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Abstract

We investigate the problem of combinatorial multi-
armed bandits with stochastic submodular (in
expectation) rewards and full-bandit feedback,
where no extra information other than the re-
ward of selected action at each time step t is ob-
served. We propose a simple algorithm, Explore-
Then-Commit Greedy (ETCG) and prove that
it achieves a (1 − 1/e)-regret upper bound of
O(n 1

3 k
4
3T

2
3 log(T )

1
2 ) for a horizon T , number of

base elements n, and cardinality constraint k. We
also show in experiments with synthetic and real-
world data that the ETCG empirically outperforms
other full-bandit methods.

1 INTRODUCTION

The stochastic multi-armed bandit (MAB) problem was first
introduced by Robbins [1952]. It formalizes challenging
sequential decision problems faced by many organizations,
including inventory selection, scheduling, work assignments
and team formation, multi-market ad campaigns, product
recommendation, crowd-sourcing, and investing. The deci-
sion maker selects an arm and observes reward that comes
from an unknown distribution at each round. The goal of
the decision maker is to maximize expected cumulative
reward over all rounds. The solution to classical MAB prob-
lem demonstrates the trade-off between exploration and
exploitation: should the agent try the arm that has not been
tried many times so far (exploration) or should stick with
the arm that performed well based on previous observations
(exploitation)?

The combinatorial multi-armed bandit (CMAB) problem
is an extension of the MAB problem. In this setting, the
decision maker selects a super arm composed of base arms
at each round, and observes a reward corresponding to the
selected super arm. If the decision maker only learns the

aggregated reward for the selected super arm, that feedback
is referred to as full-bandit. Otherwise, if the decision maker
learns additional information (e.g., individual rewards of
the base arms), the feedback is referred to as semi-bandit.
Furthermore, there are two common formalizations depend-
ing on the assumed nature of environments: the stochastic
setting and the adversarial setting.

In the adversarial setting, the reward sequence is generated
by an unrestricted adversary, potentially based on the his-
tory of decision maker’s actions [Auer et al., 2003]. In the
stochastic environment, the reward of each arm is drawn in-
dependently from a fixed distribution [Auer et al., 2002]. For
many bandit problems, the stochastic setting is a special case
of the adversarial setting. For those problems, algorithms
designed for the adversarial setting maintain the theoretical
performance guarantees when applied to problems in the
stochastic setting, though typically they empirically under-
perform algorithms specifically designed for the stochastic
setting [Lattimore and Szepesvári, 2020]. Moreover, the
strategies designed for the stochastic setting may have sim-
pler designs and be computationally more efficient. Thus,
developing efficient algorithms specializing in stochastic
setting is important. Furthermore, as we will later describe,
the stochastic setting we consider in this paper is not a spe-
cial case of the adversarial settings that has been studied
in the literature. Specifically, past research in the adversar-
ial setting assume the reward function has extra properties
that, when specialized to the stochastic setting, are overly
restrictive.

When the reward depends non-linearly on the ground set,
additional challenges have been added to develop efficient
algorithms. For example, opening additional restaurants in
a small market may result in diminishing returns due to
market saturation. Such diminishing returns can be naturally
modeled with the class of submodular set functions. A set
function f : 2Ω → R defined on a finite ground set Ω is
said to be submodular if it satisfies the diminishing return
property: for all A ⊆ B ⊆ Ω, and x ∈ Ω \B, it holds that
f(A∪{x})−f(A) ≥ f(B∪{x})−f(B) [Nemhauser et al.,
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1978]. In this paper, we focus on the problem of combina-
torial multi-armed bandits with stochastic submodular (in
expectation) rewards and full-bandit feedback. We further
assume that the reward function is monotone: a submodular
set functionf : 2
 ! R is called monotone if for any
A � B � 
 we havef (A) � f (B ).

