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Abstract

Distributionally Robust Optimization (DRO), as a popular method to train robust models
against distribution shift between training and test sets, has received tremendous attention
in recent years. In this paper, we propose and analyze stochastic algorithms that apply to
both non-convex and convex losses for solving Kullback—Leibler divergence constrained DRO
problem. Compared with existing methods solving this problem, our stochastic algorithms
not only enjoy competitive if not better complexity independent of sample size but also just
require a constant batch size at every iteration, which is more practical for broad applications.
We establish a nearly optimal complexity bound for finding an e-stationary solution for
non-convex losses and an optimal complexity for finding an e-optimal solution for convex
losses. Empirical studies demonstrate the effectiveness of the proposed algorithms for solving
non-convex and convex constrained DRO problems.

1 Introduction

Large-scale optimization of DRO has recently garnered increasing attention due to its promising performance
on handling noisy labels, imbalanced data and adversarial data (Namkoong & Duchi, [2017; |Zhu et al.| [2019;
Qi et al.| 2020a; |Chen & Paschalidis, [2018]). Various primal-dual algorithms can be used for solving various
DRO problems (Rafique et al, |2021; [Nemirovski et all 2009). However, primal-dual algorithms inevitably
suffer from additional overhead for handling a n dimensionality dual variable, where n is the sample size.
This is an undesirable feature for large-scale deep learning, where n could be in the order of millions or even
billions. Hence, a recent trend is to design dual-free algorithms for solving various DRO problems (Qi et al.,
2021; |Jin et al., [2021} [Levy et al.l {2020)).

In this paper, we provide efficient dual-free algorithms solving the following constrained DRO problem, which
are still lacking in the literature,

ili — XoD(p,1/n), 1
vIvrélllfl\/{pEA D(pl/n)<p}zp 0D(p.1/n) W

where w denotes the model parameter, W is closed convex set, A, = {p € R" : > p; = 1,p; > 0}
denotes a n-dimensional simplex, ¢;(w) denotes a loss function on the i-th data, D(p,1/n) = > p;log(p;n)
represents the Kullback—Leibler (KL) divergence measure between p and uniform probabilities 1/n € R™,
and p is the constraint parameter, and A\g > 0 is a small constant. A small KL regularization on p is added
to ensure the objective in terms of w is smooth for deriving fast convergence.

There are several reasons for considering the above constrained DRO problem. First, existing dual-free
algorithms are not satisfactory (Qi et al.l |2021} [Jin et all 2021; |Levy et all 2020; |Hu et al.l |2021). They are
either restricted to problems with no additional constraints on the dual variable p except for the simplex
constraint (Qi et al., [2021} Jin et al., [2021)), or restricted to convex analysis or have a requirement on the
batch size that depends on accuracy level (Levy et al., |2020; Hu et al., [2021). Second, the Kullback—Leibler
divergence measure is a more natural metric for measuring the distance between two distributions than
other divergence measures, e.g., Euclidean distance. Third, compared with KL-regularized DRO problem
without constraints, the above KL-constrained DRO formulation allows it to automatically decide a proper
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regularization effect that depends on the optimal solution by tuning the constraint upper bound p. The
question to be addressed is the following:

Can we develop stochastic algorithms whose oracle complexity is optimal for both conver and non-convex
losses, and its per-iteration complexity is independent of sample size n without imposing any requirements
on the (large) batch size in the meantime?

We address the above question by (i) deriving an equivalent primal-only formulation that is of a compositional
form; (ii) designing two algorithms for non-convex losses and extending them for convex losses; (iii) establishing
an optimal complexity for both convex and non-convex losses. In particular, for a non-convex and smooth
loss function ¢;(w), we achieve an oracle complexity of O(1/ 63 for finding an e-stationary solution; and
for a convex and smooth loss function, we achieve an oracle complexity of O(1/¢?) for finding an e-optimal
solution. We would like to emphasize that these results are on par with the best complexities that can be
achieved by primal-dual algorithms (Huang et al., 2020; [Namkoong & Duchi, |2016]). But our algorithms have
a per-iteration complexity of O(d), which is independent of the sample size n. The convergence comparison
of different methods for solving is shown in Table

To achieve these results, we first convert the problem (1) into an equivalent problem:

i in F(w,\) := Al — —_— A= Xo)p- 2
i iy, 7O ) g(zp( N )T @
=
By considering x = (w',\)" € R%! as a single variable to be optimized, the objective function is a
compositional function of x in the form of f(g(x)), where g(x) = [)\, LS Lexp (@)} € R? and
f(g) = g1log(ga) + g1p. However, there are several challenges to be addressed for achieving optimal
complexities for both convex and non-convex loss functions ¢;(w). First, the problem F'(x) is non-smooth in
terms of x given the domain constraint w € W and A > A\g. Second, the outer function f(g)’s gradient is
non-Lipschtiz continuous in terms of the second coordinate g, if A is unbounded, which is essential for all
existing stochastic compositional optimization algorithms. Third, to the best of our knowledge, no optimal
complexity in the order of O(1/€?) has been achieved for a convex compositional function except for |Zhang
& Lan| (2021), which assumes f is convex and component-wisely non-decreasing and hence is not applicable

to (2).

