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Abstract

Knowledge Graph Embeddings (KGE) aim to
map entities and relations to high dimensional
spaces and have become the de-facto standard
for knowledge graph completion. Most ex-
isting KGE methods suffer from the sparsity
challenge, where it is harder to predict enti-
ties that appear less frequently in knowledge
graphs. In this work, we propose a novel frame-
work KRACL to alleviate the widespread spar-
sity in KGs with graph context and contrastive
learning. Firstly, we propose the Knowl-
edge Relational Attention Network (KRAT)
to leverage the graph context by jointly ag-
gregating neighbors and relations with the at-
tention mechanism. KRAT is capable of cap-
turing the subtle importance of different con-
text triples and leveraging multi-hop informa-
tion in knowledge graphs. Secondly, we pro-
pose the knowledge contrastive loss by com-
bining the contrastive loss with cross entropy
loss, which introduces more negative samples
and thus enriches the feedback to sparse enti-
ties. Our experiments demonstrate that KRACL
achieves superior results across various stan-
dard knowledge graph benchmarks, especially
on WNI18RR and NELL-995 which have many
low in-degree entities. Extensive experiments
also bear out KRACL’s effectiveness of han-
dling sparse knowledge graphs and robustness
against noisy triples.

1 Introduction

Knowledge graphs (KGs) are collections of large-
scale facts in the form of structural triples (sub-
ject, relation, object), denoted as (s,r,o0), e.g.,
(Christopher Nolan, Born-in, London). These KGs
reveal the relations between entities and play an
important role in many applications such as natu-
ral language processing (Wu et al., 2021b; Cheng
et al., 2021; Yasunaga et al., 2021; Zhang et al.,
2022a), computer vision (Fang et al., 2017; Gao
et al., 2019), and recommender systems (Zhou
et al., 2020, 2021). Although KGs already contain

millions of facts, they are still far from complete,
e.g., 71% of people in the Freebase knowledge
graph have no birthplace and 75% have no nation-
ality (Dong et al., 2014), which leads to poor per-
formance on downstream applications. Therefore,
knowledge graph completion (KGC) is an impor-
tant task to predict whether a given triple is valid or
not and further expands existing knowledge graphs.

Most existing KGs are stored in symbolic form
while downstream applications always involve nu-
merical computation in continuous spaces. To
address this issue, researchers proposed to map
entities and relations to high dimensional embed-
dings dubbed knowledge graph embedding (KGE)
and these models yield state-of-the-art performance
for KGC. TransE (Bordes et al., 2013) is the pio-
neering work that maps both entities and relations
to the latent space by forcing s + r ~ o. Dist-
Mult (Yang et al., 2014) then proposes to deal with
triples using tensor decomposition and score them
with a bilinear function. Due to their simple op-
erations and limited parameters, these non-neural
models usually produce low-quality embeddings.
Recently, neural network-based models greatly im-
prove the performance of KGE (Vashishth et al.,
2020; Saxena et al., 2022). For instance, ConvE
(Dettmers et al., 2018) reshapes entity embeddings
and feeds them into a 2D convolution network for
scoring. However, such approaches can only pro-
cess triples independently and ignore the vast struc-
tural and context information in KGs. Graph Neu-
ral Network (GNN) is then employed to encode
graph structure in KGs. Specifically, CompGCN
(Vashishth et al., 2019) introduces a message pass-
ing scheme that equally aggregates entity and rela-
tion embedding and scores triples in the encoder-
decoder framework. These GNN-based KGE mod-
els incorporate KGs’ structural and semantic infor-
mation and have achieved state-of-the-art results.

Although much research progress has been made
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Figure 1: The number and mean reciprocal rank (MRR)
of different frequency entities based on RotatE results
on FB15k-237, WN18RR, NELL-995, and YAGO3-10
benchmark datasets. This figure reveals the common
existence of sparse entities and their poor prediction
performance in knowledge graphs.

by recent KGE models, predicting entities that
rarely appear in knowledge graphs remains chal-
lenging. We investigate the in-degree (using entity
frequency) and link prediction performance (us-
ing MRR) on several widely acknowledged knowl-
edge graphs, including FB15k-237 (Toutanova and
Chen, 2015), WN18RR (Dettmers et al., 2018),
NELL-995 (Xiong et al., 2017), and YAGO3-10
(Suchanek et al., 2007) (shown in Figure 1). The
yellow bars show that a large portion of entities
rarely appear in knowledge graph triples, leading to
the limited facts for knowledge graph completion.
Moreover, it also reveals the common existence of
sparse entities across various datasets. The blue
bars show the link prediction performance for enti-
ties of different in-degree with RotatE (Sun et al.,
2019). We observe that the prediction results are
strongly relevant to the entity in-degree, and the
prediction performance of sparse entities is much
worse than those of frequent entities.

