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Abstract

Knowledge Graph Embeddings (KGE) aim to001
map entities and relations to high dimensional002
spaces and have become the de-facto standard003
for knowledge graph completion. Most ex-004
isting KGE methods suffer from the sparsity005
challenge, where it is harder to predict enti-006
ties that appear less frequently in knowledge007
graphs. In this work, we propose a novel frame-008
work KRACL to alleviate the widespread spar-009
sity in KGs with graph context and contrastive010
learning. Firstly, we propose the Knowl-011
edge Relational Attention Network (KRAT)012
to leverage the graph context by jointly ag-013
gregating neighbors and relations with the at-014
tention mechanism. KRAT is capable of cap-015
turing the subtle importance of different con-016
text triples and leveraging multi-hop informa-017
tion in knowledge graphs. Secondly, we pro-018
pose the knowledge contrastive loss by com-019
bining the contrastive loss with cross entropy020
loss, which introduces more negative samples021
and thus enriches the feedback to sparse enti-022
ties. Our experiments demonstrate that KRACL023
achieves superior results across various stan-024
dard knowledge graph benchmarks, especially025
on WN18RR and NELL-995 which have many026
low in-degree entities. Extensive experiments027
also bear out KRACL’s effectiveness of han-028
dling sparse knowledge graphs and robustness029
against noisy triples.030

1 Introduction031

Knowledge graphs (KGs) are collections of large-032

scale facts in the form of structural triples (sub-033

ject, relation, object), denoted as (s, r, o), e.g.,034

(Christopher Nolan, Born-in, London). These KGs035

reveal the relations between entities and play an036

important role in many applications such as natu-037

ral language processing (Wu et al., 2021b; Cheng038

et al., 2021; Yasunaga et al., 2021; Zhang et al.,039

2022a), computer vision (Fang et al., 2017; Gao040

et al., 2019), and recommender systems (Zhou041

et al., 2020, 2021). Although KGs already contain042

millions of facts, they are still far from complete, 043

e.g., 71% of people in the Freebase knowledge 044

graph have no birthplace and 75% have no nation- 045

ality (Dong et al., 2014), which leads to poor per- 046

formance on downstream applications. Therefore, 047

knowledge graph completion (KGC) is an impor- 048

tant task to predict whether a given triple is valid or 049

not and further expands existing knowledge graphs. 050

Most existing KGs are stored in symbolic form 051

while downstream applications always involve nu- 052

merical computation in continuous spaces. To 053

address this issue, researchers proposed to map 054

entities and relations to high dimensional embed- 055

dings dubbed knowledge graph embedding (KGE) 056

and these models yield state-of-the-art performance 057

for KGC. TransE (Bordes et al., 2013) is the pio- 058

neering work that maps both entities and relations 059

to the latent space by forcing s + r ≈ o. Dist- 060

Mult (Yang et al., 2014) then proposes to deal with 061

triples using tensor decomposition and score them 062

with a bilinear function. Due to their simple op- 063

erations and limited parameters, these non-neural 064

models usually produce low-quality embeddings. 065

Recently, neural network-based models greatly im- 066

prove the performance of KGE (Vashishth et al., 067

2020; Saxena et al., 2022). For instance, ConvE 068

(Dettmers et al., 2018) reshapes entity embeddings 069

and feeds them into a 2D convolution network for 070

scoring. However, such approaches can only pro- 071

cess triples independently and ignore the vast struc- 072

tural and context information in KGs. Graph Neu- 073

ral Network (GNN) is then employed to encode 074

graph structure in KGs. Specifically, CompGCN 075

(Vashishth et al., 2019) introduces a message pass- 076

ing scheme that equally aggregates entity and rela- 077

tion embedding and scores triples in the encoder- 078

decoder framework. These GNN-based KGE mod- 079

els incorporate KGs’ structural and semantic infor- 080

mation and have achieved state-of-the-art results. 081

082

Although much research progress has been made 083
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Figure 1: The number and mean reciprocal rank (MRR)
of different frequency entities based on RotatE results
on FB15k-237, WN18RR, NELL-995, and YAGO3-10
benchmark datasets. This figure reveals the common
existence of sparse entities and their poor prediction
performance in knowledge graphs.

