EIFBENCH: Extremely Complex Instruction Following Benchmark for Large Language Models

Anonymous ACL submission

Abstract

With the development and widespread application of large language models (LLMs), the new paradigm of "Model as Product" is rapidly evolving, and demands higher capabilities to address complex user needs, often requiring precise workflow execution which involves the accurate understanding of multiple tasks. However, existing benchmarks focusing on single-task environments with limited constraints lack the complexity required to fully reflect real-world scenarios. To bridge this gap, we present the Extremely Complex Instruction Following Benchmark (EIFBENCH), meticulously crafted to facilitate a more realistic and robust evaluation of LLMs. EIFBENCH not only includes multi-task scenarios that enable comprehensive assessment across diverse task types concurrently, but also integrates a variety of constraints, replicating complex operational environments. Furthermore, we propose the Segment Policy Optimization (SegPO) algorithm to enhance the LLM's ability to accurately fulfill multi-task workflow. Evaluations on EIFBENCH have unveiled considerable performance discrepancies in existing LLMs when challenged with these extremely complex instructions. This finding underscores the necessity for ongoing optimization to navigate the intricate challenges posed by LLM applications.

1 Introduction

001

005

017

024

037

041

The advent of large language models (LLMs) has transformed real-world applications by improving models' ability to comprehend a diverse range of human instructions, from simple conversations to complex problem solving (Sanh et al., 2022; Dubois et al., 2023). Thus, instructions have become central to effective human-machine interaction in this new landscape (Zhong et al., 2021; Mishra et al., 2022; Gao et al., 2024), especially the paradigm of "*Model as Product*" has deeply entered the collective consciousness where LLM

Figure 1: Existing benchmarks, represented on the left, either focus on completing a single instruction or handling multiple instructions with only one constraint each. In contrast, EIFBENCH presents a multi-instruction, multi-constraint benchmark, designed to more closely align with real-world complexities and demands.

agents need to accurately complete a series of tasks to meet user demands (Xiong et al., 2025; Hu et al., 2024; Alakuijala et al., 2025). However, as user demands grow more sophisticated, traditional benchmarks (Zhong et al., 2024; Chia et al., 2023), which focus on specific tasks, are insufficient to evaluate models' comprehensive ability to handle multifaceted instructions. This shortfall underscores the need for innovative evaluation frameworks capable of accurately assessing how models understand and execute complex instructions (Zhou et al., 2023; Wang et al., 2023; Xu et al., 2024).

To evaluate the instruction following abilities of LLMs, several benchmarks (Zhou et al., 2023; Qin et al., 2024; Li et al., 2024) have been proposed, which can be categorized into three main types as shown in Fig. 1: (1) *Single-Instruction Single-Constraint* benchmarks, such as IFEval (Zhou et al., 2023) and INFOBENCH (Qin et al., 2024), focus on tasks governed by a single constraint, providing insights into basic instruction following abilities. (2) *Single-Instruction Multi-Constraint* benchmarks, like CFBench (He et al., 2024b), evaluate how models handle a single instruction with multiple constraints across content, numerical, and other dimensions simultaneously.

067

043

044

(3) *Multi-Instruction Single-Constraint* scenarios, such as those explored by SIFo (Chen et al., 2024), test models' adherence to sequences of instructions, assessing their adaptability and versatility while maintaining focus on a single constraint. Nonetheless, research still lacks in addressing **multi-instruction multi-constraint** scenarios, which more accurately reflect real-world complexities, especially in the era of LLMs serving as agents with workflow execution involving multiple tasks.

074

077

100

101

102

103

104

106

108

109

110

111

112

113

114

115

116

Multi-instruction multi-constraint (MIMC) scenarios are ubiquitous in real-world applications, such as workflow automation (Zhang et al., 2022; Taylor et al., 2023) and healthcare scheduling (Bakhshandeh and Al-e-hashem, 2024; Li et al., 2021). For example, in cloud-based workflow automation, orchestrating computational tasks such as data preprocessing, model inference, and report generation requires balancing resource allocation, execution time, and task dependencies (Xiong et al., 2016). However, existing LLMs struggle with such complexity, with performance dropping by over 30% with over 5 constraints (He et al., 2024b). Bridging this gap necessitates benchmarks that mirror real-world MIMC dynamics, integrating both task interdependence and constraint scalability to foster robust and adaptable LLMs.

In response to these challenges, we introduce the Extremely Complex Instruction Following **Bench**mark (EIFBENCH), specifically designed to address the shortcomings of current benchmarks by providing a comprehensive framework that mirrors the complexities of real-world task environments. As shown in Fig. 1, EIFBENCH is unique in its inclusion of multi-task scenarios, drawn from diverse sources and integrated with multifaceted constraints¹. This design allows for an in-depth assessment of a model's ability to manage complex demands. In addition, we introduce the Segment Policy Optimization (SegPO) algorithm, which features advantage estimation for outputs corresponding to each instruction within multi-instruction inputs. The main contributions of this paper are summarized as follows:

• We first develop the extremely complex instruction following benchmark (EIFBENCH), simulating real-world applications with multiple instructions and constraints.

• We propose the segment policy optimization

Figure 2: Task type distribution in EIFBENCH.

(SegPO) algorithm by calculating the advantages separately for each output that responds to the corresponding instruction within the input, encouraging more nuanced feedback in following multiple instructions. 117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

• We conduct a detailed analysis of 17 LLMs, encompassing both open-source and closedsource models, uncovering their limitations in processing complex instructions and pinpointing areas for enhancement to better adapt to real-world complex scenarios. The SegPO algorithm demonstrates significant improvements, achieving increases of 14.85% compared to the base LLM and 3.40% compared to GRPO models on EIFBENCH, respectively.

2 EIFBENCH

2.1 Task and Constraint Taxonomy

To thoroughly assess the capability of large language models (LLMs) in adhering to complex instructions, we introduce an exceptionally challenging instruction following benchmark. Specifically, we categorize both tasks and constraints to structure the evaluation. For tasks, we identify and compile 8 types of tasks based on traditional NLP tasks. Regarding constraints, we establish a two-level hierarchical taxonomy for the organization.

2.1.1 Task Categories

In line with instruction following existing works (Zhang et al., 2024a; Li et al., 2024), we categorize the tasks in EIFBENCH into eight primary types.² These categories provide a comprehensive framework for systematically evaluating model performance across diverse task settings. The distribution of these task categories is shown in Fig. 2. **Classification** involves sentiment analysis, text and toxic content classification, empathy detection, and

¹In this work, plain text datasets refer to nonconversational plain text datasets.

²In this work, following an instruction refers to completing one specific task and producing the corresponding response.

Benchmark	Multi-Constraint	Multi-Instruction	Multi-Type	Average Constraint	Average Instruction
CIF-Bench (Li et al., 2024)	×	×	×	1.00	1.00
FollowBench (Jiang et al., 2024)	1	×	×	3.00	1.00
ComplexBench (Wen et al., 2024)	1	×	×	4.19	1.00
CFBench (He et al., 2024b)	1	×	×	4.24	1.00
SIFo (Chen et al., 2024)	×	 Image: A second s	×	1.00	4.17
EIFBENCH (Ours)	· · · · · · · · · · · · · · · · · · ·	·····	····	74.01	8.24

Table 1: EIFBENCH encompasses multi-instruction multi-constraint samples across multiple data types. "Multi-type" refers to the inclusion of data from various formats, such as plain text, dialogue, and multi-party dialogue, highlighting diverse communication styles and structures.

social norm judgment.

153

172

173

174

175

176

177

178

179

180

181

182

Information Extraction focuses on extracting key
information such as named entity recognition, keyword annotation, and entity relationships.

Text Generation tasks cover creative and practical
outputs, including story generation, text expansion,
and headline content generation.

Dialogue System tasks are designed for developing interactive agents through dialogue generation,
intent recognition, and state information tracking.
Reasoning and Logic tasks require logical inference and critical thinking, including commonsense
and multi-hop reasoning question answering.

- Language Style tasks involve style manipulation
 and analysis, such as style transfer, sarcasm detec tion, and dialect variation recognition.
- Evaluation and Verification tasks concentrate on
 verifying information and assessing text quality,
 including fact consistency verification.

Programming-Related tasks evaluate programming understanding through code generation, debugging, and explanation capabilities.

In addition, tasks are structured into distinct modes: parallel for simultaneous dimension consideration, serial for chain dependencies, conditional for adaptability to varying conditions, and nested for hierarchical structures. These categories provide a systematic evaluation of model capabilities in the benchmark.

2.1.2 Constraint Categories

Following established research on instruction following (Zhang et al., 2024b), we have developed a comprehensive constraint system for EIFBENCH. This system categorizes constraints into four primary types: Content Constraints, Situation Constraints, Style Constraints, and Format Constraints. These categories provide a structured framework to systematically evaluate the capabilities of language models across a wide range of instructional scenarios. The distribution is shown in Fig. 3. Detailed

Figure 3: Constraint type distribution in EIFBENCH.

descriptions of the specific constraint dimensions within each category are provided in Appendix A. **Content Constraints**. These ensure the text follows specific thematic topics, inclusion/exclusion criteria, values, tone, style, privacy considerations, and numerical precision.

193

194

195

196

197

198

199

200

201

202

203

204

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

Situation Constraints. These emphasize contextual elements like audience specifications, preconditions, and incorporate various knowledge and background information formats.

Style Constraints. These govern tone, emotion, style, and multilingual features to suit the required stylistic and emotional text aspects.

Format Constraints. These ensure adherence to essential structural requirements such as output formats, text patterns, grammar, accurate sentence structure, and hierarchical organization.

2.2 Construction Workflow

The overall construction process includes several key stages: 1) Taxonomy of Constraints and Tasks, 2) Multi-scenario Data Collection, 3) Task Expansion, 4) Constraint Expansion, 5) Quality Control, and 6) Response Generation & Evaluation.

1) Taxonomy of Constraints and Tasks. We establish two taxonomies for constraints and tasks, as presented in Section 2.

2) Multi-scenario Data Collection. Our collection process involves three types of datasets: plain text, dyadic dialogue, and multi-party dia-

Figure 4: Pipeline for constructing the benchmark.

logue. Plain text samples are drawn from existing works (Wen et al., 2024; Li et al., 2024). For dyadic dialogues, we gather real-life interactions, undergo cleaning and noise reduction, and use large language models (LLMs) to condense conversations while preserving key information. Multi-party dialogue data is synthesized with LLMs, crafting diverse scenarios and participant numbers. Specific prompts guide LLMs to produce varied and representative dialogue content, enhancing the depth and applicability of the dataset.

222

224

225

230

231

239

240

241

243

245

246

247

248

251

257

261

3) Task Expansion. Tasks are expanded into series in the plain text scenario (see Section 2.1.1). Using LLMs, we develop complex task sets with dependencies and parallelism. We also conduct rigorous quality assessments, removing redundant, infeasible, and contradictory tasks, thus ensuring the quality and consistency of the generated data. In dyadic and multi-party dialogue scenarios, we directly generate multiple new tasks, ensuring each reflects the complexity of real-world interactions.

4) Constraint Expansion. In the constraint expansion process, we refine simple instructions using a predefined taxonomy (see Section 2.1.2). Utilizing LLMs, complexity is incrementally added, ensuring tasks encompass a broad spectrum of requirements and constraints. This iterative review targets and clarifies ambiguous semantics to ensure constraints are objectively evaluated and quantified. This method not only adds complexity and challenge but also enhances the realism and comprehensiveness of the data generated.

