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ABSTRACT

Finding local Nash equilibria in two-player differentiable games is a classical
problem in game theory with important relevance in machine learning. We pro-
pose double Follow-the-Ridge (double-FTR), an algorithm that locally converges
to and only to local Nash equilibria in general-sum two-player differentiable
games. To our knowledge, double-FTR is the first algorithm with such guaran-
tees for general-sum games. Furthermore, we show that by varying its precondi-
tioner, double-FTR leads to a broader family of algorithms with the same proper-
ties. Double-FTR avoids oscillation near equilibria due to the real-eigenvalues of
its Jacobian at critical points. Finally, we empirically verify the effectiveness of
double-FTR in finding local Nash equilibria in two simple examples.

1 INTRODUCTION

Much of the recent success in deep learning can be attributed to the effectiveness of gradient-based
optimization. It is well-known that for a minimization problem, with appropriate choice of learning
rates, gradient descent has convergence guarantee to local minima (Lee et al., 2016; 2019). Based on
this foundational result, an array of accelerated and higher-order methods have since been proposed
and widely applied in training neural networks (Duchi et al., 2011; Kingma & Ba, 2014; Reddi et al.,
2018; Zhang et al., 2019).

However, once we leave the realm of minimization problems and consider the multi-agent setting,
the optimization landscape becomes much more complicated. Multi-agent optimization problems
arise in diverse fields such as robotics, economics and machine learning (Foerster et al., 2016;
Von Neumann & Morgenstern, 2007; Goodfellow et al., 2014; Ben-Tal & Nemirovski, 2002; Gemp
et al., 2020; Anil et al., 2021).

A classical abstraction that is especially relevant for machine learning is two-player differentiable
games, where the objective is to find local Nash equilibria. The equivalent of gradient descent in such
a game would be that each agent applies gradient descent to minimize their own objective function.
However, in stark contrast with minimization problems, this gradient-descent-style algorithm may
converge to critical points that are not local Nash equilibria, and in the general-sum game case, local
Nash equilibria might not even be stable critical points for this algorithm (Mazumdar et al., 2020)!

These negative results have driven a surge of recent interest in developing other gradient-based algo-
rithms for finding Nash equilibria in differentiable games. Among them is Mazumdar et al. (2019),
who proposed an update algorithm whose attracting critical points are only local Nash equilibria in
the special case of zero-sum games. However, to the best of our knowledge, such guarantees have
not been extended to general-sum games.

We propose double Follow-the-Ridge (double-FTR), a gradient-based algorithm for general-sum
differentiable games whose attracting critical points are equivalent to differential Nash equilib-
ria. Double-FTR is closely related to the Follow-the-Ridge (FTR) algorithm for Stackelberg
games (Wang et al., 2019), which converge to and only to local Stackelberg equilibria (Fiez et al.,
2019). Double-FTR can be viewed as its counterpart for simultaneous games, where each player
adopts the “follower” strategy in FTR.

The rest of this paper is organized as follows. In Section 2, we give background on two-player
differentiable games and equilibrium concepts. We also explain the issues with using gradient-
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descent-style algorithm on such games. In Section 3, we present the double-FTR algorithm and
prove the equivalence of its attracting critical points and differential Nash equilibria. We also iden-
tify a more general class of algorithms that share the properties. We discuss recent work that is
closely-connected to double-FTR in Section 4 and other related work in Section 5. In Section 6, we
show empirical evidence of double-FTR’s convergence to and only to local Nash equilibria.

2 BACKGROUND

2.1 TWO-PLAYER DIFFERENTIABLE GAMES AND EQUILIBRIUM CONCEPTS

In a general-sum two-player differentiable game, player 1 aims to minimize f : Rn+m → R with
respect to x ∈ Rn, whereas player 2 aims to maximize g : Rn+m → R with respect to y ∈ Rm.
Following the notation in Mazumdar et al. (2019), we denote such the game as {(f,−g),Rn+m}.
We also assume that f and g are twice-differentiable.