by recent KGE models, predicting entities that084

rarely appear in knowledge graphs remains chal-085

lenging. We investigate the in-degree (using entity086

frequency) and link prediction performance (us-087

ing MRR) on several widely acknowledged knowl-088

edge graphs, including FB15k-237 (Toutanova and089

Chen, 2015), WN18RR (Dettmers et al., 2018),090

NELL-995 (Xiong et al., 2017), and YAGO3-10091

(Suchanek et al., 2007) (shown in Figure 1). The092

yellow bars show that a large portion of entities093

rarely appear in knowledge graph triples, leading to094

the limited facts for knowledge graph completion.095

Moreover, it also reveals the common existence of096

sparse entities across various datasets. The blue097

bars show the link prediction performance for enti-098

ties of different in-degree with RotatE (Sun et al.,099

2019). We observe that the prediction results are100

strongly relevant to the entity in-degree, and the101

prediction performance of sparse entities is much102

worse than those of frequent entities.103

In this work, we propose KRACL (Knowledge104

Relational Attention Network with Contrastive105

Learning) to alleviate the sparsity issue in KGs.106

First, we employ Knowledge Relational ATtention107

Network (KRAT) to fully leverage the graph con-108

text in KG. Specifically, we calculate the attention109

score for each context triple to capture its impor-110

tance, and then jointly aggregate relation and neigh-111

bor with attention score to enrich the sparse entity’s112

embedding. Second, we project subject entity em-113

bedding to object embedding with knowledge pro- 114

jection head, e.g. ConvE, RotatE, DistMult, and 115

TransE. Finally, we optimize the model with pro- 116

posed knowledge contrastive loss, i.e. combining 117

the contrastive loss and cross entropy loss. We 118

empirically find that contrastive loss can provide 119

more feedback to sparse entities and is more ro- 120

bust against sparsity when compared to explicit 121

negative sampling. Extensive experiments on vari- 122

ous standard benchmarks show the superiority of 123

our proposed KRACL model over competitive peer 124

models, especially on WN18RR and NELL-995 125

with many low in-degree nodes. Our key contribu- 126

tions are summarized as follows: 127

• We propose the Knowledge Relational 128

ATtention Network (KRAT) to integrate 129

knowledge graph context by jointly fusing re- 130

lation and entity context with the attention 131

mechanism. After stacking several layers of 132

KRAT, we fuse the multi-hop context infor- 133

mation into the entity embeddings and take 134

advantage of context from neighboring enti- 135

ties and relations. 136

• We propose a knowledge contrastive loss to 137

alleviate the sparsity of knowledge graphs. 138

We incorporate contrastive loss with cross en- 139

tropy loss to introduce more negative samples, 140

which can enrich the limited positive triples 141

in knowledge graphs and enhance prediction 142

performance for sparse entities. 143

• Experimental results demonstrate that our pro- 144

posed KRACL framework achieves superior 145

performance on five standard benchmarks, es- 146

pecially on WN18RR and NELL-995 with 147

many low in-degree entities. 148

2 Related Work 149

2.1 Knowledge Graph Embedding 150

Non-Neural Non-neural models embed entities 151

and relations into latent space with linear opera- 152

tions. Starting from TransE (Bordes et al., 2013), 153

the pioneering and most representative translational 154

model, a series of models are proposed in this line, 155

such as TransH (Wang et al., 2014), TransR (Lin 156

et al., 2015), and TransD (Ji et al., 2015). RotatE 157

(Sun et al., 2019) extends the translational model to 158

complex space and OTE (Tang et al., 2020) further 159

extends RotatE to high dimensional space. There 160
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Figure 2: Overview of our proposed KRACL framework to alleviate the sparsity problem in knowledge graphs.

is another line of work that takes tensor decompo-161

sition to compute the plausibility of triples. For162

instance, RESCAL (Nickel et al., 2011) and Dist-163

Mult (Yang et al., 2014) represent each relation164

with a full rank matrix and diagonal matrix, respec-165

tively. ComplEx (Trouillon et al., 2016) generalizes166

DistMult to complex space to enhance the expres-167

siveness of complex relations. Furthermore, the168

non-neural model can also project to Gaussian dis-169

tribution (He et al., 2015b), manifold (Xiao et al.,170

2016a), and Lie group (Xiao et al., 2016b).171

Neural Network-based Neural network-based172

KGE models are introduced for KGC due to their173

inherent strong learning ability. Convolutional neu-174

ral networks are employed to extract the semantic175

features from KGE. Specifically, ConvE (Dettmers176

et al., 2018) utilizes 2D convolution to learn deep177

features of entities and relations. ConvKB (Nguyen178

et al., 2017) adopts 1D convolution and feeds the179

whole triple into the convolutional neural network.180

HypER (Balažević et al., 2019) employs hyper-181

network to generate relation-special filters. Graph182

neural networks also show strong potential in learn-183

ing knowledge graphs embedding by incorporat-184

ing graph structure in KGs. R-GCN (Schlichtkrull185

et al., 2018) is an extension of the graph convolu-186

tion neural network (Kipf and Welling, 2016) for187

relational data. SACN (Shang et al., 2019) encodes188

node structure and relation types with weighted189

GCN. CompGCN (Vashishth et al., 2019) jointly190

embeds both entities and relations in KG through191

a compositional operator. KBAT (Nathani et al.,192

2019) proposes to distinguish the weight of neigh-193

boring nodes with the attention mechanism.194

2.2 Contrastive Learning195

Contrastive learning has been a popular approach196

for self-supervised learning by pulling semantically197

close neighbors together while pushing apart non- 198

neighbors away (Hadsell et al., 2006). As is first 199

introduced in the computer vision domain, a large 200

collection of works (Hadsell et al., 2006; He et al., 201

2020; Chen et al., 2020; Tian et al., 2020) learn 202

self-supervised image representations by minimiz- 203

ing the distance between two augmented views 204

of the same image. Khosla et al. (2020) further 205

extends contrastive learning to the supervised set- 206

ting by considering the representations from the 207

same class as positive samples. Contrastive learn- 208

ing also achieves great success in natural language 209

processing (Gao et al., 2021; Zhang et al., 2022b; 210

Das et al., 2022) and graph representation learn- 211

ing (You et al., 2020; Zhu et al., 2021). However, 212

contrastive learning has not been widely applied to 213

knowledge graphs and we explore its potential to 214

alleviate knowledge graphs’ sparsity in this work. 215

3 Methodology 216

We consider a knowledge graph as a collection 217

of factual triples D = {(s, r, o)} with E as entity 218

set and R as relation set. Each triple has a sub- 219

ject entity s and object entity o, where s, o ∈ E . 220

Relation r ∈ R connects two entities with direc- 221

tion from subject to object. Next, we introduce a 222

novel framework–Knowledge Relational Attention 223

Network with Contrastive Learning (KRACL) for 224

knowledge graph completion. KRACL is two- 225

fold, we first introduce the Knowledge Relational 226

ATtention Network (KRAT) that aggregates the 227

graph context information in KG, then we describe 228

Knowledge Contrastive Learning (KCL) to allevi- 229

ate the sparsity problem in details. 230

3.1 Knowledge Relational Attention Network 231

To fully leverage the limited context information 232

in sparse KGs, we propose KRAT to jointly ag- 233
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gregate neighbor entities and relation context with234