In this work, we propose KRACL (Knowledge
Relational Attention Network with Contrastive
Learning) to alleviate the sparsity issue in KGs.
First, we employ Knowledge Relational ATtention
Network (KRAT) to fully leverage the graph con-
text in KG. Specifically, we calculate the attention
score for each context triple to capture its impor-
tance, and then jointly aggregate relation and neigh-
bor with attention score to enrich the sparse entity’s
embedding. Second, we project subject entity em-

bedding to object embedding with knowledge pro-
jection head, e.g. ConvE, RotatE, DistMult, and
TransE. Finally, we optimize the model with pro-
posed knowledge contrastive loss, i.e. combining
the contrastive loss and cross entropy loss. We
empirically find that contrastive loss can provide
more feedback to sparse entities and is more ro-
bust against sparsity when compared to explicit
negative sampling. Extensive experiments on vari-
ous standard benchmarks show the superiority of
our proposed KRACL model over competitive peer
models, especially on WN18RR and NELL-995
with many low in-degree nodes. Our key contribu-
tions are summarized as follows:

* We propose the Knowledge Relational
ATtention Network (KRAT) to integrate
knowledge graph context by jointly fusing re-
lation and entity context with the attention
mechanism. After stacking several layers of
KRAT, we fuse the multi-hop context infor-
mation into the entity embeddings and take
advantage of context from neighboring enti-
ties and relations.

* We propose a knowledge contrastive loss to
alleviate the sparsity of knowledge graphs.
We incorporate contrastive loss with cross en-
tropy loss to introduce more negative samples,
which can enrich the limited positive triples
in knowledge graphs and enhance prediction
performance for sparse entities.

* Experimental results demonstrate that our pro-
posed KRACL framework achieves superior
performance on five standard benchmarks, es-
pecially on WN18RR and NELL-995 with
many low in-degree entities.

2 Related Work
2.1 Knowledge Graph Embedding

Non-Neural Non-neural models embed entities
and relations into latent space with linear opera-
tions. Starting from TransE (Bordes et al., 2013),
the pioneering and most representative translational
model, a series of models are proposed in this line,
such as TransH (Wang et al., 2014), TransR (Lin
et al., 2015), and TransD (Ji et al., 2015). RotatE
(Sun et al., 2019) extends the translational model to
complex space and OTE (Tang et al., 2020) further
extends RotatE to high dimensional space. There
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Figure 2: Overview of our proposed KRACL framework to alleviate the sparsity problem in knowledge graphs.

is another line of work that takes tensor decompo-
sition to compute the plausibility of triples. For
instance, RESCAL (Nickel et al., 2011) and Dist-
Mult (Yang et al., 2014) represent each relation
with a full rank matrix and diagonal matrix, respec-
tively. ComplEx (Trouillon et al., 2016) generalizes
DistMult to complex space to enhance the expres-
siveness of complex relations. Furthermore, the
non-neural model can also project to Gaussian dis-
tribution (He et al., 2015b), manifold (Xiao et al.,
2016a), and Lie group (Xiao et al., 2016b).

Neural Network-based Neural network-based
KGE models are introduced for KGC due to their
inherent strong learning ability. Convolutional neu-
ral networks are employed to extract the semantic
features from KGE. Specifically, ConvE (Dettmers
et al., 2018) utilizes 2D convolution to learn deep
features of entities and relations. ConvKB (Nguyen
et al., 2017) adopts 1D convolution and feeds the
whole triple into the convolutional neural network.
HypER (BalaZevi¢ et al., 2019) employs hyper-
network to generate relation-special filters. Graph
neural networks also show strong potential in learn-
ing knowledge graphs embedding by incorporat-
ing graph structure in KGs. R-GCN (Schlichtkrull
et al., 2018) is an extension of the graph convolu-
tion neural network (Kipf and Welling, 2016) for
relational data. SACN (Shang et al., 2019) encodes
node structure and relation types with weighted
GCN. CompGCN (Vashishth et al., 2019) jointly
embeds both entities and relations in KG through
a compositional operator. KBAT (Nathani et al.,
2019) proposes to distinguish the weight of neigh-
boring nodes with the attention mechanism.

2.2 Contrastive Learning

Contrastive learning has been a popular approach
for self-supervised learning by pulling semantically

close neighbors together while pushing apart non-
neighbors away (Hadsell et al., 2006). As is first
introduced in the computer vision domain, a large
collection of works (Hadsell et al., 2006; He et al.,
2020; Chen et al., 2020; Tian et al., 2020) learn
self-supervised image representations by minimiz-
ing the distance between two augmented views
of the same image. Khosla et al. (2020) further
extends contrastive learning to the supervised set-
ting by considering the representations from the
same class as positive samples. Contrastive learn-
ing also achieves great success in natural language
processing (Gao et al., 2021; Zhang et al., 2022b;
Das et al., 2022) and graph representation learn-
ing (You et al., 2020; Zhu et al., 2021). However,
contrastive learning has not been widely applied to
knowledge graphs and we explore its potential to
alleviate knowledge graphs’ sparsity in this work.