5) Quality Assessment. Our quality assessment covers instruction-level and constraint-level validation. For instruction-level validation, we ensure logical consistency and feasibility for LLMs, removing contradictory, redundant, or infeasible tasks while maintaining a diverse, moderate difficulty task set of 6 to 12 instructions. In constraintlevel validation, constraints are iteratively refined

Category	#N	Min.	Max.	Avg.
Plain Text	450	41	107	73.27
Dyadic Dialogue	450	47	107	73.38
Multi-party Dialogue	100	63	116	80.26

Table 2: Statistics of EIFBENCH. #N denotes data instances; Min., Max., and Avg. mean the minimum, maximum, and average number of constraints per instance.

Figure 5: Distributions of total constraints for different text categories.

using predefined taxonomies, ensuring they are objectively quantified and within model capabilities, addressing any ambiguity or infeasibility.

6) Response Generation & Evaluation. First, using the instruction data, we employ various language models to generate the corresponding outputs. To verify their compliance, we then prompt large language models to assess each constraint satisfaction for the outputs, generating a binary outcome (0/1) that indicates whether the generated output satisfies the respective constraints.

As shown in Table 2, EIFBENCH comprises 1,000 instances. Across three subsets, the minimum, maximum, and average numbers of constraints per instance are reported. Fig. 5 and Table 3 illustrate the distribution of constraint numbers and instruction numbers within EIFBENCH.

Scenario	6	7	8	9	10	11	12
Plain Text	15	76	136	139	76	7	1
Dyadic Dialogue	42	113	152	108	33	2	-
Multi-party Dialogue	-	11	47	27	13	1	1

Table 3: Distributions of instructions with different numbers of constraints.

2.3 Evaluation Protocol

279

281

284

287

291

294

298

301

305

We employ GPT-40 (OpenAI, 2023) as the evaluation model to assess constraint adherence in generated responses. Following established practices (Wen et al., 2024), the *k*-th constraint in the *j*-th instruction of *i*-th instance is given a binary compliance score $S_{i,j,k} \in \{0, 1\}$, with 1 signifying full compliance and 0 indicating non-compliance.

Instruction-Level Accuracy (ILA) measures the success rate of individual instructions by averaging compliance across all instructions within a single instance. For the *i*-th instance, m_i denotes the number of instructions and $c_{i,j}$ is the number of constraints in the *j*-th instruction. We calculate the average score for *n* instances as the final metric.

$$ILA_{i} = \frac{1}{m_{i}} \sum_{j=1}^{m_{i}} \left(\frac{1}{c_{i,j}} \prod_{k=1}^{c_{i,j}} S_{i,j,k} \right)$$
(1)

$$ILA = \frac{1}{n} \sum_{i=1}^{n} ILA_i$$
(2)

Constraint-Level Accuracy (CLA) assesses the fulfillment of individual constraints, making it crucial for identifying specific requirement violations.

$$CLA_{i} = \frac{1}{\sum_{j=1}^{m_{i}} c_{i,j}} \sum_{j=1}^{m_{i}} \sum_{k=1}^{c_{i,j}} S_{i,j,k}$$
(3)

$$CLA = \frac{1}{n} \sum_{i=1}^{n} CLA_i$$
(4)

These metrics progressively assess compliance at different granularities: from strict instructionlevel compliance (ILA) to fine-grained constraintlevel analysis (CLA).

2.4 Quality Control

306To ensure high-quality evaluation data, we307implement a post-inspection protocol follow-308ing initial generation. First, we leverage309Qwen2.5-72B-Instruct to systematically verify310instruction-clarity alignment, logical consistency311of constraints, and overall task feasibility, while au-312tomatically detecting and correcting identifiable

errors through iterative self-refinement. Subsequently, three certified annotation specialists perform manual review to remove redundant constraints and instructions, revise infeasible tasks, and resolve ambiguous phrasing, ensuring both technical rigor and practical usability. 313

314

315

316

317

318

319

320

321

322

324

325

326

328

330

331

332

333

334

335

336

340

341

342

343

345

346

347

350

351

352

353

354

356

3 Segment Policy Optimization

Reasoning LLMs (Reid et al., 2024; Jaech et al., 2024) have demonstrated improved performance on complex tasks via structured reasoning. However, models primarily designed for single-task domains such as mathematical problem solving and code generation often struggle in settings requiring the concurrent execution of multiple instructions. To bridge this gap, we propose segment policy optimization (SegPO), which integrates reasoning mechanisms and instruction-level evaluation into the advantage design, thereby enhancing task alignment and improving both the accuracy and robustness of model outputs.

For each query q, SegPO involves sampling a group of outputs $\{y_1, y_2, \ldots, y_G\}$ from the old policy $\pi_{\theta_{\text{old}}}$. The policy model is optimized by maximizing the following objective:

$$\mathcal{I}_{\text{SegPO}}(\theta) = \mathbb{E}_{q \sim P(Q), \{y_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(y|q)}$$

$$\begin{cases} \frac{1}{G} \sum_{i=1}^G \frac{1}{|y_i|} \sum_{i=1}^{|y_i|} \left\{ \min\left[r_{i,t}(\theta)(A_{i,t}^o + A_{i,t}^\phi), \right] \right\} \end{cases}$$
337

$$\left\{ \overline{G} \sum_{i=1}^{\infty} \overline{|y_i|} \sum_{t=1}^{\infty} \left\{ \min \left[r_{i,t}(\theta) (A_{i,t}^o + A_{i,t}^{\varphi}) \right] \right\} \right\}$$

$$\operatorname{clip}(r_{i,t}(\theta), 1-\epsilon, 1+\epsilon)(A^o_{i,t} + A^\phi_{i,t}) \bigg]$$
 33

$$-\beta \mathbb{D}_{\mathrm{KL}}\left[\pi_{\theta} || \pi_{\mathrm{ref}}\right] \bigg\} \bigg\}$$
(5)

where ϵ and β are hyper-parameters, $A_{i,t}^o$ and $A_{i,t}^{\phi}$ are the advantages, $r_{i,t}(\theta)$ represents the probability ratio or importance sampling weight between the new policy π_{θ} and the old policy $\pi_{\theta_{\text{old}}}$ and $\mathbb{D}_{\text{KL}}[\pi_{\theta}||\pi_{\text{ref}}]$ denotes the KL divergence between the trained policy and the reference policy. Detailed information is shown in Appendix B.

In SegPO, the advantage for the *t*-th token in the response y_i consists of two parts: the global advantage $A_{i,t}^o$ and the segment advantage $A_{i,t}^\phi$. For the global advantage, we use a group of rewards $\{r_1^o, \dots, r_G^o\}$ corresponding to the outputs within each group for computation. For the segment advantage $A_{i,t}^\phi$, we select the group of rewards $\{r_{1,I_t^i}^\phi, \dots, r_{G,I_t^i}^\phi\}$ for the corresponding I_t^i -th instruction in outputs for computation. The process

358

is as follows:

$$A_{i,t}^{o} = \frac{r_i^{o} - \text{mean}(\{r_1^{o}, \cdots, r_G^{o}\})}{\text{std}(\{r_1^{o}, \cdots, r_G^{o}\})},$$
(6)

$$A_{i,t}^{\phi} = \frac{r_{i,I_t^i}^{\phi} - \text{mean}(\{r_{1,I_t^i}^{\phi}, \cdots, r_{G,I_t^i}^{\phi}\})}{\text{std}(\{r_{1,I_t^i}^{\phi}, \cdots, r_{G,I_t^i}^{\phi}\})}.$$
 (7)

Specifically, we employ both LLM-based and rule-based systems to determine the rewards. For each response y_i to the query q, r_i^o captures ac-362 curacy and format compliance. Our rule-based 363 system mandates that reasoning is enclosed between 'start_think' and 'end_think' tags, and answers between 'start_answer' and 'end_answer'. 366 The format score, r_i^f , is one if the format is adhered to, otherwise zero. We assess ILA_i and CLA_i metrics using state-of-the-art LLMs (i.e., Qwen2.5-72B-Instruct), with scores increased 370 if all instructions are correctly executed. Furthermore, for the t token in the response y_i associated 372 with the I_t^i -th instruction, we define the segment reward $r_{i,I_t^i}^{\phi^t}$ as 1 if all the constraints in the I_t^i -th instruction are satisfied, else 0. Details of the training template are provided in the Appendix. The reward process is summarized as follows:

$$r_i^o = \text{ILA}_i + \text{CLA}_i + \prod_{j=1}^{m_i} \prod_{k=1}^{c_{i,j}} S_{i,j,k} + r_i^f,$$
 (8)

 $r^{\phi}_{i,I^i_t} = \prod_{k=1}^{c_{i,I^i_t}} S_{i,I^i_t,k}.$

379

391

397

4 **Experiments**

4.1 Baselines

We compare the performance of both proprietary and open-source LLMs trained on diverse corpora. In the proprietary category, we evaluate models such as GPT-40 (OpenAI, 2023), GPT-4o-mini (OpenAI, 2023), Claude3.5-Sonnet (Anthropic, 2024b), Claude3.5-Haiku (Anthropic, 2024a) and gemini-1.5-Pro (Reid et al., 2024). Among opensource models, we assess LLaMA3.1 (Dubey et al., 2024), Qwen2 (Yang et al., 2024a), Qwen2.5, DeepSeek-R1 (Reid et al., 2024), QwQ-32B (Yang et al., 2024b), and Qwen3 (Yang et al., 2025) to explore their efficiency.

4.2 Settings

For inference, we efficiently process proprietary models through their APIs. For open-source models, we employ a robust setup consisting of four Nvidia A100 GPUs, each equipped with 80GB of VRAM, utilizing the vLLM framework on EIF-BENCH where applicable. This configuration enables the completion of all tasks in roughly 30 minutes. During evaluation, the GPT-40 model serves as the evaluator, with assessment durations ranging from 4 to 10 hours based on task complexity. Our code and dataset are available at the Repository.

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

4.3 Results Analysis

4.3.1 How do existing LLMs perform?

The EIFBENCH evaluation, detailed in Tables 4, challenges language models by simulating realworld scenarios across three datasets: plain text tasks, dialogue tasks, and multi-party dialogue tasks. These datasets reflect diverse practical applications, with plain text focusing on simple information processing, dyadic dialogues examining conversational dynamics, and multi-party dialogues showcasing collaborative discussions.

Our evaluation uses two key metrics: Instruction-Level Accuracy (ILA) and Constraint-Level Accuracy (CLA). Recent studies (Zhang et al., 2024a,b; Li et al., 2024) emphasize CLA, which measures models' effectiveness in meeting individual constraints with high accuracy. Yet, ILA reveals challenges, as models often fail to satisfy all constraints of a single instruction, resulting in a low probability of executing all instructions in an instance. This highlights the need to enhance multi-task capabilities for adhering to comprehensive instructions in the challenging contexts of the EIFBENCH dataset.

Model performance varies notably across categories, revealing task-type dependencies. In closedsource models, GPT-40 excels in ILA with relatively lower CLA. This indicates its capability to focus and complete individual sub-tasks effectively, albeit less so on fulfilling comprehensive constraints. In the realm of open-source models, Qwen2.5-72B-Instruct performs exceptionally well, balancing both instruction completion and constraint adherence. Among reasoning models, DeepSeek-R1 demonstrates robust competitiveness, effectively handling complex reasoning tasks. These findings emphasize the varying strengths of models across different task types and their alignment with specific task demands.

