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Abstract
The existing graph neural architecture search
(GNAS) methods assume that the graph tasks
are static during the search process, ignoring the
ubiquitous scenarios where sequential graph tasks
come in a continual fashion. Moreover, existing
GNAS works resort to entangled graph factors
during the architecture search process, resulting
in the catastrophic forgetting problems. In this
paper, we study the problem of continual GNAS
that is expected to continually search the architec-
ture to learn new graph tasks without forgetting
the past, which remains largely unexplored in the
literature. However, this problem poses the chal-
lenge of architecture conflicts, i.e., the optimal
architecture for the new graph task may have per-
formance deterioration and thus sub-optimal for
past tasks. To address the challenge, we propose
a novel Disentangled Continual Graph Neural Ar-
chitecture Search with Invariant Modular Super-
net (GASIM) method, which is able to continu-
ally search the optimal architectures without for-
getting past knowledge. Specifically, we first de-
sign a modular graph architecture super-network
incorporating multiple modules to enable search-
ing architecture with factor expertise. Second,
we propose a factor-based task-module router that
discovers the latent graph factors and routes the in-
coming task to the best suitable architecture mod-
ule to alleviate the forgetting problem induced by
architecture conflicts. Finally, we propose an in-
variant architecture search mechanism to capture
the shared knowledge among tasks. Extensive ex-
periments demonstrate that our method achieves
state-of-the-art performance against baselines in
continual graph neural architecture search.
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1. Introduction
Graph neural architecture search (GNAS), aiming at au-
tomating the discovery of optimal architectures for Graph
neural networks (GNNs) when confronted with graph-
structured data and specific tasks, has exhibited noteworthy
advancements, demonstrating its efficacy in enhancing pre-
dictive capabilities and alleviating the need for extensive
human involvement across a spectrum of graph applica-
tions (Zhang et al., 2021b). Most existing GNAS methods
treat the entire graph as a holistic entity and search the archi-
tectures via optimizing for a fixed task applied to the entire
graph, which is based on the underlying assumption that the
graph tasks remain static throughout the search process.

However, graph tasks come continually in many real-world
scenarios. For example, in citation networks, novel types
of papers and their corresponding citations may continually
surface, necessitating a continually updated classifier to dis-
tinguish documents belonging to newly emerging research
fields (Zhang et al., 2022d; Zhou & Cao, 2021). In the
domain of drug design, the encounter with new categories
or properties of molecules is a recurrent phenomenon, and
thus, the predictor should be consistently updated to assim-
ilate knowledge regarding these new molecule categories
or properties (Kirkpatrick et al., 2017). As the existing
GNAS methods assume the graph tasks are fixed, they will
inevitably fail in the ubiquitous settings where graph tasks
are continuously generated.

In this paper, we study the problem of continual graph neu-
ral architecture search that is expected to continually search
the graph architecture to learn new graph tasks without for-
getting the past, which remains largely unexplored in the
literature. However, we discover the problem is highly non-
trivial with the critical challenge of architecture conflicts,
i.e., graph tasks may have different optimal architectures,
while the optimal architecture for the new graph task may
perform worse on past tasks, and thus it could be challeng-
ing to search the architecture to learn the new graph task
without harming the performance on previous tasks. We
further utilize a mainstream class of differentiable GNAS
methods for an example, and demonstrate with theoretical
analyses that they fail to revolve the problem of architecture
conflicts due to their entangled search process, resulting the
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catastrophic forgetting problems in continual graph archi-
tecture search process.

To address these challenges, we propose a Disentangled
Continual Graph Neural Architecture Search with Invariant
Modular (GASIM) Supernet method, which is able to con-
tinually search the optimal graph architectures without for-
getting the past graph tasks. The key idea is to design a
modular graph super-network, wherein each module under-
takes the search for optimal architectures tailored to the
graph tasks with similar factors so that the task-architecture
relationship is disentangled to foster the sharing of mutual
knowledge and mitigating conflicts throughout the contin-
uous search process. Specifically, we first design a mod-
ular graph architecture super-network incorporating mul-
tiple modules to enable searching architecture with factor
expertise and resolve architecture conflicts. Each module
is designed to be activated by the incoming graph before
searching. Second, we propose a factor-based task-module
router that discovers the latent graph factors and routes the
incoming task to the best suitable architecture module to
alleviate the forgetting problem induced by architecture con-
flicts. We adopt a distribution matching method to predict
the latent graph factors, and then maintain a task-module re-
lation graph to route the new graph task to suitable modules.
Finally, we propose an invariant architecture search mecha-
nism to capture the shared knowledge among tasks. Based
on the task-module graph, we extract the relevant graph
factors, and augment the search process by designing an in-
variance loss to discover architectures harmonizing all graph
tasks that have ever routed to this specific module. Extensive
experiments on real-world datasets demonstrate that the pro-
posed method achieves state-of-the-art performance against
baselines in continual graph neural architecture search.

The contributions of this paper are summarized as follows:

• We study the largely unexplored problem of continual
graph neural architecture search and propose a novel Dis-
entangled Continual Graph Neural Architecture Search
with Invariant Modular Supernet (GASIM) method
which is able to discover the optimal graph neural archi-
tectures in a continual fashion.

• We discover the problem of architecture conflicts in con-
tinual graph architecture search, and demonstrate with
theoretical analyses that a mainstream classic of differ-
entiable search methods can not resolve the problem due
to the entangled search process.

• We introduce three novel modules, i) modular graph
architecture super-network, ii) factor-based task-module
router and iii) invariant architecture search mechanism,
which can continually search the optimal architectures to
learn the new graph tasks while mitigating the problem
of forgetting past knowledge.

