
Improving and Generalizing Flow-Based Generative Models with Minibatch
Optimal Transport

Alexander Tong 1 2 Nikolay Malkin 1 2 Guillaume Huguet 1 2 Yanlei Zhang 1 2 Jarrid Rector-Brooks 1 2

Kilian Fatras 1 3 Guy Wolf 1 2 Yoshua Bengio 1 2 4

Abstract
Continuous normalizing flows (CNFs) are an
attractive generative modeling technique, but
they have been held back by limitations in
their simulation-based maximum likelihood train-
ing. We introduce the generalized conditional
flow matching (CFM) technique, a family of
simulation-free training objectives for CNFs.
CFM features a stable regression objective like
that used to train the stochastic flow in diffu-
sion models but enjoys the efficient inference of
deterministic flow models. In contrast to both
diffusion models and prior CNF training algo-
rithms, CFM does not require the source distri-
bution to be Gaussian or require evaluation of
its density. A variant of our objective is opti-
mal transport CFM (OT-CFM), which creates
simpler flows that are more stable to train and
lead to faster inference, as evaluated in our ex-
periments. Furthermore, OT-CFM is the first
method to compute dynamic OT in a simulation-
free way. Training CNFs with CFM improves
results on a variety of conditional and uncondi-
tional generation tasks, such as inferring single
cell dynamics, unsupervised image translation,
and Schrödinger bridge inference. Code is avail-
able at https://github.com/atong01/
conditional-flow-matching.

1. Introduction
Generative modeling considers the problem of approximat-
ing and sampling from a probability distribution. Normaliz-
ing flows, which have emerged as a competitive generative
modeling method, construct an invertible and efficiently dif-
ferentiable mapping between a fixed (e.g., standard normal)
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Figure 1: Above: Conditional flows from (a) Lipman et al.
(2023) which is restricted to generating from the normal
distribution, (b) the proposed Conditional Flow Matching
(CFM) and (c) its variant Optimal Transport Conditional
Flow Matching (OT-CFM). Below: Learned flows (green)
from moons (blue) to 8-Gaussians (black) using CFM (left)
and OT-CFM (right), not possible using FM.

distribution and the data distribution (Rezende & Mohamed,
2015). While original normalizing flow work specified this
mapping as a static composition of invertible modules, con-
tinuous normalizing flows (CNFs) express the mapping by
a neural ordinary differential equation (ODE) (Chen et al.,
2018). Unfortunately, CNFs have been held back by diffi-
culties in training and scaling to large datasets (Chen et al.,
2018; Grathwohl et al., 2019; Onken et al., 2021).

Meanwhile, diffusion models, which are the current state
of the art on many generative modeling tasks (Dhariwal &
Nichol, 2021; Austin et al., 2021; Corso et al., 2022; Watson
et al., 2022b), approximate a stochastic differential equation
(SDE) that transforms a simple density to the data distri-
bution. Diffusion models owe their success in part to their
simple regression training objective, which does not require
simulating the SDE during training. Recently, Lipman et al.
(2023) showed that CNFs could also be trained using a re-
gression of the ODE’s drift similar to training of diffusion
models, an objective called flow matching (FM). FM was

https://github.com/atong01/conditional-flow-matching
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shown to produce high-quality samples and stabilize CNF
training. However, FM models make the assumption of a
Gaussian source distribution. The first main contribution
of the present paper is to relax this assumption and enable
learning of ODE bridges between two arbitrary distributions.
The general class of objectives we propose, termed condi-
tional flow matching (CFM), widely broadens the scope of
applications of FM.

A major drawback of both CNF (ODE) and diffusion (SDE)
models compared to other generative models (e.g., varia-
tional autoencoders (Kingma & Welling, 2014), (discrete-
time) normalizing flows, and generative adversarial net-
works (Goodfellow et al., 2014)), is that integration of the
ODE or SDE requires many passes through the network to
generate a high-quality sample, resulting in a long infer-
ence time. This drawback has motivated work on enforcing
an optimal transport (OT) property in neural ODEs (Tong
et al., 2020; Finlay et al., 2020; Onken et al., 2021; Liu,
2022; Liu et al., 2023), yielding flows that can be integrated
accurately in fewer neural network evaluations. Such reg-
ularizations have not yet been studied for models trained
with FM-like objectives. Our second main contribution
is a variant of CFM called optimal transport conditional
flow matching (OT-CFM) that approximates dynamic OT
via CNFs. We show that OT-CFM not only improves the
efficiency of training and inference, but also leads to more
accurate OT flows than existing neural OT models based on
ODEs (Tong et al., 2020; Finlay et al., 2020), SDEs (De Bor-
toli et al., 2021; Vargas et al., 2021), or input-convex neural
networks (Makkuva et al., 2020). Furthermore, an entropic
variant of OT-CFM can be used to efficiently train a CNF
to match the probability flow of a Schrödinger bridge. Our
work is the first to enable simulation-free training of
dynamic OT maps and Schrödinger bridge probability
flows for arbitrary source and target distributions.
In summary, our contributions are:

(1) We introduce a novel class of objectives called (gen-
eralized) conditional flow matching (§3.1). CFM is
able to learn conditional generative models from any
samplable source distribution by conditioning on paired
source and target samples, generalizing existing meth-
ods (Lipman et al., 2023; Albergo & Vanden-Eijnden,
2023; Liu, 2022; Pooladian et al., 2023).

(2) We consider a special case of CFM that draws source
and target samples according to an optimal trans-
port plan, allowing us to solve the dynamic OT and
Schrödinger bridge problems in a simulation-free way,
using only static OT maps between marginal distribu-
tions (§3.2).

(3) We evaluate CFM and OT-CFM in experiments on
single-cell dynamics, image generation, unsupervised
image translation, and energy-based models. We show
that the OT-CFM objective leads to more efficient train-

ing and decreases inference time while finding better ap-
proximate solutions to the dynamic OT and Schrödinger
bridge problems (§5).

2. Background: Optimal transport and neural
ODEs

Throughout the paper, we consider the setting of a pair of
data distributions over Rd with (possibly unknown) densities
q(x0) and q(x1) (also denoted q0, q1). Generative modeling
considers the task of fitting a mapping f from Rd to Rd

that transforms q0 to q1, that is, if x0 is distributed with
density q0 then f(x0) is distributed with density q1. This
includes both the typical case when q0 is an easily sampled
density, such as a Gaussian, and the case when q0 and q1
are empirical data distributions available as finite sets of
samples.

2.1. ODEs and probability flows

A smooth1 time-varying vector field u : [0, 1]× Rd → Rd

defines an ordinary differential equation:

dx = ut(x) dt, (1)

where we use the notation ut(x) interchangeably with
u(t, x). Denote by ϕt(x) the solution of the ODE (1) with
initial conditions ϕ0(x) = x; that is, ϕt(x) is the point x
transported along the vector field u from time 0 up to time
t.

Given a density p0 over Rd, the integration map ϕt induces a
pushforward pt = [ϕt]#(p0), which is the density of points
x ∼ p0 transported along u from time 0 to time t. The time-
varying density pt, viewed as a function p : [0, 1]×Rd → R,
is characterized by the well-known continuity equation:

∂p

∂t
= −∇ · (ptut) (2)

and the initial conditions p0. Under these conditions, u
is said to be a probability flow ODE for p, and p is the
(marginal) probability path generated by u.

Approximating ODEs with neural networks. Suppose
the probability path pt(x) and the vector field ut(x) gener-
ating it are known and pt(x) can be tractably sampled. If
vθ(·, ·) : [0, 1]× Rd → Rd is a time-dependent vector field
parametrized as a neural network with weights θ, vθ can be
regressed to u via the flow matching (FM) objective:

LFM(θ) = Et∼U(0,1),x∼pt(x)∥vθ(t, x)− ut(x)∥
2. (3)

Lipman et al. (2023) used a version of this objective with a
stochastic regression target to fit ODEs that map a Gaussian

1To be precise, to ensure the uniqueness of integral curves (and
thus of the corresponding flow), we assume the vector field u is at
least (locally) Lipschitz in x and Bochner integrable in t.
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density q0 to a target q1. The starting point for this work is
that this objective becomes intractable for general source
and target distributions; in §3, we develop generalizations
that allow more flexible and efficient generative modeling.

The case of Gaussian marginals. Consider the special
case of an ODE whose marginal densities are Gaussian:
pt(x) = N (x | µt, σ

2
t ). While the ODE that generates

these marginal densities is not unique, one of the simplest is
the one that satisfies

ϕt(x) = µt + σtx, (4)

which is unique by the following theorem.
Theorem 2.1 (Theorem 3 of Lipman et al. (2023)). The
unique vector field whose integration map satisfies (4) has
the form

ut(x) =
σ′
t

σt
(x− µt) + µ′

t, (5)

where σ′
t and µ′

t denote the time derivative of σt and µt,
respectively, and the vector field u with initial conditions
N (µ0, σ

2
0) generates the Gaussian probability path pt(x) =

N (x | µt, σ
2
t ).

2.2. Static and dynamic optimal transport

The (static) optimal transport problem seeks a mapping from
one measure to another that minimizes a displacement cost.
A case of greatest interest is the 2-Wasserstein distance
between distributions q0 and q1 on Rd with respect to the
Euclidean distance cost c(x, y) = ∥x− y∥, defined by

W (q0, q1)
2
2 = inf

π∈Π

∫
X 2

c(x, y)2 dπ(x, y), (6)

where Π denotes the set of all joint probability measures on
Rd × Rd whose marginals are q0 and q1.

The dynamic form of the 2-Wasserstein distance is defined
by an optimization problem over vector fields ut that trans-
form one measure to the other:

W (q0, q1)
2
2 = inf

pt,ut

∫
Rd

∫ 1

0

pt(x)∥ut(x)∥2 dt dx, (7)

with pt ≥ 0 and subject to the boundary conditions p0 = q0,
p1 = q1 and the continuity equation (2).

Tong et al. (2020); Finlay et al. (2020) showed that CNFs
with L2 regularization approximate dynamic optimal trans-
port. For general marginals, however, these models required
integrating over and backpropagating through tens to hun-
dreds of function evaluations, resulting in both numerical
and efficiency issues. We aim to avoid these issues by di-
rectly regressing to the vector field in a simulation-free way.

