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Abstract

Learning of preference models from human feedback has been central to recent
advances in artificial intelligence. Motivated by the cost of obtaining high-quality
human annotations, we study the problem of data collection for learning preference
models. The key idea in our work is to generalize the optimal design, a method
for computing information gathering policies, to ranked lists. To show the gener-
ality of our ideas, we study both absolute and relative feedback on the lists. We
design efficient algorithms for both settings and analyze them. We prove that our
preference model estimators improve with more data and so does the ranking error
under the estimators. Finally, we experiment with several synthetic and real-world
datasets to show the statistical efficiency of our algorithms.

1 Introduction

Reinforcement learning with human feedback (RLHF) has been shown to be effective in aligning and
fine-tuning large language models (LLMs) [44, 74, 41, 18, 102, 82, 31]. The difference from classic
reinforcement learning (RL) [86] is that the learner learns from human feedback, which is expressed
in the form of preferences among different potential choices [94, 12, 55, 3, 78]. The human feedback
allows LLMs to be adapted beyond the distribution of data that was used for their pre-training and
generate answers that are more preferred by humans [18]. The feedback can be incorporated by
learning a preference model. When the human decides between two choices, the Bradley-Terry-Luce
(BTL) model [13] can be used. When it is among multiple choices, the Plackett-Luce (PL) model
[71, 61] can be used. Learning of a good preference model can be seen as ranking answers to
questions, a well-known setting within learning to rank. Numerous works have explored this topic, in
both offline [16] and online [73, 47, 88, 85, 52] settings.

To effectively learn preference models from human feedback, we study efficient methods for data
collection. We formalize this problem as follows. We have a set of L lists representing questions,
each containing K items representing answers. The goal of the learner is to learn to rank all items
in all lists. The learner can query humans for feedback. Each query is a question with K answers
represented as a list. The human provides feedback on it. We study two settings: absolute and ranking
feedback. In the absolute feedback setting, a human provides noisy values for all items in the list.
This setting is motivated by how human annotators assign relevance scores in search [34, 63]. The
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ranking feedback is motivated by learning preference models in RLHF [44, 74, 41, 18, 102, 82, 20].
In this setting, a human ranks all items in the list, which indicates their preference. While K = 2 is
arguably the most common case, we study K ≥ 2 to provide a more general insight on the problem,
and also to allow for a higher-capacity communication channel with the human [111]. The learner
has a budget for the number of queries. To learn efficiently within the budget, they need to ask for
feedback on the most informative lists, which allows them to learn to rank all other lists. Our main
contribution is an efficient algorithm for computing the distribution over the most informative lists.

Our work touches on many classic topics and recent works. Learning of reward models from human
feedback is at the center of RLHF [70] and its recent popularity has led to major theory developments,
including analyses of regret minimization in RLHF [19, 91, 94, 98, 69, 80]. These works propose
and analyze adaptive algorithms that interact with the environment to learn highly-rewarding policies.
In practice, though, such policies are hard to deploy because they may over-explore initially, which
harms user experience. They may also need to be recomputed frequently [24, 87]. Zhu et al. [111]
studied RLHF from ranking feedback in the offline setting with a fixed dataset. We focus on collecting
an informative dataset for offline learning to rank with both absolute and ranking feedback. The data
logging problem is framed as an optimal design. The optimal design aims to find a distribution over
the most informative choices that minimizes uncertainty in some metric [72, 26]. This distribution
generally solves an optimization problem and has some desirable properties, like sparsity. The main
technical contribution of this work is a matrix generalization of the Kiefer-Wolfowitz theorem [46],
which allows us to formulate optimal designs over ranked lists and solve them efficiently. Optimal
designs have become a standard tool in exploration [42, 51, 43, 64, 38]. We contribute to these works
by proposing the first pure exploration algorithm for ranked lists based on optimal designs. More
precisely, our setting can be viewed as fixed-budget best-arm identification (BAI) [6, 101, 8, 50],
where the best arm corresponds to all lists being correctly ranked.

We make the following contributions:

(1) We develop a novel approach for logging data for learning to rank from human feedback. The key
idea is to generalize the Kiefer-Wolfowitz theorem [46] to matrices (Section 3), which then allows us
to compute information-gathering policies for ranked lists.

(2) In the absolute feedback model, we propose an algorithm that uses an optimal design to collect
absolute human feedback (Section 4.1). A least-squares estimator is then used to learn from it. This
combination is both computationally and statistically efficient. Specifically, we bound the estimation
errors of the algorithm (Section 4.2) and the resulting ranking loss (Section 4.3), and show that both
decrease with the sample size.

(3) In the ranking feedback model, we propose an algorithm that uses an optimal design to collect
ranking human feedback (Section 5.1). A maximum likelihood estimator (MLE) [111] is then used to
learn from it. This combination is both computationally and statistically efficient, and we bound the
resulting estimation errors and ranking loss in Sections 5.2 and 5.3, respectively. These results mimic
the absolute feedback setting and show the generality of our proposed framework.

(4) We compare our algorithms to multiple baselines on several synthetic and real-world datasets. We
observe that our algorithms achieve a lower ranking loss than the baselines.

2 Setting

Notation: Let [K] = {1, . . . ,K}. Let△L be the probability simplex over [L]. For any distribution
π ∈ △L, we have

∑L
i=1 π(i) = 1. Let Π2(K) = {(j, k) : j < k; j, k ∈ [K]} be the set of pairs over

[K] where the first entry is lower than the second one. Let ∥x∥2A = x⊤Ax for any positive-definite
A ∈ Rd×d and x ∈ Rd. We use Õ for the big-O notation up to logarithmic factors. Specifically, for
any function f , we write Õ(f(n)) if it is O(f(n) logk f(n)) for some k > 0. Let Supp denote the
support of a distribution or random variable.

Setup: We learn to rank L lists with K items. An item k ∈ [K] in list i ∈ [L] is represented by its
feature vector xi,k ∈ X , where X ⊆ Rd is the set of all feature vectors. The relevance of items is
determined by their mean rewards. The mean reward of item k in list i is x⊤

i,kθ∗, where θ∗ ∈ Rd is
an unknown parameter. Without loss of generality, we assume that x⊤

i,jθ∗ > x⊤
i,kθ∗ for any j < k in

any list i. Therefore, the original order of the items is optimal. The learner does not know it. The
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learner interacts with the lists over n rounds. At round t, they select a list It and the human labeler
provides stochastic feedback on it. Our goal is to design a policy for selecting the lists such that the
learner learns the optimal order of all items in all lists after n rounds. Our setting resembles best arm
identification (BAI) [15, 6, 101, 8] with a fixed budget where the goal is to identify the arm with the
highest mean reward in a stochastic bandit.

Feedback Model: We study two models of human feedback, absolute and ranking:

(1) In the absolute feedback model, at any round t, the human labeler provides a reward for each item
in list It selected by the learner. Specifically, the learner observes noisy rewards

yt,k = x⊤
It,kθ∗ + ηt,k , (1)

for all k ∈ [K] in list It, where ηt,k is independent zero-mean 1-sub-Gaussian noise. Therefore, the
reward provided by the human labeler is stochastic, with mean x⊤

It,k
θ∗ and additive independent

noise. This is similar to the document-based click model [22] in learning to rank.

(2) In the ranking feedback model, at any round t, the human labeler orders all K items in list It
selected by the learner. Specifically, the learner observes a permutation over all K items in list It
sampled from the Plackett-Luce (PL) model [71, 61]. This feedback model has been studied before
[111, 39]. Let σt : [K]→ [K] be the permutation provided by the human labeler at round t, where
σt(k) is the index of the k-th ranked item. Then the PL model generates σt with probability

P (σt) =

K∏
k=1

exp
(
x⊤
It,σt(k)

θ∗

)
∑K

j=k exp
(
x⊤
It,σt(j)

θ∗

) . (2)

The PL model provides a probabilistic ranking using the underlying mean rewards with unknown
parameter θ∗. Because the feedback at round t is with independent noise, in both (1) and (2), any list
can be observed multiple times and we do need to assume that n ≤ L.