• Extensive experiments on real-world datasets demon-
strate that the proposed method achieves state-of-the-art
performance against baselines in continual graph neural
architecture search.

2. Problem Formulation
Graph Neural Architecture Search Let G denote the
graph space and Y the label space. A graph neural network
is represented as a function aα,w : G → Y , with architecture
parameters α ∈ A and learnable weights w ∈ W , where A
is the architecture space andW is the weight space. Graph
Neural Architecture Search (GNAS) automates the design
of graph neural architectures by searching for the optimal
α. As α typically represents the selection of GNN opera-
tions (e.g., GCN (Kipf & Welling, 2016), GAT (Veličković
et al., 2018), GIN (Xu et al., 2018)), it is referred to as
operation choices for brevity. GNAS addresses the bi-level
optimization problem (Elsken et al., 2019):

α∗ = argmin
α∈A

L(aα,w∗(α),G,Y), (1)

s.t. w∗(α) = argmin
w∈W(α)

L(aα,w,G,Y), (2)

where L represent the loss of predictions by the architecture
aα,w(·) on the graph, α∗ and w∗ is the best architecture and
weight for the given task T = (G,Y).

Continual Graph Neural Architecture Search In real-
world scenarios, graphs are generated continuously. Con-
sider a stream of graphs G = {G1,G2, . . . ,Gt}, where
each graph Gt = {Vt, Et} has its own set of nodes and
edges. Accompanying the graphs is a sequence of tasks
T = {T1, T2, . . . , Tt} and their corresponding labels Y =
{Y1,Y2, . . . ,Yt}. For example, in node classification tasks,
each node vit ∈ Vt is expected to be classified to its node
category yit ∈ Yt, while the incoming tasks could be dis-
tinct, e.g., Yt−1

⋃
Yt = ∅. An ideal continual graph neural

architecture search is expected to continually modify the
architecture to learn the new task without forgetting the past
tasks. The objective can be formulated as

α∗
t , w

∗
t = argmin

α∈A,w∈W

t∑
k=1

L(aα,w,Gk,Yk), (3)

where α∗
t , w

∗
t are the best architecture and weights at task

Tt, which can achieve the best average performance on all
the tasks that have been seen so far. Since it is impractical
to access all past graphs in the continual learning process,
we consider the scenarios that only the current graph is
available while the past graphs are not accessible in the stage
of training or searching, following the continual learning
literature (Wang et al., 2023a; Zhang et al., 2022c). The
model should modify the architecture to learn the new task
while maximally reducing the harm to the past tasks.
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Figure 1: A showcase heatmap demonstrating that new graph tasks may have different optimal architectures on CoraFull
dataset. Lighter colors denote higher performance of the architecture on the according task. Red and blue boxes denote the
best performed and worst performed architectures on each task respectively. (Best viewed in color).

3. Preliminary Studies: Architecture Conflicts
In the settings of continual graph neural architecture search,
the models may face the dilemma of architecture conflicts,
where the optimal architecture of the new task may have
poor performance for the past tasks. In such situations,
directly searching architectures for the new task will bring
catastrophic forgetting of the past tasks. To elaborate on
this, we first conduct a preliminary experiment. We train
and test six different GNN architectures for each task on
CoraFull dataset, and report the performance for each task
and architecture by a heatmap. From Figure 1, we have the
following observations:

Obs. 1. Different tasks have their own optimal archi-
tectures, and no architecture is always the winner. This
phenomenon indicates that the performance is destined to be
suboptimal if the architecture is fixed during graph continual
learning, and also demonstrates the necessity of continual
graph neural architecture search.

Obs. 2. Some tasks have conflicting optimal architec-
tures. For example, GIN performs the worst on the third
task while the best on the fourth task, and in contrast, GCN
performs the best on the third task while the worst on fourth
task. This phenomenon brings great challenges for con-
tinual graph neural architecture search, since searching the
optimal architecture for the new task may greatly deteriorate
the performance of previous tasks if there exist architecture
conflicts between these tasks.

We further provide theoretical analyses of graph neural ar-
chitecture search in the situations of architecture conflicts as
follows. Consider two operations f1(·), f2(·) for two graph
regression tasks, we adopt DARTS (Liu et al., 2018) as the
search algorithm that searches the mixed operation F (G) =
o1f1(G) + o2f2(G) with gradient methods to minimize the
MSE loss L1(F ) and L2(F ) for each task respectively,
where o1 = exp(α1)

exp(α1)+exp(α2)
and o2 = exp(α2)

exp(α1)+exp(α2)
and

α1, α2 are learnable parameters. Suppose the operations
are distinguishable, i.e., ∃Gk, f1(Gk) ̸= f2(Gk). Suppose
y = f1(G) and y = f2(G) are the ground-truth labeling

function for each task respectively, which means that the op-
erations are conflicting for two tasks. We have the following
proposition with proof in Appendix.

Proposition 3.1. For optimizing L2(F ), after one step of
gradient descent w.r.t architecture parameters, the changes
of operation weights o1, o2 will increase the loss L1(F ).

This proposition shows that DARTS can not handle the
architecture conflict problems, and it will inevitably fail due
to forgetting the past when searching for the new task. The
problem is that for both tasks, the super-network adopts
the same mixed operation, i.e., o1, o2, which is entangled
together in the continual searching process.

To this end, our key idea is to design a modular graph super-
network, wherein each module undertakes the search for
optimal architectures tailored to graph tasks with similar fac-
tors so that the task-architecture relationship is disentangled
to foster the sharing of mutual knowledge and mitigating
conflicts throughout the continuous search process.