To address the first two challenges, we derive an upper bound for the optimal A assuming that ¢;(w) is bounded
for w € W), i.e., A € [Xo, A], which allows us to establish the smoothness condition of F(x) and f(g). Then we
consider optimizing F(x) = F(x) + dx(x), where dx(x) = 0if x € X = {x = (w ,\)T :w e W, X € [\, \]}.
By leveraging the smoothness conditions of F' and f, we design stochastic algorithms by utilizing a recursive
variance-reduction technique to compute a stochastic estimator of the gradient of F'(x), which allows us to
achieve a complexity of O(1/€®) for finding a solution X such that E[dist(0, JF(X))] < e. To address the third
challenge, we consider optimizing F),(x) = F(x) + u|/x||?/2 for a small u. We prove that F},(x) satisfies a
Kurdyka-t.ojasiewicz inequality, which allows us to boost the convergence of the aforementioned algorithm
to enjoy an optimal complexity of O(1/€?) for finding an e-optimal solution to F(x). Besides the optimal
algorithms, we also present simpler algorithms with worse complexity, which are more practical for deep
learning applications without requiring two backpropagations at two different points per iteration as in the
optimal algorithms.

2 Related Work

DRO springs from the robust optimization literature (Bertsimas et al. 2018; [Ben-Tal et al., 2013) and
has been extensively studied in machine learning and statistics (Namkoong & Duchi, 2017; |Duchi et al.,
2016; |Staib & Jegelkal, [2019; [Deng et al. 2020; |Qi et al., [2020b; Duchi & Namkoong, |2021)), and operations
research (Rahimian & Mehrotral 2019; Delage & Ye, 2010). Depending on how to constrain or regularize the
uncertain variables, there are constrained DRO formulations that specify a constraint set for the uncertain
variables, and regularized DRO formulations that use a regularization term in the objective for regularizing

1O omits a logarithmic dependence over e.
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Table 1: Summary of algorithms solving KL-constrained DRO problem. Complexity represents the oracle
complexity for achieving E[dist(0, dF(x))] < € or other first-order stationarity convergence for the non-convex
setting and E[F'(x) — F'(x.)] < € for the convex setting. Per Iter Cost denotes the per-iteration computational
complexity. The algorithm styles include primal-dual (PD), primal only (P), and compositional (COM). “-"

means not available in the original paper.

Setting Algorithms Reference Complexity | Batch Size | Per Iter Cost | Style
PG-SMD2?| (Rafique et al.|[2021) O(1/€%) O(1) O(n+d) PD
Nomn-conves AccMDA (Huang et al.| 2020) O(1/€3) o) O(n+d) PD
Dual SGM (Levy et al.|[2020) - O(1) O(d) P

SCDRO This work O(l/ef‘) o) O(d) COM

ASCDRO O(1/€3) O(1) O(d) COM
FastDROP| (Levy et al.[[2020) O(1/€%) O(1/e) o(4) P
Convex SPD (Namkoong & Duchil 2016) O(1/e%) o) O(n+d) PD
Dual SGM (Levy et al.||2020) 0O(1/€?) o) O(d) P

RSCDRO o o(1/ée o o(d COM

RASCDRO This work 0%1?8% 08 ogdi coM

the uncertain variables (Levy et al., [2020)). [Duchi et al.|(2016) showed that minimizing constrained DRO with
f-divergence including a y2-divergence constraint and a KL-divergence constraint, is equivalent to adding
variance regularization for the Empirical Risk Minimization (ERM) objective, which is able to reduce the
uncertainty and improve the generalization performance of the model.

Primal-Dual Algorithms. Many primal-dual algorithms designed for the min-max problems can be directly
applied to optimize the constrained DRO problem. The algorithms proposed in (Nemirovski et al.| [2009;
Juditsky et al.| 2011} [Yan et al.l [2019; Namkoong & Duchil 2016} [Yan et all|2020; [Song et al., 2021; |Alacaoglu
et al., 2022)) are applicable to solving when /£ is a convex function. Recently, Rafique et al.| (2021) and
Yan et al.| (2020) proposed non-convex stochastic algorithms for solving non-convex strongly convex min-max
problems, which are applicable to solving when £ is a weakly convex function or smooth. Many primal-dual
stochastic algorithms have been proposed for solving non-convex strongly concave problems with a state of
the art oracle complexity of O(1/€%) for finding a stationary solution (Huang et al., 2020} [Luo et al., [2020;
Tran-Dinh et all 2020). However, the primal-dual algorithms require maintaining and updating an O(n)
dimensional vector for updating the dual variable.

Constrained DRO. Recently, [Levy et al.|(2020) proposed sample independent algorithms based on gradient
estimators for solving a group of DRO problems in the convex setting. To be more specific, they achieved a
convergence rate of O(1/€?) for the y2-constrained /regularized and CVaR-constrained convex DRO problems
and the batch size of logarithmically dependent on the inverse accuracy level O(log(1/¢)) with the help of
multi-level Monte-Carlo (MLMC) gradient estimator. For the KL-constrained DRO objective and other
more general setting, they achieve a convergence rate of O(1/€) under a Lipschitz continuity assumption
on the inverse CDF of the loss function and a mini-batch gradient estimator with a batch size in the order
O(1/¢) (please refer to Table 3 in [Levy et al. (2020))). In addition, Levy et al. (2020]) also proposed a simple
stochastic gradient method for solving the dual expression of the DRO formulation, which is called Dual
SGM. In terms of convergence, they only discussed the convergence guarantee for the y2-regularized and
CVaR penalized convex DRO problems (cf. Claim 3 in their paper). However, there is still gap for proving
the convergence rate of Dual SGM for non-convex KL-constrained DRO problems due to similar challenges
mentioned in the previous section, in particular establishing the smoothness condition in terms of the primal
variable and the Lagrangian multipliers (denoted as x, v, 7 respectively in their paper). This paper makes
unique contributions for addressing these challenges by (i) removing 1 in Dual SGM and deriving the box
constraint for our Lagrangian multiplier A for proving the smoothness condition; (ii) establishing an optimal
complexity in the order of O(1/€®) in the presence of non-smooth box constraints, which, to the best of our
knowledge, is the first time for solving a non-convex constrained compositional optimization problem.