1.1 MOTIVATING EXAMPLES

In�uence Maximization Consider a case of social net-
work where a company developed an application and wants
to market it through the network. The best way to do this
is selecting a set of highly in�uential users and hope they
can love the application and recommend their friends to use
it. In�uence maximization is a problem of �nding a small
subset (seed set) in a network that can achieve maximum in-
�uence. This subset selection problem in social networks is
commonly modeled as an of�ine submodular optimization
problem [Domingos and Richardson, 2001, Kempe et al.,
2003, Chen et al., 2010]. Algorithms and heuristics for solv-
ing this problem often assume knowledge of the network
and diffusion model. A recent line of research has gener-
alized the problem as a multi-armed bandit problem (with
extra feedback) where the knowledge of the network and
diffusion model is not required [Lei et al., 2015, Wen et al.,
2017, Vaswani et al., 2017, Li et al., 2020, Perrault et al.,
2020].

Recommender Systems When recommending bundles of
items, such as movies, news articles, or consumer products,
considering the estimated individual item rankings alone
may be suboptimal. The system should recommend diver-
si�ed items to maximize the coverage of information that
users are interested, in order to get as much positive feed-
back as possible. This is motivated by recommending items
with redundant information leads to diminishing returns on
utility. This problem of sequentially recommending sets of
items to users has been studied through the framework of
contextual submodular combinatorial bandits [Qin and Zhu,
2013, Yue and Guestrin, 2011, Takemori et al., 2020].

Crowdsourcing and Crowdsensing Crowdsourcing in-
volves batches of simple tasks being sequentially assigned
to workers with unknown quality and speed. For example,
workers may be recruited to manually label images in a
database. Crowdsensing involves sequentially collecting
data from large numbers of users in different locations. For
instance, mobile phone accelerometer data can help identify
potholes in city roads. Instances of these problems often
involve sequential decision making of assigning/selecting
subsets of workers/users with unknown qualities and under
a budget. There is a line of research on this topic using the
framework of combinatorial multi-armed bandits with sub-
modular rewards [Zhang and van der Schaar, 2012, Nushi
et al., 2016, Song and Jin, 2021].

1.2 OUR CONTRIBUTION

The main contribution of this paper can be summarized as
follows:

• We propose Explore-then-Commit Greedy (ETCG),
the �rst algorithm designed for stochastic CMAB prob-
lems with a submodular reward function (in expecta-
tion) and full-bandit feedback. It is procedurally simple
and has low storage and per-round computational com-
plexity.

• We prove that ETCG achievesO(n
1
3 k

4
3 T

2
3 log(T)

1
2 )

expected cumulative(1 � 1=e)-regret.

• We show ETCG outperforms other full-bandit methods
on experiments with synthetic and real-world data.

1.3 RELATED WORK

We now brie�y discuss related works from several research
topics that overlap in multiple aspects with the problem we
study. Table 1 lists related works and enumerates aspects
of the problem setup including properties of the reward
function, the feedback model, and regret type. We letn
denote the number of base arms,k the maximum cardinality,
andT the time horizon.

Adversarial The closest related works are those for ad-
versarial CMAB with submodular rewards, full-bandit feed-
back, and cumulative regret. In the adversarial setting, the
environment chooses a sequence of monotone and submod-
ular functionsf f 1; : : : ; f T g. This is incompatible with our
setting, since we only require the set functionf t to be mono-
tone and submodularin expectation. Regret in the adversar-
ial setting is also different—the decision-maker competes
against a maximizing action over the sum of the sequence,
(1 � 1=e) maxa2A

P T
t =1 f t (a).

We nonetheless consider the following regret bounds to be
relevant benchmarks for the stochastic setting.