3 Methodology

We consider a knowledge graph as a collection
of factual triples D = {(s,7,0)} with £ as entity
set and R as relation set. Each triple has a sub-
ject entity s and object entity o, where s,0 € £.
Relation r € R connects two entities with direc-
tion from subject to object. Next, we introduce a
novel framework—Knowledge Relational Attention
Network with Contrastive Learning (KRACL) for
knowledge graph completion. KRACL is two-
fold, we first introduce the Knowledge Relational
AT'tention Network (KRAT) that aggregates the
graph context information in KG, then we describe
Knowledge Contrastive Learning (KCL) to allevi-
ate the sparsity problem in details.

3.1 Knowledge Relational Attention Network

To fully leverage the limited context information
in sparse KGs, we propose KRAT to jointly ag-



gregate neighbor entities and relation context with
the attention mechanism. Inspired by Velickovic
et al. (2018); Brody et al. (2021), we calculate the
attention score w . , for each context triple as

Wero = aV LeakyRe LU(W U[hg|| b, || o)),

(1
where wsyo denotes the attention score for triple
(5,7,0), a) € R4 and W) ¢ Rex(2detdr)
are learnable parameters specific for the [-th layer
of KRAT, hg, h,, h, denote the hidden representa-
tions of subject entity, relation, and object entity
in the [ — 1 layer. Then the attention score of each
triple is normalized with softmax as

Qgro = softmaxsr(wwo)
exp(wsro) (2)
ZneNo ZpERnO erp(wnPO) ’

where N, denotes the neighbor entities of 0, R,
denotes the relation that connects with n and o,
Qsro 18 the normalized attention weight for triple
(s,7,0). We then aggregate the context information
to obtain entity representation, i.e.,

hgl) = a(ozsroW(l

A()rf)ﬁb(hs’ hr) + Wr(é)shc(nlil))v

3)
)

Ok
R%*4-1 denotes learnable weight specific to edge
type A\(r), e.g., incoming and outgoing edge. ¢(-)
denotes the fusion operator that combines rela-
tion and entity context. Inspired by CompGCN
(Vashishth et al., 2019), we take circular-correlation
as the default operator while more operators are dis-
cussed in section 4.7. We also add a pre-activation
residual connection to prevent over-smoothing (Li
et al., 2020). The relation representations are up-
dated through a linear transformation

where o denotes Tanh activation function, W/{

) =W B, 4)

where WT(Q € R% >4 i a trainable matrix for
relation embeddings under the [-th layer.

3.2 Knowledge Contrastive Learning

After passing T layers of KRAT, the entity repre-
sentations are enriched with 7" hops context. Tak-
ing the idea of supervised contrastive learning
(Gunel et al., 2021) that pulls embeddings from the
same entities close and pushes embeddings from

different entity further away, we calculate the con-
trastive loss as

-1
Lon =)
o€T ’7;|

ewp(z(s,r) ’ h’O/T)

> exp(zk - ho/T)’
kT,
)

where 7 denotes a batch of normalized entity em-
beddings, 7, denotes the set of representations cor-
responding to entity o, 7 is an adjustable tempera-
ture hyperparameter that controls the balance be-
tween uniformity and tolerance (Wang and Liu,
2021). The contrastive loss introduces more nega-
tive samples, therefore enriching the feedback to
the limited positive triples. z(,,) is a knowledge
projection head such as TransE, DistMult, RotatE,
and ConvE to transform embeddings from subject
to object. Here we take ConvE as an example'

Z log

(5, €70

z(s,r) = fvec(f([hs|[hr] % w))Wp),  (6)

where hy € R%>*dr and h, € R% ¥4 denote 2D
reshaping of hy € R%*1 and h, € Réwdnx!
respectively, * denotes the convolution operation,
f denotes non-linearity (PReLU (He et al., 2015a)
by default), vec denotes vectorization, and W), is a
linear transformation matrix. The whole formula
represents the predicted object representation given
the subject s and relation . We then calculate the
cross entropy loss as follows

1 o ~0
Ler =~ D 2 Yo logily D
(s,r)ET 0€E

where 7 denotes training triples in a batch, & de-
notes all entities that exist in the KG, y?sm) denotes
the ground-truth labels, i.e., y?sm) = 1 if triple
(s,r,0) is valid and yfsm) = 0 otherwise. z(, ) is
1-N scoring function taken from ConvE (Dettmers
et al., 2018), which scores all candidate entities
with dot product

Uoory = Z(s) - P (®)
where g)?s’r) denotes the predicted plausibility for
triple (s, 7,0), h, € R¥*I€l denotes the represen-
tations of all entities. Finally, we demonstrate the
final objective by incorporating the contrastive loss
and cross entropy loss through summation,

L=LcrL+LcE &)

"For more combination of knowledge projection head,
please refer to Section 4.7.



By jointly optimizing the two objectives, we cap-
ture the similarity of the same entity embeddings
and contrast them with other entities, while keeping
the performance for entity prediction.