2PG-SMD2 refers to PG-SMD algorithm under Assumption D2 in [Rafique et al.| (2021)).
3FastDRO is name of the GitHub repository of [Levy et al.|(2020), and we use the name “FastDRO” to refer to the algorithm
based on mini-batch gradient estimator in [Levy et al.| (2020).
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Wang et al.| (2021)) studies the Sinkhorn distance constraint, a variant of Wasserstein distance based on
entropic regularization. An efficient batch gradient descent with a bisection search algorithm has been
proposed to obtain a near-optimal solution with an arbitrarily small sub-optimality gap. However, no
non-asymptotic convergence results are established in their paper. Duchi & Namkoong| (2021)) developed a
convex DRO framework with f-divergence constraints to improve model robustness. The author developed
the finite-sample minimax upper and lower bounds and the non-asymptotic convergence rate of O(1/4/n), and
provided the empirical studies on real distributional shifts tasks with existing interior point solver (Udell et al.,
2014)) and gradient descent with backtracking Armijo line-searches (Boyd et al.,|2004)). However, no stochastic
algorithms that directly optimize the considered constrained DRO with non-asymptotic convergence rates are
provided in their paper.

Regularized DRO. DRO with KL divergence regularization objective has shown superior performance for
addressing data imbalanced problems (Qi et al.l [2021} 2020a; [Li et al.l [2020} 2021). |Jin et al.| (2021]) proposed
a mini-batch normalized gradient descent with momentum that can find a first-order e stationary point
with an oracle complexity of O(1/e?) for KL-regularized DRO and x? regularized DRO with a non-convex
loss. They solve the challenge that the loss function could be unbounded. |Qi et al.| (2021) proposed online
stochastic compositional algorithms to solve KL-regularized DRO. They leveraged a recursive variance
reduction technique (STORM (Cutkosky & Orabonal [2019)) to compute a gradient estimator for the model
parameter w only. They derived a complexity of 5(1 /€3) for a general non-convex problem and improved it
to O(1/(ue)) for a problem that satisfies an p-PL condition. |Qi et al.| (2020a)) reports a worse complexity for
a simpler algorithm for solving KIL-regularized DRO. |Li et al.[ (2020; [2021]) studied the effectiveness of KL
regularized objective on different applications, such as enforcing fairness between subgroups, and handling
the class imbalance.

Compositional Functions and DRO. The connection between compositional functions and DRO formu-
lations have been observed and leveraged in the literature. |[Dentcheva et al. (2017 studied the statistical
estimation of compositional functionals with applications to estimating conditional-value-at-risk measures,
which is closely related to the CVaR constrained DRO. However, they do not consider stochastic optimization
algorithms. To the best of our knowledge, |Qi et al| (2021)) was the first to use stochastic compositional
optimization algorithms to solve KL-regularized DRO problems. Our work is different in that we solve
KL-constrained DRO problems, which is more challenging than KL-regularized DRO problems. The benefits
of using compositional optimization for solving DRO include (i) we do not need to maintain and update a
high dimensional dual variable as in the primal-dual methods (Rafique et al., |2021)); (i) we do not need to
worry about the batch size as in MLMC-based stochastic methods (Levy et al., [2020; Hu et al.| [2021)).

3 Preliminaries

In this section, we introduce notations, definitions and assumptions. We show that is equivalent to in

Section [F|in Appendix. Notations: Let || - || denotes the Euclidean norm of a vector or the spectral norm of
a matrix. And x = (w',\)T € R¥*L g;(x) = exp(L;V)) and g(x) = Eiwp[exp(@)] where D denotes the

training set and ¢ denotes the index of the sample randomly generated from D. Let fy(-) = Alog(-) + Ap,
and Vfy(g) = % denotes the gradient of f in terms of g. Let Iy (-) denote an Fuclidean projection onto
the domain X. Let [T] = {1,...,T} and 7 ~ [T] denotes a random selected index. We make the following

standard assumptions regarding to the problem .
Assumption 1. There exists R, G, C, and L such that

(a) The domain of model parameter W is bounded by R, i.e., for all w € W, we have ||w| < R.
(b) £;(w) is L-smooth, i.e., ||Vli(w1) — Vi (wa)|| < L||wy — wal|, Ywi, wa € W, i~ D.

(c) L;(w) is G-Lipschitz continuous function and bounded by C, i.e., |V{i(w)|| < G and |¢;(w)] < C for
allweW and i~ D.

