantize the convolutional layers in the models like
ResNet-18. In our proposed scheme, there is no sensitivity comparison between linear layers and convolutional layers.

B. Training Curves
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Figure 5: The training curves of INT8 training and Mixed-468 training on (a) CIFAR-10 and (b) CIFAR-100.

Figure 5 shows the training curve of the INT8 training and our proposed Mixed-468 training. It can be observed that the two
curves are generally close, and there is a small accuracy degradation for Mixed-468 compared to INT8 training. This further
illustrates the feasibility of our approach.

C. Bitwidth Change Process
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(b) Activations
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Figure 6: The bitwidth change process (INT4 → INT6, INT6 → INT8) of (a) weights, (b) activations, and (c) gradients
through training ResNet-20 on CIFAR-10.
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Figure 7: The bitwidth change process (INT4 → INT6, INT6 → INT8) of (a) weights, (b) activations, and (c) gradients
through training ResNet-56 on CIFAR-10.
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Figure 8: The bitwidth change process (INT4 → INT6, INT6 → INT8) of (a) weights, (b) activations, and (c) gradients
through training MobileNetV2 on CIFAR-10.
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Figure 9: The bitwidth change process (INT4 → INT6, INT6 → INT8) of (a) weights, (b) activations, and (c) gradients
through training InceptionV3 on CIFAR-10.
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Figure 10: The bitwidth change process (INT4 → INT6, INT6 → INT8) of (a) weights, (b) activations, and (c) gradients
through training ResNet-18 on CIFAR-100.
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Figure 11: The bitwidth change process (INT4 → INT6, INT6 → INT8) of (a) weights, (b) activations, and (c) gradients
through training MobileNetV2 on CIFAR-100.

Figure 6-11 show the bitwidth change processes changing from INT4 to INT6 to INT8. The value of dividing the interval
Itv by the total number of epochs N is 0.05. It can be seen from Figure 6-11 that the gradient bitwidths exhibit an earlier
change, and weight bitwidths have a comparatively slower change. This pattern is consistent with our precision update
strategy where the update layer ratios satisfy α < β < γ. Moreover, the weight bitwidths in the shallower layers of the
network are increased in the relatively earlier training stage. In some deeper layers, the weight bitwidths maintain INT4
throughout the training process.

Figure 12-14 illustrate the bitwidth change processes changing from INT4 to INT8. The value of dividing interval Itv by
the total number of periods N is 0.1. Similarly, gradient bitwidths change relatively earlier and weight bitwidths change
relatively slower.
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Figure 12: The bitwidth change process (INT4 → INT8) of (a) weights, (b) activations, and (c) gradients through training
ResNet-32 on CIFAR-10.
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Figure 13: The bitwidth change process (INT4 → INT8) of (a) weights, (b) activations, and (c) gradients through training
MobileNetV2 on CIFAR-10.

15



AMPA: Adaptive Mixed Precision Allocation for Low-Bit Integer Training

0 25 50 75 100 125 150 175 200
Training Epochs

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

W
ei

gh
t B

itw
id

th Layer 1
Layer 8
Layer 26
Layer 46
Layer 69
Layer 90

(a) Weights

0 25 50 75 100 125 150 175 200
Training Epochs

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Ac
tiv

at
io

n 
Bi

tw
id

th

Layer 1
Layer 8
Layer 26
Layer 46
Layer 69
Layer 90

(b) Activations

0 25 50 75 100 125 150 175 200
Training Epochs

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Gr
ad

ie
nt

 B
itw

id
th Layer 1

Layer 8
Layer 26
Layer 46
Layer 69
Layer 90

(c) Gradients

Figure 14: The bitwidth change process (INT4 → INT8) of (a) weights, (b) activations, and (c) gradients through training
InceptionV3 on CIFAR-10.

D. Selection of the layer update ratio α, β, and γ

Table 15: Effects of the value selection of α, β, and γ

Model Dataset Itv/N 0.05 0.05 0.05 0.05 0.05 0.05

ResNet-20 CIFAR-10

α 10 10 10 10 10 15
β 15 20 25 20 25 20
γ 25 30 30 40 40 30

Acc(%) 91.84 92.26 92.07 92.67 92.18 91.96
RR(%) 46.83 41.59 41.43 40.89 39.09 38.89

MobileNetV2 CIFAR-100

α 10 10 10 10 10 15
β 15 20 25 20 25 20
γ 25 30 30 40 40 30

Acc(%) 70.12 70.32 70.42 70.75 70.38 70.32
RR(%) 48.81 44.66 43.85 42.50 41.71 41.48

Table 15 shows that, under different values of α : β : γ, the gap of model performance is 0.83% (ranging from 91.84% to
92.67%) for ResNet-20 on CIFAR-10 and 0.63% (ranging from 70.12% to 70.75%) for MobileNetV2 on CIFAR-100. These
results demonstrate that the ratio α : β : γ does not evidently affect model performance. Remarkably, we set α : β : γ to
1:2:3 without specifically tuning the model (note that we can achieve better accuracy with α : β : γ = 1 : 2 : 4).
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E. Ablation Studies Results

Table 16: Effects of the update interval Itv in the training framework.