the attention mechanism. Inspired by Velickovic235

et al. (2018); Brody et al. (2021), we calculate the236

attention score ws,r,o for each context triple as237

wsro = a(l)LeakyReLU(W (l)[hs||hr||ho]),
(1)238

where wsro denotes the attention score for triple239

(s, r, o), a(l) ∈ R1×d and W (l) ∈ Rde×(2de+dr)240

are learnable parameters specific for the l-th layer241

of KRAT, hs,hr,ho denote the hidden representa-242

tions of subject entity, relation, and object entity243

in the l − 1 layer. Then the attention score of each244

triple is normalized with softmax as245

αsro = softmaxsr(wsro)

=
exp(wsro)∑

n∈No

∑
p∈Rno

exp(wnpo)
,

(2)246

where No denotes the neighbor entities of o, Rno247

denotes the relation that connects with n and o,248

αsro is the normalized attention weight for triple249

(s, r, o). We then aggregate the context information250

to obtain entity representation, i.e.,251

h(l)
o = σ(αsroW

(l)
λ(r)ϕ(hs,hr) +W (l)

resh
(l−1)
o ),

(3)252

where σ denotes Tanh activation function, W (l)
λ(r) ∈253

R
dl×dl−1 denotes learnable weight specific to edge254

type λ(r), e.g., incoming and outgoing edge. ϕ(·)255

denotes the fusion operator that combines rela-256

tion and entity context. Inspired by CompGCN257

(Vashishth et al., 2019), we take circular-correlation258

as the default operator while more operators are dis-259

cussed in section 4.7. We also add a pre-activation260

residual connection to prevent over-smoothing (Li261

et al., 2020). The relation representations are up-262

dated through a linear transformation263

h(l)
r = W

(l)
rel · h

(l−1)
r , (4)264

where W
(l)
rel ∈ Rdr×dr is a trainable matrix for265

relation embeddings under the l-th layer.266

3.2 Knowledge Contrastive Learning267

After passing T layers of KRAT, the entity repre-268

sentations are enriched with T hops context. Tak-269

ing the idea of supervised contrastive learning270

(Gunel et al., 2021) that pulls embeddings from the271

same entities close and pushes embeddings from272

different entity further away, we calculate the con- 273

trastive loss as 274

LCL =
∑
o∈T

−1

|To|
∑

z(s,r)∈To

log
exp(z(s,r) · ho/τ)∑

k/∈To
exp(zk · ho/τ)

,

(5) 275

where T denotes a batch of normalized entity em- 276

beddings, To denotes the set of representations cor- 277

responding to entity o, τ is an adjustable tempera- 278

ture hyperparameter that controls the balance be- 279

tween uniformity and tolerance (Wang and Liu, 280

2021). The contrastive loss introduces more nega- 281

tive samples, therefore enriching the feedback to 282

the limited positive triples. z(s,r) is a knowledge 283

projection head such as TransE, DistMult, RotatE, 284

and ConvE to transform embeddings from subject 285

to object. Here we take ConvE as an example1 286

z(s,r) = f(vec(f(
[
hs||hr

]
∗ ω))Wp), (6) 287

where hs ∈ Rdw×dh and hr ∈ Rdw×dh denote 2D 288

reshaping of hs ∈ Rdwdh×1 and hr ∈ Rdwdh×1 289

respectively, ∗ denotes the convolution operation, 290

f denotes non-linearity (PReLU (He et al., 2015a) 291

by default), vec denotes vectorization, and Wp is a 292

linear transformation matrix. The whole formula 293

represents the predicted object representation given 294

the subject s and relation r. We then calculate the 295

cross entropy loss as follows 296

LCE = − 1

|T |
∑

(s,r)∈T

∑
o∈E

yo(s,r) · log ŷ
o
(s,r), (7) 297

where T denotes training triples in a batch, E de- 298

notes all entities that exist in the KG, yo(s,r) denotes 299

the ground-truth labels, i.e., yo(s,r) = 1 if triple 300

(s, r, o) is valid and yo(s,r) = 0 otherwise. z(s,r) is 301

1-N scoring function taken from ConvE (Dettmers 302

et al., 2018), which scores all candidate entities 303

with dot product 304

ŷo(s,r) = z(s,r) · hT
o , (8) 305

where ŷo(s,r) denotes the predicted plausibility for 306

triple (s, r, o), ho ∈ Rd×|E| denotes the represen- 307

tations of all entities. Finally, we demonstrate the 308

final objective by incorporating the contrastive loss 309

and cross entropy loss through summation, 310

L = LCL + LCE (9) 311

1For more combination of knowledge projection head,
please refer to Section 4.7.
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By jointly optimizing the two objectives, we cap-312