4.3.2 Effectiveness of SegPO

We implement the Group Relative Policy Optimization (GRPO) (Shao et al., 2024) framework, employing the overall reward r_o as the advantage

(9)

Model	Plain	Text	Dyadic	Dialogue	Multi-party Dialogue	
	ILA↑	$CLA\uparrow$	ILA ↑	$CLA\uparrow$	ILA ↑	CLA ↑
Closed-Source LLMs						
GPT-4o	0.2480	0.6518	0.2166	0.5631	0.2226	0.5786
Claude-3.5-Sonnet	0.0896	0.3951	0.0919	0.4142	0.0663	0.3865
GPT-4o-mini	0.0826	0.5299	0.0930	0.4892	0.0952	0.6001
Claude-3.5-Haiku	0.0332	0.2214	0.0251	0.1613	0.0142	0.1081
gemini-1.5-Pro	0.1669	0.6705	0.2717	0.7461	0.1972	0.7693
Open-Source LLMs						
LLaMA3.1-8B-Instruct	0.0127	0.2918	0.0069	0.1845	0.0024	0.2898
LLaMA3.1-70B-Instruct	0.0222	0.3696	0.0250	0.3297	0.0156	0.3774
Qwen2-7B-Instruct	0.0261	0.3531	0.0269	0.2954	0.0136	0.3666
Qwen2-72B-Instruct	0.0823	0.5924	0.1336	0.6458	0.0878	0.6345
Qwen2.5-7B-Instruct	0.0503	0.5051	0.0742	0.5526	0.0572	0.5878
Qwen2.5-72B-Instruct	0.1983	0.7565	0.2787	0.7657	0.2636	0.8308
QwQ-32B	0.0884	0.4724	0.0909	0.4220	0.0820	0.5439
DeepSeek-R1	0.2219	0.6860	0.3486	0.7906	0.2251	0.7465
Qwen3-32B	0.2050	<u>0.7694</u>	0.2513	<u>0.7799</u>	0.2299	<u>0.8078</u>
Qwen3-32B w/o thinking	0.2073	0.7703	0.2396	0.7794	0.2119	0.7445
Qwen3-235B-A22B	0.1700	0.6712	0.2328	0.7296	0.2120	0.7462
Qwen3-235B-A22B w/o thinking	0.1775	0.6692	0.2252	0.7282	0.2011	0.7444

Table 4: Performance metrics across different task categories: Plain Text, Dyadic Dialogue, and Multi-party Dialogues. The best and second-best results are highlighted in bold and underlined.

Model	Plain	Plain Text		Dyadic Dialogue		Multi-party Dialogue	
	ILA ↑	$\text{CLA}\uparrow$	ILA \uparrow	$CLA\uparrow$	ILA \uparrow	$CLA\uparrow$	
Qwen2.5-7B-Instruct	0.0503	0.5051	0.0742	0.5526	0.0572	0.5878	
Qwen2.5-7B-Instruct w/ GRPO	0.1345	0.6237	0.1591	0.6393	0.2183	0.7392	
Qwen2.5-7B-Instruct w/ SegPO	0.1460	0.6693	0.1797	0.6791	0.2713	0.7727	

Table 5: SegPO Performance across different task categories compared to GRPO.

value to enhance model capabilities. As illustrated in Table 5, SegPO achieves significant improvements compared to base model and GRPO with respective 14.85% and 3.40% average increases, which confirms the effectiveness and necessity of segment-level advantage computation for accurate understanding of multiple task. The reason is that respectively calculating advantages for the response corresponding to each instruction in the input may result in a more precise reward, effectively steering the model's learning.

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

4.3.3 Full Constraint Satisfaction Analysis

In real-world scenarios, fully satisfying *all* constraints across *all* instructions is crucial especially for LLM agents with long-horizon decision-making involving multiple tasks, aside from ILA and CLA metrics. Our analysis revealed that the leading performance in dyadic dialogue was achieved by gemini-1.5-Pro and DeepSeek-R1, both scoring 0.0044, with GPT-40 following as the second-best at 0.0022. All other models recorded a performance score of zero. This relatively low performance highlights the increased difficulty posed by our benchmark, which, unlike previous datasets with limited constraints, is crafted to simulate realistic tasks such as smart home operations. These scenarios require handling multiple interdependent constraints simultaneously. The results indicate the current models' limitations in reasoning and executing complex, constraint-rich instructions, emphasizing the need for further advancements in their

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

Туре	Human 1	Human 2	Human 3
Plain Text	0.9234	0.9342	0.9083
Dyadic Dialogue	0.9341	0.9268	0.9326
Multi-Party Dialogue	0.9118	0.9021	0.9164
Average	0.9231	0.9210	0.9191

Table 6: PCC Between Qwen2.5-72B-Instruct and expert evaluations on quality assessment.

Туре	Human 1	Human 2	Human 3
Plain Text	0.7123	0.7236	0.7172
Dyadic Dialogue	0.7438	0.7632	0.7524
Multi-Party Dialogue	0.7551	0.7459	0.7376
Average	0.7371	0.7442	0.7357

Table 7: The kappa coefficient between expert evaluations and GPT-4o-as-Judge in the evaluation process.

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

502

506

510

479

capabilities.

4.4 Quality Assessment

We validated the benchmark's quality through both data generation and evaluation processes. First, we assessed the dataset from Qwen2.5-72B-Instruct by randomly selecting 50 instances, comparing model scores with evaluations from three experts for contradictions, redundancy, and infeasibility within instructions and constraints. The Pearson Correlation Coefficient (PCC) in Table 6 shows strong consistency, supporting benchmark credibility. Additionally, we validated LLM-judge evaluations by comparing them with human assessments across three datasets. We randomly selected 500 constraints per dataset based on LLM-generated responses and calculated Fleiss' Kappa scores (Fleiss, 1971) between the results from GPT-4o-as-judge and human evaluators. High consistency in Table 7 confirms the reliability of our evaluation process.

5 Related work

5.1 Instruction Following

Recent advancements in fine-tuning large language models (LLMs) show that annotated instructional data significantly enhances models' ability to comprehend and execute diverse language instructions (Weller et al., 2020; Ye and Ren, 2021; Mishra et al., 2022). Building on this, incorporating more detailed and sophisticated instructions has been shown to further improve model capabilities (Lou et al., 2023). For instance, (Xu et al., 2024) presents a method of incrementally generating complex instructions from seed instructions using LLMs, enabling LLaMA to surpass 90% of ChatGPT's performance in 17 out of 29 skills. Additionally, research is increasingly focusing on constrained instructions (Sun et al., 2024; Dong et al., 2024; He et al., 2024a), a subset of complex instructions, aimed at enhancing models' ability to handle intricate challenges by increasing instructional constraints.

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

5.2 Evaluation of Instruction Following

Instruction following significantly impacts the effectiveness of large language models (LLMs) (Liu et al., 2023). Early work focused on evaluating compliance with simple directives, often involving single constraints like semantic (Zheng et al., 2023; Liu et al., 2024) or formatting (Xia et al., 2024; Tang et al., 2024) requirements. As LLMs find their way into more complex real-world applications, the need to assess their capacity to handle sophisticated instructions has grown (Qin et al., 2024; Jiang et al., 2024). For example, (Sun et al., 2024) introduced the Conifer dataset to enhance LLMs' handling of multi-level instructions with complex constraints, while (Qin et al., 2024) designed a method for decomposing single instructions into multiple constraints. Moreover, (He et al., 2024b) created benchmarks using real-world constraints, and (Wen et al., 2024) further innovated by integrating diverse constraint types. Despite these advancements, current datasets often lack the extensive constraints seen in multi-instruction, multi-constraint real-world scenarios.

6 Conclusion

In conclusion, this study introduces the Extremely Complex Instruction Following Benchmark (EIFBENCH), addressing existing single-task dataset limitations by incorporating multi-task scenarios and constraints for realistic evaluation of large language models (LLMs). We also propose the Segment Policy Optimization (SegPO) algorithm algorithm, which enhances LLMs' multi-task workflow execution, showing a 14.85% improvement on EIFBENCH over Qwen2.5-7B-Instruct. Evaluations reveal significant performance gaps, highlighting the need for models capable of tackling real-world complexities. This benchmark sets a new standard, steering future research toward developing robust and adaptable systems for practical applications.

7 Limitations

559

575

576

577

580

581

582

588

589

590

591

592

593

594

596

597

598

602

While EIFBENCH provides a robust evaluation framework for plain text, dyadic dialogue, and 562 multi-party tasks, it has two limitations that could be addressed in future work. First, the inter-task relationships could be further enhanced to reflect more complex, real-world dependencies, such as 565 multi-step reasoning or conditional task execution. Second, the dataset currently focuses primarily on Chinese instructions, which limits its applicability to multilingual scenarios. Expanding to include 569 more languages would improve its global relevance 570 and enable evaluation of LLMs' cross-lingual capabilities. Addressing these limitations would make EIFBENCH even more comprehensive and aligned with practical applications. 574

References

- Minttu Alakuijala, Ya Gao, Georgy Ananov, Samuel Kaski, Pekka Marttinen, Alexander Ilin, and Harri Valpola. 2025. Memento no more: Coaching ai agents to master multiple tasks via hints internalization. *arXiv preprint arXiv:2502.01562*.
- AI Anthropic. 2024a. The claude 3 model family: Opus, sonnet, haiku. *Claude-3 Model Card*, 1.
- AI Anthropic. 2024b. Claude 3.5 sonnet model card addendum. *Claude-3.5 Model Card*, 3(6).
- Azam Bakhshandeh and Seyed Mohammad Javad Mirzapour Al-e-hashem. 2024. A multiobjective scheduling model in medical tourism centers considering multi-task staff training. *Eng. Appl. Artif. Intell.*, 131:107808.
- Xinyi Chen, Baohao Liao, Jirui Qi, Panagiotis Eustratiadis, Christof Monz, Arianna Bisazza, and Maarten de Rijke. 2024. The sifo benchmark: Investigating the sequential instruction following ability of large language models. In *Findings of the Association for Computational Linguistics: EMNLP 2024, Miami, Florida, USA, November 12-16, 2024*, pages 1691– 1706. Association for Computational Linguistics.
- Yew Ken Chia, Pengfei Hong, Lidong Bing, and Soujanya Poria. 2023. INSTRUCTEVAL: towards holistic evaluation of instruction-tuned large language models. *CoRR*, abs/2306.04757.
- Guanting Dong, Keming Lu, Chengpeng Li, Tingyu Xia, Bowen Yu, Chang Zhou, and Jingren Zhou. 2024. Self-play with execution feedback: Improving instruction-following capabilities of large language models. *CoRR*, abs/2406.13542.
- Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela

Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and et al. 2024. The llama 3 herd of models. CoRR, abs/2407.21783.

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

- Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin, Percy Liang, and Tatsunori B. Hashimoto. 2023. Alpacafarm: A simulation framework for methods that learn from human feedback. In Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023.
- Joseph L Fleiss. 1971. Measuring nominal scale agreement among many raters. *Psychological bulletin*, 76(5):378.
- Jie Gao, Simret Araya Gebreegziabher, Kenny Tsu Wei Choo, Toby Jia-Jun Li, Simon Tangi Perrault, and Thomas W. Malone. 2024. A taxonomy for humanllm interaction modes: An initial exploration. In *Extended Abstracts of the CHI Conference on Human Factors in Computing Systems, CHI EA 2024, Honolulu, HI, USA, May 11-16, 2024*, pages 24:1– 24:11. ACM.
- Qianyu He, Jie Zeng, Qianxi He, Jiaqing Liang, and Yanghua Xiao. 2024a. From complex to simple: Enhancing multi-constraint complex instruction following ability of large language models. In *Findings of the Association for Computational Linguistics: EMNLP 2024, Miami, Florida, USA, November* 12-16, 2024, pages 10864–10882. Association for Computational Linguistics.
- Qianyu He, Jie Zeng, Wenhao Huang, Lina Chen, Jin Xiao, Qianxi He, Xunzhe Zhou, Jiaqing Liang, and

729

730

Yanghua Xiao. 2024b. Can large language models understand real-world complex instructions? In Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on Educational Advances in Artificial Intelligence, EAAI 2014, February 20-27, 2024, Vancouver, Canada, pages 18188– 18196. AAAI Press.