Objective: At the end of n rounds, the learner outputs a permutation σ̂n,i : [K]→ [K] for each list
i ∈ [L], where σ̂n,i(k) is the item placed at position k in list i. Our evaluation metric is the ranking
loss after n rounds, which we define as

Rn =

L∑
i=1

K∑
j=1

K∑
k=j+1

I{σ̂n,i(j) > σ̂n,i(k)} . (3)

In plain English, the ranking loss is the number of incorrectly ordered pairs of items in permutation
σ̂n,i, summed over all lists i ∈ [L]. It can also be viewed as the Kendall tau rank distance [45]
between the optimal order of items in all lists and that according to σ̂n,i. We note that other ranking
metrics exist, such as the normalized discounted cumulative gain (NDCG) [90] and mean reciprocal
rank (MRR) [89]. These consider both the order of items and their relevance scores. We believe that
our analyses can be extended to these metrics and leave this for future work.

We introduce optimal designs [72, 26] next. This allows us to minimize the expected ranking loss
within a budget of n rounds efficiently.

3 Optimal Design and Matrix Kiefer-Wolfowitz

This section introduces a unified approach to data collection for both absolute and ranking feedback.
First, we note that to learn the optimal order of items in all lists, the learner needs to estimate the
unknown parameter θ∗ well. In this work, the learner uses a maximum-likelihood estimator (MLE) to
obtain an estimate θ̂n of θ∗. After that, it orders the items in all lists according to their estimated
mean rewards x⊤

i,kθ̂n in descending order to obtain the permutation σ̂n,i. If θ̂n could minimize the
prediction error (x⊤

i,k(θ∗ − θ̂n))
2 for all items k ∈ [K] in list i, then the permutation σ̂n,i would be

closer to the optimal order. Moreover, by minimizing the maximum prediction error over all lists, the
learner can learn the optimal order in all lists and minimize the ranking loss in (3). Therefore, we are
concerned with optimizing the maximum prediction error

max
i∈[L]

∑
a∈Ai

(
a⊤
(
θ∗ − θ̂n

))2
= max

i∈[L]
Tr

(
A⊤

i

(
θ∗ − θ̂n

)(
θ∗ − θ̂n

)⊤
Ai

)
, (4)
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where Ai is a matrix representing list i and a ∈ Ai is a column in it. In the absolute feedback model,
the columns of Ai are feature vectors of items in list i (Section 4.1). In the ranking feedback model,
the columns of Ai are the differences of the feature vectors of items in list i (Section 5.1). Therefore,
Ai is human-feedback model specific. As we show later, the algebraic form of Ai is dictated by the
covariance of θ̂n in the corresponding feedback model.

We prove in Sections 4 and 5 that the learner can minimize the maximum prediction error in (4) and
the ranking loss in (3) by sampling from a fixed distribution π∗ ∈ △L. That is, the probability of
selecting list i at round t is P(It = i) = π∗(i). The distribution π∗ is a minimizer of

g(π) = max
i∈[L]

Tr(A⊤
i V

−1
π Ai) , (5)

where Vπ =
∑L

i=1 π(i)AiA
⊤
i is a design matrix. The optimal design aims to find the distribution

π∗. Since it does not depend on the received feedback, our algorithms are not adaptive.

The problem of finding π∗ that minimizes (5) is called the G-optimal design [51]. The minimum of
(5) and the support of π∗ are characterized by the Kiefer-Wolfowitz theorem [46, 51]. The original
theorem is for least-squares regression, where Ai are feature vectors. We generalize it to ranked lists,
where Ai are matrices of feature vectors representing list i. This generalization allows us to go from
a design over feature vectors to a design over lists represented by matrices.
Theorem 1 (Matrix Kiefer-Wolfowitz). Consider any L matrices Ai ∈ Rd×M for i ∈ [L], whose
column space spans Rd. Let Vπ be the design matrix in (5). Then the following are equivalent:

(a) π∗ is a minimizer of g(π) defined in (5).

(b) π∗ is a maximizer of f(π) = log det (Vπ).

(c) g (π∗) = d.

Furthermore, there exists a minimizer π∗ of g(π) such that |Supp (π∗)| ≤ d(d+ 1)/2.

Proof. We generalize the proof of the Kiefer-Wolfowitz theorem in Lattimore and Szepesvári [51].
The key observation is that even if Ai is a matrix and not a vector, the design matrix Vπ is positive
definite. Using this, we establish the following two key facts used in the original proof. First, we
show that f is concave in π and that (∇f(π))i = Tr(A⊤

i V
−1
π Ai) is its gradient with respect to π(i).

Next we show that
∑L

i=1 π(i)Tr(A
⊤
i V

−1
π Ai) = d. The complete proof is in Appendix B.

From the equivalence in Theorem 1, it follows that the learner should solve the optimal design

π∗ = max
π∈△L

f(π) = max
π∈△L

log det(Vπ) (6)

and sample according to π∗ to minimize the maximum prediction error in (4). Note that the optimal
design over lists in (6) is different from the one over features [51]. As an example, suppose that we
have 4 feature vectors x1,x2,x3,x4, and two lists A1 = (x1,x2),A2 = (x3,x4). The list design
in (6) is over 2 variables (lists) while the feature-vector design would be over 4 variables (feature
vectors). The list design can also be viewed as a constrained feature-vector design, where the pairs
(x1,x2) and (x3,x4) are observed together with the same probability.

The optimization problem in (6) is convex and thus easy to solve. When the number of lists is large,
the Frank-Wolfe algorithm [67, 72, 37] can be applied, which solves convex optimization problems
with linear constraints as a sequence of linear programs. We use CVXPY [23] to compute the optimal
design and report the computation time for various numbers of lists L in Table 1 (Appendix E). For
L = 100, the computation takes 4 seconds; and for L = 400, it takes 20. Therefore, it is fast. In the
following sections, we use Theorem 1 to bound the maximum prediction error and ranking loss for
both absolute and ranking feedback.

4 Learning with Absolute Feedback

This section is organized as follows. First, we present our algorithm, which logs absolute feedback
using a policy computed by an optimal design and learns a model from it. Then we analyze it, by
bounding its maximum prediction error in (4) and the expected ranking loss in (3).
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4.1 Algorithm Dope

Now we present our algorithm for absolute feedback called D-optimal design (Dope). The algorithm
has four main parts. First, we solve the optimal design problem in (6) to get a data logging policy π∗.
The matrix for list i is Ai = [xi,k]k∈[K] ∈ Rd×K , where xi,k is the feature vector of item k in list i.
This algebraic form arises from the covariance matrix of the estimator in (8). Specifically, note that∑K

k=1 xi,kx
⊤
i,k = Tr(AiA

⊤
i ). Second, the policy π∗ is used to collect human feedback for n rounds.

At round t ∈ [n], the learner samples a list It ∼ π∗ and observes yt,k for k ∈ [K], as defined in (1).
Third, we estimate the unknown model parameter as

θ̂n = Σ
−1

n

n∑
t=1

K∑
k=1

xIt,kyt,k . (7)

The normalized and unnormalized covariance matrices corresponding to the estimate are

Σn =
1

n

n∑
t=1

K∑
k=1

xIt,kx
⊤
It,k , Σn = nΣn , (8)

respectively. Finally, the learner orders the items in every list i ∈ [L] according to their estimated
mean rewards x⊤

i,kθ̂n in descending order to obtain the permutation σ̂n,i.

When the noise is sub-Gaussian, our MLE is the same as ordinary least-squares (OLS). Therefore,
the optimal design under absolute feedback logs data for a least-squares problem by minimizing the
covariance of the OLS [51, 38]. We present the full pseudo-code in Algorithm 1 in Appendix F.

4.2 Maximum Prediction Error Under Absolute Feedback

In this section, we bound the prediction error of Dope under absolute feedback. We start with a
lemma that uses the optimal design π∗ to bound maxi∈[L]

∑
a∈Ai

∥a∥2
Σ

−1
n

.

Lemma 2. Let π∗ be the optimal design in (6). Fix budget n and let each allocation nπ∗(i) be an
integer. Then maxi∈[L]

∑
a∈Ai

∥a∥2
Σ

−1
n

= d/n.

This lemma is proved in Appendix C.1. With this result in hand, the maximum prediction error can
be bounded as follows.
Theorem 3 (Maximum prediction error). Fix δ ∈ [0, 1). Then, with probability at least 1− δ, the
maximum prediction error after n rounds is bounded as

max
i∈[L]

Tr

(
A⊤

i

(
θ∗ − θ̂n

)(
θ∗ − θ̂n

)⊤
Ai

)
= Õ

(
d2 log(1/δ)

n

)
.