ture the similarity of the same entity embeddings313

and contrast them with other entities, while keeping314

the performance for entity prediction.315

4 Experiment316

4.1 Experiment Settings317

Dataset To evaluate KRACL, we consider318

five widely acknowledged datasets: FB15k-237319

(Toutanova and Chen, 2015), WN18RR (Dettmers320

et al., 2018), NELL-995 (Xiong et al., 2017), Kin-321

ship (Lin et al., 2018), and UMLS (Kok and Domin-322

gos, 2007), following the standard train/test split.323

Statistics of these benchmarks are listed in Ap-324

pendix 6, we further investigate the average and325

medium entity in-degree to demonstrate their spar-326

sity. FB15k-237 and WN18RR are obtained by re-327

moving the inverse and equal relations from FB15k328

and WN18 respectively, making them more diffi-329

cult. NELL-995 is extracted from the 995-th it-330

eration of NELL system (Mitchell et al., 2018).331

WN18RR and NELL-995 are much sparser than332

FB15k-237, Kinship, and UMLS.333

Evaluation Protocol Following Bordes et al.334

(2013), we use the filtered setting for link pre-335

diction, i.e., while evaluating test triples, all valid336

triples are filtered out from the candidate set. We337

report mean reciprocal rank (MRR), mean rank338

(MR), and Hits@N. MRR is the average inverse339

of obtained ranks of correct entities among all can-340

didate entities. MR means the average obtained341

ranks of correct entities among all candidate enti-342

ties. Hits@N measures the proportion of correct343

entities ranked in the top N among all candidate344

entities. We take N=1,3,10 in this work.345

Baselines We compare our model with state-of-the-346

art KGE models2 , which can be categorized into:347

(1) translational-based TransE (Bordes et al., 2013),348

RotatE (Sun et al., 2019); (2) tensor decomposition-349

based DistMult (Yang et al., 2014), ComplEx350

(Trouillon et al., 2016); (3) CNN-based ConvE351

(Dettmers et al., 2018), ConvKB (Nguyen et al.,352

2017), HypER (Balažević et al., 2019); (4) GNN-353

based R-GCN (Schlichtkrull et al., 2018), KBAT354

(Nathani et al., 2019), CompGCN (Vashishth et al.,355

2019), and DisenKGAT (Wu et al., 2021a).356

Implementation We implement KRACL3 on a357

RTX 3090 GPU with 24GB memory using PyTorch358

2More details of baselines can be found in Appendix B.
3The code is available at https://anonymous.

4open.science/r/KRACL-3448/

(Paszke et al., 2017), Pytorch lightning (Falcon and 359

The PyTorch Lightning team, 2019), and Pytorch 360

Geometric (Fey and Lenssen, 2019). Following 361

Vashishth et al. (2019), each triple (s, r, o) is aug- 362

mented with a flipped triple (o, r−1, s). We present 363

our hyperparameter settings in Table 9 to facili- 364

tate reproducibility. We also use OpenKE (Han 365

et al., 2018) and Pykeen (Ali et al., 2021) library to 366

reproduce the baseline models. 367

4.2 Main Results 368

Table 1 and 2 show the link prediction performance 369

on the test set on standard benchmarks including 370

FB15k-237, WN18RR, NELL-995, and Kinship4. 371

From the experimental results, we observe that: 1) 372

on sparse knowledge graphs, i.e., WN18RR and 373

NELL-995, KRACL outperforms all other baseline 374

models on most of the metrics. Particularly, MRR 375

is improved from 0.481 and 0.534 in CompGCN 376

to 0.523 and 0.554, about 8.7% and 3.7% relative 377

performance improvement; 2) on dense knowledge 378

graphs, i.e., FB15k-237 and Kinship, KRACL also 379

achieves competitive results compared to baseline 380

models, with significant improvement on Kinship 381

dataset. Overall, these results show the effective- 382

ness of the proposed KRACL for the task of pre- 383

dicting missing links in knowledge graphs and its 384

superior performance on both sparse and dense 385

knowledge graphs. 386

4.3 Entity In-degree Analysis 387

Since the sparsity in KGs will lead to entities with 388

low in-degree and thus lack information to con- 389

duct link prediction, we follow Shang et al. (2019) 390

and analyze link prediction performance on enti- 391

ties with different in-degree. In the following ex- 392

periments, we choose FB15k-237 dataset as our 393

object due to its abundant relation types and dense 394

graph structure. As shown in Table 3, we present 395

Hits@10 and MRR metrics on 7 sets of entities 396

within different in-degree scopes and compare the 397

performance of KRACL with TransE, DistMult, 398

ConvE, and CompGCN. Firstly, for entities with 399

low in-degree, GNN-based models such as KR- 400

ACL and CompGCN outperform ConvE and Ro- 401

tatE, because they get extra information by ag- 402

gregating neighboring entities. However, we find 403

that simply aggregating neighbors equally is not 404

enough. By varying the importance of every en- 405

tity’s neighborhood and introducing more feedback 406

4Please see main results on UMLS dataset in Appendix 8.