(d) There exists a positive constant A < oo and an initial solution (w1, A1) such that F(wq, A1) —

min min F(w,A) < A.
WEW A> Ao
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Assumption 2. Let o4, oy, be positive constants and 0? = max{og,0vg}. For i ~ D, assume that
Elllgi(x) — g’ < 07, E[|Vgi(x) — Vg(x)||*] < 0%, -

Remark: Assumption |l] (a), i.e., the boundness condition of W is also assumed in [Levy et al.| (2020), which
is mainly used for convex analysis. Assumption b)7 (¢), i.e., the Lipstchiz continuity and smoothness of loss
function, and the variance bounds for g; and its gradient in Assumption 2 can be derived from Assumption
1 (b), such that E[||g;(x) — 9(x)|1”] < E[llg:(x)|]*] < exp(57), and E[|Vg;(x) — Vg(x)[*] < E[[[Vgi(x)|]’] <

2
()Xp(%)(G2 + %

However, F(w, ) is not necessarily smooth in terms of x = (w',\)T if A is unbounded. To address this
concern, we prove that optimal X is indeed bounded.

Lemma 1. The optimal solution of the dual variable \* to the problem (@ is upper bounded by A= X+ C/p,

where C' is the upper bound of the loss function and p is the constraint parameter.

Thus, we could constrain the domain of A in the DRO formulation with the upper bound A , and obtain
the following equivalent formulation:

min min_Alog (711 iexp (&(AW)» + . (3)

WEW \o<A<A

The upper bound A guarantees the smoothness of F(w, \) and the smoothness of fy(-), which are critical for
the proposed algorithms to enjoy fast convergence rates.

Lemma 2. F(w,)\) is Lr-smooth for any w € W and X € [\o, \], where Ly = S\Lg +2L,+ ALy, + 1+ A\
Ly and Ly, are constants independent of sample size n and explicitly derived in Lemma@ .

Below, we let X = {x|w € W, Ao < A < A}, 6x(x) =0 if x € X, and dx(x) = oo if x ¢ X. The problem
is equivalent to :

min F(x) := F(x) + 0x(x), (4)

xERA+1

Since F' is non-smooth, we define the regular subgradient as follows.

Definition 1 (Regular Subgradient). Consider a function ® : R® — R and ®(X) is finite at a point X. For a
vector v € R™, v is a reqular subgradient of ® at X, written v € 0®(x), if

_ <) — v (x — %

Jim inf O(x) —P(x) —v' (x—Xx)

- > 0.
X—X ||X—XH -

Since F(x) is differentiable, we use dF(x) = VF(x) + ddx(x) (see Exercise 8.8 in Rockafellar & Wets
(1998)) in the analysis. Recall the definition of subgradient of a convex function F' which is denoted by OF.
When F(x) is convex, we have dF(x) = F(x) (see Proposition 8.2 in [Rockafellar & Wets| (1998)). The
dist(0, F (x)) measures the distance between the origin and the regular subgradient set of F at x. The oracle
complexity is defined below:

Definition 2 (Oracle Complexity). Let € > 0 be a small constant, the oracle complezity is defined as the
number of processing samples z in order to achieve E[dist(0,0F(x))] < € for a non-convex loss function or
E[F(x) — F(x4)] < € for a convez loss function.

4We would like to point out that the variance bound and the smoothness constant Ly are exponentially dependent on the
problem parameters, so are these constants in some other stochastic methods solving constrained DRO, like Dual SGM in |Levy
et al.| (2020).
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4 Stochastic Constrained DRO with Non-convex Losses

In this section, we present two stochastic algorithms for solving . The first algorithm is simpler yet
practical for deep learning applications. The second algorithm is an accelerated one with a better complexity,
which is more complex than the first algorithm.

Algorithm 1 SCDRO(Xl, Vi,U1,81,M1, Tl) Algorithm 2 ASCDRO(Xl, Vi,U1,81,M1, Tl)
1: Input: wy € W, A\ > Ao, x1 = (W], A1) 1: Input: w; € W, A1 > Ao, X1 = (W], A1) "
2: Initialization: Draw a sample £&; ~ D, and calcu- 2: Initialization: Draw a sample & ~ D, and calcu-
late s1 = exp(4;(w1)/A1), late s1 = exp(4;(w1)/A1),
vi =V (51)Vwgi(x1)) € R v1 = Vwgi(x1) € R¢
ur = Vi, (s1)Vagi(x1) +1og(s1) +p €R ur = Vygi(x1) €R
3: fort=1,---,T do 3: fort=1,---,T do
4. Update x441 = Iy (x; — nz¢) 4:  Update x411 = [y (x; — nz;), where z; is given
5:  Draw a sample §; ~ D in
6:  Let sip1 = (1 — B)st + Bgi(Xt+1) Draw a sample & ~ D
7. Update viy1,ury1 according to Update s¢41, Viy1, U1 according to

end for
return: (X.,v,, ur,s;), where 7 ~ [T

8: end for
9: return: (X,,V,,ur,S;), where 7 ~ [T]