This claim is proved in Appendix C.2. Theorem 3 shows that the maximum prediction error under
absolute feedback is O(1/n), when the learner selects lists using the optimal design π∗. In Lemma 2
and Theorem 3, we assume that the number of times that each list is chosen is an integer. If the
allocations were not integers, rounding errors would arise. Efficient rounding procedures have been
established for such cases [72, 27, 42]. This would only introduce a constant multiplicative factor
1 + β in our bounds [51] (notes in Chapter 21) for some β > 0. For simplicity, we omit this factor in
our derivation. Finally, since we assume integer allocations, the covariance matrix is invertible, as in
Zhu et al. [111].

4.3 Ranking Loss Under Absolute Feedback

In this section, we bound the expected ranking loss under absolute feedback. Recall from Section 2
that the original order of items in each list is optimal. With this in mind, the gap between the mean
rewards of items j and k in list i is ∆i,j,k = (xi,j − xi,k)

⊤θ∗, for any i ∈ [L] and (j, k) ∈ Π2(K).
Theorem 4 (Ranking loss). The expected ranking loss under absolute feedback is bounded as

E [Rn] ≤
L∑

i=1

K∑
j=1

K∑
k=j+1

2 exp

(
−
n∆2

i,j,k

2d

)
.
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Proof. From the definition of the ranking loss, we have

E [Rn] =

L∑
i=1

K∑
j=1

K∑
k=j+1

E [I{σ̂n,i(j) > σ̂n,i(k)}] =
L∑

i=1

K∑
j=1

K∑
k=j+1

P
(
x⊤
i,kθ̂n > x⊤

i,j θ̂n

)
,

where P(x⊤
i,kθ̂n > x⊤

i,j θ̂n) is the probability of predicting a sub-optimal item k above item j in list i.
We bound these probabilities from above by the sum of probabilities P(x⊤

i,j(θ̂n − θ∗) < −∆i,j,k)

Finally, we bound these from above by exp
(
−n∆2

i,j,k

2d

)
using a concentration inequality for sub-

Gaussian random variables derived in Lemma 2. The full proof is in Appendix C.3.

Each term in Theorem 4 can be bounded from above by exp
(
−n∆2

min/(2d)
)
, where n is the sample

size, d is the number of features, and ∆min is the minimum gap. Therefore, the bound decreases
exponentially with budget n and gaps, and increases with d. This dependence is similar to existing
sample complexity bounds for fixed-budget best-arm identification in linear models. Specifically, it is
the same as in Theorem 1 of Azizi et al. [8]. Yang and Tan [101] derived a similar upper bound and
a matching lower bound. The gaps ∆i,j,k in Theorem 4 reflect the hardness of sorting list i, which
depends on the differences of the mean rewards of items j and k in list i. Although we do not derive
a matching lower bound to confirm this dependence, it is expected and not surprising.

5 Learning with Ranking Feedback

This section is organized similarly to Section 4. First, we present our algorithm, which logs ranking
feedback using a policy computed by an optimal design and learns a model from it. Then we analyze
it, by bounding its maximum prediction error in (4) and the expected ranking loss in (3).

5.1 Algorithm Dope

We present Dope for ranking feedback next. The algorithm is similar to Dope in Section 4 and has
four main parts. First, we solve the optimal design problem in (6) to get a data logging policy π∗.
The matrix for list i is Ai = [zi,j,k](j,k)∈Π2(K) ∈ Rd×K(K−1)/2, where zi,j,k = xi,j − zi,k is the
difference between feature vectors of items j and k in list i. The algebraic form of Ai arises from the
covariance matrix of the estimator in (11). In particular,

∑K
j=1

∑K
k=j+1 zi,j,kz

⊤
i,j,k = Tr(AiA

⊤
i ).

Second, the policy π∗ is used to collect human feedback for n rounds. At round t ∈ [n], the learner
samples a list It ∼ π∗ and observes σt drawn from the PL model in (2). Third, we compute the MLE
of the unknown model parameter θ∗ as

θ̂n ∈ argmin
θ

ℓn(θ) , ℓn(θ) = −
1

n

n∑
t=1

K∑
k=1

log

 exp
(
x⊤
It,σt(k)

θ
)

∑K
j=k exp

(
x⊤
It,σt(j)

θ
)
 . (9)

Finally, the learner orders the items in every list i ∈ [L] according to their estimated mean rewards
x⊤
i,kθ̂n in descending order to obtain the permutation σ̂n,i. We compute the MLE using iteratively

reweighted least squares (IRLS) [93], a well-known second-order technique for generalized linear
models (GLMs). We present the full pseudo-code in Algorithm 2 in Appendix F.

For K = 2, (9) becomes logistic regression and so does the optimal design. The D-optimal design in
generalized linear models was studied before. For instance, Azizi et al. [8] applied it to fixed-budget
best-arm identification.

5.2 Maximum Prediction Error Under Ranking Feedback

In this section, we bound the prediction error of Dope under ranking feedback. Before we proceed,
we make the following assumption, which we borrow from Zhu et al. [111].
Assumption 1 (Identifiability of θ∗). We assume that the true parameter satisfies θ∗ ∈ Θ, where

Θ = {θ ∈ Rd : θ⊤1d = 0, ∥θ∥2 ≤ 1} . (10)

We also assume that maxi∈[L],k∈[K] ∥xi,k∥ ≤ 1.
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This assumption is common in the linear bandit literature [1, 51] and has been recently used in the
context of K-wise ranking feedback in Zhu et al. [111].

Assumption 2. We assume that κ = inf{x:∥x∥≤1,θ:∥θ−θ∗∥≤1} exp
(
x⊤θ

)
> 0.

This amounts to assuming a lower bound κ on the derivative of the mean function. This is needed
since learning in GLMs is hard when the slope of the mean function is low.

As before, and similarly to Theorem 4, we first bound the maximum prediction error by decomposing
it into two parts, where one part captures the efficiency of the optimal design and the other part
captures the uncertainty in the MLE θ̂n. To measure the uncertainty of the MLE in our analysis, we
define the normalized and unnormalized covariance matrices corresponding to the estimate,

Σn =
2

K(K − 1)n

n∑
t=1

K∑
j=1

K∑
k=j+1

zIt,j,kz
⊤
It,j,k , Σn =

K(K − 1)n

2
Σn , (11)

respectively. We bound the maximum prediction error next.

Theorem 5 (Maximum prediction error). Fix δ ∈ [0, 1). Then, with probability at least 1− δ, the
maximum prediction error after n rounds is bounded as

max
i∈[L]

Tr

(
A⊤

i

(
θ∗ − θ̂n

)(
θ∗ − θ̂n

)⊤
Ai

)
≤ Õ

(
K6d2 log(1/δ)

n

)
.

This theorem is proved in Appendix D.1. We build on a self-normalizing bound of Zhu et al. [111],
∥θ̂n − θ∗∥2Σn

≤ O
(
K4
(

d+log(1/δ)
n

))
, which may not be tight in K. If the bound can be improved

by a multiplicative c > 0 in the future, we would get a multiplicative c improvement in Theorem 5.
We remind the reader again that the sampling allocation for each list may not be an integer. In such
cases, a separate rounding procedure [72] is needed, which would introduce an additional factor of
1 + β for some β > 0 in our bound. For simplicity, we omit this factor in our derivations.

5.3 Ranking Loss Under Ranking Feedback

In this section, we bound the expected ranking loss under ranking feedback. Similarly to Section 4.3,
we define the gap between the mean rewards of items j and k in list i as ∆i,j,k = (xi,j − xi,k)

⊤θ∗.

Theorem 6 (Ranking loss). The expected ranking loss under ranking feedback is bounded as

E [Rn] ≤
L∑

i=1

K∑
j=1

K∑
k=j+1

2 exp

(
−
nκ2∆2

i,j,k

2d

)
.

Proof. The proof is similar to Theorem 4. At the end of round n, we bound the probability that a
sub-optimal item k is ranked above item j. This bound has two parts. First, for any (j, k) ∈ Π2(K),
we show that P(x⊤

i,j θ̂n < x⊤
i,kθ̂n) = P(z⊤i,j,k(θ̂n − θ∗) < −∆i,j,k), where we introduce feature

vector differences zi,j,k. Then we bound the above quantity by 2 exp
(
−nκ2∆2

i,j,k

2d

)
, using Lemma 10

in Appendix D.2 and Lemma 2. The full proof is in Appendix D.2.