Streeter and Golovin [2008] proposed an algorithm that
achievesO(k2(n logn)1=3T2=3(log T)2) (1 � 1=e)-regret.
The method we will propose, ETCG, will have a lower re-
gret bound, by a factor ofk2=3 (ignoringlog terms). Golovin
et al. [2014] later proposed an algorithm that achieves
O(k2=3n2=3(log n)1=3T2=3) (1 � 1=e)-regret. Recently, Ni-
azadeh et al. [2021] proposed a new algorithm for the
adversarial setting that achievesO(kn2=3(log n)1=3T2=3)
(1 � 1=e)-regret. The method we will propose, ETCG, will
have a much lower regret bound than those two, by a factor
of n1=3 for both (ignoringlog terms), for problems where
there are many base arms relative to the cardinality con-
straint (i.e.n � k), such as social in�uence maximization.

Semi-bandit To our knowledge, all prior works on
stochastic, combinatorial multi-armed bandits with submod-



Reward Feedback Regret

Submodular Stochastic Full-Bandit Cumulative(1 � 1=e) Bound

Streeter and Golovin [2008] X X X ~O( n
1
3 k2 T

2
3 )

Golovin et al. [2014] X X X ~O( n
2
3 k

2
3 T

2
3 )

Niazadeh et al. [2021] X X X ~O( n
2
3 k T

2
3 )

Agarwal et al. [2021b] X X X ~O( n
1
2 k

3
2 T

1
2 )

Agarwal et al. [2021a] X X X ~O( n
1
3 k

1
2 T

2
3 )

Chen et al. [2018] X X X ~O(T
1
2 )y

Du et al. [2021] X X —–
ETCG (ours) X X X X ~O( n

1
3 k

4
3 T

2
3 )

Table 1: Table of select related works, enumerating which problem and performance aspects are shared with our proposed
ETCG. The notation~O(�) dropslog terms.y[Chen et al., 2018] require additional smoothness properties off and the
dependence onk andn is unknown.

ular rewards assume semi-bandit feedback. In this setting,
the decision maker receives additional feedback. For ex-
ample, in [Lin et al., 2015], the decision maker receives
not only the reward of the chosen subset but also learns
marginal gains of its elements. Several methods have been
proposed that solve a continuous optimization problem as a
surrogate for the submodular set function and require gra-
dient estimates through extra feedback [Zhang et al., 2019,
Chen et al., 2018, Zhu et al., 2021]. The “linear submod-
ular bandit” problem involves maximizing a linear com-
bination of known submodular functions, with marginal
gains provided as extra feedback [Yue and Guestrin, 2011,
Yu et al., 2016, Takemori et al., 2020]. Research on the
application of online in�uence maximization use extra feed-
back about the nodes and/or edges in the diffusion tree [Lei
et al., 2015, Wen et al., 2017, Vaswani et al., 2017, Li et al.,
2020, Perrault et al., 2020]. Streeter and Golovin [2008]
and Niazadeh et al. [2021] also proposed algorithms for the
adversarial setting using semi-bandit feedback, improving
their respective(1 � 1=e)-regret bounds toO(

p
kT log(n))

andO(k
p

T log(n)) , respectively.

Continuous Submodular There is an active area of re-
search in (continuous) optimization for functions exhibiting
diminishing returns properties analogous to (discrete) op-
timization of submodular set functions. Several methods
have been proposed in the bandit setting, varying in the
environment (adversarial/stochastic) and feedback model
[Chen et al., 2018, 2020, Zhang et al., 2019, Hassani et al.,
2017, Mokhtari et al., 2020, Hassani et al., 2020, Zhang
et al., 2020]. Extensions of these methods to problems with
discrete actions have been proposed, but require additional
assumptions, semi-bandit feedback, or expensive sampling
routines to estimate gradients.

Pure Exploration Instead of evaluating algorithms in
terms ofcumulativeregret, the decision maker may seek
to only evaluate the regret of the action chosen at timeT,

allowing for more aggressive exploration, or to select an
action within a pre-set level of con�dence as quickly as
possible. Several works have investigated this “pure explo-
ration” setting with semi-bandit feedback [Chen et al., 2016,
Mokhtari et al., 2018, Merlis and Mannor, 2019, Jourdan
et al., 2021] and recently for full-bandit feedback [Du et al.,
2021] (for a special reward function).