Optimal transport is also related to the Schrödinger bridge
(SB) problem (Léonard, 2014b). We show in Section 3.2.4
that a variant of the algorithm we propose recovers the
probability flow of the solution to a SB problem with a
Brownian noise reference process.

3. Conditional flow matching: ODEs from
static couplings

3.1. Vector fields generating mixtures of probability
paths

Suppose that the marginal probability path pt(x) is a mix-
ture of probability paths pt(x|z) that vary with some latent
conditioning variable z, that is,

pt(x) =

∫
pt(x|z)q(z) dz, (8)

where q(z) is some distribution over the latent variable. If
the probability path pt(x|z) is generated by the vector field
ut(x|z) from initial conditions p0(x|z) (see §2.1), then the
vector field

ut(x) := Eq(z)
ut(x|z)pt(x|z)

pt(x)
(9)

generates the probability path pt(x), under some mild con-
ditions:

Theorem 3.1. The marginal vector field (9) generates the
probability path (8) from initial conditions p0(x).

All proofs appear in Appendix A. This surprising result
extends Lipman et al. (2023, Theorem 1) to general condi-
tioning variables and delineates some minor conditions on
q(z).

A regression objective for mixtures. We are interested
in the case where conditional probability paths pt(x|z) and
vector fields ut(x|z) are known and have a simple form,
and we wish to recover the vector field ut(x), defined by
(9), that generates the probability path pt(x). Exact com-
putation via (9) is generally intractable, as the denominator
pt(x) is defined by an integral (8) that may be difficult to
evaluate. Instead, we develop an unbiased stochastic objec-
tive for regression of a learned vector field to ut(x), which
generalizes the unconditional flow matching objective (3).

Let vθ(·, ·) : [0, 1] × Rd → Rd be a time-dependent vec-
tor field parametrized as a neural network with weights θ.
Define the conditional flow matching (CFM) objective:

LCFM(θ) = Et,q(z),pt(x|z)∥vθ(t, x)− ut(x|z)∥
2. (10)

The CFM objective describes how to regress against the
marginal vector field ut(x) given by (9) with access only to
samples from the conditional probability path pt(x|z) and
conditional vector fields ut(x|z). This is formalized in the
following theorem.

Theorem 3.2. If pt(x) > 0 for all x ∈ Rd and t ∈ [0, 1],
then, up to a constant independent of θ, LCFM and LFM

are equal, and hence

∇θLFM(θ) = ∇θLCFM(θ). (11)
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Algorithm 1 Conditional Flow Matching

Input: Efficiently samplable q(z), pt(x|z), and com-
putable ut(x|z) and initial network vθ.
while Training do

z ∼ q(z); t ∼ U(0, 1); x ∼ pt(x|z)
LCFM(θ)← ∥vθ(t, x)− ut(x|z)∥2
θ ← Update(θ,∇θLCFM(θ))

return vθ

The CFM objective is useful when the marginal vector field
ut(x) is intractable but the conditional vector field ut(x|z)
is simple. As long as we can efficiently sample from q(z)
and pt(x|z) and calculate ut(x|z), we can use this stochastic
objective to regress vθ to the marginal vector field ut(x).

We discuss the variance arising from the stochastic regres-
sion target, and ways to reduce it, in §C.1 and Proposi-
tions B.2 and B.3.

3.2. Sources of conditional probability paths

In this section, we introduce several forms of CFM depend-
ing on the choices of q(z), pt(·|z), and ut(·|z). All of the
CFM variants and related objectives from prior work are
summarized in Table 1.

• §3.2.1: We interpret the algorithm of Lipman et al. (2023)
(FM from a Gaussian) as a special case of CFM.

• §3.2.2: We relax the Gaussian source requirement by
letting the condition z be a pair (x0, x1) of an initial and
a terminal point. In the basic form of CFM (I-CFM), we
take the distribution q(z) to equal q(x0)q(x1), allowing
generative modeling with an arbitrary source distribution.

• §3.2.3: We consider joint distributions q(z) = q(x0, x1)
that are given by minibatch optimal transport maps, caus-
ing the learned flow to be an (approximate) OT flow.

• §3.2.4: we consider q(z) given by an entropy-regularized
OT map and show that the CFM objective with this q(z)
solves the Schrödinger bridge problem.

3.2.1. FM FROM THE GAUSSIAN

Lipman et al. (2023) considered the problem of uncondi-
tional generative modeling given a training dataset. Identi-
fying the condition z with a single datapoint z := x1, and
choosing a smoothing constant σ > 0, one sets

pt(x|z) = N (x | tx1, (tσ − t+ 1)2), (12)

ut(x|z) =
x1 − (1− σ)x
1− (1− σ)t

, (13)

which is a probability path from the standard normal dis-
tribution (p0(x|z) = N (x; 0, 1)) to a Gaussian distribu-
tion centered at x1 with standard deviation σ (p1(x|z) =
N (x;x1, σ

2)). If one sets q(z) = q(x1) to be the uniform
distribution over the training dataset, the objective intro-

duced by Lipman et al. (2023) is equivalent to the CFM
objective (10) for this conditional probability path.

We emphasize that although the conditional probability path
pt(x|z) is an optimal transport path from p0(x|z) to p1(x|z),
the marginal path pt(x) is not in general an OT path from
the standard normal p0(x) to the data distribution p1(x).

3.2.2. BASIC FORM OF CFM: INDEPENDENT COUPLING

In the basic form of CFM (I-CFM), we identify z with a pair
of random variables, a source point x0 and a target point
x1, and set q(z) = q(x0)q(x1). We let the conditionals be
Gaussian flows between x0 and x1 with standard deviation
σ, defined by

pt(x|z) = N (x | tx1 + (1− t)x0, σ2), (14)
ut(x|z) = x1 − x0. (15)

We note that the formulation of ut(x|z) follows from an
application of Theorem 2.1 to the conditional probability
path with µt = tx1 + (1− t)x0 and σt = σ. Furthermore,
we note that pt(x|z) is efficiently samplable and ut is effi-
ciently computable, thus gradient descent on LCFM is also
efficient. For this choice of z, pt(·|z), and ut(·|z), we know
the marginal boundary probabilities approach q0 and q1 re-
spectively as σ → 0. This is made explicit in the following
Proposition:

Proposition 3.3. The marginal pt corresponding to q(z) =
q(x0)q(x1) and the pt(x|z), ut(x|z) in eqs. 14 and 15 has
boundary conditions p1 = q1 ∗ N (x | 0, σ2) and p0 =
q0 ∗N (x | 0, σ2), where ∗ denotes the convolution operator.

In particular, as σ → 0, the marginal vector field ut(x) ap-
proaches one that transports the distribution q(x0) to q(x1)
and can thus be seen as a generative model of x1. Note that
there is no requirement for q(x0) to be Gaussian. Condition-
ing on x0 allows us to generalize flow matching to arbitrary
source distributions with intractable densities.

As in the case of FM from a Gaussian, while each con-
ditional flow is the dynamic optimal transport flow from
N (x0, σ

2) to N (x1, σ
2), the marginal vector field ut(x) is

not necessarily an OT flow. We note that I-CFM is closely
related to the algorithms proposed by Albergo & Vanden-
Eijnden (2023); Liu (2022).

Connection to FM from the Gaussian. There exists a
set of conditional probability paths conditioned on x1 and
x0 ∼ N (0, 1) that have an equivalent probability flow to the
marginal pt of flow matching from the Gaussian (§3.2.1),
which is only conditioned on x1. These paths are defined by

pt(x|z) = N (x | tx1+(1−t)x0, (σt)2+2σt(1−t)). (16)

Prop. B.1 states an equivalence between I-CFM with these
paths and the objective from §3.2.1.
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Table 1: Probability path definitions for existing methods which fit in the generalized conditional flow matching framework
(top) and our newly defined paths (bottom). We define two new probability path objectives that can handle general source
distributions and optimal transport flows.

Probability Path q(z) µt(z) σt Cond. OT Marginal OT General source

Var. Exploding (Song & Ermon, 2019) q(x1) x1 σ1−t × × ×
Var. Preserving (Ho et al., 2020) q(x1) α1−tx1

√
1− α2

1−t × × ×
Flow Matching (Lipman et al., 2023) q(x1) tx1 tσ − t+ 1 ✓ × ×
Independent CFM (≈Albergo & Vanden-Eijnden (2023); Liu (2022)) q(x0)q(x1) tx1 + (1− t)x0 σ ✓ × ✓

Optimal Transport CFM π(x0, x1) tx1 + (1− t)x0 σ ✓ ✓ ✓
Schrödinger Bridge CFM π2σ2(x0, x1) tx1 + (1− t)x0 σ

√
t(1− t) ✓ ✓ ✓

3.2.3. OPTIMAL TRANSPORT CFM

In this section, we present our second main contribution.
The formulation in the previous section can readily be gen-
eralized to distributions q(z) = q(x0, x1) in which x0 and
x1 are not independent, as long as q(z) has marginals q(x0)
and q(x1). Therefore, we propose to set q(z) to be the 2-
Wasserstein optimal transport map π achieving the infimum
in (6), namely,

q(z) := π(x0, x1). (17)

In this case, z is still a tuple of points, but instead of x0, x1
being sampled independently from their marginal distribu-
tions, they are sampled jointly according to the optimal
transport map π. We call this method optimal transport
CFM (OT-CFM). If one uses the pt(x|z) defined by eq. 14
and ut(x|z) in eq. 15, OT-CFM is equivalent to dynamic
optimal transport in the following sense.

Proposition 3.4. The results of Prop. 3.3 also hold for q(z)
in eq. 17. Furthermore, assume q0 admits a density with
respect to the Lebesgue measure. Then as σ2 → 0 the
marginal path pt and field ut minimize eq. 7, i.e., ut solves
the dynamic optimal transport problem between q0 and q1.

To the best of our knowledge, OT-CFM is the first method to
solve the dynamic OT problem in a simulation-free manner,
using only the static OT map between q(x0) and q(x1) and
regression to the conditional flow at intermediate time steps.