5

https://anonymous.4open.science/r/KRACL-3448/
https://anonymous.4open.science/r/KRACL-3448/


Model WN18RR NELL-995
MRR MR H@10 H@3 H@1 MRR MR H@10 H@3 H@1

TransE .243 2300 .532 .441 .043 .401 2100 .501 .472 .344
DistMult .444 7000 .504 .47 .412 .485 4213 .61 .524 .401
ComplEx .449 7882 .53 .469 .409 .482 4600 .606 .528 .399
RotatE .494 4046 .571 .510 .455 .483 2582 .565 .514 .435
ConvE .456 4464 .531 .47 .419 .491 3560 .613 .531 .403
ConvKB .265 1295 .558 .445 .058 .43 600 .545 .47 .37
HypER .493 4687 .549 .503 .464 .540 1763 .657 .580 .471
R-GCN .123 6700 .207 .137 .08 .12 7600 .188 .126 .082
KBAT .412 1921 .554 - - .319 3683 .474 .370 .233
CompGCN .481 3113 .548 .492 .448 .534 1246 .644 .607 .466
DisenKGAT .506 4135 .590 .522 .462 .547 882 .666 .598 .474
KRACL (Ours) .523 1754 .606 .539 .481 .554 546 .670 .597 .484

Table 1: Link prediction performance on sparse knowledge graphs, i.e., WN18RR and NELL-995. The best score is
in bold and the second best score is underlined, ’-’ indicates the result is not reported in previous work.

Model FB15k-237 Kinship
MRR MR H@10 H@3 H@1 MRR MR H@10 H@3 H@1

TransE .294 357 .465 - - .211 38.9 .470 .252 .093
DistMult .241 254 .419 .263 .155 .48 7.9 .708 .491 .377
ComplEx .247 339 .428 .275 .158 .823 2.48 .971 .899 .733
RotatE .338 177 .533 .375 .241 .738 2.9 .954 .827 .617
ConvE .325 244 .501 .356 .237 .772 3.0 .950 .858 .665
ConvKB .243 311 .421 .371 .155 .614 3.3 .953 .755 .436
HypER .341 250 .520 .376 .252 .868 1.96 .981 .935 .790
R-GCN .248 339 .428 .275 .158 .109 25.9 .239 .088 .03
KBAT .156 392 .305 .167 .085 .637 3.41 .955 .757 .470
CompGCN .355 197 .535 .390 .264 .810 2.26 .977 .892 .709
DisenKGAT .368 179 .553 .407 .275 .832 1.96 .986 .914 .737
KRACL (Ours) .360 150 .548 .395 .266 .895 1.48 .991 .970 .817

Table 2: Link prediction performance on denser knowledge graphs, i.e., FB15k-237 and Kinship. The best score is
in bold and the second best score is underlined. ’-’ indicates the result is not reported in previous work.

with KCL loss, KRACL achieves significant im-407

provement over all baselines for entities with in-408

degree [0, 100]. For entities with higher in-degree,409

the performance of KRACL is close to ConvE and410

RotatE, while the performance of CompGCN is the411

worst, because entity embedding is substantially412

smoothed by too much neighboring information413

(Liang et al., 2021). To sum up, these results show414

the strong capability of KRACL to predict sparse415

entities and it is also effective for dense entities.416

4.4 Knowledge Sparsity Study417

To verify KRACL’s sensitivity against sparsity, we418

randomly remove triples from the training set of419

FB15k-237 and evaluate the models on the full test420

set. Figure 3 shows the MRR and Hits@10 of 7421

competitive models including TransE, DistMult, 422

ComplEx, RotatE, ConvE, HypER, CompGCN, 423

and our proposed KRACL. Performance of all mod- 424

els universally decreases as the training set dimin- 425

ishes. However, the results show that KRACL con- 426

sistently outperforms all baseline models, and as 427

the corruption ratio increases, the improvement of 428

KRACL against baseline models increases as well. 429

Overall, these experiment results indicate our mod- 430

els’ superior robustness against sparsity across a 431

variety of baseline models. 432

4.5 Ablation Study 433

As KRACL outperforms various baselines across 434

all selected benchmark datasets, we investigate the 435

impact of each module in KRACL to verify their 436
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In-degree RotatE ConvE CompGCN KRACL
MRR H@10 MRR H@10 MRR H@10 MRR H@10

[0, 10] .178 .309 .186 .338 .198 .348 .232 .394
[10, 20] .149 .294 .154 .299 .156 .296 .181 .335
[20, 30] .194 .381 .199 .386 .198 .370 .218 .405
[30, 40] .282 .497 .287 .485 .280 .476 .307 .501
[40, 50] .294 .547 .297 .516 .298 .520 .328 .552
[50, 100] .399 .681 .403 .675 .400 .663 .434 .702
[100,max] .691 .929 .714 .936 .674 .905 .716 .932

Table 3: Link prediction performance categorized by different entity in-degree on the FB15k-237 dataset. The best
score is in bold and the second best score is underlined.
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Figure 3: Link prediction performance on sparse knowl-
edge graph of KRACL and competitive peer models on
the FB15k-237 datasets.

effectiveness. More specifically, we perform abla-437

tion studies on the proposed KRAT and its attention438

mechanism, residual connection, and test the effec-439

tiveness of proposed KCL and its two components440

on WN18RR and NELL-995 datasets, as is shown441

in Table 4. First, it is illustrated that full KRACL442

model outperforms 6 ablated models, which proves443

the effectiveness of our design choice. Second,444

we observe a significant drop when replacing the445

proposed KCL loss with binary cross entropy loss,446

which is probably resulted from the its poor gen-447

eralization performance with limited labels (Liu448

et al., 2016; Cao et al., 2019).449

4.6 Performance by Relation Category450

In this part, we follow Wang et al. (2014) and fur-451

ther investigate the performance of KRACL in dif-452

ferent relation categories (shown in Table 5). We453

report MRR and Hits@10 of KRACL and compare454

with TransE, DistMult, ConvE, and CompGCN.455

We can see that KRACL almost outperforms all456

Model WN18RR NELL-995
MRR H@3 MRR H@3

w/o KRAT .509 .522 .543 .589
w/o attention .504 .521 .543 .583
w/o res. .518 .532 .551 .593
w/o LCL .502 .514 .496 .541
w/o LCE .495 .531 .542 .586
BCELoss .469 .478 .507 .547
KRACL .523 .539 .554 .597