4 Experiment

4.1 Experiment Settings

Dataset To evaluate KRACL, we consider
five widely acknowledged datasets: FB15k-237
(Toutanova and Chen, 2015), WN18RR (Dettmers
etal., 2018), NELL-995 (Xiong et al., 2017), Kin-
ship (Lin et al., 2018), and UMLS (Kok and Domin-
gos, 2007), following the standard train/test split.
Statistics of these benchmarks are listed in Ap-
pendix 6, we further investigate the average and
medium entity in-degree to demonstrate their spar-
sity. FB15k-237 and WN18RR are obtained by re-
moving the inverse and equal relations from FB15k
and WN18 respectively, making them more diffi-
cult. NELL-995 is extracted from the 995-th it-
eration of NELL system (Mitchell et al., 2018).
WNI18RR and NELL-995 are much sparser than
FB15k-237, Kinship, and UMLS.

Evaluation Protocol Following Bordes et al.
(2013), we use the filtered setting for link pre-
diction, i.e., while evaluating test triples, all valid
triples are filtered out from the candidate set. We
report mean reciprocal rank (MRR), mean rank
(MR), and Hits@N. MRR is the average inverse
of obtained ranks of correct entities among all can-
didate entities. MR means the average obtained
ranks of correct entities among all candidate enti-
ties. Hits@N measures the proportion of correct
entities ranked in the top N among all candidate
entities. We take N=1,3,10 in this work.

Baselines We compare our model with state-of-the-
art KGE models? , which can be categorized into:
(1) translational-based TransE (Bordes et al., 2013),
RotatE (Sun et al., 2019); (2) tensor decomposition-
based DistMult (Yang et al., 2014), ComplEx
(Trouillon et al., 2016); (3) CNN-based ConvE
(Dettmers et al., 2018), ConvKB (Nguyen et al.,
2017), HypER (BalazZevic et al., 2019); (4) GNN-
based R-GCN (Schlichtkrull et al., 2018), KBAT
(Nathani et al., 2019), CompGCN (Vashishth et al.,
2019), and DisenKGAT (Wu et al., 2021a).
Implementation We implement KRACL? on a
RTX 3090 GPU with 24GB memory using PyTorch

“More details of baselines can be found in Appendix B.
3The code is available at https://anonymous.
4open.science/r/KRACL-3448/

(Paszke et al., 2017), Pytorch lightning (Falcon and
The PyTorch Lightning team, 2019), and Pytorch
Geometric (Fey and Lenssen, 2019). Following
Vashishth et al. (2019), each triple (s, r, 0) is aug-
mented with a flipped triple (0,71, s). We present
our hyperparameter settings in Table 9 to facili-
tate reproducibility. We also use OpenKE (Han
et al., 2018) and Pykeen (Ali et al., 2021) library to
reproduce the baseline models.

4.2 Main Results

Table 1 and 2 show the link prediction performance
on the test set on standard benchmarks including
FB15k-237, WN18RR, NELL-995, and Kinship®.
From the experimental results, we observe that: 1)
on sparse knowledge graphs, i.e., WN18RR and
NELL-995, KRACL outperforms all other baseline
models on most of the metrics. Particularly, MRR
is improved from 0.481 and 0.534 in CompGCN
to 0.523 and 0.554, about 8.7% and 3.7% relative
performance improvement; 2) on dense knowledge
graphs, i.e., FB15k-237 and Kinship, KRACL also
achieves competitive results compared to baseline
models, with significant improvement on Kinship
dataset. Overall, these results show the effective-
ness of the proposed KRACL for the task of pre-
dicting missing links in knowledge graphs and its
superior performance on both sparse and dense
knowledge graphs.

4.3 Entity In-degree Analysis

Since the sparsity in KGs will lead to entities with
low in-degree and thus lack information to con-
duct link prediction, we follow Shang et al. (2019)
and analyze link prediction performance on enti-
ties with different in-degree. In the following ex-
periments, we choose FB15k-237 dataset as our
object due to its abundant relation types and dense
graph structure. As shown in Table 3, we present
Hits@10 and MRR metrics on 7 sets of entities
within different in-degree scopes and compare the
performance of KRACL with TransE, DistMult,
ConvE, and CompGCN. Firstly, for entities with
low in-degree, GNN-based models such as KR-
ACL and CompGCN outperform ConvE and Ro-
tatE, because they get extra information by ag-
gregating neighboring entities. However, we find
that simply aggregating neighbors equally is not
enough. By varying the importance of every en-
tity’s neighborhood and introducing more feedback

*Please see main results on UMLS dataset in Appendix 8.
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Model WN18RR NELL-995