Model Dataset Update Freq (Itv/N ) Acc (%) RR (%)

ResNet-20 CIFAR-10
0.02 92.55 18.24
0.05 92.17 41.89
0.10 91.77 55.67

ResNet-32 CIFAR-10
0.02 93.30 13.22
0.05 93.39 38.49
0.10 92.33 52.48

MobileNetV2 CIFAR-10
0.02 94.91 21.42
0.05 94.62 45.79
0.10 93.96 58.69

ResNet-18 CIFAR-100
0.02 75.16 21.94
0.05 74.53 44.42
0.10 NaN 61.06

MobileNetV2 CIFAR-100
0.02 70.31 20.34
0.05 70.32 44.66
0.10 69.37 57.66

Table 16-18 provide a more comprehensive presentation of the results in Table 11-13. Table 16 shows that too long update
interval (Thr/N = 0.10) will significantly impair the model performance and too short update interval (Thr/N = 0.02)
will yield a low compression rate. A balanced trade-off is achieved at Thr/N = 0.05.

Table 17: Effects of the layer update ratio α, β and γ in the training framework.

Model Dataset α β γ Acc (%) RR (%)

ResNet-20 CIFAR-10

30 20 10 91.07 42.34
5 10 15 91.58 61.94
10 20 30 92.26 41.59
20 40 60 92.30 28.18

ResNet-56 CIFAR-10

30 20 10 92.51 39.68
5 10 15 93.05 55.43
10 20 30 93.63 40.81
20 40 60 93.88 26.67

MobileNetV2 CIFAR-10

30 20 10 93.02 45.05
5 10 15 93.86 60.84
10 20 30 94.62 45.79
20 40 60 94.71 30.81

ResNet-18 CIFAR-100

30 20 10 NaN 50.47
5 10 15 72.33 63.63
10 20 30 74.53 44.42
20 40 60 74.58 27.40

MobileNetV2 CIFAR-100

30 20 10 69.33 44.13
5 10 15 69.30 58.57
10 20 30 70.32 44.66
20 40 60 70.31 30.59

Table 17 demonstrates that setting α > β > γ harms the model performance. Additionally, too small layer update ratio can
lead to performance degradation, while too large layer update ratio can significantly reduce the compression rate. α = 10,
β = 20, γ = 30 is a good balanced choice.
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Table 18: Effects of the fair allocation threshold. Thr = ∞ denotes without ’fair allocation threshold’.

Model Dataset Thr Acc (%) RR (%)

ResNet-20 CIFAR-10

0 92.01 37.13
1 92.10 39.80
3 92.26 41.59
5 92.25 43.82
∞ 92.12 45.10

ResNet-56 CIFAR-10

0 93.40 30.45
1 93.27 35.92
3 93.63 40.81
5 NaN 43.88
∞ NaN 46.64

MobileNetV2 CIFAR-10

0 94.33 36.93
1 94.88 41.41
3 94.62 45.79
5 94.41 48.47
∞ 94.51 50.82

ResNet-18 CIFAR-100

0 74.43 39.71
1 74.16 41.86
3 74.53 44.42
5 74.09 45.94
∞ 74.06 47.15

MobileNetV2 CIFAR-100

0 70.53 36.00
1 70.32 40.82
3 70.32 44.46
5 70.19 46.73
∞ 70.04 50.48

As illustrated in Table 18, in some networks like ResNet-56 and ResNet-18, the absence of a fair allocation threshold
(Thr = ∞) will lead to substantial performance degradation or even training crashes, manifesting the necessity of the fair
allocation threshold. Moreover, directly incorporating the INT8 layer into the taboo list (Thr = 0) results in a notable
reduction of the reduced ratio.

Table 19: Effects of different quantization granularity in the proposed method.

Model Dataset Granularity Acc (%) RR (%)

ResNet-20 CIFAR-10 block-wise 92.22 35.86
layer-wise 92.26 41.59

ResNet-56 CIFAR-10 block-wise 93.31 37.30
layer-wise 93.63 40.81

MobileNetV2 CIFAR-10 block-wise 94.56 42.26
layer-wise 94.62 45.79

ResNet-18 CIFAR-100 block-wise 74.28 37.50
layer-wise 74.53 44.42

MobileNetV2 CIFAR-100 block-wise 70.19 40.81
layer-wise 70.32 44.66

The block-wise bitwidth allocation is also compatible with the proposed mixed-precision allocation. Table 19 compares the
training results of block-wise and layer-wise allocation. It can be observed that layer-wise allocation can achieve higher
performance at a higher compression rate. Additionally, considering that some models may not be appropriately divided into
blocks, we select layer-wise bitwidth allocation in our method.
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