670

671

672

674

679

690

693

700

701

703

704

705

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

727

- Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Qianli Ma, Guoyin Wang, Xuwu Wang, Jing Su, Jingjing Xu, Ming Zhu, Yao Cheng, Jianbo Yuan, Jiwei Li, Kun Kuang, Yang Yang, Hongxia Yang, and Fei Wu. 2024. InfiAgent-DABench: Evaluating agents on data analysis tasks. In *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pages 19544–19572. PMLR.
 - Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. 2024. Openai o1 system card. arXiv preprint arXiv:2412.16720.
 - Yuxin Jiang, Yufei Wang, Xingshan Zeng, Wanjun Zhong, Liangyou Li, Fei Mi, Lifeng Shang, Xin Jiang, Qun Liu, and Wei Wang. 2024. Followbench: A multi-level fine-grained constraints following benchmark for large language models. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024, pages 4667–4688. Association for Computational Linguistics.
 - Yizhi Li, Ge Zhang, Xingwei Qu, Jiali Li, Zhaoqun Li, Noah Wang, Hao Li, Ruibin Yuan, Yinghao Ma, Kai Zhang, Wangchunshu Zhou, Yiming Liang, Lei Zhang, Lei Ma, Jiajun Zhang, Zuowen Li, Wenhao Huang, Chenghua Lin, and Jie Fu. 2024. Cif-bench: A chinese instruction-following benchmark for evaluating the generalizability of large language models. In *Findings of the Association for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting, August 11-16, 2024*, pages 12431–12446. Association for Computational Linguistics.
 - Yong Li, Xuan-Yu Jiao, Bai-Qing Sun, Qiu-Hao Zhang, and Junyou Yang. 2021. Multi-welfare-robot cooperation framework for multi-task assignment in healthcare facilities based on multi-agent system. In *IEEE International Conference on Intelligence and Safety* for Robotics, ISR 2021, Tokoname, Japan, March 4-6, 2021, pages 413–416. IEEE.
- Xiao Liu, Xuanyu Lei, Shengyuan Wang, Yue Huang, Andrew Feng, Bosi Wen, Jiale Cheng, Pei Ke, Yifan Xu, Weng Lam Tam, Xiaohan Zhang, Lichao Sun, Xiaotao Gu, Hongning Wang, Jing Zhang, Minlie Huang, Yuxiao Dong, and Jie Tang. 2024.
 Alignbench: Benchmarking chinese alignment of large language models. In *Proceedings of the 62nd*

Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024, pages 11621–11640. Association for Computational Linguistics.

- Yang Liu, Yuanshun Yao, Jean-Francois Ton, Xiaoying Zhang, Ruocheng Guo, Hao Cheng, Yegor Klochkov, Muhammad Faaiz Taufiq, and Hang Li. 2023. Trustworthy llms: a survey and guideline for evaluating large language models' alignment. *CoRR*, abs/2308.05374.
- Renze Lou, Kai Zhang, and Wenpeng Yin. 2023. A comprehensive survey on instruction following. *arXiv preprint arXiv:2303.10475*.
- Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. 2022. Cross-task generalization via natural language crowdsourcing instructions. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, pages 3470–3487. Association for Computational Linguistics.
- OpenAI. 2023. GPT-4 technical report. CoRR, abs/2303.08774.
- Yiwei Qin, Kaiqiang Song, Yebowen Hu, Wenlin Yao, Sangwoo Cho, Xiaoyang Wang, Xuansheng Wu, Fei Liu, Pengfei Liu, and Dong Yu. 2024. Infobench: Evaluating instruction following ability in large language models. In *Findings of the Association for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting, August 11-16, 2024*, pages 13025–13048. Association for Computational Linguistics.
- Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy P. Lillicrap, Jean-Baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, Ioannis Antonoglou, Rohan Anil, Sebastian Borgeaud, Andrew M. Dai, Katie Millican, Ethan Dyer, Mia Glaese, Thibault Sottiaux, Benjamin Lee, Fabio Viola, Malcolm Reynolds, Yuanzhong Xu, James Molloy, Jilin Chen, Michael Isard, Paul Barham, Tom Hennigan, Ross McIlroy, Melvin Johnson, Johan Schalkwyk, Eli Collins, Eliza Rutherford, Erica Moreira, Kareem Ayoub, Megha Goel, Clemens Meyer, Gregory Thornton, Zhen Yang, Henryk Michalewski, Zaheer Abbas, Nathan Schucher, Ankesh Anand, Richard Ives, James Keeling, Karel Lenc, Salem Haykal, Siamak Shakeri, Pranav Shyam, Aakanksha Chowdhery, Roman Ring, Stephen Spencer, Eren Sezener, and et al. 2024. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context. CoRR, abs/2403.05530.
- Victor Sanh, Albert Webson, Colin Raffel, Stephen H.
 Bach, Lintang Sutawika, Zaid Alyafeai, Antoine Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon

893

894

895

896

897

898

899

900

843

Kim, Gunjan Chhablani, Nihal V. Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj, Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Févry, Jason Alan Fries, Ryan Teehan, Teven Le Scao, Stella Biderman, Leo Gao, Thomas Wolf, and Alexander M. Rush. 2022. Multitask prompted training enables zero-shot task generalization. In *The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022*. OpenReview.net.

786

787

790

797

808

810

811

812

813

814

815

816

817

818

819

822

823

824

825

826

830

831

832

833

834

835

836

837

838

839

841 842

- Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, YK Li, Y Wu, et al. 2024. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. *arXiv preprint arXiv:2402.03300*.
 - Haoran Sun, Lixin Liu, Junjie Li, Fengyu Wang, Baohua Dong, Ran Lin, and Ruohui Huang. 2024.
 Conifer: Improving complex constrained instruction-following ability of large language models. *CoRR*, abs/2404.02823.
 - Xiangru Tang, Yiming Zong, Jason Phang, Yilun Zhao, Wangchunshu Zhou, Arman Cohan, and Mark Gerstein. 2024. Struc-bench: Are large language models good at generating complex structured tabular data? In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Short Papers, NAACL 2024, Mexico City, Mexico, June 16-21, 2024, pages 12–34. Association for Computational Linguistics.
 - Connor J Taylor, Kobi C Felton, Daniel Wigh, Mohammed I Jeraal, Rachel Grainger, Gianni Chessari, Christopher N Johnson, and Alexei A Lapkin. 2023.
 Accelerated chemical reaction optimization using multi-task learning. ACS Central Science, 9(5):957–968.
 - Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh Hajishirzi. 2023. Self-instruct: Aligning language models with self-generated instructions. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, July 9-14, 2023, pages 13484–13508. Association for Computational Linguistics.
- Orion Weller, Nicholas Lourie, Matt Gardner, and Matthew E. Peters. 2020. Learning from task descriptions. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, pages 1361–1375. Association for Computational Linguistics.
- Bosi Wen, Pei Ke, Xiaotao Gu, Lindong Wu, Hao Huang, Jinfeng Zhou, Wenchuang Li, Binxin Hu, Wendy Gao, Jiaxing Xu, Yiming Liu, Jie Tang,

Hongning Wang, and Minlie Huang. 2024. Benchmarking complex instruction-following with multiple constraints composition.

- Congying Xia, Chen Xing, Jiangshu Du, Xinyi Yang, Yihao Feng, Ran Xu, Wenpeng Yin, and Caiming Xiong. 2024. FOFO: A benchmark to evaluate llms' format-following capability. In *Proceedings of the* 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024, pages 680–699. Association for Computational Linguistics.
- Fu Xiong, Cang Yeliang, Zhu Lipeng, Hu Bin, Deng Song, and Wang Dong. 2016. Deadline based scheduling for data-intensive applications in clouds. *The Journal of China Universities of Posts and Telecommunications*, 23(6):8–15.
- Guangzhi Xiong, Qiao Jin, Xiao Wang, Yin Fang, Haolin Liu, Yifan Yang, Fangyuan Chen, Zhixing Song, Dengyu Wang, Minjia Zhang, et al. 2025. Rag-gym: Optimizing reasoning and search agents with process supervision. *arXiv preprint arXiv:2502.13957*.
- Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei Lin, and Daxin Jiang. 2024. Wizardlm: Empowering large pre-trained language models to follow complex instructions. In *The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024.* OpenReview.net.
- An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, et al. 2025. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*.
- An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao Fan. 2024a. Qwen2 technical report. CoRR, abs/2407.10671.
- An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren,

Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. 2024b. Qwen2.5 technical report. *CoRR*, abs/2412.15115.

901

902

903 904

905

906

907 908

909

910

911

912

913

914

915 916

917

918

919

920 921

922

923

924

927

928 929

930

931

933

934

935 936

937

938

939

941

942 943

945

947

951

952

955 956

957

- Qinyuan Ye and Xiang Ren. 2021. Learning to generate task-specific adapters from task description. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 2: Short Papers), Virtual Event, August 1-6, 2021, pages 646– 653. Association for Computational Linguistics.
- Lijun Zhang, Xiao Liu, and Hui Guan. 2022. Automtl: A programming framework for automating efficient multi-task learning. In Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 December 9, 2022.
 - Tao Zhang, Yanjun Shen, Wenjing Luo, Yan Zhang, Hao Liang, Tao Zhang, Fan Yang, Mingan Lin, Yujing Qiao, Weipeng Chen, Bin Cui, Wentao Zhang, and Zenan Zhou. 2024a. Cfbench: A comprehensive constraints-following benchmark for llms. *CoRR*, abs/2408.01122.
 - Xinghua Zhang, Haiyang Yu, Cheng Fu, Fei Huang, and Yongbin Li. 2024b. IOPO: empowering llms with complex instruction following via input-output preference optimization. *CoRR*, abs/2411.06208.
 - Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. 2023. Judging Ilm-as-a-judge with mt-bench and chatbot arena. In Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 16, 2023.
 - Ruiqi Zhong, Kristy Lee, Zheng Zhang, and Dan Klein.
 2021. Adapting language models for zero-shot learning by meta-tuning on dataset and prompt collections.
 In Findings of the Association for Computational Linguistics: EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 16-20 November, 2021, pages 2856–2878. Association for Computational Linguistics.
 - Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied, Weizhu Chen, and Nan Duan. 2024. Agieval: A human-centric benchmark for evaluating foundation models. In *Findings of the Association for Computational Linguistics: NAACL 2024, Mexico City, Mexico, June* 16-21, 2024, pages 2299–2314. Association for Computational Linguistics.
- Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou, and Le Hou. 2023. Instruction-following evaluation for large language models. *CoRR*, abs/2311.07911.

A

B

С

961

962

- 963
- 964
- 965
- 966

- 969

C.1 Factors Influencing Instruction Following

Taxonomy of Constraint

policy π_{θ} and the old policy $\pi_{\theta_{\text{old}}}$:

following unbiased estimator:

Experiment Analysis

We present the taxonomy of constraint in Table 8.