MRR MR H@l0 H@3 H@l | MRR MR H@I0 H@3 H@I
TransE 243 2300 532 441 .043 | 401 2100 @ .501 472 344
DistMult 444 7000 504 A7 412 | 485 4213 .61 524 401
ComplEx 449 7882 .53 469 409 | 482 4600 .606  .528  .399
RotatE 494 4046 571 510 455 | 483 2582 565 514 435
ConvE 456 4464 531 A7 419 | 491 3560 .613 531 403
ConvKB 265 1295 558 445 .058 43 600 .545 A7 37
HypER 493 4687 549 503 464 | 540 1763 657 580 471
R-GCN 123 6700 207 A37 .08 12 7600 (188 126 .082
KBAT 412 1921 554 - - 319 3683 474 370 233
CompGCN 481 3113 548 492 448 | 534 1246 644 .607 466
DisenKGAT 506 4135 590 522 462 | 547 882 606  .598 474
KRACL (Ours) | .523 1754 .606 .539 481 | 554 546 .670 597 .484

Table 1: Link prediction performance on sparse knowledge graphs, i.e., WN18RR and NELL-995. The best score is
in bold and the second best score is underlined, ’-’ indicates the result is not reported in previous work.

Model FB15k-237 Kinship

MRR MR H@10 H@3 H@l | MRR MR H@10 H@3 H@I]
TransE 294 357 465 - - 211 389 470 252 .093
DistMult 241 254 419 263 155 48 7.9 08 491 377
ComplEx 247 339 428 275 158 | 823 248 971 899 733
RotatE 338 177 533 375 241 | 738 29 954 827 .617
ConvE 325 244 501 356 237 | 772 3.0 950 858  .665
ConvKB 243 311 421 371 155 | 614 33 953 155 436
HypER 341 250 520 376 252 | 868 196 981 935 .790
R-GCN 248 339 428 275 158 | (109 259 239 .088 .03
KBAT A56 392 305 167 085 | .637 3.41 955 57 470
CompGCN 355 197 535 390 264 | 810 226 977 892 709
DisenKGAT 368 179 553 407 275 | 832 196 986 914 737
KRACL (Ours) | .360 150 .548 395 266 | 895 148 991 970 .817

Table 2: Link prediction performance on denser knowledge graphs, i.e., FB15k-237 and Kinship. The best score is
in bold and the second best score is underlined. ’-’ indicates the result is not reported in previous work.

with KCL loss, KRACL achieves significant im-
provement over all baselines for entities with in-
degree [0, 100]. For entities with higher in-degree,
the performance of KRACL is close to ConvE and
RotatE, while the performance of CompGCN is the
worst, because entity embedding is substantially
smoothed by too much neighboring information
(Liang et al., 2021). To sum up, these results show
the strong capability of KRACL to predict sparse
entities and it is also effective for dense entities.

4.4 Knowledge Sparsity Study

To verify KRACL’s sensitivity against sparsity, we
randomly remove triples from the training set of
FB15k-237 and evaluate the models on the full test
set. Figure 3 shows the MRR and Hits@10 of 7

competitive models including TransE, DistMult,
ComplEx, RotatE, ConvE, HypER, CompGCN,
and our proposed KRACL. Performance of all mod-
els universally decreases as the training set dimin-
ishes. However, the results show that KRACL con-
sistently outperforms all baseline models, and as
the corruption ratio increases, the improvement of
KRACL against baseline models increases as well.
Overall, these experiment results indicate our mod-
els’ superior robustness against sparsity across a
variety of baseline models.

4.5 Ablation Study

As KRACL outperforms various baselines across
all selected benchmark datasets, we investigate the
impact of each module in KRACL to verify their



In-degree RotatE ConvE CompGCN KRACL
MRR H@10 MRR H@10 MRR H@10 MRR H@I10

[0, 10] 178 .309 86 338 .198 348 232 394
[10, 20] .149 294 A54 299 156 296 181 335
[20, 30] 194 381 199 386 .198 370 218 405
(30, 40] 282 497 287 485 280 476 307 501
[40, 50] 294 547 297 S16 0 298 520 328 552
[50, 100] 399 681 403  .675 400  .663 434 702
[100, maz] | .691 929 714 936 674 905 716 932

Table 3: Link prediction performance categorized by different entity in-degree on the FB15k-237 dataset. The best

score is in bold and the second best score is underlined.
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Figure 3: Link prediction performance on sparse knowl-
edge graph of KRACL and competitive peer models on
the FB15k-237 datasets.

effectiveness. More specifically, we perform abla-
tion studies on the proposed KRAT and its attention
mechanism, residual connection, and test the effec-
tiveness of proposed KCL and its two components
on WN18RR and NELL-995 datasets, as is shown
in Table 4. First, it is illustrated that full KRACL
model outperforms 6 ablated models, which proves
the effectiveness of our design choice. Second,
we observe a significant drop when replacing the
proposed KCL loss with binary cross entropy loss,
which is probably resulted from the its poor gen-
eralization performance with limited labels (Liu
et al., 2016; Cao et al., 2019).