4. Methodology
In this section, we introduce Disentangled Continual Graph
Neural Architecture Search with Invariant Modular Super-
net (GASIM) to continually search graph architectures, by
proposing three key components, modular graph architec-
ture super-network, factor-based task-module router, and
invariant architecture search mechanism. The overall frame-
work is illustrated in Figure 2.

4.1. Modular Graph Architecture Super-network

To alleviate architecture conflicts and share mutual knowl-
edge, we propose a modular graph architecture super-
network to concurrently estimate and search for K different
modules, where each time one module is updated to ac-
commodate graph tasks with similar factors and the other
modules are kept unchanged to reduce conflicts.
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Disentangled Continual Graph Neural Architecture Search with Invariant Modularization

Factor-based Task-Module Router Modular Graph Architecture Supernet
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Figure 2: The framework of Disentangled Continual Graph Neural Architecture Search with Invariant Modular Supernet
(GASIM), including the following three key components: 1) Modular graph architecture super-network incorporating
multiple modules to enable searching architectures with factor expertise, 2) Factor-based task-module router that discovers
the latent graph factors and routes the incoming task to the best suitable architecture module to alleviate the forgetting
problem induced by architecture conflicts, 3) Invariant architecture search mechanism to capture the shared knowledge
among tasks in the routed module. (Best viewed in color)

Modular Super-network Layer Each super-network
layer employs K mixed operations parameterized by differ-
ent vectors α to learn K-chunk graph representations:

Hk ← GNNαk
(H,A) , (4)

where A denotes the adjacency matrix of the graph, H
represents the input graph representations, and GNNαk

(·)
denotes the mixed GNN operations parameterized by αk. To
facilitate differentiable optimization, we adopt a continuous
parameterization and weight-sharing mechanism (Liu et al.,
2018) for the mixed operations:

GNNαk
(H,A) =

|O|∑
i=1

αk,iGNNi(H,A), (5)

where |O| is the number of GNN operation choices, αk,i =
exp(θαk,i

)∑
j exp(θαk,j

) denotes the probability of the i-th operation

for the k-th architecture αk, and θ represents learnable pa-
rameters. The overall super-network is constructed in the
form of a directed acyclic graph (DAG) with an ordered
sequence of modular super-network layers.

Flexible Modular Path An incoming graph can select a
flexible path in the modular super-network, i.e.,

π(Gt) = (aαi,wi
(·), . . . , aαj ,wj

(·)), (6)

where each α in the path is the chosen operations to be
activated to calculate the representations of the graph. This

design mitigates the conflicts of architectures by offering a
broader array of flexible paths in the super-network (Guo
et al., 2020). To illustrate, the ‘mean’ operation is adept at
capturing structural properties, while the ‘max’ operation
excels at capturing representative elements (Xu et al., 2018).
When the consecutive tasks have operation conflicts, our
method can simultaneously capture both aspects by selecting
operations to learn the respective representations.

Route then Search Directly optimizing the modular path
for each graph as Eq. (6) could be difficult for its large
discrete solution space. We transform the probability of the
path into the expectation of multiple paths under different
modules by the Bayesian formula, i.e.,

p(π(Gt) | Gt) =
K∑

k=1

p(k | Gt)︸ ︷︷ ︸
Route

Search︷ ︸︸ ︷
p(π(Gt) | Gt, k), (7)

where the probability of the graph Gt to activate the k-th
module p(k | Gt) can be modeled by the relationship be-
tween modules and tasks, the probability of module-specific
architectures p(π(Gt) | Gt, k) can be optimized by a specific
super-network. To further alleviate the forgetting problem,
we adopt a hard routing mechanism that only one module
can be selected to be searched while others are kept un-
changed, so that learning the new task will not affect the
results of other past tasks using other modules.
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4.2. Factor-based Task-Module Router

Graph factors are shown important in graph formation, rep-
resenting various inherent graph properties (Fan et al., 2019;
Ma et al., 2019). We propose to leverage the graph factors
to maintain a task-module graph to implement the routing as
Eq. (7). Specifically, we learn the latent factors with distri-
bution matching following (Liu et al., 2023a), and measure
the task similarity by the factors to conduct routing.

Latent Factor Prediction with Distribution Matching
For task Tt with graph Gt = (At,Xt) and labels Yt, we
learn the latent factors Ft as a sketch of the graph task.
The factors should faithfully reflect the characteristics and
distributions of the original graph, so that the module can be
routed through the factor similarity. To this end, we adopt
Maximum Mean Discrepancy (MMD) to learn the factors.

F∗
t = argmin

F
ℓMMD(GNN(Xt,At),GNN′(F,Af )), (8)

where Af is the adjacency matrix of the relationship be-
tween the factors and is set to a self-loop matrix for sim-
plicity. GNN(·) and GNN′(·) are shared random encoders,
which encode the original graph and the learned graph fac-
tors into a shared latent space. From the perspective of
self-supervised learning, the objective aims to reconstruct
the distribution characteristics in the latent space (Hou et al.,
2022; Xie et al., 2022). We random sample several node
features as the initialization of the factors to ease the opti-
mization process. We learn the latent factors for each class,
and denote the classes of the factors as Yf

t .