The bound in Theorem 6 is similar to that in Theorem 4. The only difference is in the factor of κ,
which appears in generalized linear bandit analyses [59, 62, 8]. This dependence arises since learning
in GLMs is hard when the slope of the mean function is low.

Each term in Theorem 6 can be bounded by exp
(
−nκ2∆2

min/(2d)
)
, where n is the sample size, d

is the number of features, κ is defined in Assumption 2, and ∆min is the minimum gap. Therefore,
similarly to Theorem 4, the bound decreases exponentially with budget n, κ, and gaps; and increases
with d. This dependence is similar to existing sample complexity bounds for fixed-budget best-arm
identification in GLMs. Specifically, it is similar to the result of Theorem 2 of Azizi et al. [8] which
studies fixed budget BAI setting in linear and GLM bandits for absolute feedback.
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(b) Ranking feedback
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(c) Nectar dataset
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(d) Anthropic dataset

Figure 1: Ranking loss of all compared methods plotted as a function of the number of rounds. The
confidence bars are one standard error of the estimate.

6 Experiments

The goal of our experiments is to evaluate Dope empirically and compare it to several baselines. All
compared methods estimate θ̂t using (7) and (9), depending on the feedback. Then they rank items in
the lists based on their estimated mean rewards x⊤

i,kθ̂t. The performance of methods is evaluated by
the ranking loss in (3) divided by L. All experiments are averaged over 100 independent runs.

We compare the following algorithms:

(1) Dope (D-optimal design): This is our proposed approach. We solve the optimal design problem in
(6) and then sample lists It according to π∗.

(2) Unif (uniform sampling): This approach chooses lists It uniformly at random from [L]. While
simple, it is known to be competitive in real-world problems where feature vectors may cover the
feature space close to uniformly [5, 103, 4, 77].

(3) Avg-Design: The exploration policy is an optimal design over feature vectors. The feature vector
of list i is the mean of the feature vectors of all items in it, x̄i =

1
K

∑K
k=1 xi,k. After the design is

computed, we sample lists It according to it. The rest is the same as in Dope. This baseline shows
that our list representation with multiple feature vectors can outperform more naive choices.

(4) Clustered-Design: This approach uses the same representation as Avg-Design. The difference is
that we cluster the list feature vectors using k-medoids. Then we sample lists It uniformly at random
from the cluster centers. The rest is the same as in Avg-Design. This baseline shows that we can
outperform other notions of diversity, such as obtained by clustering. We tuned k and report the best
results. It is k = 10 for the Nectar dataset and k = 6 otherwise.

(5) Dueling-Design: We turn L lists into
(
K
2

)
L lists of length 2, one for each pair of items in the

original lists. Then we apply Dope for K = 2. Specifically, we get pairwise feedback on the lists and
learn a BTL model, which is a special case of the PL model in (9) for K = 2. The evaluation is the
same as in the other methods. This baseline shows that pairwise feedback gathers less information
than K-way feedback.

Pure exploration algorithms are often compared to cumulative regret baselines [15, 7]. Since our
problem is a form of learning to rank, this suggests that we could compare to online learning to rank
(OLTR) baselines [73, 47, 115]. We do not compare to them for the following reason. The problem
of an optimal design over lists is to design a distribution over queries. All OLTR algorithms solve a
different problem, return a ranked list of items conditioned on a query chosen by the environment.
Since they do not choose queries, they cannot solve our problem.
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Synthetic experiment 1 (absolute feedback): We have L = 400 questions and represent them by
random vectors qi ∈ [0, 1]6. Each question has K = 4 answers. For each question, we generate K
random answers ai,k ∈ [1, 2]6. Both the question and answer vectors are normalized to unit length.
For each question-answer pair (i, k), the feature vector is xi,k = vec(qia

⊤
i,k) and has length d = 36.

The outer product captures cross-interaction terms of the question and answer representations. A
similar technique is used for feature preprocessing of the Yahoo! Front Page Today Module User
Click Log Dataset by [57, 58, 112, 9]. We randomly sample θ∗ ∈ [0, 1]d. The absolute feedback is
generated as in (1). Our results are reported in Figure 1(a). We observe that the ranking loss of Dope
decreases the fastest among all methods, with Unif and Avg-Design being close second.

Synthetic experiment 2 (ranking feedback): This experiment is similar to the first experiment,
except that the feedback is generated by the PL model in (2). Our results are reported in Figure 1(b)
and we observe again that the ranking loss of Dope decreases the fastest. The two closest baselines
are Unif and Avg-Design. Their lowest ranking loss (n = 100) is attained by Dope at n = 60, which
is nearly a two-fold reduction in sample size.

Real-world experiment 3 (Nectar dataset): We take L = 2000 questions from the Nectar dataset
[110]. Each question has K = 5 answers generated by gpt-4, gpt-4-0613, gpt-3.5-turbo, gpt-3.5-
turbo-instruct, and anthropic. We first obtain 768-dimensional Instructor embeddings [84] of both
questions and answers. Then we project them to R10 using a random projection matrix. Let qi and
ai,k be the projected embeddings of question i and answer k to it. For each question-answer pair
(i, k), the feature vector is xi,k = vec(qia

⊤
i,k) and has length d = 100. We estimate θ∗ ∈ Rd from

the original ranking feedback in the dataset using the MLE in (9). During simulation, the ranking
feedback is generated by the PL model in (2). Our results are reported in Figure 1(c). We observe that
the ranking loss of Dope is consistently the lowest. The closest baseline is Avg-Design. Its lowest
ranking loss (n = 500) is attained by Dope at n = 150, which is more than a three-fold reduction in
sample size.

Real-world experiment 4 (Anthropic dataset): We take L = 2000 questions, each with K = 2
answers, from the Anthropic dataset [10]. We again obtain 768-dimensional Instructor embeddings
of all questions and answers. Then we project them to R6 using a random projection matrix. For
each question-answer pair (i, k), the feature vector is xi,k = vec(qia

⊤
i,k) and has length d = 36. We

estimate θ∗ ∈ Rd from the original ranking feedback in the dataset using the MLE in (9). During
simulation, the ranking feedback is generated by the PL model in (2). Our results are reported in
Figure 1(d). We observe again that the ranking loss of Dope is the lowest. The closest baseline is
Unif. Its lowest ranking loss (n = 1000) is attained by Dope at n = 300, which is more than a
three-fold reduction in sample size.

7 Conclusions

We study the problem of optimal human feedback collection for learning preference models. The
problem is formalized as learning to rank K answers to L questions under a fixed budget n on
the number of asked questions. To our knowledge, this is the first paper on fixed-budget pure
exploration for ranked lists based on optimal design. We consider two settings: absolute and ranking
feedback. The absolute setting is motivated by how human annotators assign relevance scores
in search [34, 63]. The ranking feedback is motivated by learning preference models in RLHF
[44, 74, 41, 18, 102, 82, 20]. We solve both settings in a unified way. The key idea in our general
solution is extending optimal designs [46, 51], which can be used to compute optimal information
gathering policies, to K-way questions. After the human feedback is collected, we learn a model of
human preferences using an existing MLE. This approach is statistically efficient, computationally
efficient, and can be analyzed. Specifically, in both absolute and ranking feedback models, we bound
the estimation errors of our algorithms and the resulting ranking loss. We experiment with several
synthetic and real-world datasets to show that our approach is practical.

In the future, we want to extend our work in several directions. For instance, while we proved upper
bounds on the ranking loss with absolute and ranking feedback, and discussed them in detail, we did
not prove matching lower bounds. We intend to prove them. We also want to extend our approach to
the fixed-confidence setting, with both absolute and ranking feedback. Finally, we want to apply our
approach to learning a reward model for fine-tuning an LLM.
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A Related Works

In this section, we discuss related works. Our setting is similar to the preference learning framework.
In preference learning framework the goal is to learn the preferences of one or more agents from the
observations [29, 30, 35]. The preference learning literature mainly consists of two types of feedback:
pairwise preferences and ranking feedback. In pairwise preference, the observed data is a preference
between pairs of objects while in ranking feedback the learner observes the absolute ranking of the
items. Both of these have been studied in the online and bandit communities [48, 114, 25, 11]. The
preference based bandits have several similarities with the dueling bandit settings [104, 54, 79, 80].
In dueling bandits at every round t the learner selects a pair of items and observes an instantaneous
comparison over them where the outcome does not depend on the items previously selected. So in
dueling bandits the goal of the learner is to select the item winning with the highest probability. In
contrast in our setting, the learner observes the absolute feedback for K items or a ranking over these
K items.