For two rational, non-cooperative players, their optimal outcome is to achieve a local Nash equi-
librium. A point (x∗,y∗) is a local Nash equilibrium of {(f,−g),Rn+m} if there exists open sets
Sx ⊂ Rn, Sy ⊂ Rm such that x∗ ∈ Sx, y∗ ∈ Sy , and

f(x∗,y∗) ≤ f(x,y∗) ∀x ∈ Sx \ {x∗},
g(x∗,y∗) ≥ g(x∗,y ) ∀y ∈ Sy \ {y∗}.

As shown in Ratliff et al. (2013), when f and g are twice-differentiable, local Nash equilibria gen-
erally satisfy stronger conditions, and are differential Nash equilibria (DNE).
Definition 2.1 (Differential Nash equilibrium). (x∗,y∗) is a differential Nash equilibrium of
{(f,−g),Rn+m} if:

• ∇xf(x
∗,y∗) = 0 and∇yg(x

∗,y∗) = 0.

• ∇2
xxf(x

∗,y∗) ≻ 0 and ∇2
yyg(x

∗,y∗) ≺ 0.

2.2 ISSUES WITH GRADIENT-BASED ALGORITHMS

A natural strategy for agents to search for local Nash equilibria in a differentiable game is to use
gradient-based algorithms. The simplest gradient-based algorithm is the gradient descent-ascent
(GDA) (Ryu & Boyd, 2016; Zhang et al., 2021b) (Algorithm 1) or its variants (Zhang et al., 2021a;
Korpelevich, 1976; Mokhtari et al., 2020).

Algorithm 1 Gradient descent-ascent (GDA)

Require: Number of iterations T , learning rates γ1, . . . , γT
1: for t = 1, . . . , T do
2: xt+1 = xt − γt∇xf(xt,yt)
3: yt+1 = yt + γt∇yg(xt,yt)
4: end for

To help analyzing the dynamics, we study GDA in a continuous-time limit. Let z = (x,y) and
ωGDA(z) =

[
∇xf(x,y)

⊤ −∇yg(x,y)
⊤]⊤, the continuous-time flow of GDA is:

ż = −ωGDA(z) (1)

where the Jacobian matrix (J := ∂ω(z)
∂z ) is:

JGDA =
∂ωGDA(z)

∂z
=

[
∇2

xxf ∇2
xyf

−∇2
yxg −∇2

yyg

]
Using the Jacobian matrix, we then introduce some characterizations on the critical points of the
update (as in Mazumdar et al. (2019)).
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(a) General-sum (b) Zero-sum

Figure 1: Venn diagrams showing the relationship between the set of locally asymptotically stable
equilibria (LASE) of the GDA flow and the set of differential Nash equilibria (DNE) in two-player
differentiable games.

Definition 2.2 ((Hyperbolic) critical point). z∗ ∈ Rn+m is a critical point of ω if ω(z∗) = 0. It is
a hyperbolic critical point if Re(λ) ̸= 0 for ∀λ ∈ spec(J(z∗)).

Definition 2.3 (Locally asymptotically stable equilibrium (LASE)). z∗ is a locally asymptotically
stable equilibrium of the continuous-time dynamics ż = −ω(z) if

ω(z∗) = 0 and Re(λ) > 0 for ∀λ ∈ spec(J(z∗)).

LASE points are important for deriving local convergence results, as they are isolated and exponen-
tially attracting under ż = −ω(z) (Sastry, 2013). This means that with proper discretization (i.e.
with appropriate choice of learning rate η), when initialized within the neighbourhood of the LASE
point, the discretized system zt+1 = zt − ηω(zt) has linear convergence.

We focus on games where all critical points ωGDA are hyperbolic. This is a reasonable assumption,
as hyperbolic critical points are generic for smooth dynamical systems (Sastry, 2013). Unfortu-
nately, GDA is not guaranteed to converge to DNE, nor are DNE necessarily LASE of the GDA
dynamics. Even in the special case of zero-sum games (g = f ), GDA dynamics can still have
LASE that are not DNE (Mazumdar et al., 2020). The relationship is shown in the Venn diagrams
in Figure 1.