4.1 Basic Algorithm: SCDRO

A major concern of the algorithm design is to compute a stochastic gradient estimator of the gradient of
F(x). At iteration t, the gradient of F(x;) is given by
VwF(xt) = V1, (9(x¢)) Vwg(xt) (5)
VaF(x¢) = VI, (9(x:)) Vag(xe) + log(g(x¢)) + p.
Both Vg(x:) and Vyg(x;) can be estimated by unbiased estimator denoted by Vg;(x;). The concern lies at
how to estimate g(x;) inside V f, (). The first algorithm SCDRO is applying existing techniques for two-level
compositional function. In particular, we estimate g(x;) by a sequence of s;, which is updated by moving
average s; = (1 — 8)s;—1 + £g;(x¢). Then we substitute g(x;) in Vi F(x¢) and V\F(x;) with s;, and invoke
the following moving average to obtain the gradient estimators in terms of w; and A, respectively,

vi = (1= B)vi_1 + BV, (5¢) Vwgi(x¢) (6)
up = (1= Blug—1 + BV fx, (s1)Vagi(x¢) + log(se) + p).
Finally we complete the update step of x; by x;41 = Iy (x; — nz¢), where z; = (v ,u) "

We would like to point out the moving average estimator for tracking the inner function g(w) is widely used
for solving compositional optimization problems (Wang et al.l 2017 |Qi et al., 2021}; |Zhang & Xiaol [2019;
Zhou et al., 2019). Using the moving average for computing a stochastic gradient estimator of a compositional
function was first used in the NASA method proposed in |Ghadimi et al.| (2020)). The proposed method
SCDRO is presented in Algorithm [I] It is similar to NASA but with a simpler design on the update of x;;1.
We directly use projection after an SGD-tyle update. In contrast, NASA uses two steps to update x;11. As
a consequence, NASA has two parameters for updating x;;1 while SCDRO only has one parameter 7 for
updating x¢41. It is this simple change that allows us to extend SCDRO for convex problems in the next
section. Below, we present the convergence rate of our basic algorithm SCDRO for a non-convex loss function.

Theorem 1. Suppose the Assumption and @ hold, and set B = %,n = %. Then after running
A — 2 L2 K
Algorz'thmT iterations, we have E[dist(0, 0F(x,))?] < (62402 + 280A)L—\/% 4 20Lp2

Remark: Theorem [I|shows that SCDRO achieves a complexity of O(1/€*) for finding an e-stationary point,
i.e., E[dist(0,0F (xg))] < € for a non-convex loss function. Note that NASA (Ghadimi et al., |2020) enjoys the
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same oracle complexity but for a different convergence measure, i.e., E[|ly(x,z) — x> + ||z — VF(x)||?] < €
for a returned primal-dual pair (x,z), where y(x,z) = [[,[x —z]. We can see that our convergence
measure is more intuitive. In addition, we are able to leverage our convergence measure to establish the
convergence for convex functions by using Kurdyka-fojasiewicz (KL) inequality and the restarting trick as
shown in next section. In contrast, such convergence for NASA is missing in their paper. Compared with
stochastic primal-dual methods (Rafique et al.; 2021} |Yan et al., [2020) for the min-max formulation , their
algorithms are double looped and have the same oracle complexity for a different convergence measure, i.e.,
E[dist(0, 0F (x,))?] < 72|x — x.||?] < € for some returned solution x, where x, is a reference point that is not
computable. Our convergence measure is stronger as we directly measure E[dist(0, 0F(x,))?] on a returned
solution x,. This is due to that we leverage the smoothness of F(-).

4.2 Accelerated Algorithm: ASCDRO

Our second algorithm presented in Algorithm [2|is inspired by [Qi et al.| (2021) for solving the KL-regularized
DRO by leveraging a recursive variance reduced technique (i.e., STORM) to estimate g(w;) and Vg(wy;) for
computing Vy F(x;) and V\F(x;) in . In particular, we use v; for tracking Vg(x;), use u; for tracking
Vg(x:), and use s; for tracking g(x;), which are updated by:
vi = Vwgi(xt) + (1 = B)(vi-1 — Vwgi(xt-1))
up = Viagi(xe) + (1 = B)(w—1 — Vagi(xe-1)) (7)
st = gi(xe) + (1 = B)(st-1 — gi(x¢-1))-
A similar update to s; has been used in [Chen et al.| (2021) for tracking the inner function values for two-level

compositional optimization. However, they do not use similar updates for tracking the gradients as vy, u;.
Hence, their algorithm has a worse complexity.

Then we invoke these estimators into Vy F(x;) and VF(x;) to obtain the gradient estimator
20 = (Vfr,(50)v], Vfa, (s0)ue +1og(se) +p) T (8)
Below, we show ASCDRO can achieve a better convergence rate in the non-convex loss function.

Theorem 2. Under Assumptz'on and@ for any a > 1, let k = azz;/s, w = max(202, (16L%k)?) and

g

AL 773
have E[dist(0,0F (x,))?] < O (1;5/7;)

c= +130L%.. Then after running Algom'thm@for T iterations with ny = W and By = cn?, we

Remark: Theorem [2] implies that with a polynomial decreasing step size, ASCDRO is able to find an
e-stationary solution such that E[dist(0, F(xg))] < € with a near-optimal complexity O(1/€?). Note that
the complexity (’3(1 /€3) is optimal up to a logarithmic factor for solving non-convex smooth optimization
problems (Arjevani et al., [2019)). State-of-the-art primal-dual methods with variance-reduction for min-
max problems (Huang et al., |2020) have the same complexity but for a different convergence measure, i.e,
E[%Hx — [[x[x —7VF(x)]||] < € for a returned solution x.

5 Stochastic Algorithms for Convex Problems

In this section, we presented restarted algorithms for solving with a convex loss function ¢;(w). The
key is to restart SCDRO and ASCDRO by using a stagewise step size scheme. We define a new objective
F,(x) = F(x)+ p|/x||?/2 and correspondingly F),(x) = F,(x)+6x(x), where y is a constant to be determined
later. With this new objective, we have the following lemma.