In the ranking setting the learner observed a ranking over the items and the goal of the learner is to
find the K items with the highest reward [111]. These rankings can be generated from an underlying
human preference model like Placket-Luce (PL) [71, 61] or BTL model [13]. However, in this
work, we focus on the fixed budget pure exploration setting whereas all the previous works focus on
simple regret setting under the ranking feedback [48, 114]. Previous works in online learning to rank
have focused on several types of click feedback models, like position based model [49, 25, 109] or
cascading model [47, 115, 108]. In contrast in our setting, we do not assume any such underlying
click model, but assume that there is an underlying human ranking model (PL or BTL).

Similar preference based learning has been studied in Reinforcement Learning (RL) as well [92,
68, 100, 32]. This is termed Preference Based Reinforcement Learning (PBRL). The key difference
between RL and PBRL settings is that in PBRL the learner has to learn the underlying human
preference through the rewards observed which can be non-numerical [21, 53, 19]. All of these works
focus on regret minimization or finding the optimal policy in RL setting. However, in our setting,
we only consider the stateless bandit framework, and we focus pure exploration setting. The PBRL
setting has also been studied under general function approximation when the reward is parameterized
by a neural network [95, 60, 17, 14, 70, 83].

Our work is also closely related to Inverse Reinforcement Learning (IRL) and Offline Reinforcement
Learning. These frameworks also allow the agent to take into account human preferences into
it decision-making process. In IRL and imitation learning the agent only observes the expert’s
interaction history and aims to predict the expert’s preference [66, 2, 75, 113, 65, 33, 36, 28]. In the
offline RL setting the agent directly observes the past history of interactions. Note that these actions
can be sub-optimal and there can be issues of data coverage and distribution shifts. Therefore in recent
years pessimism under offline RL has gained traction [40, 76, 97, 106, 96, 56, 99, 105, 107, 81]. In
contrast to these works, we study offline K-wise preference ranking under PL and BTL models for
pure exploration setting. We do not use any pessimism but use optimal design [72, 26] to ensure
diversity among the data collected.

B Proof of Matrix Kiefer-Wolfowitz

We follow the proof technique of Lattimore and Szepesvári [51]. Observe that Vπ ∈ Rd×d is a
square matrix. Using Jacobi formula we have

∇f(π)π(i)=
Tr
(
adj(Vπ)AiA

⊤
i

)
det(Vπ)

(12)

=
Tr(A⊤

i adj(Vπ)Ai)

det(Vπ)
(13)

(a)
= Tr(A⊤

i V
−1
π Ai), (14)

where the last equality follows from the fact that for a square matrix Vπ , its adjoint matrix adj(Vπ)
is the transpose of its cofactor matrix and hence, the inverse is V−1

π = 1
det(Vπ)

adj(Vπ)
⊤. Then, we
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have ∑
i∈[L]

π(i)Tr(A⊤
i V

−1
π Ai) = Tr

∑
i∈[L]

π(i)AiA
⊤
i V

−1
π

 (15)

= Tr

∑
i∈[L]

π(i)AiA
⊤
i

∑
i∈[L]

π(i)AiA
⊤
i

−1
 (16)

= Tr (Id) = d. (17)
The above equation implies g(π) ≥ d for all π.
(b)⇒ (a): Suppose that π∗ is a maximizer of f(π). By the first-order optimality criterion, for any π
distribution,

0 ≥ ⟨∇f (π∗) , π − π∗⟩

≥

∑
i∈[L]

π(i)Tr(A⊤
i V

−1
π∗

Ai)−
∑
i∈[L]

π∗(i)Tr(A
⊤
i V

−1
π∗

Ai)


≥

∑
i∈[L]

π(i)Tr(A⊤
i V

−1
π∗

Ai)− d

 .

For an arbitrary π, choosing π to be the Dirac at i proves that Tr(A⊤
i V

−1
π∗

Ai) ≤ d for all i ∈ [L].
Since g(π) ≥ d for all π by (17), it follows that π∗ is a minimizer of g and that g(π∗) = d.

(c) =⇒ (b): Suppose that g (π∗) = d. Then, for any π,

⟨∇f (π∗) , π − π∗⟩ =
∑
i∈[L]]

π(i)Tr(A⊤
i V

−1
π∗

Ai)− d ≤ 0. (18)

And it follows that π∗ is a maximizer of f(π) by the first-order optimality conditions and the concavity
of f(π).

(a) =⇒ (c): Follows from the previous two steps as we proved that π∗ is a minimizer of g(π) and π∗
is also a maximizer of f(π).

To prove the second part of the theorem, let π∗ be a minimizer of g, which by the previous part is a
maximizer of f . LetM = Supp (π∗), and suppose that |M| > d(d + 1)/2. Since the dimension
of the subspace of d × d symmetric matrices is d(d + 1)/2, there must be a non-zero function
v : S → RL with Supp(v) ⊆M such that∑

i∈M
v(i)Tr(A⊤

i V
−1
π Ai) = 0. (19)

where, v(i) is the probability assigned to the a under the function (distribution) v. Notice that for any
j ∈M, the first-order optimality conditions ensure that Tr(A⊤

i V
−1
π Ai) = d. Hence we can show

that
d
∑
i∈M

v(i) =
∑
i∈M

v(i)Tr(A⊤
i V

−1
π Ai) = 0,

where the last equality follows from (19). Let π(t) = π∗+tv and let τ = max
{
t > 0 : π(t) ∈ ∆|S|},

which exists since v ̸= 0 and
∑

i∈M v(i) = 0 and Supp(v) ⊆ M. By (19), Vπ(t) = Vπ∗ , and
hence f(π(τ)) = f (π∗), which means that π(τ) also maximises f . The claim follows by checking
that |Supp(π(t))| < |Supp (π∗)| and then using induction. The claim of the theorem follows.

C Learning with Absolute Feedback

C.1 Proof of Lemma 2

We start by noting that for all i ∈ [L],∑
a∈Ai

∥a∥2
Σ

−1
n

= Tr(A⊤
i Σ

−1

n Ai).
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Since we assume that nπ∗(i) is an integer, the covariance matrix Σn is invertible. This is because the
optimal design π∗ outputs a set of lists that spans Rd and avoids degenerate solutions. Then, we can
rewrite the above as

∑
a∈Ai

∥a∥2
Σ

−1
n

= Tr(A⊤
i Σ

−1

n Ai) = Tr

A⊤
i

(
n∑

t=1

K∑
k=1

xIt,kx
⊤
It,k

)−1

Ai


(a)
=

1

n
Tr

A⊤
i

(
L∑

i=1

π∗(i)

K∑
k=1

xi,kx
⊤
i,k

)−1

Ai

 =
1

n
Tr(A⊤

i V
−1
π∗

Ai),

where (a) follows from the fact that given a fixed design π∗ and budget n, list i is seen exactly nπ∗(i)
times. Now we apply Theorem 1, use our definition of g(π∗), and get that g(π∗) = d. Thus

max
i∈[L]

Tr(A⊤
i Σ

−1

n Ai) =
d

n
.

The claim of the lemma follows.

C.2 Proof of Theorem 3

We start with

max
i∈[L]

Tr

(
A⊤

i

(
θ∗ − θ̂n

)(
θ∗ − θ̂n

)⊤
Ai

)
= max

i∈[L]

∑
a∈Ai

(
a⊤
(
θ∗ − θ̂n

))2
= max

i∈[L]

∑
a∈Ai

(
a⊤Σ

−1/2

n Σ
1/2

n

(
θ∗ − θ̂n

))2 (a)

≤ max
i∈[L]

∑
a∈Ai

∥a∥2
Σ

−1
n

∥θ∗ − θ̂n∥2Σn

(b)
= max

i∈[L]

∑
a∈Ai

∥a∥2
Σ

−1
n︸ ︷︷ ︸

Part I

n∥θ∗ − θ̂n∥2Σn︸ ︷︷ ︸
Part II

, (20)

where (a) follows from the Cauchy-Schwarz inequality and (b) follows from the definition of Σn.

Part I captures the efficiency of the data collection process and depends on the optimal design. The
quantity represents the maximum possible sum of errors across all items in any list. These errors
represent the uncertainty in our estimates of the average reward for each item in any list under the
empirical covariance matrix Σn. By Lemma 2, it is

max
i∈[L]

∑
a∈Ai

∥a∥2
Σ

−1
n

= Tr(A⊤
i V

−1
π∗

Ai) =
d

n
.