Non-submodular There are prior works for combinatorial
MAB with stochastic rewards and full-bandit feedback, but
the classes of the reward functions considered do not include
submodular functions. In particular, there are works for lin-
ear reward functions [Dani et al., 2008, Rejwan and Man-
sour, 2020] and Lipschitz reward functions [Agarwal et al.,
2021a,b]. For those classes of reward functions considered
by Rejwan and Mansour [2020], Agarwal et al. [2021a,b],
the optimal action (best set ofk arms) is to use thek individ-
ually bestarms; that property does not hold for submodular
rewards.

2 PROBLEM STATEMENT

In this section, we will formally present the problem we will
study. We consider sequential decision-making problems
with a �xed time horizonT, where at each time stept, the
learner selects a subset (action)St � 
 with cardinality
at mostk. Let 
 be the ground set of base arms, and let
n = j
 j denote the number of arms. We will use the ter-
minologiessubsetandactioninterchangeably throughout
the paper. LetS = f SjS � 
 andjSj � kg denote the
set of all allowed subsets at any time step. After the subset
St is selected, the learner receives rewardf t (St ). We as-
sume the rewardf t is stochastic, bounded in[0; 1], and i.i.d.
conditioned on a given subset. De�ne the expected reward
function asf (S) = E[f t (S)]. We assumef (S) to be sub-
modular and monotonically non-decreasing. The goal of the
learner is to maximize the cumulative reward

P T
t =1 f t (St ).



To measure the performance of the algorithm, one common
metric is to compare the learner to an agent with access to a
value oracle forf . Let S� = arg maxS:jSj� k f (S) denote
the optimal solution. Maximizing a monotone submodular
set function under a cardinality constraint is NP-hard even
with a value oracle. The best achievable approximation ratio
with a polynomial time algorithm is1 � 1=e[Nemhauser
et al., 1978]. Thus, we compare the learner's cumulative
reward to(1 � 1=e)T f (S� ) and we denote the difference
as the (1 � 1=e)-regretR 1� 1=e;T :

R 1� 1=e;T := (1 �
1
e

)T f (S� ) �
TX

t =1

f t (St ): (1)

Note that the (1 � 1=e)-regretR 1� 1=e;T is random, depend-
ing on the rewards and subsets chosen. In designing an algo-
rithm, we will focus on minimizing the expected cumulative
(1 � 1=e)-regret

E[R 1� 1=e;T ] = (1 �
1
e

)T f (S� ) � E

"
TX

t =1

f t (St )

#

; (2)

where the expectation is over both the environment the se-
quence of actions. For ease of notation, we writeR T for
R 1� 1=e;T throughout this paper.

Remark 2.1. For the experiments in Section 5, we will not
knowS� and so will not be able to compute the(1 � 1=e)
regret(2). We will instead compute an upper bound. We will
compare ETCG and baselines againstT times the expected
valuef (Sgrd ) of the solutionSgrd returned from an of�ine
(greedy) approximation algorithm [Nemhauser et al., 1978].
Sincef (Sgrd ) � (1 � 1

e )f (S� ), the expected cumulative
regret with respect toSgrd upper-bounds(2). When the
inequality is strict,f (Sgrd ) > (1 � 1

e )f (S� ), it is possible
that the expected cumulative regret(2) is sub-linear in the
horizonT while the expected cumulative regret with respect
to Sgrd is linear in the horizonT.

3 ETCG ALGORITHM

In this section, we present our proposed algorithm,Explore-
Then-Commit Greedy(ETCG). The pseudo code for ETCG
is presented in Algorithm 1. Our algorithm adds base arms
to a super arm (subset of base arms) over time greedily
until the cardinality constraint is satis�ed and then exploits
that super arm. LetS( i ) denote the super arm when we
have selectedi < k base arms. Our procedure begins with
the empty set,S(0) = ; . After �xing a subsetS( i � 1) with
i � 1 arms, our procedure explores base arms to add to
S( i � 1) for an interval of time we refer to asphasei . Our
procedure repeats this process until the cardinality constraint
k is satis�ed.