4.6 Performance by Relation Category

In this part, we follow Wang et al. (2014) and fur-
ther investigate the performance of KRACL in dif-
ferent relation categories (shown in Table 5). We
report MRR and Hits@ 10 of KRACL and compare
with TransE, DistMult, ConvE, and CompGCN.
We can see that KRACL almost outperforms all

Model WN18RR NELL-995
MRR H@3 MRR H@3
w/o KRAT 509 522 543 589
w/o attention | .504  .521 543 583
w/o res. 518 532 551 593
w/o Lo, 502 514 496 541
w/o Lok 495 531 542 586
BCFELoss 469 478 507 547
KRACL 523 539 554 597

Table 4: Results of ablation study of the proposed
KRACL on the WNI18RR and NELL-995 dataset.
BCFE Loss denotes replacing the KCL loss with binary
cross entropy loss.

baselines for all relation types. Furthermore, it is
demonstrated that KRACL achieves significant im-
provement on 1-1, 1-N, and N-1 relations while the
prediction performance on N-N relations is close to
CompGCN. We speculate that KRACL is good at
learning the relative simple relations and predicting
the N — N relation is still challenging to KRACL.
We leave the research of a more expressive scheme
to model complex N-N relations as our future work.

4.7 Combination of Different GNN Encoder
and Projection Head

Borrowing from CompGCN, we evaluate the effect
of different GNN methods combined with different
knowledge projection heads such as TransE, Dist-
Mult, RotatE, and ConvE. The results are shown
in Table 7. We evaluate KRAT on four fusion op-
erators taken from Bordes et al. (2013); Yang et al.
(2014); Sun et al. (2019); Nickel et al. (2016) ,

* Subtraction(Sub): ¢(hs, h,.) = hs — h,
* Multiplication(Mult): ¢(hs, h,) = hs * h,

SPlease see details of rotation and circular-correlation op-
erator in Appendix F.



TransE DistMult ConvE CompGCN KRACL
MRR H@10 | MRR H@10 | MRR H@10 | MRR H@10 | MRR H®@10

1-1 | 484  .593 .255 307 374 505 457 604 | 500  .609

E I-N | .080  .152 .038 071 091 A70 | 112 190 | 118 215
= N-1| .329 .589 322 558 444 644 | 471 656 | 485  .675
N-N | .219 436 131 255 261 459 | 275 474 | 276 481

1-1 | 476  .588 257 312 .366 510 453 589 | 515 635

= LN | 536  .846 575 750 762 878 | 779 885 | 796  .894
B N-1] .060 .118 .032 067 .069 A50 | 076 151 | 093  .180
N-N | .287 .553 .184 376 375 .603 395 616 | 394 .620

Table 5: Link prediction performance by relation category on FB15k-237 dataset for TransE, DistMult, ConvE,
CompGCN, and proposed KRACL. Following Wang et al. (2014), the relations are categorized into one-to-one
(1-1), one-to-many (1-N), many-to-one (N-1), and many-to-many (N-N).

* Rotation(Rot): ¢(hs, hy.) = hso h,

¢ Circular-correlation(Corr):
o(hg, hy) = hg x h,.

From experimental results in Table 7, we have
the following observations. First, by utilizing graph
neural networks (GNNs), the model can further in-
corporate graph structure and context information
in the knowledge graph and boost model’s perfor-
mance. The lack of fusing relation and entity em-
beddings leads to poor performance of R-GCN and
W-GCN, while CompGCN and KRACL integrate
relation and entity context and outperform other
baselines. Second, KRACL obtains an average of
6.3%, 6.0%, 17.6%, and 3.5% relative improve-
ment on MRR compared with CompGCN, which
indicates the strong robustness of KRACL across
multi-categories knowledge projection heads. We
can also see that KRACL significantly outperforms
other baseline encoders when combined with Ro-
tatE. It reveals the strong robustness and adaptation
of the proposed KRACL framework.

4.8 Robustness against Noisy Triples

Beyond sparsity, facts generated by knowledge ex-
traction approaches can also be unreliable, e.g.,
NELL facts have a precision ranging from 0.75-
0.85 for confident extractions and 0.35-0.45 across
the broader set of extractions (Mitchell et al., 2018).
In this section, we randomly add unreliable triples
in the sparse version of FB15k-237 to test models’
robustness against noisy triples. Figure 4 shows
how the MRR and Hits@10 suffer as noises in-
crease. We observe that KRACL shows consistent
improvement over the baseline models and its per-
formance shows a lower level of volatility.

ComplEx CompGCN ConvE RotatE KRACL

0.10

0 10 20 30
noise (%)

40 50 60

0.50 ComplEx CompGCN ConvE RotatE KRACL
0.45
o 0.40
3
8035

0.30

0.20

0 10 20 30
noise (%)

40 50 60

Figure 4: Link prediction performance on noisy knowl-
edge graph of KRACL and some baseline models on
the FB15k-237 dataset.

5 Conclusion

In this paper, we present KRACL model to allevi-
ate the widespread sparsity problem in knowledge
graphs for knowledge graph completion. First, KR-
ACL leverages graph context by jointly aggregating
neighbor entities and relations with the attention
mechanism. Second, we propose a knowledge con-
trastive loss to introduce more negative, hence more
feedback is provided to sparse entities.