In Figure 2, we provide simple 2-D examples that demonstrate the failure modes of GDA in zero-
sum games . In 2a, GDA converges to a spurious LASE which is not DNE. In 2b, GDA converges
to a limit cycle instead of the unique DNE (Hsieh et al., 2020).
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(b) f(x, y) = g(x, y) = xy + ϵ(x2 − y4)

Figure 2: Two examples of GDA failure modes in finding Nash equilibrium in zero-sum games. (a)
GDA converges to the spurious LASE (0, 0), which is not a Nash equilibrium. (b) GDA converges
to a limit cycle (we use ϵ = 0.0001, γt = 0.01 for ∀t) instead of the unique Nash equilibrium (0, 0).
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3 DOUBLE FOLLOW-THE-RIDGE

We propose double Follow-the-Ridge (double-FTR), an update rule for general-sum two-player con-
tinuous games whose attracting critical points are equivalent to differential Nash equilibria. The
double-FTR update is shown in Algorithm 2 (the arguments xt, yt of f and g are dropped to avoid
notational clutter).

Algorithm 2 Double Follow-the-Ridge

Require: Learning rate ηx and ηy; number of iterations T .
1: for t = 1, . . . , T do
2: xt+1 ← xt − ηx∇xf − ηy(∇2

xxf)
−1∇2

xyg∇yg

3: yt+1 ← yt + ηy∇yg + ηx(∇2
yyg)

−1∇2
yxf∇xf

4: end for

In the limit of infinitesimal learning rates, double-FTR behaves as a continuous flow (let c = ηy

ηx
):[

ẋ
ẏ

]
= −

[
I −(∇2

xxf)
−1∇2

xyg
−(∇2

yyg)
−1∇2

yxf I

] [
∇xf(x,y)
−c∇yg(x,y)

]
. (2)

To characterize the stationary points of equation 2, we study its Jacobian in the neighbourhood of

an equilibrium. Let z = (x,y). Applying the approximation
[
∇xf
−∇yg

]
≈ JGDAz in the neighbour-

hood of an equilibrium, we get the following factorized flow for double-FTR:

ż = −ωFTR(z), where ωFTR(z) =

[
(∇2

xxf)
−1

−(∇2
yyg)

−1

]
J⊤
GDA

[
I

cI

]
JGDAz. (3)

3.1 LASE OF DOUBLE-FTR⇐⇒ DIFFERENTIAL NASH EQUILIBRIA

Our main theoretical result is stated below.
Theorem 1. For a two-player game {(f,−g),Rn+m} where all critical points of the GDA flow
(equation 1) are hyperbolic, the continuous-time dynamical system in equation 3 satisfies:

• z∗ is a locally asymptotically stable equilibrium (LASE) of equation 3⇐⇒ z∗ is a differ-
ential Nash equilibrium of the game {(f,−g),Rn+m}.

• The Jacobian JFTR := ∂ωFTR

∂z at any critical point of equation 3 has real eigenvalues.

In practice, we need to apply a discretization of the continuous flow in equation 3 with sufficiently
small learning rates. We defer the proof of Theorem 1 to Appendix A.

Combining Theorem 1 with the local convergence property of LASE points, we conclude that equa-
tion 3 locally converges to and only to differential Nash equilibria. To the best of our knowledge,
the double FTR is the first algorithm with such local convergence result for general-sum games.

3.2 GENERAL PRECONDITIONERS FOR DOUBLE-FTR

In the following remark, we show that double-FTR can be generalized to include family of algo-
rithms.
Remark 1. Theorem 1 applies to a more general version of the double FTR algorithm. In particular,
we can generalize equation 3 to allow a broader class of “preconditioners”:

ż = −ω̃FTR(z), ω̃FTR(z) =

[
Px

−Py

]
J⊤
GDA(z)

[
I

cI

]
JGDA(z)z, (4)

where Px, Py are functions of x,y respectively, and satisfy Px ≻ 0 ⇐⇒ ∇2
xxf ≻ 0, and Py ≺

0⇐⇒ ∇2
yyg ≺ 0.
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Remark 1 also provides intuition on the convergence of double-FTR. Without the preconditioner
Px and Py , double-FTR reduces to Hamiltonian gradient descent (Mescheder et al., 2017; Balduzzi
et al., 2018; Abernethy et al., 2021), which is not guaranteed to only converge to local Nash equilib-
ria. It is the introduction of the preconditioner that enables LASE points to satisfy the second-order
condition of DNE.