Let Ti denote the time step when phasei �nishes, for i 2
f 1; � � � ; kg. For notational consistency, we also denoteT0 =

Algorithm 1 Explore-then-Commit Greedy (ETCG)

Input: set of base arms
 , horizonT, cardinality con-
straintk
Initialize S(0)  ; , n  j 
 j

Initialize m  

&�
T

p
2 log( T )

n +2 nk
p

2 log( T )

� 2=3
'

for phasei 2 f 1; : : : ; kg do
for arma 2 
 n S( i � 1) do

PlayS( i � 1) [ f ag m times
Calculate the empirical mean�f (S( i � 1) [ f ag)

end for
ai  arg maxa2 
 nS ( i � 1)

�f (S( i � 1) [ f ag)
S( i )  S( i � 1) [ f ai g

end for
for remaining timedo

Play actionS(k )

end for

0 and Tk+1 = T. Let �f t (S) denote the empirical mean
reward of setS up to and including timet. Let

Si := f S( i � 1) [ f ag : a 2 
 n S( i � 1) g

denote the set of actions considered during phasei . Each
action consists of the super armS( i � 1) decided during the
last phase and an additional base arm. Each actionS 2 S i

will be played the same number of times; letm denote
that number. The choice ofm will be optimized later to
minimize regret. At the end of phasei 2 f 1; : : : ; kg, ETCG
will select the action that has the largest empirical mean,

ai = arg max
a2 
 nS ( i � 1)

�f T i (S
( i � 1) [ f ag); (3)

and include it in the super armS( i ) = S( i � 1) [ f ai g. During
the �nal phase, the algorithm exploitsS(k ) ; it plays the same
actionSt = S(k ) for t 2 f Tk + 1 ; � � � ; Tg.

We note that for the special setting of deterministic rewards,
the choice(3) corresponds to the classic of�ine greedy ap-
proximation algorithm proposed by Nemhauser et al. [1978].
When the rewards are stochastic, the actions selected by
ETCG may differ from those that the greedy algorithm
[Nemhauser et al., 1978] would choose using a value oracle
for the set functionf of expected rewards.

ETCG has low storage complexity and per-round time-
complexity. During exploitation, for t 2 f Tk +
1; : : : ; Tk+1 g, ETCG only needs to store the indices of the
k base arms and does not need any computation. During ex-
ploration, fort 2 f 1; : : : ; Tk g, ETCG just needs to update
the empirical mean for the current action at timet and store
the highest empirical mean so far in the current phasei and
its associated base arma 2 
 nS( i ) . Thus, ETCG hasO(k)
storage complexity andO(1) per-round time complexity.
For comparison, the algorithm proposed by Streeter and



Golovin [2008] for the adversarial full-bandit setting uses
O(nk) storage complexity and andO(n) per-round time
complexity.

Remark 3.1. When the time horizon is not known, we can
use geometric doubling trick to extend our result to an any-
time algorithm. Essentially, we pick a geometric sequence
Ti = T02i for i 2 f 1; 2; � � � g, whereT0 is a large enough
number to let the algorithm initialize, and run our algorithm
within time intervalTi +1 � Ti with a full restart. We refer
to the general detailed procedure in Besson and Kaufmann
[2018]. From Theorem 4 in Besson and Kaufmann [2018],
we can show that the regret bound conserves the original
T2=3 log(T)1=2 dependence with only changes in constant
factors.

4 REGRET ANALYSIS

In this section, we analyze the regret for Algorithm 1. We
begin by stating the main theorem, which bounds the cumu-
lative expected(1 � 1=e)-regret:

Theorem 4.1. For the sequential decision making prob-
lem de�ned in Section 2 withT � n(k + 1) , the ex-
pected cumulative(1 � 1=e)-regret of ETCG is at most
O(n

1
3 k

4
3 T

2
3 log(T)

1
2 ).