Minibatch OT approximation. For large datasets, the
transport plan π can be difficult to compute and store due to
OT’s cubic time and quadratic memory complexity in the
number of samples (Cuturi, 2013; Tong et al., 2020). If this
cost is prohibitive, we can use a minibatch approximation
of OT similar to Fatras et al. (2021b). Although minibatch
OT incurs an error relative to the exact OT solution, it has
been successfully used in many applications like domain
adaptation or generative modeling (Damodaran et al., 2018;
Genevay et al., 2018). Specifically, for each batch of data
({x(i)0 }Bi=1, {x

(i)
1 }Bi=1) seen during training, we sample pairs

of points from the joint distribution πbatch given by the OT
plan between the source and target points in the batch. (The
OT batch size need not match the optimization batch size,
but we keep them equal for simplicity.) Thus, we solve

a minibatch approximation of dynamic optimal transport.
However, when the OT batch size equals the support size
of (q0, q1), we recover exact OT and therefore, by Prop. 3.4,
learn the exact dynamic optimal transport. We show empiri-
cally that the batch size can be much smaller than the full
dataset size and still give good performance, which aligns
with prior studies (Fatras et al., 2020; 2021a).

3.2.4. SCHRÖDINGER BRIDGE CFM

Recently, there has been significant effort in learning diffu-
sion models with general source distributions, formulated
as a Schrödinger bridge problem (De Bortoli et al., 2021;
Vargas et al., 2021). Here we show that SB-CFM, an en-
tropic variant of OT-CFM, can be used to train an ODE to
match the probability flow of a Schrödinger bridge with a
Brownian motion reference process.

Let pref be the standard Wiener process scaled by σ with
initial-time marginal pref(x0) = q(x0). The Schrödinger
bridge problem (Schrödinger, 1932) seeks the process π that
is closest to pref while having initial and terminal marginal
distributions specified by the data distribution q(x0) and
q(x1):

π∗ := argmin
π(x0)=q(x0),π(x1)=q(x1)

KL(π ∥ pref). (18)

We define the joint distribution

q(z) := π2σ2(x0, x1) (19)

where π2σ2 is the solution of the entropy-regularized opti-
mal transport problem (Cuturi, 2013) with cost ∥x0 − x1∥
and entropy regularization λ = 2σ2 (see eq. 32 for the
background on entropic OT). We set the conditional path
distribution to be a Brownian bridge with diffusion scale σ
between x0 and x1, with probability flow and generating
vector field

pt(x|z) = N (x | tx1 + (1− t)x0, t(1− t)σ2) (20)

ut(x|z) =
1− 2t

2t(1− t)
(x− (tx1 + (1− t)x0)) + (x1 − x0),

(21)

where ut is given by eq. 5. The marginal coupling π2σ2

and ut(x|z) define ut(x), which is approximated by the
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regression objective in Algorithm 4. The solution of the
SB is known to be the map which is the solution of the
entropically-regularized OT problem, motivating the next
proposition.

Proposition 3.5. The marginal vector field ut(x) defined by
eq. 19 and eq. 21 generates the same marginal probability
path as the solution π∗ to the SB problem in eq. 18.

While we define SB-CFM with an entropic regularization
coefficient of ε = 2σ2, the flow still matches the marginals
for any choice of ε. Interestingly, we recover OT-CFM when
ε→ 0 and I-CFM when ε→∞.

4. Related work
Simulation-free continuous-time modeling. Simulation-
free training is common in stochastic flow models where
backpropagating through the simulation is numerically chal-
lenging and has high variance (Li et al., 2020). While these
diffusion models have recently achieved exceptional genera-
tive performance on many tasks (Sohl-Dickstein et al., 2015;
Song & Ermon, 2019; 2020; Ho et al., 2020; Song et al.,
2021b; Dhariwal & Nichol, 2021; Watson et al., 2022b),
their simulation requires an inherently costly SDE simula-
tion with many follow-up works to improve inference effi-
ciency (Lu et al., 2022; Salimans & Ho, 2022; Watson et al.,
2022a; Song et al., 2021a; Bao et al., 2022). These methods
generally consider a simple Gaussian diffusion process, and
do not consider generalizing the source distribution. Other
works consider general source distributions but this makes
optimization and inference more challenging, needing mul-
tiple iterations or other tricks to perform well (Wang et al.,
2021; De Bortoli et al., 2021; Vargas et al., 2021).

Prior work considering simulation-free training of CNFs
considers algorithms that are equivalent to CFM with Gaus-
sian source distribution (Rozen et al., 2021; Ben-Hamu et al.,
2022; Lipman et al., 2023) or independent samples from
q0, q1 (Albergo & Vanden-Eijnden, 2023; Albergo et al.,
2023; Neklyudov et al., 2022). Recent work also studies
Schrödinger bridges from unpaired samples (Shi et al., 2022)
and regularization of flows using dynamic OT (Liu et al.,
2023). Contemporaneously with our work, Pooladian et al.
(2023) proposes objectives closely related to our OT-CFM
and SB-CFM, albeit with a focus on generative modeling
in high dimensions, rather than on high-fidelity solutions to
the dynamic OT and Schrödinger bridge problems.

Dynamic optimal transport. There are a variety of meth-
ods that consider dynamic OT between continuous distri-
butions with neural networks; however, these require con-
strained architectures (Leygonie et al., 2019; Makkuva et al.,
2020; Bunne et al., 2022) or use a regularized CNF, which
is challenging to optimize (Tong et al., 2020; Finlay et al.,
2020; Onken et al., 2021; Huguet et al., 2022a). With our
work it is possible to achieve optimal transport flows without

either of these constraints.

5. Experiments
In this section we empirically evaluate the I-CFM, OT-CFM,
and SB-CFM objectives, as well as algorithms from prior
work, with respect to both optimal transport and generative
modeling criteria. All experiment details can be found in
§E.

5.1. Low-dimensional data: Optimal transport and
faster convergence

OT-CFM solves dynamic OT. We evaluate how well var-
ious models perform dynamic optimal transport and gen-
erative modeling in low dimensions.2 Table 2 summarizes
our results showing that OT-CFM flows generalize better to
the test set and are very close to the dynamic OT paths as
measured by normalized path energy. We find transform-
ing moons↔8gaussians to be particularly challenging to
learn for I-CFM as compared to OT-CFM; the learned paths
are depicted in Figure 1 (bottom). Although OT-CFM uses
a minibatch OT map, we find that OT-CFM requires sur-
prisingly small batches to approximate the OT map well,
suggesting some generalization advantages of the network
optimization (Figure S2).

OT-CFM yields faster training. By conditioning on mini-
batch optimal transport flows, OT-CFM is substantially eas-
ier to train, which we posit is due to the variance reduction
of the conditional flow. In Figure 2 (left), we evaluate the
performance over time of OT-CFM against CFM and FM
objectives. For the same number of steps OT-CFM has
better performance on the validation set. In Table S1, we
compare the training times for various Neural OT methods
whose performance can be seen in Table 2. Simulation-free
optimization is significantly faster to train with equal or
superior performance.

OT-CFM yields faster inference. We next evaluate the
quality of samples during inference time. In Figure 2 (right),
we compare the quality of samples for different number of
function evaluations (NFEs) across different flow matching
objectives. In this experiment we sample from the source
distribution test set and simulate the ODE over time for
different solvers. We find that OT-CFM consistently re-
quires fewer evaluations to achieve the same quality and
achieves better quality with the same NFEs. This is con-
sistent with previous work, which found OT paths lead to
faster, higher quality inference in regularized CNFs (Finlay
et al., 2020; Onken et al., 2021) and flow matching vs. stan-

2To measure how well a model solves the OT prob-
lem we use normalized path energy (NPE), defined via
the 2-Wasserstein distance as NPE(vθ) = |PE(vθ) −
W 2

2 (q0, q1)|/W 2
2 (q0, q1), where the path energy (PE) is

PE(vθ) = Ex(0)∼q(x0)

∫ 1

0
∥vθ(t, x(t))∥2dt.
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Table 2: Comparison of neural optimal transport methods over four datasets and with (µ± σ) over five seeds in terms of
fit (2-Wasserstein), optimal transport performance (normalized path energy), and Runtime. ‘—’ indicates a method that
requires a Gaussian source. Best in bold. CFM and RF models are trained on a single CPU core, other baselines are trained
with a GPU and two CPUs.

2-Wasserstein Error (↓) Normalized Path Energy (↓) Train time (s) ×103

8gaussians moons-8gaussians moons scurve 8gaussians moons-8gaussians moons scurve Avg.

OT-CFM 1.262 ± 0.348 1.923 ± 0.391 0.239 ± 0.048 0.264 ± 0.093 0.018 ± 0.014 0.053 ± 0.035 0.087 ± 0.061 0.027 ± 0.026 1.129 ± 0.335
I-CFM 1.284 ± 0.384 1.977 ± 0.266 0.338 ± 0.109 0.333 ± 0.060 0.222 ± 0.032 2.738 ± 0.181 0.841 ± 0.148 0.867 ± 0.117 0.630 ± 0.365

2-RF (Liu, 2022) 1.436 ± 0.344 2.211 ± 0.423 0.278 ± 0.026 0.395 ± 0.111 0.069 ± 0.027 0.149 ± 0.101 0.076 ± 0.067 0.112 ± 0.085 0.862 ± 0.166
3-RF (Liu, 2022) 1.337 ± 0.367 2.700 ± 0.587 0.305 ± 0.026 0.395 ± 0.082 0.055 ± 0.043 0.123 ± 0.112 0.084 ± 0.051 0.129 ± 0.075 0.954 ± 0.116
FM (Lipman et al., 2023) 1.062 ± 0.196 — 0.246 ± 0.077 0.377 ± 0.099 0.174 ± 0.030 — 0.778 ± 0.144 0.772 ± 0.081 0.708 ± 0.370

Reg. CNF (Finlay et al., 2020) 1.144 ± 0.075 — 0.376 ± 0.040 0.581 ± 0.195 0.274 ± 0.060 — 0.620 ± 0.088 0.586 ± 0.503 8.021 ± 3.288
CNF (Chen et al., 2018) 1.055 ± 0.059 — 0.387 ± 0.065 0.645 ± 0.343 0.151 ± 0.064 — 2.937 ± 1.973 10.548 ± 8.100 18.810 ± 12.677
ICNN (Makkuva et al., 2020) 1.771 ± 0.398 2.193 ± 0.136 0.532 ± 0.046 0.753 ± 0.068 0.747 ± 0.029 0.832 ± 0.004 0.267 ± 0.010 0.344 ± 0.045 2.912 ± 0.626

Figure 2: Left: OT-CFM trains faster, in terms of validation set error, than CFM and FM models. Right: With different
ODE integrators, OT-CFM reduces the error for a fixed number of function evaluations during inference.