Table 4: Results of ablation study of the proposed
KRACL on the WN18RR and NELL-995 dataset.
BCELoss denotes replacing the KCL loss with binary
cross entropy loss.

baselines for all relation types. Furthermore, it is 457

demonstrated that KRACL achieves significant im- 458

provement on 1-1, 1-N, and N-1 relations while the 459

prediction performance on N-N relations is close to 460

CompGCN. We speculate that KRACL is good at 461

learning the relative simple relations and predicting 462

the N −N relation is still challenging to KRACL. 463

We leave the research of a more expressive scheme 464

to model complex N-N relations as our future work. 465

4.7 Combination of Different GNN Encoder 466

and Projection Head 467

Borrowing from CompGCN, we evaluate the effect 468

of different GNN methods combined with different 469

knowledge projection heads such as TransE, Dist- 470

Mult, RotatE, and ConvE. The results are shown 471

in Table 7. We evaluate KRAT on four fusion op- 472

erators taken from Bordes et al. (2013); Yang et al. 473

(2014); Sun et al. (2019); Nickel et al. (2016) ,5 474

• Subtraction(Sub): ϕ(hs,hr) = hs − hr 475

• Multiplication(Mult): ϕ(hs,hr) = hs ∗ hr 476

5Please see details of rotation and circular-correlation op-
erator in Appendix F.
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TransE DistMult ConvE CompGCN KRACL
MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10

H
ea

d
1-1 .484 .593 .255 .307 .374 .505 .457 .604 .500 .609
1-N .080 .152 .038 .071 .091 .170 .112 .190 .118 .215
N-1 .329 .589 .322 .558 .444 .644 .471 .656 .485 .675
N-N .219 .436 .131 .255 .261 .459 .275 .474 .276 .481

Ta
il

1-1 .476 .588 .257 .312 .366 .510 .453 .589 .515 .635
1-N .536 .846 .575 .750 .762 .878 .779 .885 .796 .894
N-1 .060 .118 .032 .067 .069 .150 .076 .151 .093 .180
N-N .287 .553 .184 .376 .375 .603 .395 .616 .394 .620

Table 5: Link prediction performance by relation category on FB15k-237 dataset for TransE, DistMult, ConvE,
CompGCN, and proposed KRACL. Following Wang et al. (2014), the relations are categorized into one-to-one
(1-1), one-to-many (1-N), many-to-one (N-1), and many-to-many (N-N).

• Rotation(Rot): ϕ(hs,hr) = hs ◦ hr477

• Circular-correlation(Corr):478

ϕ(hs,hr) = hs ⋆ hr.479

From experimental results in Table 7, we have480

the following observations. First, by utilizing graph481

neural networks (GNNs), the model can further in-482

corporate graph structure and context information483

in the knowledge graph and boost model’s perfor-484

mance. The lack of fusing relation and entity em-485

beddings leads to poor performance of R-GCN and486

W-GCN, while CompGCN and KRACL integrate487

relation and entity context and outperform other488

baselines. Second, KRACL obtains an average of489

6.3%, 6.0%, 17.6%, and 3.5% relative improve-490

ment on MRR compared with CompGCN, which491

indicates the strong robustness of KRACL across492

multi-categories knowledge projection heads. We493

can also see that KRACL significantly outperforms494

other baseline encoders when combined with Ro-495

tatE. It reveals the strong robustness and adaptation496

of the proposed KRACL framework.497

4.8 Robustness against Noisy Triples498

Beyond sparsity, facts generated by knowledge ex-499

traction approaches can also be unreliable, e.g.,500

NELL facts have a precision ranging from 0.75-501

0.85 for confident extractions and 0.35-0.45 across502

the broader set of extractions (Mitchell et al., 2018).503

In this section, we randomly add unreliable triples504

in the sparse version of FB15k-237 to test models’505

robustness against noisy triples. Figure 4 shows506

how the MRR and Hits@10 suffer as noises in-507

crease. We observe that KRACL shows consistent508

improvement over the baseline models and its per-509

formance shows a lower level of volatility.510
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Figure 4: Link prediction performance on noisy knowl-
edge graph of KRACL and some baseline models on
the FB15k-237 dataset.