Architecture Route with Task-Module Graph We main-
tain the task-module graph, and keep updating it to assign
new tasks to modules. The task-module graph at task t is
defined by a relation matrix Rm

t ∈ [0, 1]t×K , where the
t-th row rmt ∈ [0, 1]K denotes the probability of Tt being
assigning to each module. Denote the super-network at task
t as gt(·) and the classifier as task t as ft(·). We calculate
the similarity between the t-th task and previous tasks by
leveraging the factors and the previous classifier,

R̃f
t = ft−1 ◦ gt−1(Ft), (9)

where R̃f
t ∈ RN×Ct−1 refers to the probabilities of fac-

tors belonging to the classes, N is the number of factors,
and Ct−1 is the number of classes till (t − 1)-th task. We
calculate the factor-task relation matrix Rf

t ∈ RN×(t−1)

by adding up the probabilities of the tasks’ corresponding
classes, i.e., Rf

t = R̃f
t ·Rc

t , where Rc
t ∈ {0, 1}Ct−1×(t−1)

is a matrix representing the relations between the classes
and the tasks. Then we calculate the probability of the new
task Tt being assigned to the modules as

rmt = Softmax(Mean(Rf
t ·Rm

t−1)), (10)

where Mean(·) takes the average along the first dimension,
and rmt is the assigning vector for task Tt. We adopt the
module with maximum probability in rmt for searching,
and add the probability vector into Rm

t for subsequent task
routing. For the initialization, we assign one-hot vectors for
the early tasks Tt, t < K. By leveraging the relationship
between factors, tasks and modules, we continually update
the task-module graph for routing new tasks to modules
with similar properties to avoid architecture conflicts while
sharing mutual knowledge.

4.3. Invariant Architecture Search Mechanism

In the continual GNAS process, each module searches archi-
tectures for its routed new task, which may have distribution
shifts from the past tasks that have routed to the module,
even though they have similar factors. This shift between
tasks may cause the module to overfit the new task while
forgetting the past tasks. To this end, we propose an invari-
ant architecture search mechanism to better share mutual
knowledge via capturing the features invariant to tasks.

Routing Loss Suggest the router chooses k-th module for
the task Tt, and denote gkt (·) as the super-network sliced
with k-th module, and fk

t (·) as the classifier. Then loss is
calculated as

Lr
t = ℓ(fk

t ◦ gkt (Gt),Yt), (11)

where ℓ(·) is the cross-entropy loss function, and Gt and Yt
are the graph and labels at the current task. Note that only
the routed module will be updated while other modules are
kept unchanged to alleviate the forgetting problems.

Invariance Loss Based on the task-module graph Rm
t ,

we select the factors that have the common module choice
of the current task. Suggest the router chooses k-th module
for the task Tt, we obtain the factor indices It by

It = {j | argmax
i

Rm
t (j, i) = k}. (12)

Then we obtain a set of factors and their classes {Fi,Yf
i |∈

It}, and calculate the invariance loss as

Linv
t = Var(ℓ(fk

t ◦ gkt (Fi),Yf
i ) | i ∈ It), (13)

where Var(·) calculates the variance. This loss constrains the
searched architecture from losing the capability of handling
the previous tasks routed to the same module. The final loss
for searching the architectures is

Lt = Lr
t + λLinv

t , (14)

where λ is a hyper-parameter to make a trade-off between
the performance of the new task and past tasks. Similar to
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(Liu et al., 2018), the architecture parameters at task Tt are
updated differentiably with

α = α− ηα∇αLt, w = w − ηw∇wLt. (15)

After searching the architectures, we fix the architectures
and finetune the weights with factors for better classification.
The overall algorithm is summarized in Algo. 1

Algorithm 1 The pipeline for GASIM
Require: The number of tasks T , hyperparameter λ, K.

1: Construct the modular super-network in Sec. 4.1.
2: for l = 1, . . . , T do
3: Predict the latent factors as Eq. (8)
4: Route the task to the module as Eq. (10)
5: Calculate routing loss as Eq. (11)
6: Calculate invariance loss as Eq. (13)
7: Calculate the final loss as Eq. (14)
8: Search the architecture according to Eq. (15)
9: Fix the architecture and finetune the weights

10: end for

Discussions about the framework and MoE The router
of our framework aims to learn several groups of similar
tasks with expert architecture modules. While the router
and Mixture-of-Experts (MoE) (Shazeer et al., 2017; Fedus
et al., 2022) have something in common that they both route
the data to different parameterized networks for forwarding,
they have different objectives. The objective of most MoE
methods is to promote the performance by significantly
enlarging the model capacity, while controlling the model
sparsity to maintain the inference efficiency. In contrast, in
our framework, the objective of the routing is to alleviate
the architecture conflicts in the continual search process by
routing dissimilar tasks to different modules, while routing
similar tasks to the same module to boost shared knowledge.
Therefore, differing from the MoE objective, the main focus
of the routing is to facilitate modularization and continually
search graph architectures to adapt to new tasks while not
forgetting the previous knowledge.

5. Experiments
In this section, we conduct experiments on real-world con-
tinual graph datasets to verify the design of our method.
We also include detailed ablation studies to analyze the
effectiveness of each component.

5.1. Experimental Setups

Baselines We compare our method with 10 baselines from
the following two different categories.

• Manually designed GNNs. We include six repre-
sentative GNNs as our baselines, i.e., GCN (Kipf &

Welling, 2016), GAT (Veličković et al., 2018), GIN (Xu
et al., 2018), GraphSage (Hamilton et al., 2017), Graph-
Conv (Morris et al., 2019), SGC (Wu et al., 2019) which
also constitute our search space.

• Graph neural architecture search. We include two
representative GNAS baselines GraphNAS (Gao et al.,
2020) and GASSO (Qin et al., 2021) where GASSO is
specially designed for node-level classification tasks by
searching the graph structures simultaneously. We also
include two classical NAS baselines, random search and
DARTS (Liu et al., 2018). Since they are not specially
designed for graphs, we adopt our search space for them.