Table 3: Schrödinger bridge flow comparison, showing av-
erage error over flow time to ground truth averaged over 5
models for SB-CFM and 5 dynamics from DSB.

SB-CFM DSB (De Bortoli et al., 2021)

8gaussians 0.454 ± 0.164 1.440 ± 0.720
moon-8gaussians 1.377 ± 0.229 2.407 ± 1.025
moons 0.283 ± 0.048 0.333 ± 0.129
scurve 0.297 ± 0.064 0.383 ± 0.134

dard variance-preserving and variance-exploding probability
paths (Lipman et al., 2023).

SB-CFM reproduces Schrödinger bridge flows. There
are a number of methods which theoretically converge to
a Schrödinger bridge between two datasets. In Table 3 we
compare SB-CFM and the diffusion Schrödinger bridge
(DSB) method introduced in De Bortoli et al. (2021) on
the quality of the learnt Schrödinger bridges based on the
average 2-Wasserstein distance to ground truth Schrödinger
bridge samples over 18 time steps. Furthermore, SB-CFM
is also significantly faster than DSB (Table S1).

Application to single-cell interpolation. As a specific
application, we consider the task of single-cell trajectory in-
terpolation. In this task we use leave-one-out validation over
the timepoints. From times data at times [0, t−1], [t+1, T ]
we try to interpolate its distribution at time t following the
setup of Schiebinger et al. (2019); Tong et al. (2020); Huguet
et al. (2022a). Low error means we model individual cells

Table 4: Single-cell comparison over three datasets averaged
over leaving out intermediate timepoints measuring EMD to
left out distribution following Tong et al. (2020). *Indicates
values taken from aforementioned work.

Dataset Cite EB Multi

T. Net (Tong et al., 2020)* — 0.848 ±— —
Reg. CNF (Finlay et al., 2020)* — 0.825 ±— —
DSB (De Bortoli et al., 2021) 0.953 ± 0.140 0.862 ± 0.023 1.079 ± 0.117

I-CFM 0.965 ± 0.111 0.872 ± 0.087 1.085 ± 0.099
SB-CFM 1.067 ± 0.107 1.221 ± 0.380 1.129 ± 0.363
OT-CFM 0.882 ± 0.058 0.790 ± 0.068 0.937 ± 0.054

well, which is useful in a number of downstream tasks such
as gene regulatory network inference (Aliee et al., 2021;
Yeo et al., 2021). Following Huguet et al. (2022b), we re-
purpose the CITE-seq and Multiome datasets from a recent
NeurIPS competition for this task (Burkhardt et al., 2022).
We also include the Embryoid-body data from Moon et al.
(2019); Tong et al. (2020). Table 4 shows the average earth
mover’s distance (1-Wasserstein) on left–out timepoints for
three datasets. On all three datasets OT-CFM outperforms
other methods and baselines on average.

5.2. High-dimensional data: Lower-cost training and
inference

We perform an experiment on unconditional CIFAR-10 gen-
eration from the Gaussian, replicating as closely as possible3

3There is insufficient information to reproduce the setup pre-
cisely. Specifically, Lipman et al. (2023) do not specify the σmin
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Table 5: Left: FID scores on CIFAR-10 after a small num-
ber of training epochs. OT-CFM trains faster with a lower
FID score after the same number of training steps (100 steps
of Euler integration used for FID evaluation). Right: FID
scores after 1000 epochs training. For a small number of
function evaluations, OT-CFM has significantly lower FID
scores.

Train Epochs

Alg. 5 40

FM 134.702 57.461

I-CFM 127.693 48.202
OT-CFM 111.394 47.936

Function Evaluations

Alg. 1 5 10 50 100

FM 362.421 63.832 29.636 11.661 11.011

I-CFM 360.787 63.562 27.884 10.685 11.859
OT-CFM 238.981 38.567 20.855 11.732 11.139

the setup of FM (Lipman et al., 2023), which uses the time-
dependent U-Net architecture from (Nichol & Dhariwal,
2021) (see §E). We find that:

• For a short computation budget, OT-CFM outperforms
FM and (non-OT) CFM (Table 5, left).

• After a long training time, all methods achieve similar
performance at a high number of function evaluations,
but OT-CFM performs significantly better with a small
number of function evaluations (i.e., allows more efficient
inference), indicating straighter, easily integrable flows
(Table 5, right).

• FM and CFM are equivalently computationally efficient
per iteration and OT-CFM comes with a low (<1%) com-
putational overhead during training.

5.3. OT-CFM for unsupervised translation

We show how CFM can be used to learn a mapping between
two unpaired datasets in high-dimensional space using the
CelebA dataset (Liu et al., 2015; Sun et al., 2014), which
consists of ∼ 200k images of faces together with 40 binary
attribute annotations. For each attribute, we wish to learn
an invertible mapping between images with and without the
attribute (e.g., ‘not smiling’↔‘smiling’).

To reduce dimensionality, we first train a VAE on the im-
ages and encode them as 128-dimensional latent vectors.
For each attribute, we learn a flow to map between the
embeddings of images without the attribute and those of
images with the attribute. After the CNF is learned, we
push forward a held-out set of negative vectors by the
CNF and compare them to the held-out positive vectors
and vice versa. As a metric of divergence, we use maximum
mean discrepancy (MMD) with a broad Gaussian kernel
(exp(−∥x − y∥2/(2 · 128))). The results aggregated over
all attributes are shown in Table 6, showing that OT-CFM

used (we chose 10−8) and number of samples for FID evaluation
(we took 10k). Furthermore, there is a discrepancy in the learning
rate schedule and the number of training epochs as described in
Lipman et al. (2023). We reran FM with controlled hyperpa-
rameter settings for a fair comparison.

Table 6: MMD between target and transformed source sam-
ples of CelebA latent vectors. Mean and standard deviation
over 40 attributes and both translation directions (− ↔ +)
for each attribute. ‘Identity’ refers to performing no trans-
lation and treating source samples as approximate samples
from the target.

×10−3 σ = 0.1 σ = 0.3 σ = 1

Identity 9.17± 5.68 9.17± 5.68 9.17± 5.68

I-CFM 4.85± 5.09 3.44± 2.03 1.59± 0.83
OT-CFM 2.81± 2.62 1.91± 1.30 1.04± 0.60

discovers a better mapping than other methods. Although
MMD is lower for larger σ, we found that the alignment is
less natural when σ is large, and performance begins to de-
grade when σ > 1. Figure S10 shows several visualizations
of the learned trajectories.

Finally, while here we work in a latent space, future work
should consider learning flows directly in image space,
where GAN-based approaches (Zhu et al., 2017) continue
to dominate.

5.4. Additional experiments and extensions

We present numerous other extensions, applications, and
evaluations of CFM in §D, notably:

OT-CFM reduces variance in the regression target. To
accompany the theoretical results in §C.1, in §D.1 we em-
pirically study the variance of the stochastic regression ob-
jective in (OT-)CFM. The results suggest an explanation for
the faster convergence of models trained with OT-CFM.

Energy-based CFM. In §C.2 and §D.2 we show how
CFM can be used to fit samplers for unnormalized density
functions, where exact samples from q(x0) or q(x1) are not
available.

Extension to stochastic dynamics. Tong et al. (2023)
extend CFM to allow learning stochastic dynamics from
unpaired source and target data.

6. Conclusion
We have introduced a novel class of simulation-free ob-
jectives for learning continuous-time flows with a general
source distribution. Our approach to training continuous nor-
malizing flows and conditional flow models does not require
integration over time during training. We have shown that
lifting the static optimal transport problem to the dynamic
setting leads to simulation-free solutions to the dynamic
OT and SB problems, while also allowing more efficient
training and inference of flow models by lowering variance
of the objective and straightening flows.
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One limitation of CFM is that it requires closed-form con-
ditional flows, which hinders its application to situations
where we want to regularize the marginal vector field ut(x)
based on prior information (Tong et al., 2020). In addi-
tion, the minibatch approximation to OT can incur error
in high dimensions; subsequent work can consider the use
of neural-network approximations to OT maps (Korotin
et al., 2023b;a) in conjunction with CFM. We expect future
work to overcome these limitations and hope that ideas from
conditional flow matching will improve high-dimensional
generative models.

Acknowledgments
We would like to thank Stefano Massaroli for productive
conversations as well as thank Xinyu Yuan, Marco Jiraler-
spong, Tara Akhound-Sadegh and Joey Bose for their help-
ful comments and feedback on the manuscript. The au-
thors acknowledge funding from CIFAR, Genentech, Sam-
sung, and IBM. In addition, K.F. acknowledges funding
from NSERC (RGPIN-2019-06512) and G.W. acknowl-
edges funding from NSERC Discovery grant 03267 and
NIH grant R01GM135929.

References
Albergo, M. S. and Vanden-Eijnden, E. Building normal-

izing flows with stochastic interpolants. International
Conference on Learning Representations (ICLR), 2023.

Albergo, M. S., Boffi, N. M., and Vanden-Eijnden, E.
Stochastic interpolants: A unifying framework for flows
and diffusions. arXiv preprint 2303.08797, 2023.

Aliee, H., Theis, F. J., and Kilbertus, N. Beyond predictions
in neural ODEs: Identification and interventions. arXiv
preprint 2106.12430, 2021.

Austin, J., Johnson, D. D., Ho, J., Tarlow, D., and van den
Berg, R. Structured denoising diffusion models in discrete
state-spaces. Neural Information Processing Systems
(NeurIPS), 2021.

Bao, F., Li, C., Zhu, J., and Zhang, B. Analytic-dpm: An
analytic estimate of the optimal reverse variance in diffu-
sion probabilistic models. International Conference on
Learning Representations (ICLR), 2022.

Ben-Hamu, H., Cohen, S., Bose, J., Amos, B., Grover, A.,
Nickel, M., Chen, R. T. Q., and Lipman, Y. Matching
normalizing flows and probability paths on manifolds.
International Conference on Machine Learning (ICML),
2022.

Brenier, Y. Polar factorization and monotone rearrangement
of vector-valued functions. Communications on Pure
and Applied Mathematics, 44(4):375–417, 1991. doi:
10.1002/cpa.3160440402.

Bunne, C., Meng-Papaxanthos, L., Krause, A., and Cuturi,
M. Proximal optimal transport modeling of population
dynamics. Artificial Intelligence and Statistics (AISTATS),
2022.