5 Conclusion 511

In this paper, we present KRACL model to allevi- 512

ate the widespread sparsity problem in knowledge 513

graphs for knowledge graph completion. First, KR- 514

ACL leverages graph context by jointly aggregating 515

neighbor entities and relations with the attention 516

mechanism. Second, we propose a knowledge con- 517

trastive loss to introduce more negative, hence more 518

feedback is provided to sparse entities. 519

The proposed KRACL effectively improves pre- 520

diction performance on sparse entities in KGs. Ex- 521

tensive experiments on standard benchmark FB15k- 522

237, WN18RR, NELL-995, Kinship, and UMLS 523

show that KRACL improves consistently over com- 524

petitive baseline models, especially on WN18RR 525

and NELL-995 with many low in-degree entities. 526
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6 Limitations527

As most of the KGE models, our proposed KRACL528

model has the following limitations:529

• Scalability. We take the initial input of KR-530

ACL as learnable embeddings, leading to the531

linear scaling of the model size with the num-532

ber of entities in KGs. This design choice533

makes our model not feasible for large-scale534

knowledge graphs such as Wikidata5M (Wang535

et al., 2021) and WikiKG90M (Hu et al.,536

2021).537

• Inductive setting. By the same token of learn-538

able embeddings, our model is not capable539

of inductive learning. That is, the proposed540

KRACL cannot prediction unseen entities in541

knowledge graphs.542

However, Galkin et al. (2021) also notice this prob-543

lem and propose a node level tokenizer dubbed544

nodepiece. It greatly reduces the parameter of545

learnable embeddings and can enable inductive546

learning for KGE models as well. We defer com-547

bining our model with nodepiece and evaluating548

KRACL on large-scale knowledge graphs as our549

future work.550
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A Dataset Details956

In this section, we provide the details of the differ-957

ent datasets used in our experiments.958

• FB15k-237 (Toutanova and Chen, 2015) is959

a subset of FB15k (Bordes et al., 2013),960

which contains knowledge base describing961

facts about the real world and is extracted962

from FreeBase (Bollacker et al., 2008). Dif-963

ferent from FB15k, it removes all the reverse964

relations to prevent test data leakage.965

• WN18RR (Dettmers et al., 2018) is a sub-966

set of the WordNet (Miller, 1995) containing967

lecxical relation between words. Similar to968

FB15k-237, WN18RR also removes the re-969

verse relations to avoid test data leakage.970

• NELL-995 (Xiong et al., 2017) is a subset of971

the 995-th iteration of NELL system. From972

Table 6 we can see that it is much sparser than973

other datasets.974

• Kinship (Lin et al., 2018) contains a set of975

triples that explains the kinship relationships976

among members of the Alyawarra tribe from977

Central Australia. It is an integral part of abo-978

riginal across Australia with regard to mar-979

riages between aboriginal people.980

• UMLS (Kok and Domingos, 2007) is a knowl-981

edge base that brings together many health982

and biomedical vocabularies and standards to983

enable the interoperability between computer984

systems.985

B Baseline Details986

We compare the proposed KRACL model with the987

following baseline models and reproduce their re-988

sults using OpenKE (Han et al., 2018) and Pykeen989

(Ali et al., 2021) library.990

• TransE (Bordes et al., 2013) is the most rep-991

resentative KGE model with the assumption992

that the superposition of head and relation em-993

bedding is close to tail embedding.994

• DistMult (Yang et al., 2014) is a matrix fac-995

torization model that uses a bilinear scoring996

function.997

• ComplEx (Trouillon et al., 2016) is a matrix998

factorization model that is embedded in com-999

plex space.1000

• RotatE (Sun et al., 2019) is a translational 1001

model that maps relations embeddings as ro- 1002

tation operation in complex space. 1003

• ConvE (Dettmers et al., 2018) is a CNN-based 1004

model that adopts 2D convolution neural net- 1005

work to extract semantic information between 1006

entities and relations. 1007

• ConvKB (Nguyen et al., 2017) is a CNN- 1008

based model that performs 1D convolution 1009

on triple embeddings for scoring. 1010

• HypER (Balažević et al., 2019) is a CNN- 1011

based model that uses hypernetwork to con- 1012

struct relational convolution kernel. 1013

• R-GCN (Schlichtkrull et al., 2018) is a GNN- 1014

based model that extends GCN to relational 1015

data. Specifically, it aggregate message from 1016

different relations with different projection 1017

matrix. 1018

• KBAT (Nathani et al., 2019) is a GNN-based 1019

model that introduces attention mechanism 1020

to learn the importance of neighboring nodes 1021

and takes advantage of multi-hop neighbors. 1022

• CompGCN (Vashishth et al., 2019) is a GNN- 1023

based model that jointly aggregates entity and 1024

relation embeddings and score triples with 1025

with a decoder such as TransE, DistMult, and 1026

ConvE. 1027

• DisenKGAT (Wu et al., 2021a) is a GNN- 1028

based model that proposes to leverage micro- 1029

disentanglement and macro-disentanglement 1030

for representative embeddings. 1031

C Relation Category Details 1032

Following Wang et al. (2014), for each relation r, 1033

we compute the average number of tails per head 1034

and the average number of head per tail, denoted 1035

as tphr and hptr, respectively. If tphr < 1.5 and 1036

hptr < 1.5, r is treated as one-to-one (1-1); if 1037

tphr < 1.5 and hptr ≥ 1.5, r is treated as many- 1038

to-one (N-1); if tphr ≥ 1.5 and hptr < 1.5, r is 1039

treated as one-to-many (1-N); if tphr ≥ 1.5 and 1040

hptr ≥ 1.5, r is treated as a many-to-many (N-N). 1041

D Visualization of Entity Representations 1042

To examine the quality of learned representations, 1043

we visualize the entity embeddings . Given a link 1044
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Dataset #Ent. #Rel. #Edge #In-degree

Train Valid Test Avg. Med.
FB15k-237 14,541 237 272,115 17,535 20,466 18.76 8
WN18RR 40,943 11 86,835 3,034 3,134 2.14 1
NELL-995 75,492 200 149,678 543 3,992 2.01 0

Kinship 104 25 8,544 1,068 1,074 82.15 82
UMLS 135 46 5,216 652 661 38.63 20

Table 6: Benchmark statistics.