The detailed proof is in the supplementary material. We next
brie�y walk through the proof, highlighting some unique
steps.

Since for each phasei , we play each actionS( i � 1) [ f ag 2
Si exactly m times, we consider the equal-sized con�-
dence radiirad :=

p
2 log(T)=m for all the actions

S( i � 1) [ f ag 2 Si at the end of phasei . Denote the event
that the empirical means of actions played in phasei are
concentrated around their statistical means as

Ei :=
\

S[f ag2S i

� �
� �f (S [ f ag) � f (S [ f ag)

�
� < rad

�
: (4)

Then we de�ne theclean eventE to be the event that the
empirical means of all actions played up to and including
phasek are within rad of their corresponding statistical
means:

E := E1 \ � � � \ E k : (5)

Although theEi 's are not independent, by conditioning on
the sequence of selected subsetsf S(0) ; S(1) ; : : : ; S(k ) g and
using the Hoeffding bound, we showE happens with high
probability. We then use the concentration of empirical
means(4) and properties of submodular set functions to
show the following important lemma.

Lemma 4.2. Under the clean eventE, for all i 2
f 1; 2; � � � ; kg,

f (S( i ) ) � f (S( i � 1) ) �
1
k

h
f (S� ) � f (S( i � 1) )

i
� 2rad:

This lemma (Lemma 1.3 in the supplementary mate-
rial) identi�es a lower bound of the expected marginal
gain f (S( i ) ) � f (S( i � 1) ) of the empirically best action
S( i ) at the end of phasei . The sequence of subsets
f S(0) ; S(1) ; : : : ; S(k ) g that ETCG picksdoes not necessar-
ily matchthe sequence chosen by the of�ine greedy approx-
imation [Nemhauser et al., 1978] using a value oracle for
the expected reward functionf . Even though ETCG may
select a different sequence, Lemma 4.2 ensures the expected
marginal gain is not too small. As a corollary of Lemma 4.2,
using properties of submodular set functions and unraveling
the recursion induced by Lemma 4.2, we can lower bound
the expected value of ETCG's chosen setS(k ) of sizek,
which is used for exploitation in phasek + 1 :

Corollary 4.3. Under the clean eventE,

f (S(k ) ) � (1 �
1
e

)f (S� ) � 2krad: (6)

This corollary appears as Corollary 1.4 in the supplementary
material in Section 1.1.

Using Corollary 4.3, we can break up the expected(1 �
1
e )-regret(2) conditioned on the clean eventE into two
parts, one part for the �rstk phases and one part for the
exploitation phase,

E[R(T)jE]

= (1 �
1
e

)T f (S� ) �
TX

t =1

E[f t (St )]

=
TX

t =1

�
(1 �

1
e

)f (S� ) � E[f (St )]
�

=
kX

i =1

T iX

t = T i � 1 +1

�
(1 �

1
e

)f (S� ) � E[f (St )]
�

| {z }
First k phases (exploration)

+
TX

t = Tk +1

�
(1 �

1
e

)f (S� ) � E[f (S(k ) )]
�

| {z }
Phasek + 1 (exploitation)

: (7)

Recall that in phasei , each of then � (i � 1) actions inSi is
played exactlym times, meaningTi � Ti � 1 = m(n � i +1) .
For each actionSt played during phasei , that is fort 2
f Ti � 1 + 1 ; � � � ; Ti g, sinceS( i � 1) � St , by monotonicity of
the expected reward functionf we havef (S( i � 1) ) � f (St ).
Thus we can upper bound the expected regretE[R(T)jE]



incurred during the �rstk phases (�rst term of (7)) as

kX

i =1

T iX

t = T i � 1 +1

�
(1 �

1
e

)f (S� ) � E[f (St )]
�

�
kX

i =1

m(n � i + 1)
�

(1 �
1
e

)f (S� ) � E[f (S( i � 1) )]
�

� mn
kX

i =1

�
(1 �

1
e

)f (S� ) � E[f (S( i � 1) )]
�

: (8)