Lemma 3. Suppose that {;(w) is convex for all i, then for all x € X, F‘u(x) satisfies the following Kurdyka-
Lojasiewicz (KL) inequality dist(0,0F,(x))? > 2u(F,(x) — in£( F.(x)).
x€

Lemma allows us to obtain the convergence guarantee for convex losses. The idea of the
restarted algorithm is to apply SCDRO and ASCDRO to the new objective FH(X) by adding ux; to
(Vi (5:)Vwgi(x:) T, VI, (5:)Vagi(x¢) +log(s¢) + p) T in Eq. @ of Algorithm |l| and substituting z; in of
Algorithm 2 by z, = (Vfy, (s:)v , V., (s¢)ug +log(se) +p) T + px¢, and restarting SCDRO or ASCDRO with
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Algorithm 3 RSCDRO or RASCDRO

: Input: wy € W, A\ € RY, x; = (w] , \) T

: Imitialization: The same as in SCDRO or ASCDRO

: Let Ak = (xk,vk,uk, Sk)

:fork=1,---,K do
Ak+1 = SCDRO(Ak, Nk Tk) or Ak+1 = ASCDR,O(Ak;7 Nk Tk)
Change 7y, T}, according to Lemma [4 or Lemma

end for

return: xx

a stagewise step size to enjoy the benefit of KL inequality of F, u(x). It is notable that a stagewise step size is
widely and commonly used in practice. The multi-stage restarted version of SCDRO and ASCDRO are shown
Algorithm |3} to which we refer as restarted-SCDRO (RSCDRO) and restarted-ASCDRO (RASCDRO).

5.1 Restarted SCDRO for Convex Problems

In this subsection, we present the convergence rate of RSCDRO for convex losses. We first present a lemma

that states F),(xy) is stagewisely decreasing.

Lemma 4. Suppose Assumptions[1 and[Z hold, (;(w) is convez for alli, and F,(x1)—infxex F(x) < A, < oo.
. . . 384cL%.o® 384cL?

Let e1 = Ay, ep = €,-1/2, B = min{£%, %},nk = mln{ﬁ%?7 ﬁ";} and Ty, = max{%, : £

where ¢ = 384L%. Run RSCDRO, then we have E[F, (x)) — lIelﬁc‘ F.(x)] < e for each stage k.

The above lemma implies that the objective gap E[F),(x)) — infxcx F),(x)] is decreased by a factor of 2 after
each stage. Based on the above lemma, RSCDRO has the following convergence rate

Theorem 3. Under the same assumptions and parameter settings as Lemma |{], after K = O(logy(€1/€))
stages, the output of RSCDRO satisfies E[F,,(xk) — infxex F,.(x)] < €, and the oracle complezity is O(1/u’e).

As F,(xk) — Fu(x+) < F,(xK) — infxcx Fl(x), where x, = argmin, ., F(x). Therefore, if after K
stages it holds that E[F),(xx) — infxex Fj,(x)] < €/2 with an oracle complexity of O(1/u%e), we have
E[F.(xx) — Fu(x:)] < €/2, e, E[F(xk) + pullxx|?/2 — F(x.) — pljx.]|*/2] < /2. By Assumption [[{a) W
is bounded by R, and then by setting u = ¢/(2(R? + \?)), with ||x||? < (R? + A\?) we have

€ Sowlh € €

with an oracle complexity of O(1/€%), i.e, the following coroellary holds.
Corollary 1. Let pu = ¢/(2(R?+)2)). Then under the same assumptions and parameter settings as Lemma

after K = O(log,(€1/€)) stages, the output of RSCDRO satisfies E[F (xx) — infxcx F(x)] < € and the oracle
complezity is O(1/€%).

Remark: Corollary [I|shows that RSCDRO achieves an oracle complexity of O(1/e3) for finding an e-optimal
solution. i.e., E[F(x) — F(x4)] < € for the convex loss function with a geometrically decreasing step size in a
stagewise manner.

5.2 Restarted ASCDRO for Convex Problems

In this subsection, we establish a better convergence rate of RASCDRO for convex losses.

Lemma 5. Suppose Assumptions and@ hold, ¢;(w) is convex for all i, and F,(x1) — infycx F),(x) <
A, < oo, Let 6 = Ay, e = €-1/2, B = min{£% 1} n = min{22", L} and

co?) ¢ 4dcLpo?? 24CL?,

Ty = max{192Leo 192000" 192y ypore ¢ = 7681%. Run RASCDRO, then we have E[F,(xi) -

infxex Fl.(x)] < € for each stage k.

The above lemma implies that the objective gap E[F),(x)) — infxcx F),(x)] is decreased by a factor of 2 after
each stage. Hence we have the following convergence rate for the RASCDRO.
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Theorem 4. Under the same assumptions and parameter settings as Lemma [3, after K = O(logy(e1/€))
stages, the output of RASCDRO satisfies E[F,(xx) — infxcx Fj,(x)] < €, and the oracle complexity is

O (max (1/pe, 1/p3/2\ﬁ)).

By the same method of derivation of Corollary [T} the following corollary of Theorem [ holds.