Since these methods are not designed for continual graph
learning, we adopt the most recent and competitive continual
graph learning method (Liu et al., 2023a;b) to train them to
suit to the continual settings.

Super-network Construction The super-network gener-
ally consists of two parts, the operation pool and the directed
acyclic graph (DAG) that wires the operations. For the oper-
ation pool, we include the six node aggregation operations
mentioned in the manually designed GNN baselines. For
brevity, we denote ‘Agg’ as node aggregation operations.
Following (Qin et al., 2021), the DAG for each module is
a straightforward path, i.e., Hl+1 = Aggl(Hl,A), and the
embeddings of the last layer are utilized for downstream
tasks, where Hl denotes the hidden embeddings output
by the l-th layer, and A denotes the graph adjacency ma-
trix. For searching the routed module, the embedding is
fed to the module’s classifier f(·), and the prediction is
f(H). For finetuning and testing the whole model, the em-
beddings of each module are concatenated together, i.e.,
H = [H1||H2|| · · · ||HK ], which is subsequently fed to the
whole model’s classifier for prediction.

Datasets We adopt three node classification tasks in ex-
periments, including CoraFull (McCallum et al., 2000),
Arxiv (Hu et al., 2020), and Reddit (Hamilton et al., 2017).
CoraFull and Arxiv are citation networks, and Reddit is a
post-to-post graph. Table 1 shows the statistics of these
datasets. All datasets are partitioned into a set of tasks, each
focusing on the node classification problem, where each task
involves nodes from two distinct classes within an incoming
graph. For each task, 60% of the nodes are allocated for
training, 20% for validation, and 20% for testing.

Evaluation We adopt the challenging setting that no task
indicator is provided in the testing stage, also known as class-
IL setting (Wang et al., 2023a), and the model continues to
make classifications for all categories that have been seen so
far. During the continual update phase, the model can only
access the newly incoming graph and all the past graphs are
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Table 1: A summary of dataset statistics.

Dataset Nodes Edges Features Classes Tasks

CoraFull 19,793 130,622 8,710 70 35
Arxiv 169,343 1,166,243 128 40 20
Reddit 227,853 114,615,892 602 40 20

not available. Denote mk,i as the performance on i-th task
after learning k-th task. We adopt three metrics to measure
the model performance: 1) Average performance (AP), mea-
suring the average model performance after learning from
Task Tk, i.e., APk = 1

k

∑k
i=1 mk,i, 2) Mean of average

performance (AP), measuring the average performance of
the continual learning process, i.e., AP = 1

k

∑k
i=1 APi. 3)

Average Forgetting (AF), measuring the influence of the
training process for the current task on the performance of
previous tasks, i.e., AFk = 1

k−1

∑k−1
i=1 (mk,i − mi,i). A

higher value indicates that training the current task has a
more substantial impact on historical tasks. A negative or
positive number signifies a detrimental or beneficial impact.

More experimental details are provided in the Appendix,
including configurations and implementation details.

5.2. Main Results

From the results summarized in Table 2, we have the fol-
lowing observations:

• No hand-designed GNN is always the best for all
datasets, which verifies the demand for automated graph
architecture design in a continual fashion.

• The existing GNAS methods do not always beat the
hand-designed GNNs, showing their limitations in han-
dling continual graph data since their underlying as-
sumption of static structural distribution and task may
not hold in real continual graph data.

• The existing GNAS methods have lower average forget-
ting in most cases. In particular, DARTS achieves 61%
average performance while having -16.6% AF on Arxiv
dataset. This phenomenon indicates that DARTS can
search a better architecture for each task, but the archi-
tecture may perform poorly for the previous tasks, which
further verifies our discovered problem of architecture
conflicts in the continual search process. Neglecting the
problem will let the model overfit the newly-coming task
while harming the past knowledge.

• Our method achieves significant improvements over the
baselines. In particular, our method improves 8% in
terms of average performance over the second-best base-
line on CoraFull dataset. The results verify the effective-
ness of our method that is able to continually search the

CoraFull49

60

71

AP
 (%

)

Arxiv65

68

71

74

Reddit99.0

99.1

Full v1 v2 v3 v4 v5 v6

Figure 3: Comparisons of different ablated variants of
GASIM on real-world datasets in terms of mean average
performance. ‘Full’ denotes the full version of the method
(Best viewed in color).

architectures to learn the newly-coming tasks without
forgetting past knowledge.

5.3. Additional Experiments

Ablation studies To verify the effectiveness of each de-
signed component, we compare different ablated versions
on each dataset: 1) v1 removes the invariance loss in
Eq. (13), 2) v2 replaces the similar factor selection in
Eq. (12) with random factor selection, 3) v3 replaces the
router in Eq. (10) with a random router, which routes the
task to a random module, 4) v4 replaces the router in
Eq. (10) with a fixed router, which always routes the task
to the first module, 5) v5 replaces the router in Eq. (10)
with a sequential router, which always routes the task to
the next module, i.e., t%K, 6) v6 replaces the modular
super-network with a vanilla super-network. From Fig. 3,
we have the following observations:

• Our proposed GASIM outperforms all the ablated vari-
ants on all datasets, demonstrating the effectiveness of
each component of our proposed framework in continu-
ally searching graph architectures.

• The ablated versions v1 and v2 have a huge perfor-
mance drop on Arxiv, showing the importance of lever-
aging the invariance to share mutual knowledge.