Burkhardt, D., Bloom, J., Cannoodt, R., Luecken, M. D.,
Krishnaswamy, S., Lance, C., Pisco, A. O., and Theis,
F. J. Multimodal single-cell integration across time, indi-
viduals, and batches. In NeurIPS Competitions, 2022.

Chen, R. T. Q., Rubanova, Y., Bettencourt, J., and Duve-
naud, D. Neural ordinary differential equations. Neural
Information Processing Systems (NeurIPS), 2018.

Corso, G., Stärk, H., Jing, B., Barzilay, R., and Jaakkola, T.
Diffdock: Diffusion steps, twists, and turns for molecular
docking. arXiv preprint 2210.01776, 2022.

Cuturi, M. Sinkhorn distances: Lightspeed computation of
optimal transport. Neural Information Processing Sys-
tems (NIPS), 2013.

Damodaran, B. B., Kellenberger, B., Flamary, R., Tuia,
D., and Courty, N. DeepJDOT: Deep joint distribution
optimal transport for unsupervised domain adaptation.
European Conference on Computer Vision (ECCV), 2018.

De Bortoli, V., Thornton, J., Heng, J., and Doucet, A. Diffu-
sion Schrödinger bridge with applications to score-based
generative modeling. Neural Information Processing Sys-
tems (NeurIPS), 2021.

Dhariwal, P. and Nichol, A. Diffusion models beat GANs on
image synthesis. Neural Information Processing Systems
(NeurIPS), 2021.

Fatras, K., Zine, Y., Flamary, R., Gribonval, R., and Courty,
N. Learning with minibatch Wasserstein: Asymptotic and
gradient properties. Artificial Intelligence and Statistics
(AISTATS), 2020.
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Appendix
A. Proofs of theorems
Theorem 3.1. The marginal vector field (9) generates the probability path (8) from initial conditions p0(x).

Proof of Theorem 3.1. To verify this, we first check that pt and ut satisfy the continuity equation.

We start with the derivative w.r.t. time of eq. 8

d

dt
pt(x) =

d

dt

∫
pt(x|z)q(z)dz

by Leibniz Rule,

=

∫
d

dt
(pt(x|z)q(z)) dz

since ut(·|z) generates pt(·|z),

= −
∫

div (ut(x|z)pt(x|z)q(z)) dz

exchanging the derivative and integral,

= −div
(∫

ut(x|z)pt(x|z)q(z)dz
)

Using eq. 9,

= −div (ut(x)pt(x))

satisfying the continuity equation d
dtpt(x) + div (ut(x)pt(x)) = 0.

Theorem 3.2. If pt(x) > 0 for all x ∈ Rd and t ∈ [0, 1], then, up to a constant independent of θ, LCFM and LFM are
equal, and hence

∇θLFM(θ) = ∇θLCFM(θ). (11)

Proof of Theorem 3.2. For this proof we need eq. 8, eq. 9 and the existence and exchange of many integrals. As in Lipman
et al. (2023) we assume that q, pt(x|z) are decreasing to zero at sufficient speed as ∥x∥ → ∞ and that ut, vt,∇θvt are
bounded.

∇θEpt(x)∥vθ(t, x)− ut(x)∥
2 = ∇θEpt(x)

(
∥vθ(t, x)∥2 − 2 ⟨vθ(t, x), ut(x)⟩+ ∥ut(x)∥2

)
= ∇θEpt(x)

(
∥vθ(t, x)∥2 − 2 ⟨vθ(t, x), ut(x)⟩

)
∇θEq(z),pt(x|z)∥vθ(t, x)− ut(x|z)∥

2 =

∇θEq(z),pt(x|z)
(
∥vθ(t, x)∥2 − 2 ⟨vθ(t, x), ut(x|z)⟩+ ∥ut(x|z)∥2

)
= Eq(z),pt(x|z)∇θ

(
∥vθ(t, x)∥2 − 2 ⟨vθ(t, x), ut(x|z)⟩

)
By bilinearity of the 2-norm and since ut is independent of θ. Next,

Ept(x)∥vθ(t, x)∥
2 =

∫
∥vθ(t, x)∥2pt(x)dx

=

∫∫
∥vθ(t, x)∥2pt(x|z)q(z)dzdx

= Eq(z),pt(x|z)∥vθ(t, x)∥
2
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Finally,

Ept(x) ⟨vθ(t, x), ut(x)⟩ =
∫ 〈

vθ(t, x),

∫
ut(x|z)pt(x|z)q(z)dz

pt(x)

〉
pt(x)dx

=

∫ 〈
vθ(t, x),

∫
ut(x|z)pt(x|z)q(z)dz

〉
dx

=

∫∫
⟨vθ(t, x), ut(x|z)⟩ pt(x|z)q(z)dzdx

= Eq(z),pt(x|z) ⟨vθ(t, x), ut(x|z)⟩

Where we first substitute eq. 9 then change the order of integration for the final equality. Since at all times t the gradients of
LFM and LCFM are equal,∇θLFM(θ) = ∇θLCFM(θ)

Proposition 3.3. The marginal pt corresponding to q(z) = q(x0)q(x1) and the pt(x|z), ut(x|z) in eqs. 14 and 15 has
boundary conditions p1 = q1 ∗ N (x | 0, σ2) and p0 = q0 ∗ N (x | 0, σ2), where ∗ denotes the convolution operator.

Proof of Proposition 3.3. We start with eq. 8 to show the result of the lemma. We note that q(z) = q((x0, x1)) =
q(x0)q(x1)

pt(x) =

∫
pt(x|z)q(z)dz

=

∫
N (x |tx1 + (1− t)x0, σ2)q((x0, x1))d(x0, x1)

=

∫∫
N (x |tx1 + (1− t)x0, σ2)q(x0)q(x1)dx0dx1

evaluated at i = 0, 1 respectively. Therefore, at t = 0,

p0(x) =

∫∫
N (x |x0, σ2)q(x0)q(x1)dx0dx1

=

∫
N (x |x0, σ2)q(x0)dx0

= q(x0) ∗ N (x |0, σ2).

This is also true for t = 1.

Proposition 3.4. The results of Prop. 3.3 also hold for q(z) in eq. 17. Furthermore, assume q0 admits a density with respect
to the Lebesgue measure. Then as σ2 → 0 the marginal path pt and field ut minimize eq. 7, i.e., ut solves the dynamic
optimal transport problem between q0 and q1.

Proof of Proposition 3.4. Given π a 2-Wasserstein optimal transport map with marginals q0 and q1, we have∫
π(x0, x1)dx1 = q0 at t = 0 and

∫
π(x0, x1)dx0 = q1 at t = 1. Then,

pt(x) =

∫
N (x | tx1 + (1− t)x0, σ2)π(x0, x1)d(x0, x1)

=

∫∫
N (x | tx1 + (1− t)x0, σ2)π(x0, x1)dx0dx1

Therefore, at t = 0,

p0(x) =

∫∫
N (x | x0, σ2)π(x0, x1)dx0dx1

=

∫
N (x | x0, σ2)

(∫
π(x0, x1)dx1

)
dx0

=

∫
N (x | x0, σ2)q(x0)dx0

= q(x0) ∗ N (x |0, σ2).
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This is also true for t = 1.

Since we assumed q0 admits a density with respect to the Lebesgue measure, then the conditions for Brenier’s theorem (Bre-
nier, 1991) are satisfied. By Brenier’s theorem we know that the optimal joint π is unique and is supported on the graph
(x, T (x))) of a Monge map T : Rd → Rd, and pt(x) is equal to McCann’s interpolation

pt = ((1− t)Id + tT )#p0 (22)

In addition, we know that T (x) can be parameterized as the gradient of a convex function, i.e. T (x) = ∇ψ(x). It can be
shown that the conditional probability paths do not cross, i.e. pt(x|x0, T (x0)) = pt(x) for all (t, x).4 We also know that
along the conditional paths between x0 and T (x0), the optimal vector field is T (x)− x by eq. 22.

It remains to be shown that our learned vθ(t, x) converges to T (x0) − x0 along the conditional probability paths
pt(x|x0, T (x0) as σ → 0.

We recall from eq. 9 that

ut(x) = Eq(x0,T (x0))
ut(x|x0, T (x0))pt(x|x0, T (x0))

pt(x)
(23)

Since the conditional probability paths do not cross for q(z) in eq. 17, ut(x) approaches ut(x|x0, T (x0)) as σ → 0 along
the conditional probability paths pt(x|x0, T (x0)), i.e., ut solves the dynamic optimal transport problem between q0 and
q1.

Proposition 3.5. The marginal vector field ut(x) defined by eq. 19 and eq. 21 generates the same marginal probability path
as the solution π∗ to the SB problem in eq. 18.

Proof of Proposition 3.5. Using Theorem 2.4 of Léonard (2014a), De Bortoli et al. (2021) showed that the initial and
terminal marginals of π∗ are the solution to the static OT problem

π∗(x0, x1) = argminKL(π∗(x0, x1)∥pref(x0, x1)),

while the conditional path distributions π∗(−|x0, x1) minimize Ex0,x1∼π∗(x0,x1)KL(π∗(−|x0, x1)∥pref(−|x0, x1)).
The optimization problem for π∗(x0, x1) is equivalent to the entropy-regularized optimal transport problem with optimum
π2σ2 , as observed by De Bortoli et al. (2021). (The key observation is that log pref(x0, x1) =

c(x0,x1)
α

2σ2 + const., where
c(x, y) = ∥x− y∥ and α = 2.) The divergences between conditional path distributions are optimized by Brownian bridges
with diffusion scale σ pinned at x0 and x1, which are well-known to have marginal probability path pt in eq. 20, and, by
eq. 5, are generated by the vector fields ut in eq. 21.

B. Additional theoretical results
Proposition B.1. For any σ ∈ R+ conditional flow matching with conditional probability paths given by (16) has an
equivalent marginal probability flow pt(x) to Lipman et al. (2023) flow matching.