4 CONNECTION WITH OTHER ALGORITHMS

Mazumdar et al. (2019) proposed local symplectic surgery (LSS) – a gradient-based algorithm
whose LASE are only local Nash equilibria in zero-sum games. LSS avoids oscillatory behaviour
at local Nash equilibria (similar to double-FTR). Compared to LSS, double-FTR appears to have
a simpler form and enables a broader family of algorithms with such LASE characterizations in
general-sum games.

The Follow-the-Ridge (FTR) algorithm (Wang et al., 2019) is closely related to our proposed double-
FTR. FTR was proposed for two-player sequential games and is guaranteed to converge to and only
to local minimax. FTR applies a gradient correction term on the follower in a sequential game, so
that the agents approximately follow a ridge in the landscape of the objective function. The double-
FTR can be viewed as a counterpart of FTR for simultaneous games. The update rule of double-FTR
resembles that of FTR, with the gradient modification term applied on both players.

Another related algorithm is the Hamiltonian gradient descent (HGD) (Abernethy et al., 2021;
Loizou et al., 2020). HGD performs gradient-descent on the Hamiltonian, or the squared norm
of the gradient. HGD is guaranteed to converge, as it is essentially a minimization problem. How-
ever, in general it is not guaranteed to converge only to local Nash equilibria. Interestingly, our
double-FTR can be viewed as a preconditioned HGD.

5 RELATED WORK

Mazumdar et al. (2020) introduced a general framework for competitive gradient-based learning.
They characterized local Nash equilibria in terms of the critical points of the gradient algorithms.
They showed the lack of convergence of the gradient algorithm in games, which motivated the
development of the double-FTR algorithm.

Much work has focused on improving the dynamics in finding stable fixed points, which is crucial
in applications such as GANs, where oscillation caused by eigenvalues with zero real parts of large
imaginary parts in the gradient Jacobian can lead to training instability. Mescheder et al. (2017)
proposes Consensus Optimization, which encourages agreement between the two players by intro-
ducing a regularization term in the objectives of both players. The regularization term results in a
more negative real-part for the eigenvalues of the gradient Jacobian, therefore reduces oscillation and
allows larger learning rates. Balduzzi et al. (2018); Gemp & Mahadevan (2018) proposes Symplec-
tic Gradient Adjustment (SGA), which decomposes the gradient Jacobian into symmetric (potential)
and asymmetric (Hamiltonian) parts and adds a gradient adjustment term for rapid convergence to
stable fixed points. Schäfer & Anandkumar (2019) proposes Competitive Gradient Descent (CGD),
whose update is given by the Nash equilibrium of a regularized bilinear approximation of the original
game. Compared to other methods, CGD has the advantage of not needing to adapt step size when
the interaction strength changes between players. Many other methods have been proposed with
different strategies for predicting other agents’ moves, such as Learning with Opponent Learning
Awareness (LOLA) (Foerster et al., 2016) and optimistic gradient descent-ascent (OGDA) (Popov,
1980; Rakhlin & Sridharan, 2013; Daskalakis et al., 2018; Mertikopoulos et al., 2018). However,
none of these existing methods address the problem of spurious (i.e. non-Nash) stable fixed points.

6 EXPERIMENTS

We conduct simple experiments to demonstrate the implications of our theoretical results. In Sec-
tion 6.1, we show that the double-FTR algorithm empirically converges to and only to differential
Nash equilibria, as predicted by Theorem 1. In Section 6.2, we demonstrate the practical implica-
tions of another property of double-FTR — eigenvalues of JFTR at critical points are real.
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Figure 3: Let: evolution of GDA and double-FTR in the 2-D toy example from multiple initial
points. Middle: zoom-in near a local Nash equilibrium point. Right: zoom-in near a non-Nash
LASE for the GDA algorithm.