The proposed KRACL effectively improves pre-
diction performance on sparse entities in KGs. Ex-
tensive experiments on standard benchmark FB15k-
237, WN18RR, NELL-995, Kinship, and UMLS
show that KRACL improves consistently over com-
petitive baseline models, especially on WN18RR
and NELL-995 with many low in-degree entities.



6 Limitations

As most of the KGE models, our proposed KRACL
model has the following limitations:

* Scalability. We take the initial input of KR-
ACL as learnable embeddings, leading to the
linear scaling of the model size with the num-
ber of entities in KGs. This design choice
makes our model not feasible for large-scale
knowledge graphs such as WikidataSM (Wang
et al., 2021) and WikiKG90M (Hu et al.,
2021).

* Inductive setting. By the same token of learn-
able embeddings, our model is not capable
of inductive learning. That is, the proposed
KRACL cannot prediction unseen entities in
knowledge graphs.

However, Galkin et al. (2021) also notice this prob-
lem and propose a node level tokenizer dubbed
nodepiece. It greatly reduces the parameter of
learnable embeddings and can enable inductive
learning for KGE models as well. We defer com-
bining our model with nodepiece and evaluating
KRACL on large-scale knowledge graphs as our
future work.
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A Dataset Details

In this section, we provide the details of the differ-
ent datasets used in our experiments.

¢ FB15k-237 (Toutanova and Chen, 2015) is
a subset of FB15k (Bordes et al., 2013),
which contains knowledge base describing
facts about the real world and is extracted
from FreeBase (Bollacker et al., 2008). Dif-
ferent from FB15k, it removes all the reverse
relations to prevent test data leakage.

WNI18RR (Dettmers et al., 2018) is a sub-
set of the WordNet (Miller, 1995) containing
lecxical relation between words. Similar to
FB15k-237, WN18RR also removes the re-
verse relations to avoid test data leakage.

NELL-995 (Xiong et al., 2017) is a subset of
the 995-th iteration of NELL system. From
Table 6 we can see that it is much sparser than
other datasets.

Kinship (Lin et al., 2018) contains a set of
triples that explains the kinship relationships
among members of the Alyawarra tribe from
Central Australia. It is an integral part of abo-
riginal across Australia with regard to mar-
riages between aboriginal people.

UMLS (Kok and Domingos, 2007) is a knowl-
edge base that brings together many health
and biomedical vocabularies and standards to
enable the interoperability between computer
systems.

B Baseline Details

We compare the proposed KRACL model with the
following baseline models and reproduce their re-
sults using OpenKE (Han et al., 2018) and Pykeen
(Ali et al., 2021) library.

* TransE (Bordes et al., 2013) is the most rep-
resentative KGE model with the assumption
that the superposition of head and relation em-
bedding is close to tail embedding.

* DistMult (Yang et al., 2014) is a matrix fac-
torization model that uses a bilinear scoring
function.

e ComplEx (Trouillon et al., 2016) is a matrix
factorization model that is embedded in com-
plex space.
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* RotatE (Sun et al., 2019) is a translational
model that maps relations embeddings as ro-
tation operation in complex space.

¢ ConvE (Dettmers et al., 2018) is a CNN-based
model that adopts 2D convolution neural net-
work to extract semantic information between
entities and relations.

* ConvKB (Nguyen et al., 2017) is a CNN-
based model that performs 1D convolution
on triple embeddings for scoring.

* HypER (BalaZevi¢ et al., 2019) is a CNN-
based model that uses hypernetwork to con-
struct relational convolution kernel.

* R-GCN (Schlichtkrull et al., 2018) is a GNN-
based model that extends GCN to relational
data. Specifically, it aggregate message from
different relations with different projection
matrix.

¢ KBAT (Nathani et al., 2019) is a GNN-based
model that introduces attention mechanism
to learn the importance of neighboring nodes
and takes advantage of multi-hop neighbors.

* CompGCN (Vashishth et al., 2019) is a GNN-
based model that jointly aggregates entity and
relation embeddings and score triples with
with a decoder such as TransE, DistMult, and
ConvE.

* DisenKGAT (Wu et al., 2021a) is a GNN-
based model that proposes to leverage micro-
disentanglement and macro-disentanglement
for representative embeddings.

C Relation Category Details

Following Wang et al. (2014), for each relation r,
we compute the average number of tails per head
and the average number of head per tail, denoted
as tphr and hptr, respectively. If tphr < 1.5 and
hptr < 1.5, r is treated as one-to-one (1-1); if
tphr < 1.5 and hptr > 1.5, r is treated as many-
to-one (N-1); if tphr > 1.5 and hptr < 1.5, ris
treated as one-to-many (1-N); if tphr > 1.5 and
hptr > 1.5, r is treated as a many-to-many (N-N).