Proof. To prove the proposition, we use the fact that the Gaussian family can be generated by location-scale transforma-
tions (see e.g. Lehmann & Casella, 2006), i.e. we can express any Gaussian Z0 ∼ N (µ0, σ

2
0) as Z0 = µ0 + σ0Z where

Z ∼ N (0, 1). Recall that the density pt(x) has the form pt(x) =
∫
pt(x|z)q(z)dz, to show the equivalence between the

flow from FM and source conditional flow matching, we have to show that pt(x|x1) is the same for both methods, that is
we show that CFM with variance (σt)2 + 2σt(1 − t) is equivalent to FM with variance (tσ − t + 1)2 (Def. 12). Since
pt(x|x0, x1) is N (tx1 + (1− t)x0), σt(σt− 2t+ 2)) we can write the random variable X|X0, X1 as

X|X0, X1 = tx1 + (1− t)x0 + (σt(σt− 2t+ 2))1/2Z,

where Z ∼ N (0, 1). Without conditioning on X0, we have

X|X1 = tx1 + (1− t)X0 + (σt(σt− 2t+ 2))1/2Z.

4Proof: If the paths from distinct x0 and x′0 cross, then (1− t)x0 + t∇ψ(x0) = (1− t)x′0 + t∇ψ(x′0) for some t ∈ (0, 1). Taking
dot product with x0 − x′0, (t − 1)∥x0 − x′0∥2 = t⟨∇ψ(x0) − ∇ψ(x′0), x0 − x′0⟩. However, we have (t − 1)∥x0 − x′0∥2 < 0 and
t⟨∇ψ(x0)−∇ψ(x′0), x0 − x′0⟩ ≥ 0 by convexity of ψ, contradiction.
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By assumption X0 ∼ N (0, 1), thus X|X1 is Gaussian, since a linear transformation of Gaussian distributions is also
Gaussian. To define its distribution, we only have to define its expectation and variance. By linearity of expectation, we find
E(X|X1) = tx1, and by independence of X0 and Z we have

Var(X|X1) = (1− t)2Var(X0) + (σt(σt− 2t+ 2))Var(Z)

= (1− t)2 + (σt(σt− 2t+ 2)) = (tσ − t+ 1)2,

hence the flow from source conditional flow matching is the same as FM.

Proposition B.2. If π is a Monge map, the objective variance of OT-CFM goes to zero as σ → 0, i.e.,

Eq(z)∥ut(x|z)− ut(x)∥2 → 0 as σ → 0

for ut(x|z) in eq. 15.

Proof. This follows from a basic fact about the transport plan π. Specifically, that as σ → 0, DKL(pt(x|zi)∥pt(x|zj))→∞
for an t, x for two distinct zi, zj . This means that pt(x|z) = pt(x) for any t, x, z therefore

ut(x) = Eq(z)ut(x|z)pt(x|z)/pt(x)
= ut(x|z)

Proposition B.3. The conditional vector field ut(x|z̄) defined by 25 converges to marginal vector field ut(x) defined by 9
as m goes to population size, i.e.,

∥ut(x|z̄)− ut(x)∥2 → 0

as m→ |X |.

Proof. As |z| → |X |, by definition,

ut(x|z̄) =
∑m

i ut(x|zi)pt(x|zi)q(zi)∑m
i pt(x|zi)q(zi)

=

∑
z∈X ut(x|z)pt(x|z)q(z)∑

z∈X pt(x|z)q(z)

= Eq(z)
ut(x|z)pt(x|z)

pt(x)

= ut(x)

C. Algorithm extensions
In Algorithm 1 we presented the general algorithm for conditional flow matching given q(z), pt(x|z), ut(x|z). In Table 1
we presented a number of settings of these leading to interesting probability paths. In practice, we may wish to compute
q(z) on the fly. Therefore in Algorithms 2, 3, and 4, we give algorithms for the simplified conditional flow matching, and
minibatch versions of OT conditional flow matching and Schrödinger bridge conditional flow matching. In general these
consist of first sampling a batch of data from both the source and the target empirical distributions, then resampling pairs of
data either randomly (CFM) or according to some OT plan, (OT-CFM and SB-CFM).

C.1. Variance reduction by averaging across batches

An interesting consequence of introducing optimal transport to conditional flow matching is that it greatly reduces variance of
the regression target. Informally, as σ → 0, Ex,t,z∥ut(x|z)− ut(x)∥2 → 0 for OT-CFM and SB-CFM, which is not true of
previous probability paths in Table 1 (See Proposition B.2 for a precise statement). As flow models get larger, more powerful,
and more costly, reducing objective variance, and thereby faster training may lead to significant cost savings (Watson et al.,
2022b). To this end we also explore reducing the variance of the objective by averaging over a batch. This is not feasible in
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score matching where the flow conditioned on multiple datapoints is complex. Our CFM framework naturally extends from
a pair of datapoints to a batch of pairs. Instead of conditioning on a single pair of datapoints we can condition on a batch of
pairs. As the batch increases in size, we trade higher cost in computing the target for lower variance in the target as the batch
size increases, the variance in the target goes to zero (see Proposition B.3 for a precise statement).

As formalized in Proposition B.3, we can reduce variance in the target by averaging over multiple datapoints. Specifically,
in this case we let z̄ := {zi := (xi0, x

i
1)}mi=1, where zi are i.i.d. from q(z) and

pt(x|z̄) =
∑m

i pt(x|zi)q(zi)∑m
i q(zi)

(24)

ut(x|z̄) =
∑m

i ut(x|zi)pt(x|zi)q(zi)
pt(x|z̄)

(25)

It takes roughly m times as long to compute the conditional target ut(x|z̄) but reduces the variance. As the evaluation and
backpropagation through vθ gets more difficult this tradeoff can be beneficial.

C.2. Modeling energy functions

If we have access to an energy function two (unnormalized) energy functionsR{0,1} : Rd → R+ at the endpoints instead
of i.i.d. samples Xt ∼ qt(xt), then the objective must be slightly modified. We formulate the Energy Conditional Flow
Matching Objective as

LECFM =Et,q̂0(x0),q̂1(x1),pt(x|x0,x1)

[
R0(x0)R1(x1)

q̂0(x0)q̂1(x1)
∥vθ(t, x)− ut(x|x0,x1)∥22

]
(26)

We can use this object to train a flow which matches the energies without access to samples. This is formalized in the
following theorem.

Proposition C.1. Assuming that q̂{0,1}(x), pt(x) > 0 for all x ∈ X and t ∈ [0, 1] then the gradients of LFM and LECFM

with respect to θ are equal up to some multiplicative constant c.

∇θLFM(θ) = c∇θLECFM(θ) (27)

Proof. Let z0 =
∫
X R0(x)dx, and z1 =

∫
X R1(x)dx then q(x0) = R0(x0)/z0, similarly q(x1) = R1(x1)/z1, then

LECFM(θ) = Et,q̂0(x0),q̂1(x1),pt(x|x0,x1)

[
R0(x0)R1(x1)

q̂0(x0)q̂1(x1)
∥vθ(t, x)− ut(x|x0,x1)∥22

]
(28)

= z0z1Et,q̂0(x0),q̂1(x1),pt(x|x0,x1)

[
q0(x0)q0(x1)

q̂0(x0)q̂1(x1)
∥vθ(t, x)− ut(x|x0,x1)∥22

]
(29)

= z0z1

∫
t,x0,x1,x

[
q0(x0)q1(x1)∥vθ(t, x)− ut(x|x0,x1)∥22

]
pt(x|x0, x1)dx0dx1dx (30)

= z0z1LCFM(θ) (31)

where we use substitution for the first step and change the order of integration in the last step. With an application of
Theorem 3.2 the gradients are equivalent up to a factor of z0z1 which does not depend on x.

Of course LECFM leaves the question of sampling open for high-dimensional spaces. Sampling uniformly does not scale
well to high dimensions, so for practical reasons we may want a different sampling strategy.

We use this objective in Figure S9 with a uniform proposal distribution as a toy example of this type of training.

D. Additional results
We start this section by the definition of the entropy regularized OT problem:

W (q0, q1)
2
2,λ = inf

πλ∈Π

∫
X 2

c(x, y)2πλ(dx, dy)− λH(π), (32)

where λ ∈ R+ and H(π) =
∫
lnπ(x, y)dπ(dx, dy).



Improving and Generalizing Flow-Based Generative Models with Minibatch Optimal Transport

Algorithm 2 Simplified Conditional Flow Matching

Input: Empirical or samplable distributions q0, q1, bandwidth σ, batchsize b, initial network vθ.
while Training do

/* Sample batches of size b i.i.d. from the datasets */
x0 ∼ q0(x0); x1 ∼ q1(x1)
t ∼ U(0, 1)
µt ← tx1 + (1− t)x0

x ∼ N (µt, σ
2I)

LCFM(θ)← ∥vθ(t, x)− (x1 − x0)∥2
θ ← Update(θ,∇θLCFM(θ))

return vθ

Algorithm 3 Minibatch OT Conditional Flow Matching

Input: Empirical or samplable distributions q0, q1, bandwidth σ, batch size b, initial network vθ.
while Training do

/* Sample batches of size b i.i.d. from the datasets */
x0 ∼ q0(x0); x1 ∼ q1(x1)
π ← OT(x1,x0)
(x0,x1) ∼ π
t ∼ U(0, 1)
µt ← tx1 + (1− t)x0

x ∼ N (µt, σ
2I)

LCFM(θ)← ∥vθ(t,x)− (x1 − x0)∥2
θ ← Update(θ,∇θLCFM(θ))

return vθ

Regularized CNF tuning Continuous normalizing flows with a path length penalty optimize a relaxed form of a dynamic
optimal transport problem (Tong et al., 2020; Finlay et al., 2020; Onken et al., 2021). Where dynamic optimal transport
solves for the optimal vector field in terms of average path length where the marginals at time t = 0 and t = 1 are
constrained to equal two input marginals q0 and q1. Instead of this pair of hard constraints, regularized CNFs instead set
q0 := N (x | 0, 1) and optimize a loss of the form

L(x(t)) = − log p(x(t)) + λe

∫ 1

0

∥vθ(t, x(t))∥2dt (33)

where dx
dt = vθ(t, x(t)) and log p(x(T )) is defined as

log p(x(T )) = p(x(0)) +

∫ T

0

∂ log p(x(t))

∂t
dt = p(x(0)) +

∫ T

0

−tr
(
dvθ
dx(t)

)
dt (34)

where the second equality follows from the instantaneous change of variables theorem (Chen et al., 2018, Theorem 1). In
practice it is difficult to pick a λe which both produces flows with short paths and allows the model to fit the data well. We
analyze the effect of this parameter over three datasets in Figure S1. In this figure we analyze the Normalized 2-Wasserstein
to the target distribution (which approaches 1 with good fit), and the Normalized Path Energy (NPE). We find a tradeoff
between short paths (Low NPE) and good fit (Low 2-Wasserstein). We choose λe = 0.1 as a good tradeoff across datasets,
which has paths that are not too much longer than optimal but also fits the data well.