Corollary 2. Let = ¢/(2(R?+\2)). Then under the same assumptions and parameter settings as Lemma@
after K = O(logy(€1/€)) stages, the output of RASCDRO satisfies E[F (xx) — infxex F(x)] < € and the oracle
complexity is O(1/€?).

Remark: Corollary [2| shows that RASCDRO achieves the claimed oracle complexity O(1/¢?) for finding an
e-optimal solution, which is optimal for solving convex smooth optimization problems (Nemirovsky & Yudin,
1983)). Finally, we note that a similar complexity was established in (Zhang & Lanl 2020) for constrained
convex compositional optimization problems. However, their analysis requires each level function to be
convex, which does not apply to our case as the outer function fy(-) is non-convex.

6 Experiments

In this section, we verify the effectiveness of the proposed algorithms in solving imbalanced classification
problems. We show that the proposed methods outperform baselines under both the convex and non-convex
settings in terms of convergence speed, and generalization performance. In addition, we study the influence
of p to the robustness of different optimization methods in supplement.

Baselines. For the comparison of convergence speed, we compare with different algorithms for optimizing
the same objective , including, stochastic primal-dual algorithms, namely PG-SMD2 (Rafique et al.| |2021])
for a non-convex loss, and SPD (Namkoong & Duchi, 2016)) for a convex loss, Dual SGM (Levy et al., 2020)
and mini-batch based SGD named FastDRO (Levy et al., [2020) for both convex and non-convex losses . For
the comparison of generalization performance, we compare with different methods for optimizing different
objectives, including the traditional ERM with CE loss by SGD with momentum (SGDM), KL-regularized
DRO solved by RECOVER. (Qi et al., [2021)), and CVaR-constrained, y>?-regularized/-constrained DRO
optimized by FastDRO.

Datasets. We conduct experiments on four imbalanced datasets, namely CIFAR10-ST, CIFAR100-ST (Qi
et al. 2020b), ImageNet-LT (Liu et al., [2019)), and iNaturalist2018 (iNaturalist 2018 competition dataset)).
The original CIFAR10, CIFAR100 are balanced data, where CIFAR10 (resp. CIFAR100) has 10 (resp. 100)
classes and each class has 5K (resp. 500) training images. For constructing CIFAR10-ST and CIFAR100-ST,
we artificially construct imbalanced training data, where we only keep the last 100 images of each class for
the first half classes, and keep other classes and the test data unchanged. ImageNet-LT is a long-tailed subset
of the original ImageNet-2012 by sampling a subset following the Pareto distribution with the power value
6. It has 115.8K images from 1000 categories, which include 4980 for head class and 5 images for tail class.
iNaturalist 2018 is a real-world dataset whose class-frequency follows a heavy-tail distribution. It contains
437K images from 8142 classes.

Models. For a non-convex setting (deep model), we learn ResNet20 for CIFAR10-ST, CIFAR100-ST, and
ResNet50 for ImageNet-LT and iNaturalist2018, respectively. On CIFAR10-ST, CIFAR100-ST, we optimize
the network from scratch by different algorithms. For the large-scale ImageNet-LT and iNaturalist2018
datasets, we optimize the last block of the feature layers and the classifier weight with other layers frozen of a
pretrained ResNet50 model. This is a common training strategy in the literature (Kang et al., 2019} |Qi et al.|
2020a). For a convex setting (linear model), we freeze the feature layers of the pretrained models, and only
fine-tune the last classifier weight. The pretrained models for ImageNet-LT, CIFAR10-ST, CIFAR100-ST are
trained from scratch by optimizing the standard cross-entropy (CE) loss using SGD with momentum 0.9 for
90 epochs. The pretrained ResNet50 model for iNaturalist2018 is from the released model by [Kang et al.
(2019).

Parameters and Settings. For all experiments, the batch size is 128 for CIFAR10-ST and CIFAR100-ST,
and 512 for ImageNet-LT and iNaturalist2018. The loss function is the CE loss. The A¢ is set to le-3. The
(primal) learning rates for all methods are tuned in {0.01,0.05,0.1,0.5,1}. The learning rate for updating the
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Figure 1: Training accuracy (%) , Testing accuracy (%) vs # of processed training samples for the convex
setting. p is fixed to 0.5 on CIFAR10-ST and CIFAR100-ST, and 0.1 on ImageNet-LT and iNaturalist2018.
The results are averaged over 5 independent runs.
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Figure 2: Training accuracy (%), Testing accuracy (%) vs # of processed training samples for the non-convex
setting. p is fixed to 0.5 on all datasets. The results are averaged over 5 independent runs.

dual variable in PG__SMD2 and SPD is tuned in {le-5, 5¢-5, le-4, 5e-4)}. The momentum parameter [ in our
proposed algorithms and RECOVER are tuned {0.1:0.1:0.9}. For RECOVER, the hyper-parameter A is
tuned in {1,50,100}. The constrained parameter p is tuned in {0.1,0.5,1} for the comparison of generalization
performance unless specified otherwise. The initial A and Larange multiplier in Dual SGM are both tuned in
{0.1,1,10}. All our results are conducted on Tesla V100.