• The hand-designed routers v3 , v4 and v5 have more
suboptimal and unstable results across datasets, showing
the effectiveness of our factor-based task-module router.

• The ablated version v6 fails drastically on CoraFull
dataset, showing that the modular super-network is criti-
cal for resolving architecture conflicts to boost the con-
tinual searching process.

Visualized showcases We illustrate the performance ma-
trices of three methods, GCN, DARTS and ours in Fig. 4.
The performance matrix shows the test results for all past
tasks after learning the new task. We find that our method
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Table 2: The results of all the methods on the real-world datasets. Numbers after the ± signs represent standard deviations.
The best results are in bold.

Dataset CoraFull Arxiv Reddit

Metric AP AF AP AP AF AP AP AF AP

GCN 61.94±1.45 -10.17±1.01 75.54±0.76 62.64±0.91 -13.78±0.47 72.16±0.78 96.65±0.13 -0.78±0.13 98.09±0.06

GIN 67.70±0.52 -3.62±1.73 76.73±0.79 59.68±3.90 -16.93±3.14 72.21±0.94 97.77±0.05 0.04±0.02 98.68±0.04

GAT 40.26±5.70 -4.57±4.12 50.72±1.42 61.87±0.51 -9.70±0.48 70.03±1.07 78.14±1.82 -5.90±4.06 88.54±2.08

GraphSage 61.29±0.97 -9.17±0.76 74.25±1.02 59.56±0.92 -13.44±1.32 69.30±0.56 91.56±0.48 -1.95±0.42 94.57±0.20

SGC 60.87±1.68 -10.93±1.07 75.13±1.18 56.33±1.42 -10.96±0.42 66.94±0.75 96.36±0.13 -0.67±0.03 97.87±0.05

GraphConv 67.15±1.12 -6.21±0.93 77.42±1.11 53.48±7.30 -19.45±5.00 69.40±1.70 97.61±0.06 -0.22±0.15 98.72±0.03

Random 63.57±1.06 -12.69±2.86 77.03±0.60 57.94±10.48 -19.76±11.33 71.74±0.97 97.89±0.08 12.27±5.76 87.55±2.70

GraphNAS 60.01±8.50 -18.85±5.71 63.81±11.05 52.94±4.12 -9.58±1.28 62.94±4.34 96.98±0.48 -1.01±0.18 98.34±0.26

DARTS 66.02±0.52 -6.89±0.90 77.40±0.38 61.45±2.09 -16.59±1.65 71.74±1.42 97.55±0.09 -0.25±0.11 98.75±0.02

GASSO 61.94±1.08 -10.07±0.61 75.11±0.93 61.21±0.84 -15.02±0.50 70.93±0.80 96.43±0.19 -0.94±0.11 97.98±0.08

Ours 76.03±0.77 -5.22±0.80 78.95±0.71 65.03±1.40 -12.19±1.64 73.43±0.84 98.40±0.01 -0.17±0.06 99.10±0.02
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Figure 4: Performance matrices of different methods on
Arxiv dataset. Lighter colors denote higher performance.
The value Pi,j , j ≤ i denotes the performance on j-th task
after learning the i-th task. (Best viewed in color).

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Task

0
1
2M

od
ul

e

Figure 5: A showcase heatmap demonstrating that the
router continually selects different modules on Arxiv dataset.
Lighter colors denote higher probability of the module on
the according task. Red boxes denotes the module choice
on each task respectively. (Best viewed in color).

can continually assimilate new knowledge by searching the
architectures for the new task. For example, the performance
of the 8-th task even grows after learning the 10-th task. To
make deeper analyses, we illustrate the router choices in
Fig. 5. For the 8-th and the 10-th tasks, the router both
chooses the 0-th module, which shows that the model may
share the knowledge in the same module to boost the per-
formance of both tasks in the continual searching process.

6. Related works
Graph Neural Architecture Search Neural architecture
search has gained prominence as it endeavors to automati-
cally discover optimal architectures for specific tasks. This
trend has been particularly notable in computer vision (Ren
et al., 2021; Elsken et al., 2019), natural language pro-
cessing (Chitty-Venkata et al., 2022). Graph neural archi-
tecture search (GNAS) methods (Guan et al., 2021; Qin
et al., 2022b), confronting the unique challenge of tack-
ling the relationship of architectures and complex structures
on graphs, can be broadly categorized into reinforcement-
learning-based methods (Gao et al., 2020; Zhou et al., 2019;
Cai et al., 2022; Gao et al., 2022; 2023), evolutionary-based
methods (Nunes & Pappa, 2020; Li & King, 2020; Shi
et al., 2022; Zhang et al., 2022a;b), and differentiable meth-
ods (Ding et al., 2021; Huan et al., 2021; Li et al., 2021c;
Cai et al., 2021; Qin et al., 2022a; Wei et al., 2021; Zhang
et al., 2023f;e; Li et al., 2024c; Zheng et al., 2023). How-
ever, a prevailing limitation of existing GNAS methods is
their dependency on the underlying assumption of static
distribution and tasks, and thus limiting their application in
real-world scenarios. In this paper, we study the problem
of continual graph neural architecture search in the setting
where graphs are continuously generated.