D Visualization of Entity Representations

To examine the quality of learned representations,
we visualize the entity embeddings . Given a link



Dataset #Ent. #Rel. #Edge #In-degree
Train Valid Test Avg. Med.
FB15k-237 14,541 237 272,115 17,535 20,466 18.76 8
WN18RR 40,943 11 86,835 3,034 3,134 2.14 1
NELL-995 75,492 200 149,678 543 3,992 2.01 0
Kinship 104 25 8,544 1,068 1,074 82.15 82
UMLS 135 46 5,216 652 661 38.63 20
Table 6: Benchmark statistics.
Dec./Proj. (=X) — TransE DistMult RotatE ConvE
Methods | MRR H@10 MRR H@lI0 MRR H@lI0 MRR H@10
X 279 441 241 419 338 533 325 501
X+R-GCN 281 469 324 499 295 457 342 525
X+W-GCN 264 444 324 504 272 430 244 525
X+CompGCN (Sub) 335 514 336 513 .290 453 352 .530
X+CompGCN (Mult) 337 515 338 518 .296 456 353 532
X+CompGCN (Rot) 271 447 289 448 296 461 325 .506
X+CompGCN (Corr)  .336 518 335 514 294 459 355 .535
X+KRAT (Sub) 341 523 343 525 .345 527 .356 542
X+KRAT (Mult) .340 523 345 526 .346 528 358 .546
X+KRAT (Rot) .339 522 345 524 348 527 .359 544
X+KRAT (Corr) 340 524 343 526 .345 526 360 548

Table 7: Performance of link prediction on FB15k-237 dataset. Following Vashishth et al. (2019), X+M (Y) denotes
that M is the GNN backbone to obtain entity and relation embeddings and X is the scoring function or projection
head in this work, Y denotes the fusion operator between entity and relation embeddings. The best scores across all

settings are highlighted by [ -].

UMLS
Model | kR MR H@I0 He@I
TransE .615 3.6 945 391
DistMult .164 18.8 403 .061
ComplEx | .844  2.47 967 765
RotatE .822 2.1 .969 .703
ConvE .836 3.2 946 764
ConvKB 782 1.61 .986 .593
SACN .856 1.7 .985 764
R-GCN 481 7.8 .835 318
KBAT 818 1.855 987 11
KRACL 904 1.38 995 831

Table 8: Link prediction performance of KRACL and
baseline models on the UMLS dataset. The best score
is in bold and the second best score is underlined.

prediction task (s, r,7), we select queries (s, 7, 7)
that have the same answers and visualize their pre-
dictions with T-SNE (Van der Maaten and Hinton,
2008). As is shown in Figure 5, our model shows
higher level of collocation for entities, which in-
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Figure 5: Visualization of tail entities in ConvE and
KRACL with T-SNE.

dicates that our KRACL framework learns high-
quality representations for entities and relations.

E Computation Details

Our proposed KRACL model’s learnable parame-
ters and computational budget are listed in Table
10. We train our KRACL model on one RTX 3090
GPU with 24GB memory.

For main results shown in Table 1 and 2, we ad-
just the hyperparameters based on the performance



NELL-995 Kinship @ UMLS

Hyperarameter | FB15k-237 WNI18RR
Entity dim d, 200 200
Relation dim d, 200 200
Batch size 2048 2048
Learning rate 1073 1073
Epochs 1500 1000
GNN layers 1 2
Encoder dropout 0.1 0.2
Temperature T 0.07 0.07
Optimizer AdamW AdamW

200 200 200
200 200 200
2048 1024 1024
103 3x107% 5x107*
1000 1000 1000
2 2 2
0.2 0.2 0.2
0.07 0.1 0.1

AdamW AdamW  AdamW

Table 9: Hyperparameter settings of KRACL across various benchmark datasets. We find our hyperparameter
settings robust across all datasets and all hyperparameters are chosen by the performance on the validation set.

Dataset Parameters GPU hours
FB15k-237 13.3M 9.5
WNI18RR 18.6M 4.5
NELL-995 25.9M 10.5
Kinship 10.4M 0.7
UMLS 10.4M 0.5

Table 10: Number of parameters in the KRACL model
and GPU hours for training on selected datasets.

on validation set and report the best results on the
test set. For other experiments, we present the per-
formance of a single run.

F Fusion Operator Details

* Rotation: ¢(hs, h,) = hsoh,
For each dimention i, e[2i] and e[2i + 1]
are corresponding real and imaginary com-
ponents. Given the subject embedding es and
relation transform embedding 6., the rotation
projection is formulated as

e -

cosh,(i) —sinh,(i) hs[21]

[ sinh,(i) cosh,(i) ] [ hg[2i + 1] ] ’

(10)

where 6, is learnable parameter corresponding

to relation type 7, h, denotes the projected
object embedding after rotation.

¢ Circular-correlation: ¢(hs, h,.) = hs x h,

Taken from Nickel et al. (2016), the circular-
correlation operator is formulated as

(hs * hy) Zhs (k + 1) mod d],
(11)

15

where d is the dimension of entity and relation
embeddings, mod denotes the modulo oper-
ation. The circular-correlation operator can
discriminate the direction of relation because
of its non-commutative property.
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