Dec./Proj. (=X) → TransE DistMult RotatE ConvE

Methods ↓ MRR H@10 MRR H@10 MRR H@10 MRR H@10
X .279 .441 .241 .419 .338 .533 .325 .501
X+R-GCN .281 .469 .324 .499 .295 .457 .342 .525
X+W-GCN .264 .444 .324 .504 .272 .430 .244 .525
X+CompGCN (Sub) .335 .514 .336 .513 .290 .453 .352 .530
X+CompGCN (Mult) .337 .515 .338 .518 .296 .456 .353 .532
X+CompGCN (Rot) .271 .447 .289 .448 .296 .461 .325 .506
X+CompGCN (Corr) .336 .518 .335 .514 .294 .459 .355 .535
X+KRAT (Sub) .341 .523 .343 .525 .345 .527 .356 .542
X+KRAT (Mult) .340 .523 .345 .526 .346 .528 .358 .546
X+KRAT (Rot) .339 .522 .345 .524 .348 .527 .359 .544
X+KRAT (Corr) .340 .524 .343 .526 .345 .526 .360 .548

Table 7: Performance of link prediction on FB15k-237 dataset. Following Vashishth et al. (2019), X+M (Y) denotes
that M is the GNN backbone to obtain entity and relation embeddings and X is the scoring function or projection
head in this work, Y denotes the fusion operator between entity and relation embeddings. The best scores across all
settings are highlighted by · .

Model UMLS
MRR MR H@10 H@1

TransE .615 3.6 .945 .391
DistMult .164 18.8 .403 .061
ComplEx .844 2.47 .967 .765
RotatE .822 2.1 .969 .703
ConvE .836 3.2 .946 .764
ConvKB .782 1.61 .986 .593
SACN .856 1.7 .985 .764
R-GCN .481 7.8 .835 .318
KBAT .818 1.855 .987 .711
KRACL .904 1.38 .995 .831

Table 8: Link prediction performance of KRACL and
baseline models on the UMLS dataset. The best score
is in bold and the second best score is underlined.

prediction task (s, r, ?), we select queries (s, r, ?)1045

that have the same answers and visualize their pre-1046

dictions with T-SNE (Van der Maaten and Hinton,1047

2008). As is shown in Figure 5, our model shows1048

higher level of collocation for entities, which in-1049

ConvE KRACL

Figure 5: Visualization of tail entities in ConvE and
KRACL with T-SNE.

dicates that our KRACL framework learns high- 1050

quality representations for entities and relations. 1051

E Computation Details 1052

Our proposed KRACL model’s learnable parame- 1053

ters and computational budget are listed in Table 1054

10. We train our KRACL model on one RTX 3090 1055

GPU with 24GB memory. 1056

For main results shown in Table 1 and 2, we ad- 1057

just the hyperparameters based on the performance 1058
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Hyperarameter FB15k-237 WN18RR NELL-995 Kinship UMLS
Entity dim de 200 200 200 200 200
Relation dim dr 200 200 200 200 200
Batch size 2048 2048 2048 1024 1024
Learning rate 10−3 10−3 10−3 3× 10−4 5× 10−4

Epochs 1500 1000 1000 1000 1000
GNN layers 1 2 2 2 2
Encoder dropout 0.1 0.2 0.2 0.2 0.2
Temperature τ 0.07 0.07 0.07 0.1 0.1
Optimizer AdamW AdamW AdamW AdamW AdamW

Table 9: Hyperparameter settings of KRACL across various benchmark datasets. We find our hyperparameter
settings robust across all datasets and all hyperparameters are chosen by the performance on the validation set.

Dataset Parameters GPU hours
FB15k-237 13.3M 9.5
WN18RR 18.6M 4.5
NELL-995 25.9M 10.5
Kinship 10.4M 0.7
UMLS 10.4M 0.5

Table 10: Number of parameters in the KRACL model
and GPU hours for training on selected datasets.

on validation set and report the best results on the1059

test set. For other experiments, we present the per-1060

formance of a single run.1061

F Fusion Operator Details1062

• Rotation: ϕ(hs,hr) = hs ◦ hr1063

For each dimention i, e[2i] and e[2i + 1]1064

are corresponding real and imaginary com-1065

ponents. Given the subject embedding es and1066

relation transform embedding θr, the rotation1067

projection is formulated as1068 [
(hs ◦ hr)[2i]

(hs ◦ hr)[2i+ 1]

]
=[

coshr(i) − sinhr(i)
sinhr(i) coshr(i)

] [
hs[2i]

hs[2i+ 1]

]
,

(10)1069

where θr is learnable parameter corresponding1070

to relation type r, ĥo denotes the projected1071

object embedding after rotation.1072

• Circular-correlation: ϕ(hs,hr) = hs ⋆ hr1073

Taken from Nickel et al. (2016), the circular-1074

correlation operator is formulated as1075

(hs ⋆ hr)[k] =
d−1∑
i=0

hs[i] · hr[(k + i) mod d],

(11)1076

where d is the dimension of entity and relation 1077

embeddings, mod denotes the modulo oper- 1078

ation. The circular-correlation operator can 1079

discriminate the direction of relation because 1080

of its non-commutative property. 1081
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