We can further upper bound (8) as

kX

i =1

�
(1 �

1
e

)f (S� ) � E[f (S( i � 1) )]
�

�
kX

i =1

�
f (S� ) � E[f (S( i ) )]

�

� k
kX

i =1

�
E[f (S( i ) )] � E[f (S( i � 1) )] + 2rad

�
(9)

= k(E[f (S(k ) )] � E[f (S(0) )] + 2 krad) (10)

� k (1 + 2krad) ; (11)

where(9) follows by applying Lemma 4.2 and taking expec-
tation,(10) follows by simplifying a telescoping sum, and
(11) byE[f (S(k ) )] � 1 andE[f (S(0) )] = 0 .

We can upper bound the expected regretE[R(T)jE] incurred
during the exploitation phase (phasek + 1 ; second term of
(7)) by applying Corollary 4.3 as

TX

t = Tk +1

�
(1 �

1
e

)f (S� ) � E[f (S(k ) )]
�

�
TX

t = Tk +1

2krad � 2kT rad: (12)

Combining the upper bounds(11) and(12) and then opti-
mizing over the number of timesm each action is sampled
during exploration, we get

E[R(T)jE]

� 4n
1
3 k(T

p
2 log(T))

2
3 (1 + 2k

p
2 log(T))

1
3

= O(n
1
3 k

4
3 T

2
3 log(T)

1
2 ): (13)

We then show that because the clean eventE happens with
high probability,E[R(T)] also satis�es(13), completing the
proof.

Lower bounds: For the setting we explore in this paper,
with stochastic CMAB with submodular expected rewards

and full-bandit feedback, it remains an open question if
~O(T1=2) expected cumulative(1 � 1=e)-regret is possible

(ignoringn andk dependence). For the special sub-class
of linear reward functions,~
( T1=2) is known [Dani et al.,
2008].

5 EXPERIMENTS

We next evaluate our proposed algorithm ETCG on both
synthetic data and real world data.

For the experiments, instead of(1 � 1=e) regret Equa-
tion (1), which requires knowingS� , we compare the cu-
mulative rewards achieved by ETCG and baselines against
T f (Sgrd ), whereSgrd is the solution returned by the of�ine
(1 � 1=e)-approximation algorithm proposed by Nemhauser
et al. [1978]. Recall from Remark 2.1 thatT f (Sgrd ) �
(1 � 1=e)T f (S� ), soT f (Sgrd ) is a more challenging refer-
ence value.

5.1 BASELINE METHODS

We use three algorithms designed for CMAB with full-
bandit feedback as baselines.

• Online Greedy with opaque feedback model (OGo)
[Streeter and Golovin, 2008] This algorithm is de-
signed for the adversarial setting with submodular re-
wards. The adversary model isoblivious, meaning the
sequence of monotone submodular reward functions
is �xed in advance. OGo utilizesk subroutines of ran-
domized weighted majority algorithms [Littlestone and
Warmuth, 1994] to select actions, wherek is the car-
dinality constraint. At each time step, the algorithm
explores with probability
 and exploits with proba-
bility 1 � 
 . During exploration, it randomly picks an
randomized weighted majority subroutine to select a
base arm to explore. OGo has aneO(T2=3) theoretical
guarantee for the adversarial setting. We refer to our
detailed implementation and parameter selection in
Section 2.

• CMAB-SM [Agarwal et al., 2021a] This algorithm
assumes the expected reward functions are Lipschitz
continuous functions of individual arm rewards. The
algorithm divides alln base arms in to groups, sorts
arms within each group, and then merges groups one
by one to obtain the bestk arms. CMAB-SM has an
eO(T2=3) theoretical guarantee.

• DART [Agarwal et al., 2021b] DART is a successive
accept-reject style algorithm designed for Lipschitz re-
ward functions that have an additional property related
to the marginal gains of the base arms. DART has an
eO(T1=2) theoretical guarantee.
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