Ablation results on batch size. Since we use Minibatch-OT for OT-CFM, when the minibatch size is equal to one, then
OT-CFM is equivalent to CFM. This effect can be seen in Figure S2, where over four datasets, OT-CFM starts with equal path
length and approximately equal 2-Wasserstein. Then the normalized path energy decreases surprisingly quickly plateauing
after batchsize reaches ∼64. While the minibatch size needed to approximate the true dynamic optimal transport paths will
vary with dataset (for example in the moon-8gaussian case we need a larger batch size) it is still somewhat surprising that
such small batches are needed as this is less than 0.5% of the entire 10k point dataset per batch.
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Algorithm 4 Minibatch Schrödinger Bridge Conditional Flow Matching

Input: Empirical or samplable distributions q0, q1, bandwidth σ, batch size b, initial network vθ.
while Training do

/* Sample batches of size b i.i.d. from the datasets */
x0 ∼ q0(x0); x1 ∼ q1(x1)
π2σ2 ← Sinkhorn(x1,x0, 2σ

2)
(x0,x1) ∼ π2σ2

t ∼ U(0, 1)
µt ← tx1 + (1− t)x0

x ∼ N (µt, σ
2t(1− t)I)

ut(x|z)← 1−2t
2t(1−t) (x− (tx1 + (1− t)x0)) + (x1 − x0) ▷ From eq. 21

LCFM(θ)← ∥vθ(t,x)− ut(x|z)∥2
θ ← Update(θ,∇θLCFM(θ))

return vθ

Table S1: Mean training time till convergence in 103 seconds over 5 seeds, with the exception of DSB, trained over 1 seed.
CFM variants and DSB are trained on a single CPU with 5GB of memory where other baselines are given two CPUs and
one GPU. CFM, with significantly fewer resources, still trains the fastest.

8gaussians moons-8gaussians moons scurve mean

OT-CFM 1.284 ± 0.028 1.587 ± 0.204 1.464 ± 0.158 1.499 ± 0.157 1.484 ± 0.192
CFM 0.993 ± 0.021 1.102 ± 0.171 1.059 ± 0.158 1.008 ± 0.106 1.046 ± 0.132
FM 0.839 ± 0.096 — 1.076 ± 0.126 1.127 ± 0.123 1.014 ± 0.170
SB-CFM 0.713 ± 0.386 0.794 ± 0.293 1.143 ± 0.389 1.230 ± 0.424 0.935 ± 0.397

Reg. CNF 2.684 ± 0.052 — 9.154 ± 1.535 9.022 ± 3.207 8.021 ± 3.288
CNF 1.512 ± 0.234 — 17.124 ± 4.398 27.416 ± 13.299 18.810 ± 12.677
ICNN 3.712 ± 0.091 3.046 ± 0.496 2.558 ± 0.390 2.200 ± 0.034 2.912 ± 0.626
DSB 5.418 ±— 5.682 ±— 5.428 ±— 5.560 ±— 5.522 ±—

The effect of σ on fit and path length. Next we consider σ, the bandwidth parameter of the Gaussian conditional
probability path. In Figure S3 we study the effect of σ on the fit (top) and the path energy (bottom). With σ > 1
methods start to underfit with high 2-Wasserstein error and either very long or very short paths. As for specific models,
SB-CFM becomes unstable with σ too small due to the lack of convergence for the static Sinkhorn optimization with small
regularization. FM and CFM follow similar trends where they fit fairly well with σ ≤ 1 but have paths that are significantly
longer than optimal by 2-3x. OT-CFM maintains near optimal path energies and near optimal fit until σ > 1.

Schrödinger bridge fit over simulation time. In Figure S7 we compare the fit of Diffusion Schrödinger Bridge model
with SB-CFM conditioned on time. The Diffusion Schrödinger Bridge seems to outperform SB-CFM early in the trajectory,
however fails to fit the bridge after many integration steps.

D.1. Objective variance.

We consider the variance of the objective ut(x|z) with respect to z. While for any x we have Eq(z)ut(x|z) = ut(x), we
find a lower second moment speeds up training. Specifically, we seek to understand the effect of the second moment which
we call the objective variance defined as

OV = Et∼U(0,1),x∼pt(x),z∼q(z)∥ut(x|z)− ut(x)∥2 (35)

on training speed for different objectives in Table 1. We estimate the variance on a small data with a known ut(x). We
examine this estimated objective variance and its effect on training convergence in Figure S8, showing that either OT-CFM
or variance reduced CFM with averaging over the batch results in lower variance of the objective. This in turn leads to faster
training times as shown on the right. Averaging over a batch of data leads to faster training particularly for methods with
high objective variance (CFM) and less so for those with low (OT-CFM), which already trains quickly.
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Figure S1: Evaluation of regularization strength of λe over 6 seeds in the range [0, 10−5, 102]. λe = 0.1 performs the best
in terms of minimizing path length and test error. We call this model ”Regularized CNF”.

Figure S2: µ ± σ of mean path length prediction error over 5 seeds. Lower is better. Introducing OT to CFM batches
straightens paths lowering cost towards the optimal W 2 as compared to a standard random conditional flow matching
network over all batch sizes.
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Figure S3: Evaluation of the effect of σ for conditional flow matching models. When σ < 1 OT-CFM

Figure S4: Estimated Objective Variance Eq. 35 for different methods with batch size 512, σ = 0.1 across datasets. OT-CFM
and SB-CFM have significantly lower objective variance than CFM and FM which have roughly equivalent objective
variance.
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Figure S5: Validation 2-Wasserstein distance against training time with variance reduction by aggregation either with no
aggregation (Batchsize 1) or aggregation over a minibatch (Batchsize 512). Variance reduction leads to faster training,
especially for CFM where the objective variance is naturally larger than OT-CFM which sees a small performance gain.

Figure S6: Extended results from Figure 2 (left) over two more datasets. OT-CFM is still consistently the fastest converging
method.

Figure S7: 2-Wasserstein Error between trajectories and ground truth Schrödinger Bridge samples over simulation time.
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Figure S8: (left) Variance of the objective for varying batch size. OT-CFM has a lower variance across batch sizes. (right)
Validation 2-Wasserstein performance with batch averaging as in Appendix C.1. Reducing variance improves training
efficiency.

Figure S9: Flows (green) from (a) moons to (b) 8-Gaussians unnormalized density function learned using CFM with RWIS.

Variance in the conditional objective target ut(x|z) varies across models. In Figure S4 we study the objective variance
across CFM objective functions. Here we estimate the objective variance in eq. 35 as

Ex,t,z∥ut(x|z)− vθ(t, x)∥2 (36)

after training has converged. After training has converged vθ should be very close to ut(x) so we use it as an empirical
estimator of ut(x) to compute the variance. We find that across all datasets OT-CFM and SB-CFM have at least an order of
magnitude lower variance than CFM and FM objectives. This correlates with faster training as measured by lower validation
error in fewer steps for lower variance models as seen in Figure 2 (left).

We examine the objective variance OV by conditioning ut(x|z) on a batch of pairs of data points, z̄ := {zi := (xi0, x
i
1)}mi=1,

we can reduce the variance of the OV objective to 0 for all models as batchsize goes to population size. For the batchsize
m range from 1 to the number of the population, we uniformly sample m pairs of points zi and compute the probability
pt(x|z̄) and the objective ut(x|z̄) from equation 24 and 25.

We also find that averaging over batches makes the network acheive a lower validation error in fewer steps and in less
walltime (Figure S5).

D.2. Energy-based CFM

We show how CFM and OT-CFM can be adapted to the case where we do not have access to samples from the target
distribution, but only an unnormalized density (equivalently, energy function) of the target, R(x1) (Figure S9). We consider
the 10-dimensional funnel dataset from Hoffman & Gelman (2011). We aim to learn a flow from the 10-dimensional
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Table S2: Energy-based CFM results on the 10-dimensional funnel dataset: log-partition function estimation bias (mean
and standard deviation over 10 runs) and time to generate 6000 samples from the trained ODE. With adaptive integration,
OT-CFM requires fewer function evaluations. With a fixed-interval solver, OT-CFM has lower discretization error, leading
to a better estimate. PIS baseline is from Zhang & Chen (2022).

RWIS MCMC

log Ẑ
∫

time log Ẑ
∫

time

adaptive Dormand-Prince (tolerance 0.01) integration

CFM −0.068± 0.041 26.6± 8.4s 0.029± 0.037 34.6± 6.0s
OT-CFM −0.076± 0.098 13.3± 1.7s 0.009± 0.045 12.8± 1.2s
FM −0.033± 0.057 26.5± 7.7s 0.027± 0.031 30.9± 5.8s

Euler (N = 10) integration

CFM 0.281± 0.202 4.0± 0.8s 0.336± 0.030 3.7± 0.7s
OT-CFM −0.039± 0.030 4.2± 0.6s 0.146± 0.107 4.1± 0.8s
FM 0.176± 0.044 4.1± 0.7s 0.334± 0.066 3.9± 0.6s

Euler-Maruyama (N = 100) integration

PIS (SDE) −0.018± 0.020

standard Gaussian to the energy function of the funnel. We consider two algorithms, each of which has certain advantages:

(1) Reweighted importance sampling (RWIS): We construct a weighted batch of target points x1 by sampling x1 ∼ N (0, I)
and assigning it a weight of R(x1)/N (x1;0, I) normalized to sum to 1 over the batch. The FM and CFM objectives
handle weighted samples in a trivial way (by simply using the weights as q(x1) in Table 1), while OT-CFM treats the
weights as target marginals in constructing the OT plan between x0 and x1. We expect RWIS to perform well when
batches are large and the proposal and target distributions are sufficiently similar; otherwise, numerical explosion of the
importance weights can hinder learning.

(2) MCMC: We use samples from a long-run Metropolis-adjusted Langevin MCMC chain on the target density as
approximate target samples. We expect this method to perform well when the MCMC mixes well; otherwise, modes of
the target density may be missed.

As an evaluation metric, we use the estimation bias of the log-partition function using a reweighted variational bound,
following prior work that studied the problem using SDE modeling (Zhang & Chen, 2022). The computation of this metric
for CNFs is given in the Appendix (§E.6).