Part II measures the quality of the MLE θ̂n, and depends on the squared distance of θ̂n from the true
parameter θ∗, under the empirical covariance matrix Σn. For Part II, we use Lemma 7 and get∥∥∥θ̂n − θ∗

∥∥∥2
Σn

≤ 4

(
2d log(6) + log(1/δ)

n

)
The main claim follows from combining the upper bounds on Parts I and II in (20).

The supporting lemma is proved below.
Lemma 7. Under the absolute feedback model, for any λ > 0, with probability at least 1− δ,∥∥∥θ̂n − θ∗

∥∥∥2
Σn

≤ 4

(
2d log 6 + log(1/δ)

n

)
.

Here Σn = 1
n

∑n
i=1

∑K
k=1 xi,kx

⊤
i,k.

Proof. First we define some additional notation. Recall that each xi,k is column vector in Rd. We
define the feature vector associated with It as Xt ∈ RK×d as [xIt,1,xIt,2, . . . ,xIt,K ]⊤ and define
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the feature matrix after n observations X ∈ RKn×d as [X⊤
1 ,X

⊤
2 , . . . ,X

⊤
n ]

⊤. Similarly, we define
the observation vector Yt ∈ RK at round t as [yt,1, yt,2, . . . , yt,K ]⊤ and define the observation vector
after n observations Y ∈ RKn as [Y⊤

1 ,Y
⊤
2 , . . . ,Y

⊤
t ]

⊤.

Under the sub-Gaussian noise we can show that our MLE is the same as the Ordinary Least-Squares
(OLS) estimate such that θ̂n = (X⊤X)−1X⊤Y. Then we can show that

θ̂n = (X⊤X)−1X⊤Y = (X⊤X)−1X⊤(Xθ∗ + ηn) = θ∗ + (X⊤X)−1X⊤ηn

=⇒ θ̂n − θ∗ = (X⊤X)−1X⊤ηn.

Since, the noise is independent sub-Gaussian noise, it follows then for any a ∈ Rd

a⊤(θ̂n − θ∗) ∼ SG(0,a⊤(X⊤X)−1X⊤ηnη
⊤
n X(X⊤X)−1a)

∼ SG(0,a⊤(X⊤X)−1a)

∼ SG(0, ∥a∥2(X⊤X)−1)

Therefore we have that using sub-Gaussian concentration inequality that

P
(
a⊤(θ̂n − θ∗) ≥

√
2(∥a∥2

(X⊤X)−1) log(1/δ)
)
≤ δ. (21)

Also, note that (X⊤X) = nΣn. Follows Chapter 20 of Lattimore and Szepesvári [51] We now use
a covering argument. Let there exists a set Cϵ ⊂ Rd with |Cϵ| ≤ (3/ε)d such that for all x ∈ Sd−1

there exists a y ∈ Cε with ∥x− y∥2 ≤ ϵ. Now define event

ξ =

{
existsx ∈ Cε : ⟨Σ1/2

n x, θ̂n − θ∗⟩ ≥

√
2

n
log

(
|Cϵ|
δ

)}
We now want to show that P(ξ) ≤ δ. We can show this as follows:

∥θ̂n − θ∗∥Σn
=

1√
n

max
x∈Sd−1

⟨Σ1/2
n x, θ̂n − θ∗⟩

=
1√
n

max
x∈Sd−1

min
y∈Cϵ

[
⟨Σ1/2

n x− y, θ̂n − θ∗⟩+ ⟨Σ1/2
n y, θ̂n − θ∗⟩

]
<

1√
n

max
x∈Sd−1

min
y∈Cϵ

[
∥θ̂n − θ∗∥Σn

∥x− y∥22 +
√
2 log

|Cϵ|
δ

]

≤ ϵ√
n
∥θ̂n − θ∗∥Σn

+
1√
n

√
2 log

|Cϵ|
δ

Rearranging the above yields

∥θ̂n − θ∗∥Σn
≤ 1√

n
· 1

1− ϵ

√
2 log

|Cϵ|
δ

Setting ϵ = 1
2 we get that

P

(
∥θ̂n − θ∗∥Σn

≥ 2

√
2d

n
log(6) +

1

n
log

1

δ

)
≤ δ.

The claim of the lemma follows.

C.3 Proof of Theorem 4

From the definition of ranking loss we have

E [Rn] =

L∑
i=1

K∑
j=1

K∑
k=j+1

E [I{σ̂n,i(j) > σ̂n,i(k)}] =
L∑

i=1

K∑
j=1

K∑
k=j+1

P
(
x⊤
i,j θ̂n < x⊤

i,kθ̂n

)
.
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Hence, our first step is to bound the prediction error where item k is predicted above item j under
absolute feedback P

(
x⊤
i,j θ̂n < x⊤

i,kθ̂n

)
for all list i ∈ [L] and (j, k) ∈ Π2(K). Our proof closely

follows the proof technique of Lemma 2 in Yang and Tan [101]. Recall ∆i,j,k = (xi,j − xi,k)
⊤θ∗.

At the end of round n, we bound the prediction error as follows

P
(
x⊤
i,j θ̂n < x⊤

i,kθ̂n

)
= P

(
x⊤
i,j θ̂n − x⊤

i,kθ̂n −∆i,j,k < −∆i,j,k

)
= P

(
(xi,j − xi,k)

⊤θ̂n − (xi,j − xi,k)
⊤θ∗ < −∆i,j,k

)
= P

(
(xi,j − xi,k)

⊤(θ̂n − θ∗) < −∆i,j,k

)
≤ P

(
x⊤
i,j(θ̂n − θ∗) < −∆i,j,k

)
+ P

(
x⊤
i,k(θ̂n − θ∗) > ∆i,j,k

)
(a)

≤ exp

− ∆2
i,j,k

2∥xi,j∥2
Σ

−1
n

+ exp

− ∆2
i,j,k

2∥xi,k∥2
Σ

−1
n


(b)

≤ exp

(
−
n∆2

i,j,k

2d

)
+ exp

(
−
n∆2

i,j,k

2d

)

= 2 exp

(
−
n∆2

i,j,k

2d

)
,

where, (a) follows from Lemma 8, and (b) follows from Lemma 2. Finally, the total probability of
error for the fixed budget setting under absolute feedback is given by

L∑
i=1

K∑
j=1

K∑
k=j+1

P
(
x⊤
i,j θ̂n < x⊤

i,kθ̂n

)
≤

L∑
i=1

K∑
j=1

K∑
k=j+1

2 exp

(
−
n∆2

i,j,k

2d

)
.

The claim of the proposition follows.

The supporting lemma is proved below.

Lemma 8. For an arbitrary constant ∆ and x ∈ Rd we can show that

P
(
x⊤
(
θ̂ − θ∗

)
> ∆

)
≤ exp

− ∆2

2∥x∥2
Σ

−1
n



where, Σn =
∑n

i=1

∑K
k=1 xi,kx

⊤
i,k.

Proof. The proof of the lemma is from Section 2.2 in Jamieson and Jain [38]. Under the sub-Gaussian
noise assumption, we can show that for any vector x ∈ Rd the following holds

x⊤
(
θ̂ − θ∗

)
= x⊤ (X⊤X

)−1
X⊤︸ ︷︷ ︸

w

η = w⊤η.
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Then for an arbitrary constant ∆ and x ∈ Rd, we can show that

P
(
x⊤
(
θ̂ − θ∗

)
> ∆

)
= P

(
w⊤η > ∆

)
(a)

≤ exp(−λ∆)E
[
exp

(
λw⊤η

)]
, let λ > 0

= exp(−λ∆)E

[
exp

(
λ

t∑
s=1

wsηs

)]
(b)
= exp(−λ∆)

t∏
s=1

E [exp (λwsηs)]

(c)

≤ exp(−λ∆)

t∏
s=1

exp
(
λ2w2

s/2
)

= exp(−λ∆) exp

(
λ2

2
∥w∥22

)
(d)

≤ exp

(
− ∆2

2∥w∥22

)
(e)
= exp

(
− ∆2

2x⊤ (X⊤X)
−1

x

)
= exp

− ∆2

2∥x∥2
Σ

−1
n


where, (a) follows from Chernoff Bound, (b) follows from independence of wsηs, (c) follows
sub-Gaussian assumption, (d) follows by setting λ = ∆

∥w∥2
2

, and (e) follows from the equality

∥w∥22 = x⊤ (X⊤X
)−1

X⊤X
(
X⊤X

)−1
x = x⊤ (X⊤X

)−1
x.