Convergence comparison between different baselines. In the convex setting, we compare RSCDRO
and RASCDRO with SPD, FastDRO and Dual SGM baselines. We report the training accuracy and testing
accuracy in terms of the number (#) of processing samples. We denote 1 pass of training data by 1 epoch.
We run a total of 3 epochs for CIFAR10-ST and CIFAR100-ST and decay the learning rate by a factor of 10
at the end of 2nd epoch. Similarly, we run 60 epochs and decay the learning rate at the 30th epochs for the
ImageNet-LT, and run 30 epochs and decay the learning rate at the 20th epoch for iNaturalist2018. In the
nonconvex setting, we compare SCDRO with two baselines, PG-SMD2 and FastDRO. We run 120 epochs for
CIFAR10-ST and CIFAR100-ST, and decay the learning rate by a factor of 10 at the 90th epoch. And we
run 30 epochs for ImageNet-LT and iNaturalist2018, and decay the learning rate at the 20th epoch.

Results. We first report the results for convex setting in Figures [1} It is obvious to see that RSCDRO
and RASCDRO are consistently better than baselines on CIFAR10-ST, CIFAR100-ST, and ImageNet-LT.
PD-SMD2 and Dual SGM have comparable results with our proposed algorithms on the iNaturalist2018 in
terms of training accuracy, but is worse in terms of testing accuracy. FastDRO has the worst performance on

10
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all the datasets. RSCDRO and RASCDRO achieve comparable results on all datasets, however, the stochastic
estimator in RASCDRO requires two gradient computations per iteration, which incurs more computational
cost than RSCDRO. Hence, in the non-convex setting, we focus on SCDRO. Figure [2| reports the results
for non-convex setting. We can see that SCDRO achieves the best performance on all the datasets. The
margin increases on the large scale ImageNet-LT and iNaturalist2018 datasets. For the three baselines, Dual
SGM has better testing performance than FastDRO and PD-SGM2 on CIFAR10-ST and CIFAR100-ST. On
the large scale data ImageNet-LT and iNaturalist2018, however, Dual SGM has the worst performance in
terms of the testing accuracy. Furthermore, SCDRO is more stable than FastDRO and Dual SGM in different
settings as the training of Dual SGM and FastDRO is comparable to SCDRO in convex settings and much
worse than SCDRO in non-convex settings.

Comparison with ERM and KL-regularized DRO. Next, we compare our method for solving KL-
constrained DRO (KL-CDRO) with 1) ERM+SGDM, and KL-regularized DRO (KL-RDRO) optimized by
RECOVER in the non-convex setting 2) CVaR-constrained DRO, x?-regularized DRO x?-constrained DRO
optimized by FastDRO in the convex setting. We conduct the experiments on the large-scale ImageNet-LT
and iNaturalist2018 datasets. The results shown in Table 2] and [3] vividly demonstrate that our method for
constrained DRO outperforms the ERM-based method and other popular f-divergence constrained /regularized
DRO in different settings.

Table 2: Testing Accuracy in Convex Setting Table 3: Testing Accuracy in Non-Convex Setting
‘ ImageNet-LT ‘ iNaturalist2018 ‘ ImageNet-LT ‘ iNaturalist2018
KL-Constraint + SCDRO | 24.08 (£ 0.01) | 55.63 (& 0.03) KL-Constraint + SCDRO | 4374 | 65.59
CVaR-Constraint + FastDRO | 17.23 (£ 0.03) | 54.52 (£ 0.11) ERM-+SGDM 43.36 64.42
x2-Regularization + FastDRO | 23.98 (+ 0.01) | 55.03 (< 0.03) KL-Regularization + RECOVER | 42.68 | 64.57

x*-Constraint + FastDRO | 23.61 (+ 0.01) | 53.71 (& 0.05)

Sensitivity to p. We study the sensitivity of different methods to p. The results on CIFAR10-ST and
CIFAR100-ST are shown in Table [d]in the supplement, which demonstrates that the testing performance is
sensitive to p. However, our method SCDRO is better than baselines PG-SMD2 and FastDRO for different

values of p.

Table 4: Test accuracy (%) of different methods for different constraint parameter p in the non-convex setting.
The results are averaged over 5 independent runs.

p 0.01 0.05 0.1 0.5 1
PG-SMD2 | 67.09 (£ 0.59)  66.96 (£ 0.71 67.12 (£ 0.61) 67.36 (£ 0.36)  67.10 (& 0.61)

) (
CIFAR10-ST | FastDRO | 65.41 (£ 0.33)  66.15 (+ 0.09)  66.24 (£ 0.63)  65.98 (4 0.45)  65.68 (+ 0.52)
SCDRO | 67.73 (£ 0.39) 67.58 (+ 0.48) 67.71 (£ 0.43) 67.57 (+ 0.28) 67.96 (£ 0.50)

PG-SMD2 | 57.31 (£ 0.09) 56.44 (+ 0.17)  55.85 (& 0.19)  52.68 (+ 0.40)  48.72 (& 0.25)
CIFAR100-ST | FastDRO | 57.60 (+ 0.32)  57.20 (+ 0.42)  56.78 (£ 0.40)  55.58 (4 0.62)  52.39 (£ 0.31)
SCDRO | 57.84 (£ 0.15) 57.60 (+ 0.15) 58.32 (+ 0.43) 57.90 (4 0.26) 57.71 (+ 0.24)

7 Conclusions

In this paper, we proposed dual-free stochastic algorithms for solving KL-constrained distributionally robust
optimization problems for both convex and non-convex losses. The proposed algorithms have nearly optimal
complexity in both settings. Empirical studies vividly demonstrate the effectiveness of the proposed algorithm
for solving non-convex and convex constrained DRO problems.

11
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