The ratio $r_{i,t}(\theta)$ represents the probability ratio

or importance sampling weight between the new

 $r_{i,t}(\theta) = \frac{\pi_{\theta}(o_{i,t}|q, o_{i,<t})}{\pi_{\theta_{\text{old}}}(o_{i,t}|q, o_{i,<t})},$

and SegPO estimates the KL divergence with the

 $\mathbb{D}_{\mathrm{KL}} \left[\pi_{\theta} || \pi_{\mathrm{ref}} \right] = \frac{\pi_{\mathrm{ref}}(o_{i,t} | q, o_{i, < t})}{\pi_{\theta}(o_{i,t} | q, o_{i, < t})} - \log \frac{\pi_{\mathrm{ref}}(o_{i,t} | q, o_{i, < t})}{\pi_{\theta}(o_{i,t} | q, o_{i, < t})} - 1.$ (11)

Detailed Information on SegPO

To conduct our investigation, we sampled both 972 973 open-source and closed-source models with varying performance levels-some exemplary and oth-974 ers average-and visualized their results. Our in-975 vestigation identifies two critical dimensions influ-976 encing instruction adherence in language models: 977 (1) the number of instructions per instance and 978 (2) the number of constraints per instruction. As 979 illustrated in Fig. 6, performance degrades pro-980 gressively as these variables increase, though with minor patterns. This decline is particularly pro-983 nounced with an increase in constraints, likely because each additional constraint raises the complex-984 ity of completing a task, making it more challeng-985 ing for the model to meet all requirements. Conversely, the interdependence between instructions 987 is generally low, meaning that an increase in the number of instructions does not lead to as steep a performance decline. This is primarily because the difficulty lies in managing multiple tasks simultaneously, rather than the instructions themselves being 992 interrelated. In some instances, especially where there are larger numbers of instructions and constraints, performance may inexplicably improve. 996 This can be attributed to the smaller sample sizes in these scenarios, leading to greater variability in 997 performance outcomes. Overall, this analysis underscores the intricacies of maintaining consistent instruction adherence across diverse scenarios. 1000

C.2 Performance from state-of-art LLMs

We employ other state-of-the-art large language 1002 models, i.e., gemini-2.0-Flash, as external evalua-1003 tors to assess performance. The results are shown in Table 9. Their evaluations generally align with 1005 those of GPT-4o-as-judge, demonstrating consis-1006 tent outcomes.

1001

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1022

1023

1024

1026

1027

1028

1029

1030

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

D **Data Instance**

(10)

In this section, we present an example instance to illustrate the application and analysis of the idiom.

Instruction_0: "Explain the origin and significance of the Chinese idiom 'drawing legs on a snake' (huà shé tiān zú)" Constraints: • Must provide a detailed account of the idiom's historical background and origin. • Avoid using the words "meaning" or "explanation" to describe its significance. • Follow the context \rightarrow story →

implications structure.

"Create a Instruction 1: sentence containing the idiom 'drawing legs on a snake'

Constraints:

- The sentence must be 20-30 Chinese characters long.
- The sentence be must non-declarative (e.g., rhetorical auestion. exclamation. or imperative).

Instruction_2: "Analyze the specific scenario of 'drawing legs on a snake in your created sentence.

Constraints:

- Describe in detail the superfluous action within the scenario.
- Include a root-cause analysis of why this "unnecessary addition" leads to negative consequences.

Constraint Type	Constraint Dimension
Content Constraint	Theme Constraint Exclusion Constraint Inclusion Constraint Value Constraint Privacy Constraint Numerical Constraint
Situation Constraint	Role-Playing Constraint Target Audience Constraint Prior Condition Constraint Natural Language Process Background Information Constraint Markdown Process Background Information Constraint Table Background Information Constraint Text Background Information Constraint
Style Constraint	Tone and Style Constraint Emotion Constraint Linguistic Characteristics Constraint Multilingual Constraint
Format Constraint	Output Format Constraint Text Pattern Constraint Grammar Structure Constraint Citation Constraint Numbering and List Constraint Hierarchical Structure Constraint Template Constraint

Table 8: Constraints and Their Dimensions

Figure 6: Performance on different numbers of instructions and constraints.

Model	Plain	Text	Dyadic	Dialogue	Multi-pa	rty Dialogues
	ILA ↑	$CLA\uparrow$	ILA \uparrow	$CLA\uparrow$	$ILA\uparrow$	CLA ↑
Closed-Source LLMs						
GPT-40	0.3248	0.6941	0.2273	0.6100	0.2641	0.6155
Claude-3.5-Sonnet	0.1283	0.4235	0.0800	0.4860	0.0988	0.4200
GPT-4o-mini	0.1263	0.5898	0.0892	0.5588	0.1197	0.6432
Claude-3.5-Haiku	0.0463	0.2425	0.0365	0.2379	0.0295	0.1288
gemini-1.5-Pro	0.2001	0.7018	0.1732	0.7349	0.1920	0.7747
Open-Source LLMs						
LLaMA3.1-8B-Instruct	0.0293	0.3954	0.0184	0.3357	0.0149	0.4151
LLaMA3.1-70B-Instruct	0.0502	0.4616	0.0439	0.5337	0.0451	0.5086
Qwen2-7B-Instruct	0.0475	0.4371	0.0346	0.4237	0.0321	0.4731
Qwen2-72B-Instruct	0.1300	0.6688	0.1272	0.6847	0.1173	0.6941
Qwen2.5-7B-Instruct	0.0767	0.5677	0.0654	0.6224	0.0570	0.6310
Qwen2.5-72B-Instruct	0.2182	0.7656	0.1732	0.7395	0.1678	0.7887
Qwen3-32B	0.2826	0.8002	0.2702	0.7924	0.2894	0.8328
Qwen3-32B w/o think	0.2724	0.8035	0.2726	0.7929	0.2559	0.8246
Qwen3-235B-A22B	0.2382	0.6949	0.2624	0.7527	0.2499	0.7518
Qwen3-235B-A22B w/o think	0.2435	0.6951	0.2571	0.7442	0.2645	0.7651
QwQ-32B-Preview	0.1017	0.5203	0.0640	0.4632	0.0840	0.5659
DeepSeek-R1	0.2449	0.6985	0.1797	0.7390	0.2060	0.7412

Table 9: Performance metrics across different task categories: Plain Text, Dyadic Dialogue, and Multi-party Dialogue with gemini-2.0-Flash as evaluator. The best and second-best results are highlighted in bold and underlined.

1043 E Prompt

1044

1045

1046

1047

1048

1049

1051

1052

1053

1054

1055

1057

1058

1059

1060

1061

1062

1063 1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1078

1080

1081

1082

1083

1084

1085 1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102 1103

1104

1105

1106 1107

E.1 Prompt for task expansion

You are an assistant to help generate comprehensive multi-task tasks from basic tasks/basic texts/basic dialogues. Based on the given basic task, please design 5-10 different types of extended tasks, which must be reasonable and meet actual needs. The generated tasks should be placed after "-output-:".

Please follow these rules when generating tasks:

1. Task design must be based on the input text content or the already designed task output content.

2. Task instructions should be clear and specific.

3. Each task should include explicit output format requirements.

5. Aim to increase task difficulty, selecting tasks that require multi-step reasoning and thinking.

6. Tasks should be related: specific task details can vary. The connections can be selective, sequential, parallel, etc. At least three types of connections are needed, including: A. Parallel Task Mode: Analyzing multiple dimensions simultaneously B. Sequential Task Mode: Task chain dependency C. Conditional Selection Mode: Branch based on different situations, possible branches of considering the task, and design different tasks for different branches D. Nested Task Mode: Hierarchical task structure 7. Task Design Principles:

- Clear goals

- Clear instructions

- Specific steps
- Standardized format

– Evaluability

Task types may repeat, but task content may not.

9. Note that expansion must be based on the given basic task, expanding into richer, more comprehensive, and varied integrated tasks. The text material in the given basic task must be retained, as subsequent tasks will all involve it!

10. Write the extended tasks after "-output-:", and the thought process and analysis for generating the extended tasks after "-explanation-:".

-input-: {text}	1108 1109 1110
-output-:	1111 1112
-explanation-:	1113 1114 1115
Task-type examples should be chosen from the following categories. The specific task examples are listed in each task category. Note that you are only required to design tasks, not provide example outputs:	1116 1117 1118 1119 1120 1121 1122
 Classification Task Sentiment Analysis Text Classification Toxic Content Detection Empathy Detection Stereotype Detection Social Norm Judgment 	1123 1124 1125 1126 1127 1128 1129 1130
 Information Extraction Named Entity Recognition Keyphrase Annotation Coreference Resolution Entity Relationship Classification 	1131 1132 1133 1134 1135 1136
 3. Text Generation - Story Creation Poetry Generation Recipe Generation Outline Generation Text Expansion/Compression Title Generation Data Description Generation Text Rewriting/Simplification 	1137 1138 1139 1140 1141 1142 1143 1144 1145
 4. Dialogue Systems Dialogue Generation Intent Recognition Question Generation/Rewriting Dialogue State Tracking Role-playing Dialogue 	1146 1147 1148 1149 1150 1151 1152
5. Reasoning and Logic - Common Sense QA - Multi-hop QA - Critical Thinking Judgment - Mathematical Reasoning - Theory of Mind Reasoning	1153 1154 1155 1156 1157 1158 1159
 6. Language Style Style Transfer Language Detection Sarcasm Detection Spelling/Punctuation Error Detection 	1160 1161 1162 1163 1164 1165

	1165
7. Evaluation and Verification	1166
– Text Quality Evaluation	1167
- Fact-checking	1168
- Answer Verification	1169
– Uncertainty Judgment	1170
	1171
8. Programming-related	1172

⁻ Code Generation/Debugging 1173

1174	- Code Explanation		3. Modificat
1175	- Code Translation		If modifica
1176			specific mo
			design of re
1177	Each example format is as follows:		tasks accord
1178 1179	Task x: Type:		
1180	Specific Requirements:	Е 2	Ducumpt for
1181		E.3	Prompt for
1182			You are an
1183			input and ta
			is to combin
1184	E.2 Prompt for task revision		tasks and r
1185	-		"-input-": "-task-":
1186	You are a task optimization expert. Please analyze and optimize the given		tasks that
1187	task set.		information
			note that
1188	Input text and tasks are as follows:		not fetch
			elsewhere, s
1189	input:		comprehensiv
1190	<pre>query: {input_text} teak</pre>		material. I
1191	task: {task}		from the
			comprehensiv
1192	First, output all optimized tasks (if		expanded tas sub_instruct
1193 1194	there are no modifications, output		sub-tasks in
1194	the original tasks) in Chinese after "-output-". Secondly, write the		ensure to
1196	optimized rationale and analysis process		materials an
1197	after"-explanation-". Please strictly		in -input-:,
1198	follow this format.		
1199	The output format is as follows:		·
1155	The output format is as forrows.		<pre>input: {input_text}</pre>
			tasks:
1200	-output-: Task 1:		{task}
1201 1202	Task 2:		
1202			
1204	-explanation-:		Please put
			Chinese aft
1205	Please follow these steps for analysis		1. First, task and th
1206	and optimization:		in the ta
1207	1. Input Analysis		Please ensu
1208	Input Type Judgment:		reading ma
1209	 Determine if it's a complete text or 		tasks. 2.
1210	a task requirement		all sub-ins
1211	- Check if it includes a		with "SUB_]
1212 1213	creative/analytical directive – Assess the amount of information		"instruction After "instr
1213	provided by the text/task		of the su
1215	- Preserve textual information if input		"constraints
1216	text analysis is involved		items. Eacl
1217			the format
1218	2. Task Reasonability Check Analyze		[constraint
1219	each task:		the specific
1220	Reasonability of Task X:		"-explanatio
1221	A. Matching Degree with Input		The output f
1222	- Does the task rely on the actual		
1223	provided information, and is there		
1224	excessive speculation or extension?		-output-:
1225			INSTRUCTION:
1226	B. Executability of the Task		 SUB_INSTRUCT
1227	- Is there sufficient information to		instruction:
1228	support it, and are the scoring criteria		constraints:
1229	operable?		[]
1230			[]
1231	C. Existing Problems		
1232	<pre>- [List specific problems]</pre>		explainati
1233			• • •

3. Modification Suggestions	1234
If modification is required, provide	1235
specific modification directions and	1236
design of revised tasks, and modify the	1237
tasks according to this suggestion.	1238

1240

1241

1242

1243 1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259 1260

1265

1266 1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

E.3 Prompt for task combination

integration assistant for ask requirements. Your goal e the basic tasks (including reading materials) given in and the expanded tasks in to generate comprehensive include reading material and task information. Please the integrated tasks will text information from so ensure that the generated ve tasks include the text Please integrate all tasks expanded tasks into the ve tasks. Identify all sks and ensure the number of tions matches the number of the expanded tasks. Please extract and integrate the nd text information involved and do not omit any details.

input:	1261
{input_text}	1262
tasks:	1263
{task}	1264

the generated content in er "-output-:", including: place the comprehensive he text materials involved ask after "INSTRUCTION:". ure to fully include the terials from the basic Then, sequentially output structions, each starting INSTRUCTION_X:", including :" and "constraints:" parts. ruction:", write the content b-instruction, and after :", write several constraint h constraint should follow "- constraint content type]". Lastly, provide c combination process after on-:".