The claim of the lemma follows.

D Learning with Ranking Feedback

D.1 Proof of Theorem 5

Since Σn is invertible, following similar steps to Theorem 3 yields

max
i∈[L]

Tr

(
A⊤

i

(
θ∗ − θ̂n

)(
θ∗ − θ̂n

)⊤
Ai

)
≤ max

i∈[L]

∑
a∈Ai

∥a∥2
Σ

−1
n︸ ︷︷ ︸

Part I

K(K−1)n
2 ∥θ∗ − θ̂n∥2Σn︸ ︷︷ ︸

Part II

. (22)

Part I captures the efficiency of the optimal design and Part II captures the uncertainty in the MLE θ̂n.

Now we bound the individual quantities in Parts I and II. First, we use Lemma 2 to bound Part I. Then
we bound Part II using Lemma 9. We use the proof technique of Theorem 4.1 in Zhu et al. [111] to
prove Lemma 9. Finally, the proof follows by combining Lemma 2 and Lemma 9. At the end, we get

max
i∈[L]

∑
a∈Ai

(
a⊤
(
θ∗ − θ̂n

))2
≤ K(K − 1)n

2
max
i∈[L]

∑
a∈Ai

∥a∥2
Σ

−1
n︸ ︷︷ ︸

Part I

∥θ∗ − θ̂n∥2Σn︸ ︷︷ ︸
Part II

≤
(
K(K − 1)n

2

)
d

n
C

(
K4(d+ log(1/δ))

n

)
= Õ

(
K6d2 log(1/δ)

n

)
,

for some constant C > 0. This concludes the proof.

The supporting lemma is proved below.
Lemma 9. Fix δ ∈ (0, 1). Under the ranking feedback model, for any λ > 0 and a constant C > 0,
with probability at least 1− δ,∥∥∥θ̂n − θ∗

∥∥∥2
Σn

≤ C ·
(
K4(d+ log(1/δ))

n

)
.

21



Proof. Step 1 (Strong Convexity of loss): We first prove the strong convexity of the loss ℓDn(θ)
with respect to the semi-norm ∥ · ∥Σn at θ∗ meaning that there is some constant γ > 0 such that

ℓn (θ∗ +∆)− ℓn (θ∗)− ⟨∇ℓn (θ∗) ,∆⟩ ≥ γ∥∆∥2Σn

for all pertubations of ∆ such that θ∗ +∆ ∈ Θ. First, the Hessian of the negative log-likelihood can
be written as

∇2ℓn(θ) =
1

n

n∑
t=1

K∑
j=1

K∑
k=j

K∑
k′=j

exp
(
θ⊤xIt,σt(k) + θ⊤xIt,σt(k′)

)
2
(∑K−1

k′=j exp
(
θ⊤xIt,σt(k′)

))2 · zIt,σt(k),σt(k′)z
⊤
It,σt(k),σt(k′).

Since exp(θ⊤x) ∈ [e−1, e] for any x, we know that the coefficients satisfy
exp

(
θ⊤xIt,σt(k) + θ⊤xIt,σt(k′)

)(∑K−1
k′=j exp

(
θ⊤xIt,σt(k′)

))2 ≥ e−4

2(K − j)2
. (23)

This implies that for any arbitrary vector v ∈ Rd we have that

v⊤∇2ℓn(θ)v ≥
1

n
v⊤

 n∑
t=1

K∑
j=1

1

(K − j)2

K∑
k=j

K∑
k′=j

zIt,σt(k),σt(k′)z
⊤
It,σt(k),σt(k′)

v

= v⊤

Σn +

n∑
t=1

K∑
j=0

1

n(K − j)2

K∑
k=j

K∑
k′=j

zIt,σt(k),σt(k′)z
⊤
It,σt(k),σt(k′) −Σn

v

(a)

≥ v⊤Σnv

= ∥v∥2Σn
,

where (a) follows by noting
n∑

t=1

K∑
j=1

1

n(K − j)2

K∑
k=j

K−1∑
k′=j

zIt,σt(k),σt(k′)z
⊤
It,σt(k),σt(k′) −Σn (24)

=

n∑
t=1

K∑
j=1

1

n(K − j)2

K∑
k=j

K∑
k′=j

zIt,σt(k),σt(k′)z
⊤
It,σt(k),σt(k′) −

2

K(K − 1)n

n∑
t=1

K∑
j=1

K∑
k=j+1

zIt,j,kz
⊤
It,j,k

(25)

=

n∑
t=1

1

n

 K∑
j=1

1

(K − j)2

K∑
k=j

K∑
k′=j

zIt,σt(k),σt(k′)z
⊤
It,σt(k),σt(k′) −

2

K(K − 1)

K∑
j=1

K∑
k=j+1

zIt,j,kz
⊤
It,j,k

 ,

(26)
is positive semi-definite matrix.

Hence, we have that ℓn(θ) is strongly convex at θ∗ with respect to the norm ∥ · ∥Σn
. Therefore, we

have
γ∥∆∥2Σn

≤ ℓn (θ∗ +∆)− ℓn (θ∗)− ⟨∇ℓn (θ∗) ,∆⟩
(a)

≤ −⟨∇ℓn (θ∗) ,∆⟩
≤ ∥∇ℓn (θ∗)∥Σ−1

n
∥∆∥Σn

where, (a) follows as ℓn
(
θ̂n

)
≤ ℓn (θ∗), and the last inequality follows from | ⟨∇ℓn (θ∗) ,∆⟩ | ≤

∥∇ℓn (θ∗)∥Σ−1
n
∥∆∥Σn .

Step 2 (Upper bound the gradient of loss ℓn(θ∗)): First recall that the gradient of loss is as follows

∇ℓn (θ∗) = −
1

n

n∑
t=1

K∑
j=1

K∑
k=j

exp
(
θ⊤
∗ xIt,σt(k)

)∑K
k′=j exp

(
θ∗,xIt,σt(k′)

)zIt,σt(j),σt(k)

(a)
=

1

n

n∑
t=1

K∑
j=1

K∑
k=j

VIt,j,kzIt,j,k =
1

n
XTV,
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where, in (a) we have define

VIt,j,k =


exp(θ⊤

∗ xIt,k)∑K−1

k′=σ
−1
t (j)

exp
(
θ⊤
∗ xIt,σt(k′)

) , if σ−1
t (j) < σ−1

t (k)

− exp(θ⊤
∗ xIt,j)∑K−1

k′=σ
−1
t (k)

exp
(
θ⊤
∗ ,xIt,σt(k′)

) , otherwise.

In (b) we define matrix X ∈ R(nK(K−1)/2)×d has the differencing vector zIt,jk as its

(tK(K− 1) /2 + k +
∑K

l=K−j+1 l
)th

row and V ∈ RnK(K−1)/2 is the concatenated vector of
{{VIt,j,k}0≤j<k≤K−1}

n
t=1. With this notation, we have

∥∇ℓn (θ∗)∥2Σ−1
n

=
1

n2
V⊤XΣ−1

n X⊤V

(a)

≤ K2

n
∥V∥22

(b)

≤ CK4 · (d+ log(1/δ)),

where (a) follows as K2

n I ⪰ 1
n2XΣ−1

n X⊤ and the (b) follows with probability 1− δ as the vector
V is sub-Gaussian with parameter K (follows from Zhu et al. [111]) and Bernstein’s inequality for
sub-Gaussian random variables in quadratic form.

Step 3 (Combining everything): Combining everything we have
γ∥∆∥2Σn

≤ ∥∇ℓn (θ∗)∥Σ−1
n
∥∆∥Σn

≤
√

C · K
4(d+ log(1/δ))

n
∥∆∥Σn ,

for some finite constant C > 0. It follows then that∥∥∥θ̂n − θ∗

∥∥∥2
Σn

≤ C ·
(
K4(d+ log(1/δ))

n

)
.

The claim of the lemma follows.