6.1 2-D TOY EXAMPLE

We consider the zero-sum game {f,−f},R2 with the following 2-D function (same as in Mazumdar
et al. (2019)):

f(x, y) = e−0.01(x2+y2)
(
(0.3x2 + y)2 + (0.5y2 + x)2

)
.

This function has several LASE points for the GDA dynamics, among which some are DNE and
some are not. As shown in Figure 3, while GDA may converge to critical points that are not local
Nash equilibria, double-FTR avoids such spurious critical points. Also, in the neighbourhood of lo-
cal Nash equilibria, GDA exhibits oscillatory behaviour due to complex eigenvalues of the Jacobian
matrix. In contrast, the double-FTR does not have oscillatory behaviour near local Nash equilibria.
For reference, we also show the trajectories of the Local Symplectic Surgery (LSS). In this experi-
ment, LSS has similar convergence properties – it avoids spurious critical points and does not have
oscillatory behaviour near local Nash equilibria.

6.2 PARAMETERIZED BILINEAR GAME

The fact that the Jacobian of the double-FTR at critical points have real eigenvalues is also beneficial
for stochastic games, in which the GDA might not converge due to its oscillatory behaviour.

Consider the following stochastic parameterized bilinear game:

min
µx,σx

r(x, y), min
µy,σy

−r(x, y)

where x ∼ N (µx, σ
2
x), y ∼ N (µy, σ

2
y), r(x, y) = xy.

The unique Nash equilibrium with respect to (x, y) is (0, 0). However, the learnable parameters
are the mean and the standard deviation of the distributions where x and y are drawn from. We
denote the learnable parameters for x and y as θ and ϕ respectively. At each time step, we obtain
an unbiased estimate of the gradient using REINFORCE, over a mini-batch of size B:

∇̃θr(θ,ϕ) =
1

B

B∑
i=1

∇θ logN (xi;θ)r(xi, yi), θ =

[
µx

σx

]

∇̃ϕr(θ,ϕ) =
1

B

B∑
i=1

∇ϕ logN (yi;ϕ)r(xi, yi), ϕ =

[
µy

σy

]
.
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Figure 4: Weight evolution of the parameterized bilinear game under GDA and double-FTR. Solid
line represent the weights for θ, and dashed lines represent the weights for ϕ.

The second-order derivatives are estimated as below (∇̃2
ϕϕr(θ,ϕ) and ∇̃2

ϕθr(θ,ϕ) are computed
similarly):

∇̃2
θθr(θ,ϕ) =

1

B

B∑
i=1

∇θ logN (xi;θ)
(
∇θ logN (xi;θ)r(xi, yi)

)⊤
+∇2

θθ logN (xi;θ)r(xi, yi)

∇̃2
θϕr(θ,ϕ) =

1

B

B∑
i=1

∇θ logN (xi;θ)
(
∇ϕ logN (yi;ϕ)r(xi, yi)

)⊤
.

As is often the case, GDA has oscillatory behaviour due to the complex eigenvalues of its Jacobian
at critical points. In this stochastic setting, the oscillation prevents convergence for GDA (Figure 4).
In contrast, the double-FTR algorithm does not have rotational behaviour at critical points, and
converges to the unique Nash equilibrium (x, y) = (0, 0).

7 CONCLUSION

We propose double Follow-the-Ridge (double-FTR), an gradient-based algorithm for finding local
Nash equilibria in differentiable games. We prove that when only hyperbolic critical points are
present, double-FTR converges to and only to local Nash equilibria in the general-sum setting, and
avoids oscillation in the neighbourhood of critical points. Furthermore, we remark that by varying
the preconditioner, double-FTR leads to a broader family of algorithms that share the same conver-
gence guarantee. Finally, we empirically verify the effectiveness of double-FTR in finding and only
finding local Nash equilibria through two simple examples.
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A DEFERRED PROOFS

Theorem 1. For a two-player game {(f,−g),Rn+m} where all critical points of the GDA flow
(equation 1) are hyperbolic, the continuous-time dynamical system in equation 3 satisfies:

• z∗ is a locally asymptotically stable equilibrium (LASE) of equation 3⇐⇒ z∗ is a differ-
ential Nash equilibrium of the game {(f,−g),Rn+m}.