The output format is as follows:

-output-: INSTRUCTION:	1285 1286
	1287
SUB_INSTRUCTION_x:	1288
instruction:	1289
constraints:	1290
[]	1291
[]	1292
	1293
explaination:	1294
	1295

1296 Please follow these steps for analysis 1297 and combination: 1298 1. Input Analysis Extract **original tasks** 1299 and 1300 corresponding **text materials** from -input-1302 - Extract specific text content and basic 1303 requirements 1304 - Extract all specific requirements from 1305 the input text 1306 - If the input involves text, it must be placed in the comprehensive task to 1307 1308 avoid missing the input text 1309 2. Task Expansion Analysis 1310 Extract **sub-task** information 1311 (information type, information volume, 1312 target) from -task-1313 - Retrieve related expanded tasks (such 1314 as information extraction, reasoning, 1315 etc.) 1316 Understand the relevance and 1317 progression relationship between 1318 tasks 1319 Identify all constraints and 1320 restrictions 1321 - Record keywords and special conditions 1322 - Note that all tasks are prefixed with "Task", be sure to identify all tasks, 1323 and the number of tasks should match 1324 the number of sub_instructions 1325 1326 - List all tasks and their sub-tasks 1327 3. Combine into a New Comprehensive Task 1328 - Expand **original tasks**, **text 1329 materials**, and all **sub-tasks** into 1330 a comprehensive analysis task, and 1331 output to INSTRUCTION 1332 - Maintain logical connections between tasks 1334 Ensure the INSTRUCTION meets all 1335 sub-task requirements 1336 - Make sure to integrate all tasks and 1337 incorporate the input - Ensure all original requirements are 1338 1339 covered 1340 4. Integrated Output 1341 - A unified main instruction, output the new comprehensive task (INSTRUCTION): 1342 1343 Use natural language connectors, the 1344 task requirements should be connected 1345 with natural language, such as "then", 1346 "next", "finally", to maintain fluency 1347 Ensure the integration of input and task, the combined content should be output 1348 1349 to INSTRUCTION, forming a coherent and 1350 smooth instructional language 1351 Ensure all requirements are covered 1352 of sub-instructions А series 1353 (SUB_INSTRUCTION) Each sub-instruction contains specific 1355 tasks (instruction) Each sub-instruction includes specific 1356 constraints (constraints), generating 1357 1358 5-10 specific constraints 1359 The purpose of the constraints is to 1360 complete the task as much as possible, the more detailed, the better, with 1361 1362 difficulty ranging from simple to 1363 complex

Note that constraints should not be 1364 ambiguous or unclear 1365 Each constraint and its type should 1366 be selected from the following 24 types: 1367 1368 • Theme Constraint 1369 • Exclusion Constraint 1370 Inclusion Constraint 1371 • Value Constraint 1372 • Privacy Constraint 1373 • Numerical Constraint 1374 • Role-Playing Constraint 1375 • Target Audience Constraint 1376 • Prior Condition Constraint 1377 • Natural Language Process Background 1378 Markdown Process Background 1379 • Table Background Information 1380 • Text Background Information 1381 • Tone and Style Constraint 1382 • Emotion Constraint 1383 • Linguistic Characteristics 1384 • Multilingual Constraint 1385 • Output Format Constraint 1386 • Text Pattern Constraint 1387 • Grammar Structure Constraint 1388 • Citation Constraint 1389 • Numbering and List Constraint 1390 • Hierarchical Structure Constraint 1391 • Template Constraint 1392 Precautions: 1393 1. Sub-tasks must be clearly mentioned 1394 in the integrated instruction. 1395 2. Do not change the wording and 1397 expressions of the original instructions. 1398 3. Split according to the order in which 1399 the tasks appear in the instructions. 1400 4. Each sub-task is equipped with 5-10 1401 constraint items, with constraint types 1402 selected from the above 24 types. 1403 5. When integrating, ensure that new 1404 1405 tasks are organically combined with the original content, i.e., do not generate 1406 instructions based only on information 1407 1408 from input. **E.4** Prompt for constraint expansion 1409 1410 You are an expert at generating constraints. 1411 Please modify the original constraint 1412 information for each instruction. 1413 For every SUB_INSTRUCTION, generate 1414 1415 6-10 high-quality constraints. constraint must address 1416 Each key requirements of the task with measurable 1417 analysis rather than general statements. 1418 1419

Input information is as follows:

input:	1421
<pre>{input_text}</pre>	1422

1423 When outputting content, please place 1424 the generated content after "-output-" 1425 first. Begin with "INSTRUCTION", followed by 1426 each sub-instruction sequentially, with 1427 1428 each sub-instruction starting with "SUB_INSTRUCTION_X", including 1429 both "instruction" and "constraints". 1430 After "instruction", write the content 1431 1432 of the sub-instruction, and after 1433 "constraints", write several constraint 1434 items. 1435 Each constraint should follow the format "- constraint 1436 content [constraint 1437 type]". 1438 1439 Finally, place the analvsis of 1440 modification the process after 1441 -explanation-. 1442 1443 The generated format is as follows: 1444 -output-: 1445 INSTRUCTION: 1446 . . . 1447 1448 SUB INSTRUCTION 0: 1449 instruction: ... 1450 constraints: 1451 - ... [...] - ... [...] 1452 1453 . . . 1454 1455 SUB INSTRUCTION 1: 1456 instruction: ... 1457 constraints: 1458 - ... [...] 1459 . . . 1460 1461 --explaination--: 1462 . . . 1463 Specific modification requirements: 1464 1. Each constraint must be specific 1465 and clear, avoiding vague expressions, 1466 and the constraint structure should use "and," "or," "not" types. 1467 Each constraint must include 1468 2. measurable standards, such as specific 1470 numbers, clear criteria, etc. Also, note that these constraints are 1471 for the model to follow. avoiding 1472 1473 situations that are impossible to 1474 assess, such as "Please respond within 5 seconds after reading," which cannot 1475 be evaluated for compliance. 1476 1477 3. Avoid generic vocabulary; examples 1478 below: 1479 Avoid using generic words often found 1480 in constraints: 1481 1482 Quality Descriptors: "appropriate," "suitable," "adequate," "sufficient," "complete," "detailed," 1483 1484 "accurate," "clear," "varied" 1485 1486 Logical Descriptors: "logicality," "coherent," "orderly," 1487

"hierarchical," "structured," 1488 "systematic" 1489 Effect Descriptors: 1490 "comprehensive," "practical," "vivid." 1491 "specific," "pictorial," "persuasive," 1492 "effective," "helpful" 1493 Standard Descriptors: 1494 1495 "meets requirements." "sufficient," "standard-compliant," 1496 "as stipulated," "qualified," "standard 1497 fit" 1498 Feature Descriptors: 1499 "characteristic," "feature," 1500 "prominent," "obvious," "outstanding" 1501 These words should be replaced with 1502 specifically measurable standards, for 1503 1504 example: "suitable" -> "must include 3 specific 1505 examples" 1506 "detailed" -> "no less than 100 words" 1507 "vivid" -> "must use more than 3 figures 1508 of speech" 1509 "logicality" "must -> follow 1510 [cause-process-result] order" 1511 "persuasive" -> "must cite 1 1512 1513 authoritative data source" 1514 4. Each constraint must be of one of the 1515 following types: 1516 • Theme Constraint 1517 • Exclusion Constraint 1518 • Inclusion Constraint 1519 • Value Constraint 1520 Privacy Constraint 1521 • Numerical Constraint 1522 • Role-Playing Constraint 1523 1524 • Target Audience Constraint • Prior Condition Constraint 1525 Natural Language Process Background 1526 • Markdown Process Background 1527 • Table Background Information 1528 • Text Background Information 1529 • Tone and Style Constraint 1530 • Emotion Constraint 1531 • Linguistic Characteristics 1532 • Multilingual Constraint 1533 • Output Format Constraint 1534 1535 • Text Pattern Constraint Grammar Structure Constraint 1536 • Citation Constraint • Numbering and List Constraint 1538 • Hierarchical Structure Constraint 1539 • Template Constraint 1540 E.5 Prompt for constraint revision 1541 You are an assistant for modifying 1542 constraints. 1543

Constraints.1543Please analyze the original constraint1544information in the instruction for1545potential issues, and modify the1546constraints for each SUB_INSTRUCTION to1547generate 6-10 high-quality constraints.1548

1549	Each constraint must address specific,
1550	measurable requirements for the task,
1551	rather than general statements.
1552	
1553	input:
1554	{input_text}
1555	When outputting content, first combine
1556	the modification analysis process
1557	and output the modified content
1558	(if no modifications, output the
1559	original content) after "-output-",
1560	including INSTRUCTION and the modified
1561	SUB_INSTRUCTION information, where each
1562	SUB_INSTRUCTION consists of instruction
1563	and constraints.
1564	Each constraint should follow the
1565	format "- specific constraint content
1566	[constraint type]".
1567	Finally, provide the analysis of
1568	the modification process after
1569	-explanation
1570	The generated format is as follows:
1671	
1571	-output-:
1572	INSTRUCTION:
1573	•••
1574	
1575	SUB_INSTRUCTION_x:
1576	instruction: constraints:
1577	
1578	[]
1579 1580	[]
1581 1582	ovalenation .
1583	-explanation-:
1000	
1584	Please follow these steps for analysis
1585	and modification:
1586	
1587	1. Examine each instruction for the
1588 1589	following 8 types of issues and modify any issues found
	•
1590	1.1 Vague constraints/lack of specific
1591	evaluation metrics need to be detailed
1592	into evaluable metrics
1593	Example:
1594	Original constraint:
1595	- The article structure must be
1596	reasonable
1597	Modified to:
1598	- The article must include introduction,
1599	analysis, and conclusion sections, with
1600	each section not less than 200 words
1601	Below are frequently used vague words
1602	that should be avoided:
1603	Ouality Descriptors: "appropriate".
1604	"suitable", "adequate", "sufficient",
1605	"complete", "detailed", "accurate",
1606	"clear", "varied"
1607	Logical Descriptors: "logicality",
1608	"coherent", "orderly", "hierarchical",
1609	"structured", "systematic"
1610	"structured", "systematic" Effect Descriptors: "comprehensive",

"pictorial", "persuasive", "effective", 1612 "helpful" 1613 Standard "meets 1614 Descriptors: requirements", "standard-compliant", 1615 "sufficient", "as stipulated", "qualified", "standard fit" 1616 1617 Feature Descriptors: "characteristic", 1618 "feature", "prominent", "obvious", 1619 "outstanding" 1620 First, check if any vague words appear 1621 in the constraints, then refine the 1622 vague constraints into evaluable metrics 1623 based on the specific task context. 1624 Here are some examples: 1625 "suitable" -> "must include 3 specific 1626 examples" 1627 "detailed" -> "no less than 100 words" "vivid" -> "must use more than 3 figures 1629 of speech" 1630 "logicality" -> "must follow 1631 [cause-process-result] order" 1632 1633 "persuasive" -> "must cite 1 authoritative data source" 1634 "rich emotional color" -> Use at least 1635 two rhetorical devices (parallelism, 1636 contrast, metaphor, personification, or 1637 exaggeration) to express emotions 1638 1.2 Duplicate constraints need to be 1640 distinguished 1641 Example: 1642 Original constraint: 1643 - Must use formal language 1644 - Must use standard language Problem: The two constraints are similar 1646 and lack distinction 1647 Modification suggestion: 1648 - Must use honorific words like "you, 1649 your, respectfully" 1650 - Must avoid using interjectory words 1651 like "oh, ah, um" 1652 1653 1.3 Logical contradictions 1654 Example: 1655 1656 Original constraint: Both "relaxed and gentle" 1657 and "professional terminology" require a 1658 remedy 1659 Suggested modification: 1660 - The tone must be friendly and 1661 professional, with easy-to-understand 1662 explanations provided for professional 1663 terminology 1664 1665 1666 1.4 Lack of key constraints Example: 1667 E-commerce customer service scenario 1668 Suggested modification: 1669 - Must explain the shop's specific 1670 compensation plan 1671 - Must provide direct contact details 1672 for customer service 1673 - Must specify the follow-up timeline 1674 1675 Original constraint: 1676 1677 - Modify according to the following format 1678 1679 Modification suggestion:

1681	- Modify according to the table format
1682	1.5 Contradictory constraints:
1683	Original constraint:
1684	– Requires classical Chinese style
1685	- Requires vividness
1686	Suggestion: Adjust to:
1687	 Use classical vocabulary but ensure
1688	modern readers can understand
1689	 Provide modern explanations for each
1690	term
1691	
1692	1.6 Lack of key definitions:
1693	Original constraint:
1694	 The calculation of the number of
1695	"events" lacks a clear definition
1696	Suggestion: Add:
1697	 Clearly define "event" as "an
1698	independent action and its corresponding
1699	object"
1700	 Provide specific examples for event
1701	judgment
1702	
1703	1.7 Data source missing
1704	Original constraint:
1705	- "Must include specific data or factual
1706	references"
1707	 "Must be based on specific data and
1708	facts"
1709	But no instructions on how to obtain
1710	and verify data sources
1711	Suggestion: Add data source
1712 1713	requirements: – "Must cite authoritative market
1714	research agencies or official
1715	publications, and specify the source"
1716	- "Data must be from statistical results
1717	within the past 2 years"
	highlin the pace i years
1718	
	1 8 Evaluation criteria unclear.
1719	1.8 Evaluation criteria unclear: Original constraint:
1719 1720	Original constraint:
1719	
1719 1720 1721	Original constraint: - "Applicable scenarios must be
1719 1720 1721 1722	Original constraint: – "Applicable scenarios must be reasonable and consistent with market
1719 1720 1721 1722 1723	Original constraint: - "Applicable scenarios must be reasonable and consistent with market reality"
1719 1720 1721 1722 1723 1724 1725 1726	Original constraint: - "Applicable scenarios must be reasonable and consistent with market reality" - "Usage suggestions must be specific and feasible" But no evaluation criteria provided
1719 1720 1721 1722 1723 1724 1725 1726 1727	Original constraint: - "Applicable scenarios must be reasonable and consistent with market reality" - "Usage suggestions must be specific and feasible" But no evaluation criteria provided Suggestion: Set specific evaluation
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728	Original constraint: - "Applicable scenarios must be reasonable and consistent with market reality" - "Usage suggestions must be specific and feasible" But no evaluation criteria provided Suggestion: Set specific evaluation indicators:
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729	<pre>Original constraint: - "Applicable scenarios must be reasonable and consistent with market reality" - "Usage suggestions must be specific and feasible" But no evaluation criteria provided Suggestion: Set specific evaluation indicators: - "Each suggestion must include usage</pre>
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730	 Original constraint: "Applicable scenarios must be reasonable and consistent with market reality" "Usage suggestions must be specific and feasible" But no evaluation criteria provided Suggestion: Set specific evaluation indicators: "Each suggestion must include usage scenarios, expected effects, and cost
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731	 Original constraint: "Applicable scenarios must be reasonable and consistent with market reality" "Usage suggestions must be specific and feasible" But no evaluation criteria provided Suggestion: Set specific evaluation indicators: "Each suggestion must include usage scenarios, expected effects, and cost considerations"
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732	 Original constraint: "Applicable scenarios must be reasonable and consistent with market reality" "Usage suggestions must be specific and feasible" But no evaluation criteria provided Suggestion: Set specific evaluation indicators: "Each suggestion must include usage scenarios, expected effects, and cost considerations" Add feasibility verification:
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733	 Original constraint: "Applicable scenarios must be reasonable and consistent with market reality" "Usage suggestions must be specific and feasible" But no evaluation criteria provided Suggestion: Set specific evaluation indicators: "Each suggestion must include usage scenarios, expected effects, and cost considerations" Add feasibility verification: "Each suggestion must be supported by
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734	 Original constraint: "Applicable scenarios must be reasonable and consistent with market reality" "Usage suggestions must be specific and feasible" But no evaluation criteria provided Suggestion: Set specific evaluation indicators: "Each suggestion must include usage scenarios, expected effects, and cost considerations" Add feasibility verification:
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735	 Original constraint: "Applicable scenarios must be reasonable and consistent with market reality" "Usage suggestions must be specific and feasible" But no evaluation criteria provided Suggestion: Set specific evaluation indicators: "Each suggestion must include usage scenarios, expected effects, and cost considerations" Add feasibility verification: "Each suggestion must be supported by actual cases"
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735	 Original constraint: "Applicable scenarios must be reasonable and consistent with market reality" "Usage suggestions must be specific and feasible" But no evaluation criteria provided Suggestion: Set specific evaluation indicators: "Each suggestion must include usage scenarios, expected effects, and cost considerations" Add feasibility verification: "Each suggestion must be supported by actual cases"
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737	 Original constraint: "Applicable scenarios must be reasonable and consistent with market reality" "Usage suggestions must be specific and feasible" But no evaluation criteria provided Suggestion: Set specific evaluation indicators: "Each suggestion must include usage scenarios, expected effects, and cost considerations" Add feasibility verification: "Each suggestion must be supported by actual cases" 2. Constraint types should be selected from the following 24 categories while
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738	 Original constraint: "Applicable scenarios must be reasonable and consistent with market reality" "Usage suggestions must be specific and feasible" But no evaluation criteria provided Suggestion: Set specific evaluation indicators: "Each suggestion must include usage scenarios, expected effects, and cost considerations" Add feasibility verification: "Each suggestion must be supported by actual cases" 2. Constraint types should be selected from the following 24 categories while varying the types as much as possible to
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737	 Original constraint: "Applicable scenarios must be reasonable and consistent with market reality" "Usage suggestions must be specific and feasible" But no evaluation criteria provided Suggestion: Set specific evaluation indicators: "Each suggestion must include usage scenarios, expected effects, and cost considerations" Add feasibility verification: "Each suggestion must be supported by actual cases" 2. Constraint types should be selected from the following 24 categories while
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738	 Original constraint: "Applicable scenarios must be reasonable and consistent with market reality" "Usage suggestions must be specific and feasible" But no evaluation criteria provided Suggestion: Set specific evaluation indicators: "Each suggestion must include usage scenarios, expected effects, and cost considerations" Add feasibility verification: "Each suggestion must be supported by actual cases" 2. Constraint types should be selected from the following 24 categories while varying the types as much as possible to
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739	 Original constraint: "Applicable scenarios must be reasonable and consistent with market reality" "Usage suggestions must be specific and feasible" But no evaluation criteria provided Suggestion: Set specific evaluation indicators: "Each suggestion must include usage scenarios, expected effects, and cost considerations" Add feasibility verification: "Each suggestion must be supported by actual cases" 2. Constraint types should be selected from the following 24 categories while varying the types as much as possible to enrich the diversity of the constraints:
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741	 Original constraint: "Applicable scenarios must be reasonable and consistent with market reality" "Usage suggestions must be specific and feasible" But no evaluation criteria provided Suggestion: Set specific evaluation indicators: "Each suggestion must include usage scenarios, expected effects, and cost considerations" Add feasibility verification: "Each suggestion must be supported by actual cases" 2. Constraint types should be selected from the following 24 categories while varying the types as much as possible to enrich the diversity of the constraints: Theme Constraint Exclusion Constraint
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742	 Original constraint: "Applicable scenarios must be reasonable and consistent with market reality" "Usage suggestions must be specific and feasible" But no evaluation criteria provided Suggestion: Set specific evaluation indicators: "Each suggestion must include usage scenarios, expected effects, and cost considerations" Add feasibility verification: "Each suggestion must be supported by actual cases" 2. Constraint types should be selected from the following 24 categories while varying the types as much as possible to enrich the diversity of the constraints: Theme Constraint Exclusion Constraint
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742	 Original constraint: "Applicable scenarios must be reasonable and consistent with market reality" "Usage suggestions must be specific and feasible" But no evaluation criteria provided Suggestion: Set specific evaluation indicators: "Each suggestion must include usage scenarios, expected effects, and cost considerations" Add feasibility verification: "Each suggestion must be supported by actual cases" 2. Constraint types should be selected from the following 24 categories while varying the types as much as possible to enrich the diversity of the constraints: Theme Constraint Exclusion Constraint Value Constraint
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742	 Original constraint: "Applicable scenarios must be reasonable and consistent with market reality" "Usage suggestions must be specific and feasible" But no evaluation criteria provided Suggestion: Set specific evaluation indicators: "Each suggestion must include usage scenarios, expected effects, and cost considerations" Add feasibility verification: "Each suggestion must be supported by actual cases" 2. Constraint types should be selected from the following 24 categories while varying the types as much as possible to enrich the diversity of the constraints: Theme Constraint Exclusion Constraint

 Role-Playing Constraint 	1746
• Target Audience Constraint	1747
 Prior Condition Constraint 	1748
 Natural Language Process Background 	1749
 Markdown Process Background 	1750
 Table Background Information 	1751
 Text Background Information 	1752
 Tone and Style Constraint 	1753
• Emotion Constraint	1754
 Linguistic Characteristics 	1755
• Multilingual Constraint	1756
• Output Format Constraint	1757
• Text Pattern Constraint	1758
• Grammar Structure Constraint	1759
 Citation Constraint 	1760
 Numbering and List Constraint 	1761
 Hierarchical Structure Constraint 	1762
• Template Constraint	1763
Prompt for constraint combination	1764
Now you are an assistant in integrating	1765
tasks and constraints; please help	1766
<pre>me optimize this comprehensive task's instruction (INSTRUCTION),</pre>	1767
task's instruction (INSTRUCTION), sub-instructions (SUB_INSTRUCTION), and	1768 1769
constraints.	1770
Please ensure that the input	1771
information/reading materials in	1772
the INSTRUCTION are retained; otherwise, subsequent tasks cannot be completed.	1773 1774
subsequent tasks cannot be completed.	1775
Input information is as follows:	1776
input:	1777
{input_text}	1778
First, output the modified comprehensive	1779
task content (if no modifications,	1780
output the original content) after "-output-", including INSTRUCTION	1781 1782
and the modified SUB_INSTRUCTION	1783
information. Each SUB_INSTRUCTION	1784
consists of instruction and constraints,	1785
with each constraint structured as follows: "- specific content	1786 1787
[constraint type]".	1788
Finally, put the specific modification	1789
analysis process after -explanation	1790
The output format is as follows:	1791
-output-:	1792
INSTRUCTION:	1793 1794
	1795
SUB_INSTRUCTION_0:	1796
30D_1103110C1101_0.	1797
instruction:	
instruction: constraints:	1798
instruction: constraints: []	1798 1799
instruction: constraints:	1798
<pre>instruction: constraints: [] []</pre>	1798 1799 1800 1801 1802
<pre>instruction: constraints: [] []</pre>	1798 1799 1800 1801

constraints:

E.6

1806	[]
1807	[]
1808	
1809	
1810	-explanation-:
1811	•••
1812	Please follow these steps for analysis
1813	and modification:
1814	
1815	1. Analyze the existing instructions and
1816	constraints for issues:
1817	- Check if the structure is reasonable
1818	- Identify duplicate or contradictory
1819 1820	requirements
1821	 Discover vague or non-executable constraints
1822	- Find missing key requirements
1823	2. Provide update suggestions:
1824 1825	- Instruction update: Make it clearer and more targeted for the comprehensive
1826	task
1827	- Sub-instruction update: Specify each
1828	atomic task
1829	- Constraint update: Provide executable
1830	and verifiable constraints
1831	- Start with -output-, output the
1832	<pre>modified instructions (INSTRUCTION),</pre>
1833	sub-instructions (SUB_INSTRUCTION), and
1834 1835	<pre>constraints - Each constraint includes two parts:</pre>
1836	content [type]
1837	3. When modifying, be sure to keep
1838 1839	the input information such as reading materials in the original INSTRUCTION.
1840	Do not delete specific query information,
1841	causing text errors.
1842	4. Each constraint type must be one of
1843	the following, if it is not among these
1844	types, please modify the constraint
1845	type to one of the following types.
1846	If it cannot be modified, regenerate
1847	constraints that meet these types:
1848	• Theme Constraint
1849	Exclusion Constraint
1850	Inclusion Constraint
	Value Constraint
1851	
1852	• Privacy Constraint
1853	• Numerical Constraint
1854	• Role-Playing Constraint
1855	 Target Audience Constraint
1856	 Prior Condition Constraint
1857	 Natural Language Process Background
1858	 Markdown Process Background
1859	 Table Background Information
1860	 Text Background Information
1861	 Tone and Style Constraint
1862	• Emotion Constraint
1863	• Linguistic Characteristics
1864	• Multilingual Constraint
1865	• Output Format Constraint
1866	Text Pattern Constraint
1867	• Grammar Structure Constraint
	Citation Constraint
1868	

	 Numbering and List Constraint 	1869
	 Hierarchical Structure Constraint 	1870
	• Template Constraint	1871
		1071
E. 7	Prompt for instruction-level validation	1872
	You are now an assistant to modify	1873
	sub-tasks.	1874
	You need to modify the given sub-tasks	1875
	according to the following steps:	1876
	according to the forrowing steps.	1877
		1077
	1. Analyze the relationship between	1878
	sub-tasks and evaluate their role	1879
	in the comprehensive task, removing	1880
	contradictory sub-tasks.	1881
	2. Note that sub-tasks are carried out	1882
	by a large model, so remove tasks that	1883
	the large model cannot complete, such	1884
	as internet searches, finding related	1885
	information, statistical data analysis,	1886
	etc.	1887
	3. Delete tasks with weak logical	1888
	connections. The relationships between	1889
	sub-tasks can be: A. Parallel Task	1890
	Mode: Analyzing multiple dimensions	1891
	simultaneously	1892
	B. Serial Task Mode: Chain-dependent	1893
	tasks	1894
	C. Conditional Selection Mode: Branching	1895
	based on different situations,	1896
	considering possible branches of a	1897
	task, and designing different tasks for	1898
	different branches	1899
	D. Nested Task Mode: Hierarchical task	1900
	structure	1901
	4. Sub-task selection criteria: -	1902
	Remove tasks that an AI model cannot	1903
	accomplish (such as network searches,	1904
	finding information)	1905
	- Remove tasks with weak logical	1906
	connections	1907
	- Remove redundant, contradictory, or	1908
	unreasonable tasks	1909
	- Optimize sub-task content to be of	1910
	moderate difficulty and meet practical	1911
	needs	1912
	- It is acceptable to propose some	1913
	creative tasks	1914
	- Ensure that the number of generated	1915
	sub-tasks is between 6 and 14	1916
	- Try to diversify task types, with at	1917
	least 3 different styles of tasks	1918
	- Remove tasks that require an AI model	1919
	to use tools, such as Named Entity	
	,	1920
	tools, etc.	1921
		1922
	5. Select the main task categories from	1923
	the following, and the directions under	1924
	each category can be diversified: 1.	1925
	Classification Task	1926
	- Sentiment Analysis	1927
	- Text Classification	1928
	- Toxic Content Detection	1929
	- Empathy Detection	1930
	- Stereotype Detection	1931
	- Social Norm Judgment	1932
		1933
	2. Information Extraction	1934
	- Named Entity Recognition	1035

- Named Entity Recognition

1936	- Keyphrase Annotation	[task type]
1937 1938	- Coreference Resolution	SUP INSTRUCTION 1.
1939	- Entity Relationship Classification	SUB_INSTRUCTION_1: [task type]
1940	3. Text Generation - Story Creation	-explanation-:
1941	- Poetry Generation	
1942	- Recipe Generation	
1943	- Outline Generation	
1944	- Text Expansion/Compression	E.8 Prompt for constraint-le
1945	- Title Generation	You are a constraint
1946 1947	- Data Description Generation	assistant.
1948	 Text Rewriting/Simplification 	Your task is to determine
		given constraints can be c
1949	4. Dialogue Systems	large model. Please evaluation
1950	- Dialogue Generation	to the following rules:
1951	- Intent Recognition	
1952 1953	– Question Generation/Rewriting – Dialogue State Tracking	1. **Input**:
1953	- Role-playing Dialogue	- Constraint content: A se
1955	- Kole-playing blatogue	describing the task requir
		- Input dialogue: A seg
1956	5. Reasoning and Logic	user's conversation with t
1957	- Common Sense QA	
1958	- Multi-hop QA	
1959	- Critical Thinking Judgment	2. **Evaluation Rules**:
1960	- Mathematical Reasoning	- If the input dialogue
1961 1962	- Theory of Mind Reasoning	critical information neede
1902		the constraint** (e.g., t requires extracting pers
1963	6. Language Style	but no person is menti
1964	- Style Transfer	dialogue), then output "No
1965	- Language Detection	- If the constraint *
1966	- Sarcasm Detection	the model's capability**
1967 1968	 Spelling/Punctuation Error Detection 	real-time data or externa
		then output "No".
1969	7. Evaluation and Verification	 If the input dialog
1970	- Text Quality Evaluation	sufficient information
1971	- Fact-checking	constraint falls within
1972 1973	– Answer Verification – Uncertainty Judgment	capability, then output "Y
1973	- Oncertainty Judgment	- If the model outputs "No
		modify the constraint con it feasible for the model to
1975	8. Programming-related	It reastble for the model to
1976	- Code Generation/Debugging	
1977	- Code Explanation - Code Translation	3. **Output**:
1978 1979		- If the output is "No",
1979		modified constraint conter
1000	Tarant Tatal Tarl	feasible for the model.
1980	Input Total Task:	- If the output is "Yes", no
1981 1982	{input_text}	is needed.
1983	Input Sub-tasks:	
1984	{sub_instruction}	4. **Examples**:
1504		- Example 1:
1085	6 First output the modified	- Instruction content: Extr
1985 1986	6. First, output the modified comprehensive task content (if	- Constraint content: Ex
1987	no modifications, output the	entities from the dialogue
1988	original content) after -output-,	- Input dialogue: User say
1989	including the modified INSTRUCTION	I went to the park with Xi – Output: Yes
1990	and SUB_INSTRUCTION_x, where	- Output: Yes - Example 2:
1991	SUB_INSTRUCTION_x is formatted as	- Instruction content: Extr
1992	'sub-task content [task type]'.	- Constraint content: Ext
1993	Finally, place the specific modification	entities from the dialogue
1994	analysis process after -explanation	 Input dialogue: User weather was great yesterda
1995	-output-:	for a walk in the park."
1996	INSTRUCTION:	- Output: No
1997		- Reason: No person ent:
1998		dialogue
1999	SUB_INSTRUCTION_0:	- Modified content: If

explanation-: 	2004 2005 2006
Prompt for constraint-level validation	2007
You are a constraint evaluation assistant. Your task is to determine whether the given constraints can be completed by a large model. Please evaluate according to the following rules:	2008 2009 2010 2011 2012 2013 2014
I. **Input**: Constraint content: A segment of text describing the task requirements. Input dialogue: A segment of the user's conversation with the model.	2015 2016 2017 2018 2019 2020
<pre>2. **Evaluation Rules**: If the input dialogue **lacks the critical information needed to fulfill the constraint** (e.g., the constraint requires extracting person entities, out no person is mentioned in the dialogue), then output "No". If the constraint **goes beyond the model's capability** (e.g., needs real-time data or external resources), then output "No". If the input dialogue provides sufficient information and the constraint falls within the model's capability, then output "Yes". If the model outputs "No", minimally modify the constraint content to make it feasible for the model to complete it.</pre>	2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
3. **Output**: If the output is "No", provide the modified constraint content to make it feasible for the model. If the output is "Yes", no modification is needed.	2040 2041 2042 2043 2044 2044
<pre>4. **Examples**: Example 1: Instruction content: Extract entities Constraint content: Extract person entities from the dialogue. Input dialogue: User says, "Yesterday I went to the park with Xiaoming." Output: Yes Example 2: Instruction content: Extract entities Constraint content: Extract person entities from the dialogue. Input dialogue: User says, "The weather was great yesterday, and I went for a walk in the park."</pre>	2046 2047 2048 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
Output: No Reason: No person entities in the dialogue Modified content: If any person	2062 2063 2064 2065

entities are present, extract them. - Example 3:	
 Instruction content: Generate text Constraint content: Generate 100-word text describing the surscenery, using at least 3 similes. Input dialogue: User says, "Plowrite a passage about summer." Output: Yes Example 4: 	a mmer
- Instruction content: Generate text	
 Constraint content: Generate 100-word text describing the sun scenery, and cite at least 2 acade papers. 	nmer
- Input dialogue: User says, "Plo write a passage about summer." - Output: No	ease
 Reason: Unable to cite academic paper of the second second	e a
5. **Task**:	
 Instruction content: {instruct Constraint content: {constrain Input dialogue: {input} Output: Reason: Modified constraint: 	-

E.9 Prompt for training process

You are now an AI assistant responsible for generating answers to specified tasks. You need to generate answers following these requirements:

1. Strictly generate answers based on the given input material and corresponding sub_instruction.

2. Generate answers for each sub_instruction, ensuring consistency among answers to different sub_instructions.

3. Follow the constraints of each sub_instruction strictly to generate answers.

4. First, think through each sub-task in detail using analytical skills to deeply understand the issues, and then provide answers. The thought process for each sub-task should be detailed between start_think and end_think, and the answer should be fully presented between start_answer and end_answer.

5. The thought process and answer for each sub_instruction should be placed between start_sub_instruction_x and end_sub_instruction_x, where sub_instruction_x is the specific identifier for the sub-task. Ensure there are no extra spaces, quotes, or symbols before and after these markers.

Notes: 1. Strictly adhere to the constraints.

2. Ensure the quality of answers.

3. Do not output the input content.	2131
4. The format is as follows:	2132
<pre>start_sub_instruction_0</pre>	2133
start_think	2134
Deeply analyze this sub-task,	2135
end_think	2136
start_answer	2137
Based on the above analysis, the detailed	2138
answer to sub-task 0 is	2139
end_answer	2140
end_sub_instruction_0	2141
	2142
<pre>start_sub_instruction_1</pre>	2143
start_think	2144
In this sub-task, consider various	2145
factors,	2146
end_think	2147
start_answer	2148
Based on the above analysis, the answer	2149
to sub-task 1 is	2150
end_answer	2151
end_sub_instruction_1	2152
	2153

Referring	to the	above fo	ormat	and	2154
generation	requirem	ents, plea	ase t	hink	2155
through an	d genera	te specifi	c ans	wers	2156
for the fo	llowing t	ask:			2157

input:	215
<pre>{input_text}</pre>	215
output:	216