D.2 Proof of Theorem 6

Following the same steps as that of Theorem 4, at the end of round n, we bound the prediction error
for (j, k) ∈ Π2(K) for list i ∈ [L] under ranking feedback as follows

P
(
x⊤
i,j θ̂n < x⊤

i,kθ̂n

)
= P

(
x⊤
i,j θ̂n − x⊤

i,kθ̂n −∆i,j,k < −∆i,j,k

)
= P

(
(xi,j − xi,k)

⊤θ̂n − (xi,j − xi,k)
⊤θ∗ < −∆i,j,k

)
= P

(
(xi,j − xi,k)

⊤(θ̂n − θ∗) < −∆i,j,k

)
= P

(
z⊤i,j,k(θ̂n − θ∗) < −∆i,j,k

)
(a)

≤ exp

− κ2∆2
i,j,k

2∥zi,j,k∥2
Σ

−1
n


(b)

≤ exp

(
−
nκ2∆2

i,j,k

2d

)
where, (a) follows from Lemma 10, and (b) follows from Lemma 2. Finally, the total probability of
error for the fixed budget setting under absolute feedback is given by

L∑
i=1

K∑
j=1

K∑
k=j+1

P
(
x⊤
i,kθ̂n > x⊤

i,j θ̂n

)
≤

L∑
i=1

K∑
j=1

K∑
k=j+1

2 exp

(
−
nκ2∆2

i,j,k

2d

)
.

The claim of the proposition follows.

The supporting lemma is proved below.
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Lemma 10. (Restatement of Theorem 1 from Li et al. [59]) Let δ > 0 be given Furthermore,
assume that

λmin

(
Σn

)
≥ 512γ2

κ4

(
d2 + log

1

δ

)
.

where, κ = inf{x:∥x∥≤1,θ:∥θ−θ∗∥≤1} ˙exp
(
x⊤θ

)
> 0, and ˙exp(·) denotes the first derivative of the

exp(·) function (see Assumption 2). Then, with probability at least 1− 3δ, the maximum likelihood
estimator for a generalized least square model satisfies, for any x ∈ Rd, that∣∣∣x⊤

(
θ̂n − θ∗

)∣∣∣ ≤ 3

κ

√
log(1/δ)∥x∥

Σ
−1
n
.

Setting, δ = exp

(
− 9κ2∆2

∥x∥
Σ

−1
n

)
for some arbitrary constant ∆ > 0 we get that

P
(
x⊤
(
θ̂n − θ∗

)
≥ ∆

)
≤ exp

(
− 9κ2∆2

∥x∥
Σ

−1
n

)
.

for λmin

(
Σn

)
≥ 512

κ4

(
d2 +

∥x∥
Σ−1

n

9κ2∆2

)
.

E Computation Time for Different Sized Lists

In the following table, we give the computation time for solving the optimization in (6). We use the
same setting as in experiment 2 in Section 6 and increase the list size.

List (L) Computation Time (seconds)
100 4.71
200 8.31
300 15.63
400 21
500 26.6
600 35
700 41.25
800 49.72

Table 1: Computation time Table

From the Table 1 we see that using the package cvxpy results in fast computation of the optimal
design in (6).
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F Dope Algorithms
In this section we present the full pseudo-code of our algorithm Dope both for the absolute and
ranking feedback. First in Algorithm 1 we present the Dope for the absolute feedback setting. The
algorithmic details are given in Section 4.1. Then in Algorithm 2 we present the Dope for the ranking
feedback setting under the PL model. The algorithmic details are given in Section 5.1.

Algorithm 1 Dope under absolute feedback
1: Input: Feature vectors xi,k for all items k ∈ [K] and for all lists i ∈ [L], budget n
2: for i = 1, . . . , L do
3: Ai ← [xi,1,xi,2, . . . ,xi,1K ]
4: end for
5: Vπ ←

∑L
i=1 π(i)AiA

⊤
i

6: π∗ ← maxπ∈△L log det(Vπ)
7: for t = 1, . . . , n do
8: It ∼ π∗
9: Observe yIt,k for all k ∈ [K]

10: end for
11: Σn ← 1

n

∑n
t=1

∑K
k=1 xIt,kx

⊤
It,k

(Covariance matrix)

12: θ̂n ← Σ
−1

n

∑n
t=1

∑K
k=1 xIt,kyt,k (MLE under absolute feedback)

13: for i = 1, . . . , L do
14: Ri ← [x⊤

i,1θ̂n,x
⊤
i,2θ̂n, . . . ,x

⊤
i,K θ̂n] (estimated mean rewards)

15: Sort Ri in descending order
16: for k = 1, . . . ,K do
17: σn,i(k)← item in k-th position in Ri

18: end for
19: end for
20: Output: Permutation σn,i(k) for all i ∈ [L]

Algorithm 2 Dope under ranking feedback
1: Input: Feature vectors xi,k for all items k ∈ [K] and for all lists i ∈ [L], budget n
2: for i = 1, . . . , L do
3: for j = 1 . . . ,K do
4: for k = j + 1 . . . ,K do
5: zi,j,k ← xi,j − xi,k

6: end for
7: end for
8: Ai ← [zi,j,k](j,k)∈Π2(K)

9: end for
10: Vπ ←

∑L
i=1 π(i)AiA

⊤
i

11: π∗ ← maxπ∈△L log det(Vπ)
12: for t = 1, . . . , n do
13: It ∼ π∗
14: Observe σIt
15: end for
16: θ̂n ← argminθ − 1

n

∑n
t=1

∑K
k=1 log

(
exp(x⊤

It,σt(k)θ)∑K−1

k′=k
exp

(
x⊤
It,σt(k

′)θ
)) (MLE under ranking feedback)

17: for i = 1, . . . , L do
18: Ri ← [x⊤

i,1θ̂n,x
⊤
i,2θ̂n, . . . ,x

⊤
i,K θ̂n] (estimated mean rewards)

19: Sort Ri in descending order
20: for k = 1, . . . ,K do
21: σn,i(k)← item in k-th position in Ri

22: end for
23: end for
24: Output: Permutation σn,i for all i ∈ [L]
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G Table of Notations

Notations Definition
K Total number of items in a list
d Dimension of the feature
L Total number of list
△L Probability simplex over L items
π∗ Optimal design over L lists
σt : [K]→ [K] permutation provided by the human labeler at

round t
xi,k Feature of the k-th item in the list i
θ∗ Hidden parameter for the feedback model

P (σt) =
∏K

k=1

exp(x⊤
It,σt(k)θ∗)∑K

i=k exp
(
x⊤
It,σt(i)

θ∗

) Plackett-Luce model

yt,k = x⊤
It,k

θ∗ + ηt,k, Absolute feedback model
n Total horizon
Π2(K) = {(j, k) : j < k; j, k ∈ [K]} set of all ordered pairs where the first coordinate is

strictly less than the second one.
κ = inf{x:∥x∥≤1,θ:∥θ−θ∗∥≤1} exp

(
x⊤θ

)
> 0 Lower bound of gradient

Vπ =
∑L

i=1 π(i)AiA
⊤
i Design matrix

Σn = 1
n

∑n
t=1

∑K
k=1 xIt,kx

⊤
It,k

Covariance matrix for absolute feedback
Σn = 2

K(K−1)n

∑n
t=1

∑K
j=1

∑K
k=j+1 zIt,j,kz

⊤
It,j,k

Covariance matrix for ranking feedback

Σn=
K(K − 1)n

2
Σn Un-normalized covariance matrix for ranking feed-

back
∆i,j,k = (xi,j − xi,k)

⊤θ∗ Gap between the mean rewards of items j and k
such that (j, k) ∈ Π2(K) in list i

Table 2: Table of Notations

26


	Introduction
	Setting
	Optimal Design and Matrix Kiefer-Wolfowitz
	Learning with Absolute Feedback
	Algorithm Dope
	Maximum Prediction Error Under Absolute Feedback
	Ranking Loss Under Absolute Feedback

	Learning with Ranking Feedback
	Algorithm Dope
	Maximum Prediction Error Under Ranking Feedback
	Ranking Loss Under Ranking Feedback

	Experiments
	Conclusions
	Related Works
	Proof of Matrix Kiefer-Wolfowitz
	Learning with Absolute Feedback
	Proof of lemma:opt-design
	Proof of thm:sq-error-bound-absolute
	Proof of thm:fixed-budget-abs

	Learning with Ranking Feedback
	Proof of thm:sq-error-bound-ranking
	Proof of thm:fixed-budget-rank

	Computation Time for Different Sized Lists
	Dope Algorithms
	Table of Notations