• The Jacobian JFTR := ∂ωFTR

∂z at any critical point of equation 3 has real eigenvalues.

Proof. To avoid notational clutter, we drop the subscripts for the Jacobian matrix of the GDA flow

in this proof (i.e. we use J to refer to JGDA). Define A :=

[
(∇2

xxf)
−1

−(∇2
yyg)

−1

]
and

J̃ :=

[
I √

cI

]
J , we re-write equation 2 as:[

ẋ
ẏ

]
= −AJ̃⊤J̃

[
x
y

]
. (5)

Since we restrict the games to only have hyperbolic critical points, we have Re(λ) ̸= 0 for all
λ ∈ spec(J), hence J , J̃ have full rank, and (J̃⊤J̃)

1
2 exists. Then, notice that AJ̃⊤J̃ is similar to

(J̃⊤J̃)
1
2A(J̃⊤J̃)

1
2 , we conclude that all eigenvalues of AJ̃⊤J̃ are real.

The rest of the proof consists of two directions: 1) we show that all locally asymptotically stable
equilibria (LASE) of equation 5 are differential Nash equilibria (DNE); and 2) we show that for
two-player zero games with only hyperbolic critical points, all DNE are LASE of equation 5.

(1) LASE =⇒ DNE.

Let (x∗,y∗) be a LASE of equation 5, we have:

ẋ∗ = 0, ẏ∗ = 0, and spec(AJ̃⊤J̃) ⊂ C+.

First-order condition for DNE Since all eigenvalues of AJ̃⊤J̃ are in the strictly pos-
itive real part, we can conclude that the matrices A, J and J̃ are all of full-rank. There-

fore, the nullspace of AJ⊤
[
I

cI

]
has only the zero vector, and

[
ẋ∗

ẏ∗

]
=

[
0
0

]
implies[

∇xf(x
∗,y∗)

∇yf(x
∗,y∗)

]
=

[
0
0

]
. The first-order condition for DNE is satisfied.

Second-order condition for DNE

Since spec(AJ̃⊤J̃) ⊂ C+, we have that (J̃⊤J̃)
1
2A(J̃⊤J̃)

1
2 ≻ 0 (which means that

in fact, spec(AJ̃⊤J̃) ⊂ R+). Since positive-definiteness is preserved from congruence
transformation, we have A ≻ 0.

Finally, A ≻ 0 =⇒ (∇2
xxf)

−1 ≻ 0, (∇2
yyg)

−1 ≺ 0 =⇒ ∇2
xxf ≻ 0,∇2

yyg ≺ 0. The
second-order condition for DNE is satisfied.

(2) DNE =⇒ LASE.

Let (x∗,y∗) be a DNE of the game {(f,−f),Rn+m}, we have:

∇xf(x
∗,y∗) = 0, ∇yf(x

∗,y∗) = 0, and ∇2
xxf ≻ 0, ∇2

yyg ≺ 0.

First, from the update rule of simultaneous FTR, we immediately have
[
∇xf(x

∗,y∗)
∇yf(x

∗,y∗)

]
=[

0
0

]
=⇒

[
ẋ∗

ẏ∗

]
=

[
0
0

]
.

10



Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

Then, since we restrict the games to only have hyperbolic critical points, we have Re(λ) ̸=
0 for all λ ∈ spec(J), hence J , J̃ have full rank, and (J̃⊤J̃)

1
2 exists.

∇2
xxf ≻ 0, ∇2

yyg ≺ 0 =⇒ A ≻ 0 =⇒ (J̃⊤J̃)
1
2A(J̃⊤J̃)

1
2 ≻ 0. Since AJ̃⊤J̃ is

similar to (J̃⊤J̃)
1
2A(J̃⊤J̃)

1
2 , we have that spec(AJ̃⊤J̃) ⊂ R+.

(x∗,y∗) is a LASE of equation 5.
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