Continual Graph Learning Continual graph learning
aims to handle streaming graph data other than static graphs.
Distinct from continual learning in computer vision (Kirk-
patrick et al., 2017; Aljundi et al., 2018; Lopez-Paz & Ran-
zato, 2017; Li & Hoiem, 2017; Wang et al., 2022), continual
graph learning methods should take into consideration the
changes of structures as well as the tasks applied to these
structures. The existing methods can be roughly classified
into two categories, regularisation-based methods (Liu et al.,
2021) and replay-based methods (Zhou & Cao, 2021; Zhang
et al., 2022e; Liu et al., 2023a). (Liu et al., 2021) employs
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regularisation to preserve topological information from his-
torical graphs. (Zhou & Cao, 2021) incorporates memory-
replay mechanisms by storing representative nodes, while
(Zhang et al., 2022e) employs memory banks to store spar-
sified subgraphs, thereby preserving structural information.
(Liu et al., 2023a) condenses the graphs into memory with
consideration of class imbalance, which are then adopted
for replaying in the learning process. To assess and bench-
mark CGL methods, two recent benchmarks (Zhang et al.,
2022c; Ko et al., 2022) have been developed, contributing
to the evolving landscape of graph continual learning re-
search. However, these methods adopt a fixed architecture
with the assumption that the optimal architecture is static
in the continual learning process. Recently, there has been
increasing interest in utilizing the in-context learning capa-
bilities of large language models for graph-related tasks (Jin
et al., 2023; Zhang et al., 2023a; 2024; Yao et al., 2024;
Li et al., 2024b; Chen et al., 2024b). However, it remains
underexplored whether these methods can effectively adapt
to continuously emerging graph domains and tasks. In this
paper, we continually modify the architecture to suit for the
newly-coming graph tasks in the continual learning process.

Disentangled Graph Learning Disentangled represen-
tation learning aims to delineate and elucidate the distinct
latent factors that influence observable data, representing
each factor as a unique vector representation (Bengio et al.,
2013; Wang et al., 2023b), and the obtained factors could
be helpful for explaining the inherent mechanism driving
the data formation as well as producing robust representa-
tions for downstream tasks. This methodology has proven
valuable across diverse domains, spanning computer vi-
sion (Hsieh et al., 2018; Ma et al., 2018; Chen et al., 2016;
Wang et al., 2023c; Chen et al., 2023; 2024a), and graph rep-
resentation learning (Ma et al., 2019; Liu et al., 2020; Yang
et al., 2020; Chen et al., 2021; Li et al., 2021a;b; 2022c). In
the context most relevant to our work, (Qin et al., 2022a)
characterize latent factors within graph data by employing a
self-supervised disentangled graph encoder, and then con-
ducts graph neural architecture search for each graph to
address distribution shifts, while the graphs and tasks are
still fixed in the optimization process. In contrast, our focus
in this paper centers on the automation of continual graph
neural architecture designing via disentangling the relation-
ship between graphs and architectures with the invariant
modular super-network and routing mechanism.

Out-of-Distribution Generalization Many current ma-
chine learning techniques are based on the premise that
training and testing data are independent and identically
distributed. However, this assumption may not hold in
complex real-world settings (Shen et al., 2021; Yao et al.,
2022; Xu et al., 2022; Wen et al., 2024), particularly during
the continual learning process where data distributions can

progressively shift across sequential tasks. One classic of
Out-of-Distribution (OOD) generalization methods is in-
variant learning that aims to obtain invariant features are
robust across distributions (Arjovsky et al., 2019; Sagawa
et al., 2019; Krueger et al., 2021). Recently, there is a grow-
ing interest in achieving OOD generalization on graphs (Li
et al., 2024a; 2022a;b;d; 2023a;b; Wu et al., 2022a;b; Chen
et al., 2022; Zhang et al., 2021a; 2022g; Fan et al., 2021)
as well as dynamic graphs that come sequentially (Zhang
et al., 2023b;c;d; 2022f). In our work, we leverage insights
from the invariant learning literature and propose an invari-
ance loss with regard to graph architectures and tasks to
enhance knowledge sharing across different tasks and mod-
ules, thereby mitigating the distribution shifts during the
continual learning process.

7. Conclusion
Existing graph neural architecture search (GNAS) method-
ologies fall short in addressing the dynamic nature of con-
tinually evolving graph data. In this paper, we propose Dis-
entangled Continual Graph Neural Architecture Search with
Invariant Modular Supernet (GASIM) method, specifically
designed to overcome the challenges of continual GNAS. By
proposing a modular graph architecture super-network and
a factor-based task-module router, our approach efficiently
navigates the entangled nature of graph factors and resolves
conflicts arising from evolving relationships between the en-
tire graph and optimal architectures. The proposed invariant
architecture search method further ensures the retention of
shared knowledge across tasks, enabling continual learning
without forgetting past knowledge. Extensive experiments
demonstrate that our method achieves state-of-the-art per-
formance in continual graph neural architecture search. One
limitation of this paper is that we mainly focus on homo-
geneous graphs, and we leave extending our method to
heterogeneous graphs for further explorations.
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A. Appendix
A.1. Proof of Proposition 1

To prove the proposition, we have to first give a Lemma A.1 inspired by (Qin et al., 2021).

Lemma A.1. The operation weights are calculated by a softmax function. E.g. o1 = exp{α1}
exp{α1}+exp{α2} . Let g1 and

g2 are the gradients w.r.t. α1 and α2. The operation weights after a gradient descent step are o′1 and o′2, e.g., o′1 =
exp{α1−g1}

exp{α1−g1}+exp{α2−g2} . If g1 < g2, then o′1 > o1 and o′2 < o2, and vice versa.