The results are shown in Table S2. When an adaptive ODE integrator is used, all algorithms achieve similar results (no pair
of mean log-partition function estimates is statistically distinguishable with p < 0.1 under a Welch’s t-test) but OT-CFM is
about twice as efficient as CFM and FM. However, with a fixed computation budget for ODE integration, OT-CFM performs
significantly better.

E. Experiment and implementation details
E.1. Physical experimental setup

All experiments were performed on a shared heterogenous high-performance-computing cluster. This cluster is primarily
composed of GPU nodes with RTX8000, A100, and V100 Nvidia GPUs. Since the network and nodes are shared, other
users may cause high variance in the training times of models. However, we believe that the striking difference between
the convergence times in Table S1 and combined with the CFM training setup with a single CPU and the baseline models
trained with two CPUS and a GPU, paints a clear picture as to how efficient CFM training is. Qualitatively, we feel that most
CFMs converge quite a bit more rapidly than these metrics would suggest, often converging to a near optimal validation
performance in minutes.
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E.2. 2D, single-cell, and Schrödinger bridge experimental setup

For all experiments we use the same architecture implemented in PyTorch (Paszke et al., 2019). We concatenate the flattened
input x ∈ Rd and the time t as the d+ 1 inputs to a network with three hidden layers of width 64 interspersed with SELU
activations (Klambauer et al., 2017) followed by a linear output layer of width d. This forms our vθ for all experiments. For
all 2D and single-cell experiments we train for 1000 epochs and implement early stopping on the validation loss which
checks the loss on a validation set every 10 epochs and stops training if there is no improvement for 30 epochs. We also set
a time limit of 100 minutes for each CFM model. This is hit almost exclusively for SB-CFM models with small σ which
are unstable to train due to instabilities and non-convergence of the Sinkhorn (Cuturi, 2013) transport plan optimization.
We use the AdamW (Loshchilov & Hutter, 2019) optimizer with weight decay 10−5 with batchsize 512 by default in 2D
experiments and 128 in the single cell datasets. For OT-CFM and SB-CFM we use exact linear programming EMD and
Sinkhorn algorithms from the python optimal transport package (Flamary et al., 2021) For evaluation of trajectories unless
otherwise noted we use the Runge-Kutta45 (rk4) ODE solver with 101 timesteps from 0 to 1.

E.3. Variance reduction by averaging

We tackle the exploration of the effects of reducing variance of the target ut(x|z) from two directions. The first is for small
example where we can compute the ground truth ut(x) quickly, and the second is in the setting of trained models where we
can estimate ut(x) with vθ(t, x) after vθ has converged.

We first consider the convergence of each flow matching objective (OT-CFM, CFM, FM, SB-CFM) to zero as a function of
the batch size relative to the dataset size. This is done by first sampling t, x, z then computing the true objective variance
across many samples. This appears in Figure S8.

We next consider the effect of averaging over a batch to reduce the variance of the objective in Figure S8 (right). Here
Batchsize refers to the size of the batch we are averaging over. We aggregate this into a single target so that the model sees a
single d dimensional target vector for one sampled x, t. This means that we can compare different aggregation sizes fairly.

E.4. Schrödinger bridge evaluation setup

To evaluate how well Schrödinger Bridge models actually model a Schrödinger Bridge, we constrain ourselves to a small
example with 1000 points. We note that the closed-form Schrödinger marginals are known for discrete densities, for
Gaussians (Mallasto et al., 2022), and can be constructed for two approximate datasets (Korotin et al., 2021), which present
other ways of evaluating Schrödinger bridge performance. For any time t we can sample from the ground truth Schrödinger
bridge density pt(x) as

(x0, x1) ∼ π2σ2

Xt ∼ N (x | tx1 + (1− t)x0, σt(1− t))

We sample trajectories of length 20 from t = 0 to t = 1 by integrating over time from t = 0 to t = 1. At each of the 18
intermediate timepoints we compute the 2-Wasserstein distance between a sample of size 1000 from the trajectories at that
time and the ground truth Xt as above at that time. We reported the average across the 18 intermediate timepoints in Table 3
and plot the 2-Wasserstein distance over time in Figure S7.

SB-CFM Model We train SB-CFM with σ = 1 and batchsize=512 for each of the datasets. We save 1000 trajectories
from a test set integrated with the tsit5 solver with atol=rtol=1e-4.

Diffusion Schrödinger bridge model implementation details We use the implementation from (De Bortoli et al., 2021).
Only the networks were changed for a fair comparison with CFM. The forward and backward networks are composed of an
MLP with three hidden layers of size 64, with SELU activations in between layers. We used a time and a positional encoders
composed of two layers of size 16 and 32 with LeakyReLU activations has inputs to the score network. The architectures
are the same for the 2D examples and the single-cell examples (except for the input dimension). During training, we set the
variance (γ in the author’s code) to 0.001 and did 20 steps to discretize the Langevin dynamic. We trained for 10k iterations
with 10k particles and batch size of 512, for 20 iterative proportional fitting steps, and a learning rate set to 0.0001. For
the interpolation task we used the tenth timepoint from the Langevin dynamic with the backward network trained to go
from the distribution at time t− 1 to t+ 1. All trajectories are evaluated from the backward dynamic. We use σ = 1 and
batchsize=512.
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E.5. Single-cell experimental setup

We strove to be consistent with the experimental setup of Tong et al. (2020). For the Embryoid body (EB) data, we use the
same processed artifact which contains the first 100 principal components of the data. For our tests we truncate to the first
five dimensions, then whiten (subtract mean and divide by standard deviation) each dimension. For the Embryoid body (EB)
dataset which consists of 5 timepoints collected over 30 days we train separate models leaving out times 1, 2, 3 in turn. We
train a CFM over the full time scale (0-4). During testing we push forward all points Xt−1 to time t as a distribution to test
against.

For the Cite and Multi datasets these are sourced from the Multimodal Single-cell Integration challenge at NeurIPS 2022, a
NeurIPS challenge hosted on Kaggle where the task was multi-modal prediction (Burkhardt et al., 2022). In this competition
they used this data to investigate the predictability of RNA from chromatin accessibility and protein expression from RNA.
Here, we repurpose this data for the task of time series interpolation. Both of these datasets consist of four timepoints from
CD34+ hematopoietic stem and progenitor cells (HSPCs) collected on days 2, 3, 4, and 7. For more information and the raw
data see the competition site.5 We preprocess this data slightly to remove patient specific effects by focusing on a single
donor (donor 13176), then we again compute the first five principal components and again whiten each dimension to further
normalize the data.

E.6. Energy-based CFM

The 10-dimensional funnel dataset is defined by x0 ∼ N (0, 1), x1,...,9 ∼ N (0, exp(x0)I). We attempted to mimic the
SDE model architecture from Zhang & Chen (2022) for the flow model vθ(t, x). The time step t is encoded with 128-
dimensional Fourier features, then both x and t are independently processed with two-layer MLPs. The two representations
are concatenated and processed through another three-layer MLP to make the prediction. All MLPs use GELU activation
and have 128 units per hidden layer. We trained all models with σ = 0.05 and learning rate 10−2, the highest at which they
were table, for 1500 batches of size 300, to be consistent with the settings from Zhang & Chen (2022).

The importance-weighted estimate of the log-partition function is defined

log Ẑ = log
1

K

K∑
i=1

R(x
(i)
1 )

N (x
(i)
0 ; 0, I)

∣∣∣∣∂x1∂x0
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x0=x

(i)
0

,

where x(i)0 are independent samples from the source distribution and x(i)1 is x(i)0 pushed forward by the flow (note that the
Jacobian can be computed by differentiating the ODE integrator). We used K = 6000 samples.

For MCMC, to be consistent with Zhang & Chen (2022), we generated 15000 samples, each of which was seen 30 times in
training. We used 1000 steps of Metropolis-adjusted Langevin sampling with ϵ linearly decaying from 0.1 to 0.

The flow network used to generate Fig. S9 followed similar settings to those used in §5.1.

E.7. Unsupervised translation

We trained a vanilla convolutional VAE, with about 7 million parameters in the encoder, on CelebA faces scaled to 128×128
resolution.

For the flow network vθ(t, x), we used a MLP with four hidden layers of 512 units and leaky ReLU activations taking the
129-dimensional concatenation of x and t as input. All models CFM and OT-CFM were trained for 5000 batches of size
256 and the Adam optimizer with learning rate 10−3. Integration was performed using the Dormand-Prince integrator with
tolerance 10−3. For each attribute, 1000 positive and negative images each were used as a held-out test set.

Figure S10 shows some examples of the learned trajectories.

E.8. Unconditional CIFAR-10 experiments

For the CIFAR-10 experiments we followed the setup as described in Lipman et al. (2023). All methods were trained with
the same setup, only differeing in the choice of probability path. Since code has not been released for this work, there are
a few parameters which may differ. We summarize the setup here, where the exact parameter choices can be seen in the
source code.

We used the Adam optimizer with β1 = 0.9, β2 = 0.999, ϵ = 10−8, and no weight decay. We used the UNet architecture

5https://www.kaggle.com/competitions/open-problems-multimodal/data

https://www.kaggle.com/competitions/open-problems-multimodal/data
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from Dhariwal & Nichol (2021) with channels = 256, depth = 2, channels multiple = [1, 2, 2, 2], heads = 4, heads channels
= 64, attention resolution = 16, dropout = 0.0, batch size per gpu = 128, gpus = 2, epochs = 2000, maximum learning
rate = 5 × 10−4, minimum learning rate = 0, with a learning schedule that increases linearly from the minimum to the
maximum learning rate over the first 200 epochs, and decays linearly from back to the minimum after that. We use σ = 10−4

for all models. For sampling, we use 100-step Euler integration using the torchdyn package.
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Figure S10: Image-to-image translation in the latent space of CelebA images: An OT-CNF is trained to translate between
latent encodings of images that are negative and positive for a given attribute. The first column is a reconstructed encoding
x0 of a real negative image. The next ten columns are decodings of images along the flow trajectory with initial condition x0,
with x1 shown in the right column. Top row: not smiling→ smiling, not male→ male, showing the preservation of image
structure and other attributes. Bottom row: no mustache→ mustache, not wearing necktie→ wearing necktie, showing
partial failure modes. Both features are well-predicted by the latent vector, but infrequent in the dataset and highly correlated
with other attributes, such as ‘male’, leading to unpredictable behaviour for out-of-distribution samples and modification of
attributes different from the target.