Proof. If g1 < g2, we should improve o′1 > o1, that is

exp{α1 − g1}
exp{α1 − g1}+ exp{α2 − g2}

>
exp{α1}

exp{α1}+ exp{α2}
exp{α1 − g1}(exp{α1}+ exp{α2}) > exp{α1}(exp{α1 − g1}+ exp{α2 − g2})

exp{2α1 − g1}+ exp{α1 + α2 − g1} > exp{2α1 − g1}+ exp{α1 + α2 − g2}
exp{α1 + α2 − g1} > exp{α1 + α2 − g2}

α1 + α2 − g1 > α1 + α2 − g2

g1 < g2

(16)

We already have g1 < g2, thus o′1 > o1. Since o1 + o2 = o′1 + o′2 = 1, we have o′2 < o2.

Proposition A.2. For optimizing L2(F ), after one step of gradient descent w.r.t architecture parameters, the changes of
operation weights o1, o2 will increase the loss L1(F ).

Proof. The MSE loss of L2(F ) is calculated as

L2(F ) =
∑
k

(F (Gk)− yk)
2. (17)

Then we have

∂L2(F )

∂oi
= 2

∑
k

(
F (Gk)− yk

)
∂F (Gk)
∂oi

= 2
∑
k

(
o1f1(Gk) + o2f2(Gk)− yk

)
fi(Gk)

= 2
∑
k

(
o1f1(Gk) + (1− o1)f2(Gk)− yk

)
fi(Gk)

= 2
∑
k

(
o1f1(Gk) + (1− o1)f2(Gk)− f2(Gk)

)
fi(Gk)

= 2o1
∑
k

(
f1(Gk)− f2(Gk)

)
fi(Gk).

(18)

The second equation expand F (x) by F (x) = o1f(x) + o2f(x). The third equation utilizes relationship of o1 and o2,
since o1 = exp{α1}

exp{α1}+exp{α2} , o2 = exp{α2}
exp{α1}+exp{α2} and thus o1 + o2 = 1. The fourth equation utilizes the supposed

ground-truth labeling function for the 2-rd task, i.e., yk = f2(Gk). Then we have
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∂L2(F )

∂o1
− ∂L2(F )

∂o2
= 2o1

∑
k

(
f1(Gk)− f2(Gk)

)(
f1(Gk)− f2(Gk)

)

= 2o1
∑
k

(
f1(Gk)− f2(Gk)

)2

> 0.

(19)

The inequality utilizes that o1 = exp{α1}
exp{α1}+exp{α2} > 0, and the assumption that ∃Gk, f1(Gk) ̸= f2(Gk) so that∑

k

(
f1(Gk) − f2(Gk)

)2

> 0. When ∂L2(F )
∂o1

− ∂L2(F )
∂o2

= 0, then f1(Gk) = f2(Gk)∀Gk and ∂L2(F )
∂o1

= ∂L2(F )
∂o2

= 0,

which is meaningless, since in this case the operations f1(·), f2(·) are not distinguishable with the data points {(Gk, yk)}Nk=1

for optimization.

Besides, since o1 = exp{α1}
exp{α1}+exp{α2} , we have

∂o1
∂α1

=
exp{α1}(exp{α1}+ exp{α2})− exp{α1} · exp{α1}

(exp{α1}+ exp{α2})2
=

exp{α1 + α2}
(exp{α1}+ exp{α2})2

(20)

Similarly,

∂o2
∂α2

=
exp{α1 + α2}

(exp{α1}+ exp{α2})2
. (21)

Thus ∂o1
∂α1

= ∂o2
∂α2

. Then we have

∂L2(F )

∂o1
>

∂L2(F )

∂o2
∂L2(F )

∂o1

∂o1
∂α1

>
∂L2(F )

∂o2

∂o2
∂α2

∇α1
L2(F ) > ∇α2

L2(F ).

(22)

By Lemma A.1, o1 decreases and o2 increases. Then for the first task, we have

L1(F ) =
∑
k

(
F (Gk)− yk

)2

=
∑
k

(
o1f1(Gk) + o2f2(Gk)− yk

)2

=
∑
k

(
o1f1(Gk) + o2f2(Gk)− f1(Gk)

)2

=
∑
k

(
− o2f1(Gk) + o2f2(Gk)

)2

= o22
∑
k

(
f2(Gk)− f1(Gk)

)2

.

(23)

The third equation utilizes the supposed ground-truth labeling function for the 1-st task, i.e., yk = f1(Gk). Since∑
k

(
f2(Gk)− f1(Gk)

)2

> 0 and o2 increases, the loss of the first task L1(F ) increases.
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B. Implementation Details
B.1. Hyperparameters

For fair comparisons, all methods adopt the same dimensionality d as 512, number of layers as 2. Adam optimizer (Kingma
& Ba, 2014) is adopted to optimize the model weights with a learning rate 1e-3 and another SGD optimizer with a learning
rate 1e-2 is adopted to optimize architecture parameters for NAS methods. For our method, we adopt K = 3 for all datasets,
and the hyperparameter λ ∈ {0.01, 0.1, 1, 10, 100}. We constrain the parameter size of the learned factors same to (Liu
et al., 2023a)(≤ 1% features), which is a replay-based method adopted by all the baselines for continual training. We
adopt the dimensionality as dk = d/K for each module to keep the parameter size similar with the vanilla supernet for fair
comparisons. We run the all experiments with 3 random seeds, and report the average performance and standard deviations.

B.2. Configurations

All experiments are conducted with:

• Operating System: Ubuntu 20.04.5 LTS

• CPU: Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz

• GPU: NVIDIA GeForce RTX 4090 with 24 GB of memory

• Software: Python 3.8.18, Cuda 12.2, PyTorch (Paszke et al., 2019) 2.1.2, PyTorch Geometric (Fey & Lenssen, 2019)
2.4.0.
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